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Adaptive trajectory following control of a fixed-wing UAV in presence of crosswind

An adaptive backstepping approach to obtain directional control of a fixed-wing UAV in presence of unknown crosswind is developed in this paper. The dynamics of the cross track error with respect to a desired trajectory is derived from the lateral airplane equations of motion. Adaptation laws are proposed to estimate the parameters of the unknown disturbances and are employed in closed-loop system. The stability analysis is proved using Lyapunov theory. In addition, several simulations taking into account unknown wind gusts are performed to analyze the behavior and the robustness of the control scheme. A test platform has been developed in order to validate the proposed control law.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) represent an area of great interest in the automatic control community. The absence of the pilot renders them best suited to solve dangerous situations. However, it requires significant attention in the flight control design since the vehicle may experience large parameter variations and external disturbances. The largest use of the UAVs is within military applications but they are also used in a growing number of civil applications such as firefighting, digital mapping or monitoring. To increase the usefulness of UAVs, the capability of the autonomous controller to track a reference path is essential. Moreover, the robustness with respect to environmental disturbances must be considered. For example, small UAVs are significantly sensitive to wind since its magnitude may be comparable to the UAVs speed.

A wide range of control approaches for trajectory tracking purpose could be found in literature for both underwater and aerial vehicles. The problem of trajectory tracking for an underwater vehicle was formulated as a gain scheduling control problem in [START_REF] Silvestre | On the design of gainscheduled trajectory tracking controllers[END_REF] while Repoulias and Papadopoulos [START_REF] Repoulias | Trajectory planning and tracking control design of underactuated AUVs[END_REF] employed a method based on feedback linearization, backstepping and nonlinear damping design tools. In gain scheduling control the system dynamics are considered slowly varying [START_REF] Rugh | [END_REF] [START_REF] Shamma | Guaranteed Properties of Gain Scheduled Control of Linear Parameter-Varying Plants[END_REF] and that reduces the flight capabilities of an airplane. Trajectory linearization control (TLC) was used in [START_REF] Adami | 6DOF flight control of fixed-wing aircraft by Trajectory Linearization[END_REF] to avoid the use of gain scheduling and to enable operation across the full flight-envelope for a 6DoF fixedwing aircraft model. Nelson et al. proposed in [START_REF] Nelson | Vector field path following for small unmanned air vehicles[END_REF] a method based on the vector field approach for the case where the time dimension of the reference trajectory is removed. The algorithm was validated through simulations and real flight tests of a fixed-wing miniature air vehicle.

When accurate knowledge of the vehicle dynamics is not available, adaptive control design can be employed in order to estimate the unknown parameters. Many of the results in adaptive control are derived from Lyapunov stability theory [START_REF] Slotine | Applied Nonlinear Control[END_REF]- [START_REF] Krstic | Nonlinear and Adaptive Control Design[END_REF]. Several flight control algorithms which combines adaptation with other control tools, such as backstepping, neural networks or sliding mode control, can be found in the literature. For instance in [START_REF] Harkergard | Backstepping and Control Allocation with Applications to Flight Control[END_REF], flight control laws for two different control objectives were designed employing backstepping technique : maneuvering purpose and automatic control for the flight path angle. Also, two schemes based on adaptive backstepping and nonlinear observer design were proposed for estimating model errors. Likewise, a Lyapunovbased adaptive backstepping approach with online estimation of the uncertain aerodynamic forces and moments was used in [START_REF] Sonneveldt | Adaptive Backstepping Flight Control for Modern Fighter Aircraft[END_REF] to design a flight-path controller for a nonlinear highfidelity F-16 model. It was shown that trajectory control can still be accomplished with these uncertainties while good tracking performance is maintained. On the other hand, in [START_REF] Gavilan | Control of the longitudinal flight dynamics of an UAV using adaptive backstepping[END_REF] the authors introduced the design of an adaptive backstepping controller for longitudinal flight-path control when the aerodynamic coefficients are not known exactly. The system followed references in velocity and flight path angle and showed good performance in simulations.

Even if there are many adaptive approaches to flight control design, only few have been developed to realize airplane directional control in presence of unknown wind gusts. The goal of this work is to stabilize an airplane under crosswind and to realize the convergence to zero of the cross track error with respect to a desired trajectory. Moreover, the adaptive controller must be robust, by construction, with respect to external and unknown disturbances. We focus mainly in the lateral dynamic of the plane, for this, an analysis of this dynamic is presented in section II. Likewise, in this section we introduce the cross track error and the dynamic velocity of the plane with respect to the desired path. An adaptive control strategy is developed and presented in section III in order to follow the trajectory in presence of wind. Besides, the stability properties of the controller are discussed at the end of this section. The validation of the proposed control scheme is done in simulations and the main results are depicted in graphs in section IV. Additionally, a prototype of the airplane was developed to validate the control algorithm, the main characteristics of this prototype are described in section V. And finally in section VI, the conclusion and future work are discussed.

II. AIRCRAFT MODEL DESCRIPTION

The dynamic characteristics of an airplane strongly depend on many parameters such as altitude, speed, configuration or environmental disturbances. As a result, its complete dynamic is nonlinear, coupled and complex for control purposes. In this study we focus mainly in the trajectory following problem of an airplane flying in level flight in presence of crosswind. This kind of flight occurs when lift equals weight, thrust equals drag and the airplane flies at constant velocity, and this implies that the roll and pitch angle are small. In addition, level flight implies zero flight path angle, γ, and positive angle of attack, α, see [START_REF] Etkin | Dynamics of Atmospheric Flight[END_REF]. Therefore, using the relationship of the latter to pitch angle θ α = θγ it can be concluded that θ = α. Consequently, the airplane velocity, the angle of attack and, implicitly, the pitch angle vary slowly compared to the other parameters, and their time derivatives can be neglected in the flight dynamic.

In real conditions an airplane is generally exposed to crosswind. We define a crosswind like a wind which occurs perpendicular to the vehicle but parallel to the ground. If a plane is experiencing a crosswind, it will be pushed over or yawed away from the wind.

In order to derive the equations of motion two reference frames are used : the Earth-fixed frame, denoted by F E , and the body-fixed frame represented by F B . F E and F B have two dimensions since only the lateral dynamics are considered in this study. The origin of F B coincides with the vehicle's center of mass and the direction of its axes is according to Fig. 1. F E is employed as an inertial frame since the rotation of the Earth is neglected. Its origin is denoted by O E while O E x E is chosen northwards and O E y E points east. The classical relation of the aircraft velocity relative to the Earth is

V = V + W (1) 
where

V = [u v]
T denotes the velocity of the aircraft relative to the local atmosphere and W represents the wind relative to F E . Besides, we only consider in this study a lateral wind having North, W N , and East velocity components, W E . Denote VB = u E v E T as the velocity of the aircraft relative to the Earth in the directions of the body frame axes. Thus, from (1) it follows

u E v E = u v + B B W N W E
where B B defines the complete transformation from F E to F B assuming constant pitch angle and it is given by

B B = c θ c ψ c θ s ψ s φ s θ c ψ -c φ s ψ s φ s θ s ψ + c φ c ψ
where s θ and c θ denote sin(θ) and cos(θ), respectively.

Then, the differential equations for the coordinates of the flight path in

F E are ẋ ẏ = B T B VB or ẋ = u E c θ c ψ + v E s φ s θ c ψ -v E c φ s ψ ẏ = u E c θ s ψ + v E s φ s θ s ψ + v E c φ c ψ with u E = u + W N c θ c ψ + W E c θ s ψ v E = v + W N s φ s θ c ψ -W N c φ s ψ + W E s φ s θ s ψ + W E c φ c ψ
where x and y represent the inertial position in the x-axis (North) and in the y-axis (East). Remember that the pitch and roll angles are small so that sin(θ, φ) ≈ 0 and cos(θ, φ) ≈ 1. Moreover, considering a symmetrical airplane with a rigid spinning rotor placed in the front of its body, it can then be considered, without loss of generality, V acting only in the x-axis, see Fig. 1. Hence, the following expression can be stated

v << 1 u ≈ V and consequently ẋ = V cos ψ + ω cos ψ ω ẏ = V sin ψ + ω sin ψ ω
where ω cos ψ ω = W N , ω sin ψ ω = W E , ω is the wind velocity and ψ ω describes the wind direction.

Notice that the above equations are relatively proportional to the variation of the yaw angle, and it can be controlled using the rudder deflection of the airplane. The differential equations describing this dynamics are

ψ ≈ r ṙ ≈ cτ ψ
where r stands for yaw rate, τ ψ represents the yawing moment and c is a constant related to the aircraft moment of inertia.

An analysis of the nonlinear model is presented for two different flight conditions (with and without wind). Notice from Fig. 2 the behavior of the plane when it flies in stable or moving atmosphere. The desired trajectory is plotted in thick dashed line while the solid path describes the real airplane trajectory. The crosswind has North and East velocity components of W N = -3 m/s and W E = 5 m/s, respectively. The airplane velocity relative to the surrounding air mass is 20 m/s. 

III. CONTROL DESIGN

The main control objective is to obtain directional control in order to follow a desired trajectory even in presence of unknown crosswind. To simplify the analysis, let assume that the desired trajectory is aligned with the North axis of the reference frame, then, the desired path angle, ψ d , is equal to zero. Therefore, the amount of the trajectory deviation will depend on the velocity of the airplane and wind and also on the angle of the wind in relation to the airplane. In addition we consider, for control design, that the wind velocity changes slowly such that it can be considered quasiconstant. However, it will be proved in simulations that the closed-loop system remains stable even with no constant wind.

Thus, without loss of generality, the airplane dynamics for trajectory following purpose can be defined as

ḋ ≡ ẏ = V sin ψ + k ω (2) ψ = r (3) ṙ = cτ ψ (4) 
where k ω = ω sin(ψ ω ) is considered quasi-constant and due to the wind perturbation, and d is the cross track error from the desired trajectory.

To stabilize the system resulted in (2), ( 3) and ( 4), the control law will be constructed using the Adaptive Backstepping approach. Then, we define the following error variable

e 1 = d -d min (5)
where d min is the minimum constant distance from the desired trajectory. Thus,

ė1 = V sin ψ + k ω (6) 
A. Convergence of e 1 to zero Propose the following positive function

V L1 = 1 2 e 2 1 thus VL1 = e 1 (V sin ψ + k ω )
To stabilize e 1 we introduce ψ v as a virtual control in the following form

V sin ψ v = -c 1 e 1 -kω1
where kω1 is the estimate of k ω and c 1 > 0 is a constant. Evaluating VL1 when ψ → ψ v it follows that

VL1 | ψ=ψ v = -c 1 e 2
1 + e 1 kω1 where kω1 = k ω -kω1 . Notice from the above equation that if kω1 → k ω then VL1 ≤ 0. Thus, rewriting V L1 , it yields

V L1 = 1 2 e 2 1 + 1 γ 1 k2 ω1
where γ 1 > 0 is a constant adaptation gain. Then

VL1 | ψ=ψ v = -c 1 e 2 1 + e 1 - kω1 
γ 1 kω1
Choosing the update law as kω1 = γ 1 e 1

It follows that

VL1 | ψ=ψ v = -c 1 e 2 1 B. Convergence of ψ to ψ v Define the error e 2 = V sin ψ -V sin ψ v = V sin ψ + c 1 e 1 + kω1 (8) 
and rewrite [START_REF] Nelson | Vector field path following for small unmanned air vehicles[END_REF] in terms of e 1 and e 2 ė1 = e 2c 1 e 1 + kω1

This implies that

ė2 = V r cos ψ + γ 1 -c 2 1 e 1 + c 1 e 2 + c 1 kω1 (10) 
Notice that cos ψ = 1 -(sin ψ) 2 . From ( 8)

sin ψ = e 2 -c 1 e 1 -kω1 V and assuming that -π 2 < ψ < π 2 it follows that (10) becomes ė2 = rR + γ 1 -c 2 1 e 1 + c 1 e 2 + c 1 kω1 (11) 
with

R = V 2 -e 2 -c 1 e 1 -kω1 2 .
Introduce the following positive function

V L2 = V L1 + 1 2 e 2 2 = 1 2 e 2 1 + 1 γ 1 k2 ω1 + e 2 2
From ( 7), ( 9) and ( 11) the derivative reads VL2 = -c 1 e 2 1 + e 2 c 1 e 2 + e 1 (γ 1 + 1c 2 1 ) + c 1 kω1 + rR By selecting the virtual control as

r v R = -e 2 (c 1 + c 2 ) -e 1 (γ 1 + 1 -c 2 1 ) -c 1 ( kω2 + kω1 ) VL2 becomes when r → r v VL2 | r=r v = -c 1 e 2 1 -c 2 e 2 2 + c 1 e 2 kω2
where kω2 = k ω -kω2 , kω2 represents a new estimate for k ω and c 2 denotes a positive constant gain. Notice that if we had employed the existing estimate kω1 , we would have had no design freedom left to cancel the unknown parameter from VL2 . Additionally, kω2 could be seen as a factor correction for kω1 .

Notice from the above equation that if kω2 → k ω then VL2 ≤ 0. Thus, rewriting V L2 , it yields

V L2 = V L1 + 1 2 e 2 2 + 1 γ 2 k2
ω2 with γ 2 > 0 and constant. Hence VL2 becomes

VL2 | r=r v = c 1 e 2 1 -c 2 e 2 2 + kω2 c 1 e 2 - kω2 γ 2
Proposing the update law kω2 = γ 2 c 1 e 2 then, it follows

VL2 | r=r v = c 1 e 2 1 -c 2 e 2 2
C. Convergence of r to r v Let us define the third error variable

e 3 = rR -r v R = rR + L 2 e 2 + L 1 e 1 + c 1 ( kω2 -kω1 ) (12) 
where

L 1 = 1 -c 2 1 + γ 1 , L 2 = c 1 + c 2 .
Rewriting the error system representation, we obtain

ė1 ė2 = -c 1 1 -1 -c 2 e 1 e 2
+ kω1

e 3 + c 1 kω2
thus, the derivative of e 3 yields

ė3 =cτ ψ R - r(e 2 -c 1 e 1 -kω1 )(e 3 -L 2 e 2 -L 1 e 1 ) R - r(e 2 -c 1 e 1 -kω1 )(c 1 kω1 -c 1 kω2 ) R + L 2 e 3 + L 3 e 2 + L 4 e 1 + c 1 L 2 kω2 + L 1 kω1 with L 3 = -c 1 c 2 -c 2 1 -c 2 2 + 1 + γ 1 + c 2 1 γ 2 and L 4 = -2c 1 -c 2 + c 3 1 -2c 1 γ 1 .
Finally, introduce the following Lyapunov function

V L = 1 2 e 2 1 + 1 γ 1 k2 ω1 + e 2 2 + 1 γ 2 k2 ω2 + e 2 3 then VL = -c 1 e 2 1 -c 2 e 2 2 + e 3 ( ė3 + e 2 ) (13) 
Propose the control input as

cτ ψ = - e 3 (L 2 + c 3 ) + e 2 (L 3 + 1 -r 2 ) + e 1 (L 4 + c 1 r 2 ) R - kω3 (L 1 + c 1 L 2 ) -kω2 c 1 L 2 -kω1 (L 1 -r 2 )
R where kω3 = k ω -kω3 and c 3 is a positive constant gain. Notice that the unknown term k ω appears again in VL , thus we propose a correction factor in order to realize the convergence of the states.

Introducing the above into (13), we have

VL = -c 1 e 2 1 -c 2 e 2 2 -c 3 e 2 3 + e 3 (L 1 + c 1 L 2 ) kω3
Observe that VL ≤ 0 if kω3 → k ω . Therefore augmenting V L , it yields

V L = 1 2 e 2 1 + 1 γ 1 k2 ω1 + e 2 2 + 1 γ 2 k2 ω2 + e 2 3 + 1 γ 3 k2 ω3 and VL = -c 1 e 2 1 -c 2 e 2 2 -c 3 e 2 3 + kω3 e 3 (L 1 + c 1 L 2 ) - kω3 γ 3 Choosing kω3 = γ 3 (L 1 + c 1 L 2 )e 3 VL becomes VL = -c 1 e 2 1 -c 2 e 2 2 -c 3 e 2 3 ( 14 
)
The error representation of the closed-loop adaptive system is summarized below

  ė1 ė2 ė3   =   -c 1 1 0 -1 -c 2 1 0 -1 -c 3     e 1 e 2 e 3   +   kω1 c 1 kω2 L 5 kω3       kω1 kω2 kω3     =   γ 1 0 0 0 c 1 γ 2 0 0 0 L 5 γ 3     e 1 e 2 e 3   ( 15 
)
where

L 5 = c 1 c 2 + γ 1 + 1.
Rewriting the control input cτ ψ in terms of d, ψ, r we have

cτ ψ = tan ψ(r 2 -L 6 ) -L 7 r - L 8 d + L 9 kω1 + L 10 kω2 + L 11 kω3 V cos ψ (16)
with the updated parameters

kω1 = γ 1 d kω2 = γ 2 c 1 V sin ψ + c 1 d + kω1 kω3 = γ 3 L 11 V [r cos ψ + L 2 sin ψ] + +γ 3 L 11 dL 11 + c 1 kω2 + c 2 kω1
where

L 6 = 1 + L 2 c 3 + L 2 2 + L 3 L 7 = L 2 + c 3 L 8 = L 7 (L 1 + c 1 L 2 ) + c 1 (L 3 + 1) + L 4 L 9 = 1 -c 1 L 7 + L 3 -L 1 + L 2 L 7 L 10 = c 1 L 7 -c 1 L 2 L 11 = L 1 + c 1 L 2
Notice from ( 14) that VL ≤ 0 and it estates the global stability of the equilibrium (e i , kωi ) =(0, 0). From the LaSalle-Yoshizawa theorem, we have that e i and kωi ; i = 1, 2, 3; are bounded and go to zero as t → ∞. From (5) it follows that d → d min . ( 8) implies that kω1 is also bounded and

lim t→∞ ψ = arcsin - kω1 V (17) 
Observe that from (12) r is bounded and r → 0. On the other hand, from (16) it follows that cτ ψ is bounded.

LaSalle's invariance principle assures that the state (e i , kωi ) converges to the largest invariant set M contained in {(e 1 , e 2 , e 3 , kω1 , kω2 , kω3 ) ∈ R 6 | VL = 0}. On this invariant set, we have e i ≡ 0 and ėi ≡ 0. From (15) it yields kωi = 0 and kωi = 0. Thus, the largest invariant set M is

M ={(e i , kωi ) ∈ R 6 |e i = 0, kωi = 0} ={(d, ψ, r, kω1 , kω2 , kω3 ) ∈ R 6 |(d, ψ, r, kω1 , kω2 , kω3 ) = (0, arcsin(- kω1 V ), 0, k ω , k ω , k ω )}
The manifold M is the single point d = 0, ψ = arcsin(-kω 1 V ), r = 0, kωi = k ω for i = 1, 2 and 3, which is globally asymptotically stable.

IV. SIMULATION RESULTS

The proposed control strategy was validated in closedloop system in simulations with various wind conditions. For simplicity we consider that the desired trajectory is aligned with the North axis of the inertial frame which makes the desired path angle ψ d = 0 • . In addition, the airplane is flying with a constant speed equal to 20 m/s and the crosswind has a direction West-East perpendicular to the desired path. For a smoother convergence we have used the following parameters in simulations :

c 1 = c 3 = 1.5 ; c 2 = 1.3 ; γ 1 = 1 ; γ 2 = 1.1 ; γ 3 = 1.4.

A. Case constant wind

Several simulations were performed to validate the controller and representative results are presented. The first simulations were carried out with a constant wind velocity of 7 m/s. The initial conditions are : d = 2 m/s, ψ = -10 • and r = 0 rad/s. For comparative control purpose, a standard nonlinear backstepping algorithm was developed to control the system (2)-( 4) and it is given by

cτ ψ b = -3r + tan ψ(r 2 -5) - 3d + 5k ω V cos ψ (18) 
In Fig. 3 we show the time evolution of the aircraft deviation from the desired trajectory for constant wind when employing the controllers ( 16) and ( 18). The wind parameter, denoted by k ω , is not known and therefore considered zero in the simulation. Notice from this figure that the controller developed in ( 16) is able to provide cross track error regulation due to the adaptation laws presented in (15). For this case, the closed-loop adaptive system shows good response even in presence of unknown disturbance. Fig. 4 reveals the fact that to maintain alignment with the desired trajectory during a crosswind flight requires the controller to fly the airplane at a sideslip angle. Indeed, when the position error converges to zero, the yaw angle is stabilized around a constant value and the airplane keeps moving toward North. Notice that the yaw angle is nonzero unless the atmosphere is at rest. On the other hand, the proposed adaptation scheme guarantees the convergence of the unknown parameter estimates towards its true constant value, see Fig. 5. The Lyapunov function, plotted in Fig. 7, is semi-positive definite and continually decreasing which proves the stability properties of the system. Indeed, in Fig. 6 we illustrate the control input response.

B. Case variable wind gust

In order to demonstrate the robustness of the proposed control algorithm, some variations in the wind parameters are added. For this purpose, we assume that the wind varies in magnitude as shown in Fig. 8. Notice that, at time 20s, a sudden increase of 2 m/s is presented in speed of the wind. The initial conditions are the same as those for constant wind.

The main results are displayed in figures 9 -12. The wind deviates the airplane from the reference trajectory toward the wind direction but the controller ( 16) is able to recover the aircraft and to converge the position error to zero. The adaptation laws show relatively small convergence time and the estimated wind velocities are in agreement with the real values. When aligned with the reference trajectory, the airplane is flown at a sideslip angle to maintain directional control. The airplane used is the Multiplex TwinStar II whose technical characteristics are given in Table I. Its configuration is based on the classic aerodynamic layout and it is made of molded Elapor foam. Two brushless motors were mounted on the airfoil-shaped wings to power the airplane. A couple of ailerons, an elevator and a rudder are used as control surfaces and servo motors are attached to them as control surface actuators. The central processing unit, represented by the RabbitCore RCM4300 Microprocessor, collects the measurements of the IMU (Inertial Measurement Unit employed to estimate the airplane attitude and angular rates), of the airspeed sensor and of the GPS system, to compute the control law. The control responses are send to the servo signal generator/receiver unit and also to the two electric speed controllers to activate the brushless motors. Indeed, a modem is added to send and receive data from a base station. The developed prototype is presented in Fig. 13.

VI. CONCLUSIONS AND FUTURE WORK

An adaptive control algorithm based on the backstepping approach has been proposed in this paper. The control strategy was focused on reducing the position deviation of the airplane with respect to a desired path in the lateral dynamics in presence of unknown wind. The control scheme was derived considering adaptation laws to estimate the unknown wind parameters.

The closed-loop system was evaluated in several simulations and the main results, showing the good performance, were introduced by some graphs. An embedded control 
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 1 Fig. 1. Tracking formulation problem
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 2 Fig.2. Earth-Relative Aircraft Location. First, the plane flies in stable atmosphere and it is capable to follow the desired path. When the atmosphere moves relative to the Earth, the airplane diverge from the path.
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 3 Fig. 3. Position Error for unknown wind. Solid line represents the proposed controller (16) whilst dashed line the standard backstepping control algorithm (18).
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 12 Fig. 12. Control input for variable wind
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 13 Fig. 13. The airplane prototype

TABLE I PARAMETERS

 I OF THE AIRPLANE.

	Parameter	Value
	Wingspan	1420 mm
	Fuselage length	1085 mm
	Wing area	43 dm 2
	Weight approx.	1500 g
	Wing loading	35 g / dm 2
	RC functions	Aileron, elevator, rudder, throttle
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