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ABSTRACT

In this paper we propose the use of the Timed
Observation theory as a powerful frameworks for
model-based diagnosis. In fact, they provide a
global formalism for modeling a dynamic system
(TOM4D), for characterizing and computing di-
agnoses of the system under investigation

1 INTRODUCTION

In the last two decades model-based diagnosis has
been an important research area where numerous new
methodologies and formalisms have been proposed,
studied and experimented ((Console et al., 2000) and
(Le Goc et al., 2008)). This is motivated by the prac-
tical need for ensuring the correct and safe function-
ing of large complex systems. These frameworks have
been created (i) to provide semantics for the diagnosis
problem solving, (ii) to analyze the properties and to
characterize the diagnosis reasoning and (iii) to give
modeling principles.

In dynamic systems, the observation is timed un-
like in static systems where the observations are given
at only one point of time. This is restrictive in sev-
eral fields. The extension of the problem poses many
problems with the existing approaches. Since (Reiter,
1987), most of the frameworks are based on the logic
formalism. Despite of the important contributions in
the domain of temporal logics, there is still a difficulty
to take into account the time of the observations in the
diagnosis reasoning. Later, the Discret Event System
formalism has been used to diagnose dynamic systems
(Cassandras and Lafortune, 1999). One basic difficulty
that arises is then the definition of the observations.
Cordier (Cordier and Grastien, 2007) proposes to slice
off the flow of the measurements into temporal win-
dows to define the observations within these slices and
to compute the diagnosis incrementally using the ob-
servations of the successive slices. This approach is
applied only to D.E.S and is seldom used in real cases.
One of the problems with this kind of approach is to
define the size of the slices so that the relevant obser-
vations can be perceived: there is no a priori reason

for the observations to be synchronized with the slic-
ing algorithm. In other words, the slicing algorithm
can mask pertinent observations and, within a slice, the
observations must be ordered to be taken into account
in a model. These difficulties are classical with dis-
crete time systems. To avoid these problems, Le Goc
(Le Goc, 2006) proposes to define observations time-
stamped with clocks in time continuous. The Timed
Observation Theory of Le Goc (Le Goc, 2006) pro-
vides a general mathematical framework for modeling
dynamic processes from timed data. The application of
this framework to diagnosis has given birth to a mod-
eling methodology for diagnosis TOM4D (Timed Ob-
servation Theory for Diagnosis). The aim of the mod-
eling methodology is to provide an efficient diagnosis
based on models built at the same abstraction level as
these of the experts.

In this paper, after a brief presentation of the Timed
Observation Theory and the TOM4D method (Sec-
tions 2 and 3), we show how TOM4D supports the
modeling of complex physical systems. In sections
4 and 5, we show how the models can be used to
characterize the diagnosis and we demonstrate that the
diagnosis can be computed easier using the TOM4D
models (section 6). We apply the modeling approach
and the diagnosis algorithm to an hydraulic system.
Finally, Section 7 provides conclusions and proposes
some perspectives to this work.

2 THEORY OF TIMED OBSERVATIONS

Le Goc’s Timed Observation Theory extends Shan-
non’s Theory of Communication to timed data and
offers a unique frame for Markov Chains and Pois-
son Theories. It also extends the Logical Theory of
Diagnosis to timed observations. This theory consid-
ers that the timed messages of a serie are written in a
database by a program called a Monitoring Cognitive
agent (MCA), which monitors a dynamic sytem. A
dynamic system is a process Pr(t)={x1(t), x2(t), ...,
xn(t)} defined as an arbitrary set made of time func-
tions xi(t) defined on the real set denoted ℜ (i.e. ∀ t ∈
ℜ , xi(t) ∈ ℜ).

This theory defines a timed observation in the
following way (Le Goc, 2006). Given a set
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Pr(t)={x1(t), x2(t), ..., xn(t)} of time functions the
evolution of which are observed by a program Θ; let
X = {x1, x2, ..., xn} be the corresponding set of vari-

able names; let ∆= ∪
∀xi∈X

∆xi
each ∆xi

={δi
1, δi

2, ...,

δi
m} being a set of constants denoting the possible val-

ues for xi; let Γ={tk}tk∈ℜ be a set of arbitrary time
instants.

Definition 1 (A Timed Observation). A timed obser-
vation o(tk) ≡ (δi

j , tk), made by a program θ when

observing a time function xi(t) at time tk ∈ Γ, is the

assignation of the values v=xi, δv=δi
j and t=tk to a

predicate Θ(v, δv, t) so that: Θ(xi, δ
i
j , tk).

Conceptually, the θ program applies the spatial seg-

mentation principle: a value δi
j is assigned to a variable

xi whenever the value of its corresponding time func-

tion xi(t) enters in a range [ψi, ψi+1[, where ψi is a

threshold for xi(t) (i.e. ψi ∈ ℜ ). This means that
the values are assigned to the variables with a program
(or a human) the basic specification of which is the fol-
lowing (cf. (Goc, 2004) for examples of more complex
spatial segmentation algorithms):

∀ k ∈ N, xi(tk) ≥ ψi ∧ xi(tk−1)< ψi ⇒ o(tk) ≡ (δi
j ,

tk) ∧ tk ∈ Γ
In practice, each time tk the predicate Θ(xi, δ

i
j , tk) is

assigned, the program θ (or a human) writes a couple

(δi
j , tk) in a database, a datalog or a simple document.

As a consequence, to any timed observation o(tk)≡
(δi

j , tk) corresponds an assigned predicate Θ(xi, δ
i
j ,

tk). (Le Goc, 2006) shows that this predicate can al-
ways be interpreted as the ”Equal” predicate so that:

Θ(xi, δ
i
j , tk) ≡ Equal(xi, δ

i
j , tk) ⇔ xi(tk) ∈ [ψi,

ψi+1[. Such an assigned predicate is often represented
in the expert’s language under the form of the assigna-

tion of the value δi
j to the variable xi at tk: xi(tk)=δi

j .

The value δi
j can therefore then be considered as a

symbol denoting the range [ψi, ψi+1[. This leads to
define the notion of class of observations.

Definition 2. An observation class Ci={(xi, δi
j),

(xi+1, δi+1

j+1
), ..., (xi+n, δi+n

j+n} is a set of couples

(xi, δ
i
j) associating a variable xi, eventually unknown,

with a constant δi+k
j+k.

In other words, an observation class Ci associates
variables xi ∈ X with constants δi

j ∈ ∆xi
. This leads

to the following property:

Proposition 2.1. Each timed observation o(tk)≡ (δi
j ,

tk) corresponds to an occurrence of an observation

class Ci = {(xi, δ
i
j)}.

In practical applications, the observation classes
are usually defined as a singleton of the form Ci =

{(xi, δ
i
j)}. These definition allow defining a model-

ing methodology for diagnosis.

3 MODELING APPROACH FOR DIAGNOSIS :
TOM4D

TOM4D is a modeling methodology for dynamic sys-
tems focused on timed observations. The objective of

Figure 1: TOM4D Modeling Process

this methododology is to produce a suitable model for
dynamic process diagnosis from timed observations
and experts’ a priori knowledge. TOM4D relies on
the idea that experts use an implicit model to both for-
mulate the knowledge about the process and diagnose
it. It is a multi-model approach that combines Com-
monKads templates (Schreiber et al., 2000) with the
conceptual framework proposed in (Zanni et al., 2006)
and the tetrahedron of states (T.o.S), (Rosenberg and
Karnopp, 1983), (Chittaro et al., 1993). These ele-
ments are merged according to the Timed Observa-
tions Theory (Le Goc, 2006).

The TOM4D methodology is based on the notion

of observation class Ci = {(xi, δ
i
j)} and associates the

variable xi of each observation class Ci with one and
only one component ci. This means that the values δi

j

a variable xi can take over time is the result of a cou-
ple (θ(∆xi

), xi(t)) made with a program θ(∆xi
) that

observes the evolutions of a time function xi(t) and

write a timed observation o(tk) ≡ (δi
j , tk) whenever

a predicate Θ(xi, δ
i
j , tk) is assigned. In other words,

xi(t) is the signal provided by some sensors associated
with a component ci. This allows to organize the avail-
able knowledge about a process Pr(t) according to (i)
a Perception Model PM(Pr(t)) defining the process
as an arbitrary set made of time functions x− i(t) and
its operating goals and its normal and abnormal behav-
iors, (ii) a Structural Model SM(Pr(t)) defining the
components of the process and their relations, (iii) a
Functional Model FM(Pr(t)) defining the relations
between the values of the process variables (i.e. their
definition domain) with a set of mathematical func-
tions, and (iv) a Behavior ModelBM(Pr(t)) defining
the timed observation classes firing the evolutions of
the time functions of Pr(t).

Figure 1 describes the three main steps of the
TOM4D modeling process: Knowledge Interpreta-
tion, Process Definition and Generic Modeling. The
aim of this process is to produce a coherent generic
model M(Pr(t)) = < PM(Pr(t)), SM(Pr(t)),
FM(Pr(t)), BM(Pr(t))> from the available knowl-
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edge and data.

The Knowledge Interpretation step uses a Com-
monKADS template to interpret and to organize
the available knowledge about a dynamic system.
This knowledge is provided by a knowledge source
(an expert, a set of documents, etc) and when
possible, at least one scenario. This first step
aims at producing a scenario model M(Ω) =<
SM(Ω), FM(Ω), BM(Ω) > of the system that is co-
herent with the available knowledge about its evolution
over time. This model is used in the Process Defini-
tion step to provide a definition of the process under
the form of a perception model PM(Pr(t)). This is
made with the use of the tetrahedron of states to pro-
vide a physical dimension to each variable of the pro-
cess and with the use of formal logic to define its op-
erating goals and its normal and abnormal behaviors.
The aim of this step is to control the way the semantics
of the available knowledge is introduced in the model
to avoid the potential representation errors. The Per-
ception Model PM(t) defined, the Generic Modeling
step aims at defining an abstract representation of the
dynamic system where the different terms of the avail-
able knowledge are reified through a set of relations.
This paper being focused on the use of the resulting
model BM(Pr(t)), the interested reader is invited to
see (Le Goc et al., 2008), (Fakhfakh et al., 2012a)
or (Fakhfakh et al., 2012b) for further details about
TOM4D.

A TOM4D behavior model BM(Pr(t)) describes
the possible sequences of observation classes that can
occur and therefore the discernible states between
them.

Definition 3. A behavior model BM(Pr(t)) of a dy-
namic process Pr(t) is a 3-tuple < S,C, γ > where:

• S = {s : X → ∆|s(xi) = δ, xi ∈ X, δ ∈ ∆}
is a set of functions which characterize the dis-
cernible states of the process Pr(t),

• C is a set of observation classes, where an obser-
vation class associated with a variable xi ∈ X
is a set Ci = {(xi, δ)|δ ∈ ∆xi} containing only
one element (i.e. a singleton),

• γ : S × C → S is a function of discernible state
transition.

Given a sequence ω = {o(k)} of observation class

occurrence o(k) ≡ (δi, tk), a transition from a dis-
cernible state si to the discernible state sj is triggered
when:

• there is an occurrence o(k) ≡ (δi, tk) of class Ci

in ω;

• the current state s(t) of the finite state machine
implementingBM(Pr(t)) is the discernible state
si (i.e. s(t) = si);

• there exists an assignment γ(Ck, si) = sj .

The observation classes being singletons, an occur-
rence of an observation class (i.e. a timed observation
o(k) ≡ (δy, tk)) corresponds to the assignation of a
particular value δy to a variable xi of Pr(t).

Algorithm: Generate-C-Graph GC = {ri}
input: a behavior Model BM(Pr(t)) =< S,C, γ >
output: a C-Graph GC = {ri}, ri ≡ r(C

x, Cy, si)
1.GC = Φ
2.∀si ∈ S
2.1.∃sn, sm ∈ S,
sn = γ(si, Cx) = sn ∧ sm = γ(sn, C

y)
⇒ GC = GC ∪ r(C

x, Cy, si);
3.ReturnGC

4 SEQUENTIAL BINARY RELATIONS

The important point is that a state transition in a fi-
nite state machine implementing a TOM4D behav-
ior model BM(Pr(t)) can occur if and only if there
exist two assignations si = γ(Cx, sk−1) and sk =
γ(Cy, si) in BM(Pr(t)).

Definition 4. Given a TOM4D behavior model
BM(Pr(t)) =< S,C, γ >, a sequential binary re-
lation r(Cx, Cy, si) between two observations classes
Cx and Cy , labelled with a discernible state si, ex-
ists iff: ∃sk−1, si, sk ∈ S, si = γ(Cx, sk−1) ∧ sk =
γ(Cy, si).

A sequential binary relation between two obser-
vation classes r(Cx, Cy, si) is an oriented (sequen-
tial) relation between two observation classes Cx =
{(x, δx)} and Cy = {(y, δy)} that is linked with a
discernible state si. This latter can correspond to the
current state of a finite state machine implementing a
TOM4D behavior model BM(Pr(t)) after observing
an occurrence Cx(tk) = (δx, tk) of the ”input” obser-
vation class Cx and before observing the occurrence
Cy(tk+1) = (δy, tk+1) of the ”output” observation
class Cy .

The γ function defines then the possible sequential
relations between two observation classes:

Proposition 4.1. Two assignments si = γ(Cx, sk−1)
and sk = γ(Cy, si) define a sequential binary rela-
tion r(Cx, Cy, sj) between two classes Cx and Cy la-
belled with a discernible state si.

In other words, a TOM4D behavior model
BM(Pr(t)) =< S,C, γ > specifies a graph between
the set C of observation classes. This graph is used to
control the diagnosis reasoning.

A class graph C-Graph is a set GC =
{..., ri(C

x, Cy, sx,y), ...}, i = 1...n, of sequential bi-

nary relations of the form r(Ci, Co, sio) between an

input observation class Ci and an output observation
class Co labelled with a discernible state sio

. The C-
Graph is built from a TOM4D generic behavior model
generated with the following algorithm.

The C-Graph GC describes the complete process
behavior in terms of observation class. This means that
a path in this graph describes a particular behavior of
the process. Such a path correspond to a suite of dis-
cernable states in the behavior model BM(Pr(t)). So
looking for a particular suite of discernable states in
BM(Pr(t)) corresponds to look for a particular path
in the associated C-Graph GC :

Definition 5. A class path PC is a sub-graph of a C-

Graph GC made with a suite PC = (ri,i+1), i = 1...n
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Figure 2: Diagnosis Engine

of n sequential binarys relation ri,i+1 of the form

r(Ci, Ci+1, si,i+1).

In other words, the general form of a class

path PC is the following: ( r1(C
i1 , Ci2 , si1,i2),

r2(C
i2 , Ci3 , si2,i3), ..., rn(Cin , Cin+1 , sin,in+1

) ).
Because the timed observations provided by a

MCA Θ(X,∆) are the occurrences of the observa-
tion classes of the set C of a TOM4D behavior model
BM(Pr(t)), it is simpler to look for a class path in
the C-Graph and then to look for the corresponding
state path, rather that trying to directly build the suite
of states from the suite of observations. This idea is
the basis of the proposed diagnosis algorithm.

5 DIAGNOSING WITH C-GRAPHS

According to The timed Observation Theory (Le Goc,
2006), the timed observations are provided by a MCA
θ(X,∆) that assumes the online supervision of a dy-
namic process Pr(t). Diagnosis is performed starting
from a sequence ω = {o(tk)} of timed observations
and a TOM4D process model M(Pr(t)). It consists
in explaining the timed observations of ω written by
MCA Θ(X,∆) during a period [t0, tn].

Consequently, the diagnosis aims at generating the

minimal set D of class paths PC that are compat-
ible with the timed observations of ω (cf. Fig-
ure 2) and the C-Graph derived from the behavior
model BM(Pr(t)) of the TOM4D process model
M(Pr(t)).

Definition 6 (Diagnosis Definition). Given a C-Graph
GC = {..., r(Cx, Cy, si), ...} and a suite ω =
{o(t0), ..., o(tn)} of n+1 timed observations recorded
during the period [t0, tn], a diagnosis at time t ∈
[t0, tn] is the minimal set D(t) = {PC} of class paths

PC that are consistent with GC and ω.

(ω,GC)→ D(tn) (1)

The algorithm of computing the minimal set D of

class path PC from a C-graph GC and a sequence ω
of timed observations is made with a loop on each
timed observation o(k) ∈ ω and acts with three
main steps: (i) remove the paths of D that are no
more coherent with o(k), (ii) extend each path in the

Algorithm: Generate-Class-Path
input : a C-Graph GC and a sequence ω =
{o(tk)} of n timed observations
Output : a setD of class paths consistentGC and
ω
1.D ← {φ}
//Loop on the timed observations of ω
//Γ(ω) is the set of time-stamp of the timed obser-
vations of ω
2.∀tk ∈ Γ(ω)
//Compute the set C of the classes occured at tk
2.1.∀o(tk) ≡ (δi, tk) ∈
ω,ObsClassOf(o(tk)) ∈ C
//Compute D for the set C at time tk
2.2.D = computeD(D,GC , C)
3.ReturnD

Algorithm: computeD
input : a set D of C-Path, a C-Graph GC and a
set C of observation classes
Output : the upated set D
1.d← {φ}
//Loop on the observation classes of C
2.∀c ∈ C
2.1.d← d ∪ computeCPaths(D,GC , c)
3.D ← d
//If D is empty, initialise D with C and GC

4.D = {φ} ⇒ D ← initCPath(GC , C)
5.ReturnD

resulting set D with the right sequential relations from
GC and (iii) initialize the set D when it is empty
(at the first loop or if there are no more paths that
are coherent with ω. The algorithm also uses three
functions: ”obsClassOf(o)” to get the class of a
timed observation, ”rightestRelationOf(P )” to get
the right most sequential binary relations of a class

path and ”rightRelations(r(Ci, Co, sio), GC)” to
get the set of sequential binary relation corresponding
to the successor of a particular sequential binary

relation r(Ci, Co, sio) in a C-Graph GC .

The next section illustrates this algorithm on the
(simple) device of Figure 3 studied in (Console et al.,
2000). It is to note that this algorithm can easily be
extended to simultaneous timed observations that can
occur in large and complex systems. In other hand, the
lack of timed observations leads the algorithm to re-
move the C-Paths that are no more consistent with the
suite of timed observations. It can also be extended
to use the functional model FM(Pr(t)) to distinguish
between a true lack of timed observation and an incon-
sistency between the sequence of timed observations
and the behavior model BM(Pr(t)).

6 APPLICATION

(Console et al., 2000) describes the example with the
following terms: the system is formed by a pump P
which delivers water to a tank TA via a pipe PI; an-
other tank CO is used as a collector for water that may
leak from the pipe. The pump is always on and sup-
plied of water. The pipe PI can be ok (delivering to the
tank the water it receives from the pump) or leaking
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Algorithm: computeCPaths
input : a set D of C-Paths, a C-Graph GC and an
observation class c
Output : the updated set D
1.D1 = {φ} //Working set of C-Path
//Remove from D the paths that are not compati-
ble with c
2.∀P ∈ D
2.2.r(Ci, Co, sio)← rightestRelationOf(P )
2.3.Co = c⇒ D1 = D1 + P
3.D ← D1 //D contains the C-Paths compatible
with c
//Extends each path of D with the right sequential
relations 4.D1 = {φ} //Reset the working set D1

4.∀P ∈ D
4.1.r(Ci, Co, sio)← rightestRelationOf(P )
//Get the relations from GC

4.2.R = rightRelations(r(Ci, Co, sio), GC)
4.3.∀r ∈ R
4.3.1.P1 = P + r //Create a new extended path
for P
4.3.2.D1 = D1 + P1 //Add the new path in D1

5.ReturnD1

Algorithm: initCPath
input : a C-Graph GC and a set C of observation
classes
Output : a set D of sequential binary relations
consistent with C
1.∀c ∈ C
1.1∀r(Ci, Co, sio) ∈ GC ,
1.2Co = c⇒ {r(Ci, Co, sio)} ∈ D
2.ReturnD

Figure 3: Hydraulic system

Variables Physical value Abstract
x interpretation interpretation value δi

normal, 2,
x1 V olume low, 1,

zero 0

normal, 2,
x2 normal

outflow
low, 1,

zero 0

x3 abnormal
outflow

presence, 2,

absence 1

Table 1: Variable-Value Association for the Hydraulic
System

(in this case we assume that it delivers to the tank a
low output when receiving a normal or low input, and
no output when receiving no input). The tanks TA and
CO are simply receive water. We assume that three
sensors are available (see the eyes in Figure 3): flowp

measures the flow from the pump, which can be nor-
mal (nrmp), low (lowp), or zero (zrop); levelTA mea-
sures the level of the water in TA, which can be nor-
mal (nrmta), low (lowta), or zero (zrota); levelCO

records the presence of water in CO, either present
(preco) or absent (absco).

According to the TOM4D methodology, the system
is a hydraulic process Pr(t) = {x1(t), x2(t), x3(t)}
made with three variables (cf. the hydraulic T.o.S):
x1(t) is a volume variable, x2(t) and x3(t) are two
outflow variables. The analysis of the system descrip-
tion shows that x2(t) represents a normal outflow and
x3(t) represents an abnormal outflow corresponding to
water leakage. Table 1 shows the variable-value asso-
ciation and the physical interpretation of the variables.
The corresponding set of observation classes is given
in Table 2 and the discernible states are provided in
Table 3. The reader interested with the application of
the TOM4D methodology on this example is invited to
refer to (Fakhfakh et al., 2012a).

Figure 4 shows a graphical representation of the
behavior model BM(Pr(t)) of the hydraulic system.
The ”Generate − C − Graph” algorithm of section

C1
1 = {(x1,0)} C1

2 = {(x1,1)} C1
3 = {(x1, 2)}

C2
1 = {(x2,0)} C2

2 = {(x2,1)} C2
3 = {(x2,2)}

C3
1 = {(x3,1)} C3

2 = {(x3,2)}

Table 2: Timed Observation Classes

5
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States x1 x2 x3 States x1 x2 x3

s0 0 0 1 s1 1 0 1
s2 2 0 1 s4 1 1 1
s5 2 1 1 s8 2 2 1
s9 0 0 2 s10 1 0 2
s11 2 0 2 s13 1 1 2
s14 2 1 2 s17 2 2 2

Table 3: The set of discernible states for the Hydraulic
System

Figure 4: behavior Model of the hydraulic system

4 produce the C-Graph GC of Figure 5.

To illustrate the ”Generate−Class−Path” algo-
rithm of the previous section, let us consider the fol-
lowing sequence of timed observations: ω = { ox2

(t0)
≡ (1, t0), ox3

(t1) ≡ (2, t1), ox2
(t2) ≡ (0, t2) , ox1

(t3)
≡ (2, t3)} (We consider that ti ≤ ti+1). According
to the table 2, the observation class associated to the
first timed observation ox2

(t0) of ω is C2
2 . The set D

being empty, the two first steps of the algorithm do
nothing but the third step initializes D with the Algo-
rithm ”initCPath” that is to say finds the set of binary

Figure 5: C-Graph of the hydraulic system

Figure 6: PC consistent with the ω and BM

relation that are of the form r(C0, C2
2 , si0) so that D =

{ {r(C1
2 ,C2

2 , s1)}, {r(C2
1 ,C2

2 , s1)}, {r(C2
1 ,C2

2 , s2)},
{r(C1

3 ,C2
2 , s2)}, {r(C2

3 ,C2
2 , s8)}, {r(C2

1 ,C2
2 , s11)},

{r(C3
2 ,C2

2 , s11)}, {r(C1
3 ,C2

2 , s11)}, {r(C2
1 ,C2

2 , s10)},
{r(C3

2 ,C2
2 , s10)}, {r(C1

2 ,C2
2 , s10)}}.

The observation class of the second timed obser-
vation ox3

(t1) ≡ (2, t1), ox2
(t2) being C3

2 , the next
step of the algorithm removes the paths of D that are
no more coherent with ox3

(t1) and extends the rest of
paths with the right sequential relations from GC (cf.
Figure 5) so that

D = { {r(C1
2 , C

2
2 , s1), r(C

2
2 , C

3
2 , s4)},

{r(C2
1 , C

2
2 , s1), r(C

2
2 , C

3
2 , s4)},

{r(C2
1 , C

2
2 , s11), r(C

2
2 , C

3
2 , s14)},

{r(C2
1 , C

2
2 , s2), r(C

2
2 , C

3
2 , s5)},

{r(C1
3 , C

2
2 , s2), r(C

2
2 , C

3
2 , s8)},

{r(C2
3 , C

2
2 , s5), r(C

2
2 , C

3
2 , s5)} }. Doing so, the

algorithm finds only two C-Paths that are consistent
with all the timed observations of ω (cf. Fig 6).
The dark circle means that the new observation class
is inconsistent with the defined C-Path (there is no
relation between the last observation class and the
new observation class).

D(t) = {PC1 , PC2} = { {r0(C1
2 , C2

2 , s1), r1(C2
2 ,

C3
2 , s4), r2(C3

2 , C2
1 , s13), r3(C2

1 , C1
3 , s10)}, {r0(C2

1 ,

C2
2 , s1), r1(C2

2 , C3
2 , s4), r2(C3

2 , C2
1 , s13), r3(C2

1 , C1
3 ,

s10)}} and the state Path corresponding is S-Path =
{s1, s4, s13, s10, s11}. The interpretation of the results
with the behavior model shows that the system passed
from the ok mode (the grey states in Figure 4) : states
(s1, s4) to leaking mode (the dark states in Figure 4) :
states (s13, s10, s11).
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7 CONCLUSION

This paper proposes an algorithm to diagnose dynamic
systems modeled with the TOM4D methodology ac-
cording to the Theory of Timed observations of
(Le Goc, 2006). This alogorithm is a preliminary
work since we have not exploited all the potentialities
of the theory. In particular, this algorithm does not
consider the lack of timed observations that can occur
in large and complex systems. An extension is under
consideration with the idea to use the function model
FM(Pr(t)) to discriminate between a true lack and
an inconsistency.
On other hand, with large and complex systems, the
impossibility to define a global behavior model obliges
to model the behavior in a decompositional way with
the description of the behaviors of each component
of the system. Another extension to the proposed
algorithm aims at computing the diagnosis locally for
each component before merging the local diagnosis
to get a global diagnosis. In the D.E.S. approaches,
the diagnoses are merged using the events which are
common with the local diagnosis. According to the
TOM4D methodology, the observations classes are
not common between two components because, by
construction, each variable xi is associated with one
and only one component ci. Consequently, the idea is
to use the functional model FM(Pr(t)) to define the
relation between the observation classes and to merge
the local diagnosis.
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