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Introduction

In the design of engineering components and structures, critical decisions are being more and more based on the results coming from finite element analyses. Therefore, in order to develop confidence in such decisions, controlling the quality of numerical simulations has become a vital issue in both research and industry. This research topic, referred to as model verification, has been extensively studied for more than thirty years and has led to the emergence of powerful methods, particularly as regards the assessment of the global discretization error (see [START_REF] Babuska | The finite element method and its reliability[END_REF][START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF] for an overview). More recently, research has focused on goaloriented error estimation, i.e. the estimation of the error on specific outputs of interest which may be relevant for design purposes. Several techniques have been proposed for goal-oriented error estimation, and particularly for linear problems [START_REF] Paraschivoiu | A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations[END_REF][START_REF] Cirak | A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem[END_REF][START_REF] Peraire | Bounds for linear-functional outputs of coercive partial differential equations; local indicators and adaptive refinements[END_REF][START_REF] Prudhomme | On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors[END_REF][START_REF] Stein | Local error estimates of fem for displacements and stresses in linear elasticity by solving local Neumann problems[END_REF][START_REF] Florentin | Evaluation of the local quality of stresses in 3D finite element analysis[END_REF]. However, only few of these actually lead to strict error bounds.

A general framework was recently introduced for robust goal-oriented error estimation ; it has the advantage to be valid for a large class of mechanical problems [START_REF] Ladevèze | Strict upper error bounds for calculated outputs of interest in computational structural mechanics[END_REF][START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest[END_REF]. This framework, based on the concept of constitutive relation error, in association with extraction techniques (that require the solution of an adjoint problem), enables the calculation of strict and accurate bounds on the local error. The method has been recently and successfully applied to various problems such as fracture mechanics tackled with XFEM [START_REF] Panetier | Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM[END_REF], (visco-)elasticity [START_REF] Chamoin | Bounds on history-dependent or independent local quantities in viscoelasticity problems solved by approximate methods[END_REF], transient viscodynamics [START_REF] Ladevèze | Model verification in dynamics through strict upper error bounds[END_REF], or (visco-)plasticity. In [START_REF] Chamoin | A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems[END_REF][START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest[END_REF], a non-intrusive approach was also added to this framework in order to solve the adjoint problem in an optimal manner, which enables in particular to consider pointwise quantities of interest in time and space. This powerful approach consists in a local enrichment of the adjoint solution, using pre-computed generalized Green's functions, in order to catch effectively and at reasonable cost the locally irregular aspects of this solution.

During the last decade, with the fast increase of computing resources, complex models involving stochastic parameters have been introduced in the computational mechanics community. Such models, which are more and more employed and simulated nowadays [START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF][START_REF] Schueller | A state-of-the-art report on computational stochastic mechanics[END_REF][START_REF] Matthies | Finite element for stochastic media problems[END_REF][START_REF] Babuska | Solution of stochastic partial differential equations using Galerkin finite element techniques[END_REF][START_REF] Sudret | Eléments finis stochastiques en élasticité linéaire[END_REF][START_REF] Babuska | A stochastic collocation method for elliptic partial differential equations with random input data[END_REF], enable to represent lacks of knowledge in the modeling process as well as intrinsic physical randomness. As regards the verification of stochastic models, most of the works are devoted to global error estimation (see [START_REF] Ghanem | Error estimation for the validation of model-based predictions[END_REF][START_REF] Ladevèze | Validation and verification of stochastic models in uncertain environment using constitutive relation error method[END_REF] for instance). For goal-oriented error estimation, the proposed methods [START_REF] Oden | Theory and methodology for estimation and control of error due to modeling, approximation, and uncertainty[END_REF][START_REF] Ladevèze | Verification of stochastic models in uncertain environments using the constitutive relation error method[END_REF][START_REF] Florentin | Error bounds on outputs of interest for linear stochastic problems[END_REF] apply to a specific set of quantities of interest and do not yield strict error bounds (only error indicators obtained through heuristic arguments).

In this work, we aim at extending the previously introduced general goal-oriented error estimation method to stochastic mechanical models. In order to do so, a first key point to consider is the construction, in a stochastic sense, of an admissible solution which is required to apply the constitutive relation error ;

this point was first addressed in [START_REF] Ladevèze | Validation and verification of stochastic models in uncertain environment using constitutive relation error method[END_REF]. Furthermore, we need to extend the bounding result obtained for the local error. A third point should deal with the splitting of error sources (i.e. error contributions due to discretizations in space and stochastic dimensions in our case), and assessment of these contributions in order to drive adaptive algorithms effectively, if necessary [START_REF] Florentin | Adaptive meshing for local quality of FE stresses[END_REF].

Consequently, the paper is structured as follows : after this introduction, Section 2 describes the stochastic reference problem we consider throughout the paper, and gives details about the computation of an associated approximate solution ; Section 3 recalls, for the stochastic framework, the main features of the constitutive relation error and the construction of an admissible solution ; Section 4 introduces the stochastic version of the goal-oriented error estimation method we use, as well as the procedure employed to estimate contributions of various error sources ; numerical results are presented in Section 5 ; eventually, conclusions and prospects are drawn in Section 6.

Reference problem and notations

The stochastic reference problem

We consider an open bounded domain Ω ∈ R d , with d the spatial dimension, representing a mechanical structure in a given environment (see Figure 1). This structure, whose boundary is denoted ∂Ω, is subjected to a prescribed external loading represented by a displacement field

u d ∈ [L 2 (∂Ω)] d over ∂ 1 Ω ⊂ ∂Ω such that ∂ 1 Ω = Ø, a traction force F d ∈ [L 2 (∂Ω)] d over ∂ 2 Ω (with ∂ 1 Ω ∩ ∂ 2 Ω = Ø and ∂ 1 Ω ∪ ∂ 2 Ω = ∂Ω),
and a body force field f d ∈ [L 2 (Ω)] d within Ω. This loading is assumed to be deterministic, even though the methodology presented in the paper could be easily extended to stochastic loadings. The material that constitutes Ω is assumed to be linear and elastic, and K denotes the corresponding Hooke tensor. Moreover, we consider random fluctuating material parameters so that the Hooke tensor is modeled by a random field K(x, θ) ∈ [L 2 (Θ, C 0 (Ω))] d 4 ; (Θ, F, P ) is a complete probability space defined in the Kolmogorov sense [START_REF] Kolmogorov | Foundations of the Theory of Probability[END_REF], with Θ the set of possible outcomes, F a σ-algebra of events (subsets of Θ), and P : F → [0, 1] a probability measure. We assume that the field K(x, θ) is bounded and uniformly coercive, that is ∃(K min , K max ) ∈]0, +∞[ 2 such that :

0 < K min ≤ |K(x, θ)| ≤ K max ∀x ∈ Ω, almost surely (1) 
Remark 1 Following the Karhunen-Loeve expansion [START_REF] Loeve | Probability Theory[END_REF], the stochastic description of K will be limited to a finite number of M uncorrelated stochastic variables ξ k (θ) : Θ → R such that :

K(x, θ) ≈ K(x) + M k=1 λ k ξ k (θ)Z k (x) (2) 
where K = Θ KdP is the mean value of K, whereas {Z k , λ k } are eigenvector/eigenvalue pairs of the covariance operator. This truncation at order M provides for an approximation of K.

We equip the space (Θ, F, P ) with an L2 -inner product on probability measures, defined as :

α, β ≡ Θ α(θ)β(θ)dP (θ) (3) 
where (α, β) is a couple of random variables and dP is the probability measure of θ. We also define the following norms on Ω × Θ :

||| • ||| K = E Tr["(•)K"(•)]dΩ 1/2 = E || • || 2 K 1/2 ||| • ||| K -1 = E Tr[•K -1 •]dΩ 1/2 = E || • || 2 K -1 1/2 (4) 
where

E(•) = Θ • dP is the mathematical expectation of •.
Assuming an isothermal state with small perturbations, the quasi-static problem consists of finding the displacement-stress pair (u(x, θ), (x, θ)) which verifies :

• the kinematic compatibility equations :

u ∈ U ; u |∂1Ω = u d almost surely (5) 
• the equilibrium equations :

∈ S ; E Ω Tr["(u * )]dΩ - Ω f d • u * dΩ - ∂2Ω F d • u * dS = 0 ∀u * ∈ U 0 (6) 
• the constitutive relation :

= K"(u) (7) 
where

U = [L 2 (Θ, H 1 (Ω))] d , S = τ ; τ = τ T , τ ∈ [L 2 (Θ, L 2 (Ω))] d 2
, and U 0 is the vectorial space associated with U. "(•) = 1

Discretization errors

The exact solution of problem (5-7) is denoted (u ex , ex ). In practice, it is approximated using a stochastic finite element method (SFEM) [START_REF] Stefanou | The stochastic finite element method: Past, present and future[END_REF]. In the space dimension, we use a discretization of Ω, based on mesh M h . In the stochastic dimension, the discretization used for Θ is based on a grid M m . Two families of techniques exist :

-non-intrusive techniques, such as Monte Carlo methods or regression methods, in which a set of events is drawn to compute realizations in a deterministic way ;

-intrusive techniques, such as the (generalized) Polynomial Chaos associated with the stochastic finite element method, which search an approximate solution in a finite dimension space.

In both cases, polynomial chaos is often used for M m . This space is defined from a polynomial ba-

sis {Ψ i } L i=1 of variables {ξ k (θ)} M k=1 .
Namely, elements of the basis are defined as

Ψ i ({ ξ k (θ) M k=1 = M k=1 H k,i (ξ k )
, where H k,i (ξ k ) are orthonormal polynomials with respect to the inner-product defined in [START_REF] Becker | An optimal control approach to shape a posteriori error estimation in finite element methods[END_REF]. A review on these various possible techniques that yield approximate stochastic solutions can be found in [START_REF] Berveiller | Stochastic finite elements: intrusive and non-intrusive methods for reliability analysis[END_REF]. In the following, and without loss of generality, we consider a non-intrusive technique based on interpolation, over the stochastic domain, of a given number of computed realizations. More precisely, L deterministic simulations are performed and lead to displacement fields u i h (x) (i = 1, . . . , L). The stochastic field u h,m (x, θ) is then obtained after interpolation using shape functions Ψ i (i = 1, . . . , L) ; u h,m then reads :

u h,m (x, θ) = L i=1 u i h (x).Ψ i ({ ξ k (θ) M k=1 = L i=1 u i h (x).Ψ i (θ) (8) 
The approximated solution is denoted (u h,m , h,m ), where h,m = K"(u h,m ). Subscript h (resp. m) denotes the discretization in the space (resp. stochastic) dimension related to mesh M h (resp. grid M m ).

Using then the energetic norm associated to operator K, we define a measure of the global discretization error :

E glob = |||u ex -u h,m ||| K (9)
We can also define the discretization error on a quantity of interest I(u) representing a specific feature of the global solution u :

E loc = I(u ex ) -I(u h,m ) = I ex -I h,m (10) 
Such a quantity of interest could be the mean of a component of the displacement or stress on a given zone.

Constitutive relation error

Definition and properties

We first introduce the notion of admissibility for a displacement-stress pair. A solution (û, ) ∈ U × S is said admissible if û verifies ( 5) and verifies [START_REF] Chamoin | A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems[END_REF]. We will show in Section 3.2 that such a solution can be obtained as a post-processing of (u h,m , h,m ).

We then define, for an admissible couple (û, ), the constitutive relation error in a stochastic sense :

e cre (û, ) = ||| -K"(û)||| K -1 ≥ 0 (11)
This is a straightforward generalization of the classical constitutive relation error given for deterministic models [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF] :

e cre,spa (û, ) = || -K"(û)|| K -1 (12) 
It is also easy to show that properties of this latter constitutive relation error (see [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF]) extend to the stochastic formulation :

e cre (û, ) = 0 ⇐⇒ (û, ) = (u ex , ex ) almost surely (13) e 2 cre (û, ) = |||u ex -û||| 2 K + ||| ex -||| 2 K -1 (14) e 2 cre (û, ) = 4 ||| ex - * ||| 2 K -1 (15) 
with * = 1 2 [ + K"(û)].

Computation of admissible fields

An admissible solution, denoted (û h,m , h,m ) in the following, is computed from the approximate solution (u h,m , h,m ) at hand. On the one hand, as regards the kinematically admissible displacement field ûh,m , we merely choose ûh,m = u h,m even though other choices would be possible. On the other hand, the computation of a statically admissible stress field h,m is a technical point of the method. It can be performed using various techniques [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF][START_REF] Cottereau | Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method[END_REF][START_REF] Ladevèze | A new non-intrusive technique for the construction of admissible stress fields in model verification[END_REF][START_REF] Moitinho De Almeida | Recovery of equilibrium on star patches using a partition of unity technique[END_REF][START_REF] Pares | Subdomain-based flux-free a posteriori error estimators[END_REF][START_REF] Florentin | Identification of the parameters of an elastic material model using the Constitutive Equation Gap Method[END_REF] ; here, we use the technique recently introduced in [START_REF] Ladevèze | A new non-intrusive technique for the construction of admissible stress fields in model verification[END_REF] which constitutes a good compromise between quality and computational cost [START_REF] Pled | On the techniques for constructing admissible stress fields in model verification: performances on engineering examples[END_REF][START_REF] Florentin | A simple estimator for stress errors dedicated to large elastic finite element simulations : Locally reinforced stress construction[END_REF]. The practical construction of h,m from h,m is detailed below.

• Direct construction : not admissible

The finite element stress field is generally post-treated as :

h,m (x, θ) = L i=1 i h (x).Ψ i (θ) (16) 
Starting from components i h,m (x), it is possible to construct the associated admissible stress fields i h,m (x) using directly techniques developed in the deterministic framework (see [START_REF] Pled | On the techniques for constructing admissible stress fields in model verification: performances on engineering examples[END_REF][START_REF] Florentin | A simple estimator for stress errors dedicated to large elastic finite element simulations : Locally reinforced stress construction[END_REF] for more details).

h,m (x, θ) = L i=1 i h,m (x).Ψ i (θ) ( 17 
)
The problem is that h,m (x, θ) is not admissible in the general case, as it does not respect (6), i.e. the equilibrium equations over the whole space Θ.

• Definition of M m :

To avoid the previous problem, and enable a systematic construction of admissible field h,m (x, θ), we introduce a dedicated basis. Generally, f d and F d are chosen linear with random variables : we introduce here a piecewise linear grid . If other choices are made for f d or F d , a compatible basis can then be chosen.

We introduce the grid M m based on the same nodes as M m but using multi-linear shape functions

{χ i } L i=1
. The L multilinear shape functions of the M random variables are defined by :

χ i ({ ξ k (θ) M k=1 = M k=1 N k,i (ξ k ),
where N k,i (ξ k ) are the classical finite element unidimensional shape function relative to

ξ k .
We denote P h,m the representation of h,m defined on M h :

P h,m (x, θ) = L i=1 χi h (x).χ i ({ ξ k (θ) M k=1 = L i=1 χi h (x).χ i (θ) (18) 
where χi h,m are components of the stress P h,m on {χ i }.

Then components Ni h (x) of the stress h,m (x, θ) in the basis {χ i } can be computed directly using the different techniques developed in deterministic framework from components χi h (x) [START_REF] Pled | On the techniques for constructing admissible stress fields in model verification: performances on engineering examples[END_REF][START_REF] Florentin | A simple estimator for stress errors dedicated to large elastic finite element simulations : Locally reinforced stress construction[END_REF].

h,m (x, θ) = L i=1 χi h (x).χ i (θ) (19) 
The introduction of the basis {χ i } is done to ensure the admissibility of h,m . Indeed, as far as

χ i ({ ξ k (θ) M k=1 is a multi-linear function of the M variables {ξ k (θ)} M k=1
, any linear combination of admissible stress fields χi h (x) (by deterministic construction) will remain admissible. The only assumption to make is that the loading remains linear with random variables {ξ k (θ)} M k=1 (which is not a strong assumption . . .).

Goal-oriented error estimation

Adjoint problem

Assuming it is linear with respect to u, the quantity of interest I is first written under the global form :

I = Θ Ω Tr[ Σ "(u)] + fΣ • u dΩdP ( 20 
)
where stress field Σ (x, θ) and body force field fΣ (x, θ), which may be explicitly or implicitly given, are extractors defined on Ω × Θ.

Using the optimal control approach proposed in [START_REF] Becker | An optimal control approach to shape a posteriori error estimation in finite element methods[END_REF], we define the adjoint problem related to I ; it consists of finding the displacement-stress pair (ũ(x, θ), (x, θ)) which verifies :

• the kinematic compatibility equations :

ũ ∈ U ; ũ|∂1Ω = 0 almost surely (21) 
• the equilibrium equations :

∈ S ; E Ω Tr[( -Σ )"(u * )]dΩ - Ω fΣ • u * dΩ = 0 ∀u * ∈ U 0 (22) 
• the constitutive relation :

= K"(ũ) (23) 
As for the primal problem, we compute an approximate displacement-stress pair (ũ h,m (x, θ), h,m (x, θ))

using the same mesh M h and grid M m .

We also derive an admissible displacement-stress pair ûh,m (x, θ), h,m (x, θ) using the same techniques as for the primal problem.

Error bounding

From quantities previously computed for primal and adjoint problems, we obtain the fundamental relation :

E loc = I ex -I h,m = E Ω Tr[( h,m -K"( ûh,m ))K -1 ( ex -h,m )]dΩ (24) 
This result, for which proof can be found in [START_REF] Ladevèze | Strict upper error bounds for calculated outputs of interest in computational structural mechanics[END_REF][START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest[END_REF], shows that local error E loc can be represented from global solutions of both reference and adjoint problems.

From [START_REF] Matthies | Finite element for stochastic media problems[END_REF], and using the Cauchy-Schwarz inequality, we eventually obtain the guaranteed upper bound Êloc on the local error E loc :

|E loc | ≤ Êloc (25) 
with :

Êloc = e cre (û, ) • e cre ( û, ) (26) 
The bound Êloc is easy to implement (analytical computations may be possible) and the error on primal and adjoint solutions can be computed separately.

Splitting of error sources

In the problem we consider, the discretization error I ex -I h,m on a given quantity of interest I comes from two sources : (i) discretization of the space domain using a finite element mesh ; (ii) discretization of the stochastic domain. In this section, we aim at assessing contributions of these two sources, in order to get relevant information that would help for driving adaptive procedures. The local error can be recast under the form :

E loc = [I ex -I h ] + [I h -I h,m ] = E loc,spa + E loc,sto (27) 
where I h is the quantity of interest, corresponding to an exact resolution regarding randomness, but with a discretized solution using M h regarding space. That way, E loc,spa (resp. E loc,sto ) is the contribution of the discretization error on I due to the discretization of the space dimension (resp. stochastic dimension).

On the one hand, contribution E loc,sto = I h -I h,m can be estimated using the goal-oriented error estimation method described previously, provided that the reference model which is considered is already discretized in space, i.e. taking the reference problem defined in Section 2.1 and applying a finite element discretization to it. With respect to this new reference problem, I h is the exact solution, and I h,m is an approximate solution obtained after discretization in the stochastic dimension.

In that framework, an admissible displacement/stress pair denoted (û m , m ) shall be defined relative to this new reference model. In practice, such a pair can be automatically obtained as a simple postprocessing of the approximate solution (u h,m , h,m ) at hand : we take ûm = u h,m , and construct m as :

m (x, θ) = L i=1 χi h (x).χ i (θ) (28) 
The construction of admissible fields ( ûm , m ) for the new adjoint problem is similar. We eventually obtain the estimate Êloc,sto = e cre (û m , m ) • e cre ( ûm , m ), which is a guaranteed upper bound on the error

|I h -I h,m |.
In the same way, contribution E loc,spa = I ex -I h ≈ I m -I h,m can be estimated taking as the reference model the one defined in Section 2.1 on which we apply the discretization in the stochastic dimension.

With respect to this new reference problem, I m is the exact solution, and I h,m is an approximate solution obtained after discretization in the space dimension. An admissible displacement/stress pair denoted (û h , h ), and relative to this new reference model, is again obtained as a simple post-processing of the approximate solution (u h,m , h,m ) at hand : we take ûh = u h,m , and construct h as :

h (x, θ) = L i=1 i h,m (x).Ψ i (θ) (29) 
The construction of admissible fields ( ûh , h ) for the new adjoint problem is similar. We eventually obtain the estimate Êloc,spa = e cre (û h , h ) • e cre ( ûh , h ), which is a guaranteed upper bound on the error

|I m -I h,m |.

Numerical results

Test problems

Two test-problems are considered here ; the first (denoted [A]) is illustrated in Figure 2, the second

(denoted [B]
) is illustrated in Figure 3. In both problems, Young's modulus E 1 is partially known in zone Ω 1 ; we assume that this random variable (defined on Ω 1 ) has a given probability density with mean E 1 and variation δ 1 :

E 1 (θ) = E 1 . [1 + δ 1 g (ξ(θ))] with g(x) = 2 arcsin(Erf( x √ 2 )) √ π 2 -8 (30) 
where ξ(θ) is a Gaussian centered random variable. The nonlinear function g is introduced, such that the probability density function E 1 (θ) as a bounded support (this definition avoids negative Young's modulus values which would not be physically correct). The Young modulus E 2 is deterministic in zone Ω 2 .

On problem [A] the gamma shape structure is submitted to a given traction force F x d along x axis and to a prescribed displacement u y d along y axis and is clamped on the bottom boundary. On problem [B],

the square structure is clamped on bottom and top boundaries, and submitted to prescribed displacement u y d along y axis.

Data, loading, material, and geometry parameters are given in Table 1 for problems [A] and [B]. In both problems, the studied quantity of interest is the mean horizontal displacement on the application zone of F d . More precisely :

I = Θ Ω fΣ • u dΩdP (31) 
with :

E 1 δ 1 E 2 F x d u y d a b c d [A] 1 0.1 2 -1.5 -2 25 20 10 10 [B] 1 0.2 2 2 - 10 10 5 - Table 1 
Values of data, loading, material, and geometry parameters for problems [A] and [B].

fΣ = 1 c δ x=b x
δ x=b being the classical Dirac function that localizes I in the physical space.

Bounding results

On these simple test examples, the exact quantity of interest I ex is computed using an overkill solution, i.e. a very fine mesh (10 4 quadratic elements) and a full Monte Carlo simulation (10 5 samples).

Corresponding values are given in Table 2.

Iex

[A] -168.819

[B] 24.880

Table 2 Value of Iex for problems [A] and [B].

An approximate solution is obtained performing a finite element computation, as explained in Section 2.2. Mesh M h is uniform and constituted of first order quadrangular elements (see Figure 4). The scalar h relative to M h quality is defined as the number of finite elements on the edge y = 0 of the structure. Grid M m is constituted of piecewise linear elements, here the grid is 1D. Parameter m, relative to the quality of M m is the number of points on the 1D-grid used to discretize Θ.

A Von Mises stress repartition is illustrated in Figure 4 for problem [A]. For a given level of discretization m and h, the value of the quantity I h,m is given in Table 3.

m h I h,m
[A] 11 12 -185.591

[B] 21 96 24.887 Table 3 Values of I h,m for problems [A] and [B].

Using the bounding technique [START_REF] Moitinho De Almeida | Recovery of equilibrium on star patches using a partition of unity technique[END_REF] developed in Section 4, we obtain directly :

I h,m -Êloc ≤ I ex ≤ I h,m + Êloc (32) 
and adimensional upper (resp. lower) bounds η + loc (resp. η - loc ) may be defined in order to be compared to 1, which gives an assessment of the quality of the bounds :

η - loc = (I h,m -Êloc )/I ex ; η + loc = (I h,m + Êloc )/I ex (33) 
The results are given in Table 4. 

I h,m -Êloc Iex I h,m -Êloc η - loc η + loc [A] -

Refinement of the discretization

In this section we present the evolution of the adimensional bounds with respect to the refinement of the space mesh (i.e. variation of parameter h), and the refinement of the grid (i.e. variation of parameter m). In Table 5 Evolution of the bounds with respect to the refinement of the space mesh size for problem [B].

Estimation of contributions of various error sources

We are now interested in the estimating parts of the error due to the stochastic (resp. space) discretization Êloc,sto (resp. Êloc,spa ) as explained in Section 4.3. For different values of h and m, the results are given in Tables 9 and10 (resp. Tables 11 and12) for problem Evolution of the error contributions with respect to the refinement of the mesh size for problem [A].

Results on problem [A]

show that the stochastic error is very low ( Êloc,sto ≈ 1E-4 for m=11), and is negligible compared to the space error ( Êloc,spa ≈ 22.2 for h=12).

On problem [B], the stochastic error ( Êloc,sto ≈ 0.04 for m = 3) is of the same order as the space error ( Êloc,spa ≈ 0.085 for h=96).

Those error estimates may be useful if one wishes to adapt the discretization of the problem, as they give information on which dimension (space or stochastic) we should refine first. Evolution of the error contributions with respect to the refinement of the mesh size for problem [B].

Conclusions and prospects

In this paper, we extended to the stochastic case the concept of goal-oriented error estimation based on the constitutive relation error. Considering linear elasticity problems, we showed how admissible fields could be constructed, and how they could be employed to build guaranteed error bounds on a given quantity of interest. We also proposed a simple procedure to assess separately contributions coming from various error sources (discretizations in space and stochastic dimensions in our case). The capabilities of these new tools were illustrated on 2D numerical experiments.

In future works, we wish to tackle problems with a large number of stochastic variables. We also wish to adapt to the stochastic case the non-intrusive procedure proposed in [START_REF] Chamoin | A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems[END_REF].
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 1 Figure 1. The structure considered and its environment.
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 23 Figure 2. Definition of problem [A] : Gamma shape structure with clamped bottom boundary, prescribed displacement u y d
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 4 Figure 4. Finite element representation of a realization for the Von Mises equivalent stress.

Table 5

 5 , we give the different values of the adimensional bounds for different space mesh qualities h, m being fixed, for problem [A]. In Table6, we give the different values of the adimensional bounds for different mesh grid qualities m, h being fixed, for problem[A].Evolution of the bounds with respect to the refinement of the space mesh size for problem [A].

	m h	I h,m	Êloc	η -loc	η + loc
	11 6 -154.087 62.420 0.542 1.282
	11 12 -163.188 22.275 0.834 1.098
	11 24 -165.898	7.456 0.938 1.026
	11 48 -166.997	2.554 0.974 1.004
	11 72 -168.272	1.395 0.988 1.005
	In				

Table 7 ,

 7 we give the different values of the adimensional bounds for different space mesh qualities h, m being fixed, for problem [B]. In Table 8, we give the different values of the adimensional bounds for different mesh grid qualities m, h being fixed, for problem [B].

	m h	I h,m	Êloc	η -loc	η + loc
	3 12 -161.869 23.791 0.817 1.099
	5 12 -162.911 22.527 0.831 1.098
	11 12 -163.188 22.271 0.834 1.098
	21 12 -162.714 22.218 0.832 1.095
	41 12 -162.717 22.193 0.832 1.095
	81 12 -162.718 22.180 0.832 1.095

Table 6

 6 Evolution of the bounds with respect to the refinement of the grid size for problem [A].

	m h	I h,m	Êloc	η -loc	η + loc
	3 12 24.166 2.818 0.858 1.084
	3 24 24.668 0.963 0.952 1.030
	3 48 24.852 0.328 0.985 1.012
	3 96 24.921 0.130 0.996 1.006
	3 144 24.940 0.086 0.998 1.005

Table 7

 7 

Table 8

 8 [A] (resp. problem [B]).Evolution of the bounds with respect to the refinement of the grid size for problem[B].

	m h	I h,m	Êloc	η -loc	η + loc
	3 96 24.921 0.130 0.996 1.007
	5 96 24.895 0.084 0.997 1.004
	11 96 24.893 0.080 0.997 1.004
	21 96 24.887 0.079 0.997 1.003
	41 96 24.881 0.078 0.997 1.003
	m h Êloc,spa	Êloc,sto	Êloc
	11 6 62.048 1,15E-04 62.420
	11 12 22.285 1,21E-04 22.275
	11 24 7.419	1,23E-04	7.456
	11 48 2.525	1,22E-04	2.554

Table 9

 9 

Table 10

 10 Evolution of the error contributions with respect to the refinement of the grid size [A].

	m h Êloc,spa Êloc,sto	Êloc
	3 12 22.181 0.174 23.791
	5 12 22.311 0.004 22.527
	11 12 22.285 1E-04 22.271
	21 12 22.287 8E-06 22.218
	41 12 22.287 4E-07 22.193
	81 12 22.285 3E-08 22.180
	m h Êloc,spa Êloc,sto Êloc
	3 12 2.803 0.0418 2.818
	3 24 0.915 0.0424 0.963
	3 48 0.281 0.0426 0.328
	3 96 0.085 0.0428 0.130
	3 144 0.042 0.0428 0.086

Table 11

 11 

Table 12

 12 Evolution of the error contributions with respect to the refinement of the grid size [B].

	5 96 0.086 0.003 0.084
	11 96 0.085 3.4E-04 0.080
	21 96 0.085 2E-05 0.079
	41 96 0.085 1E-06 0.078

[Grad• + Grad T •] is the linearized strain tensor.