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Frontier estimation as a particular case of Conditional extreme value analysis

In this paper, we show that edge estimation, boundary estimation and frontier estimation can be seen as particular cases of Conditional Extreme Value Analysis.

Extreme value analysis (EVA) is a branch of statistics dealing with the extreme deviations from the mean of probability distributions. It seeks to assess the probability of events that are more extreme than any observed prior. Extreme value analysis is widely used in many disciplines, ranging from structural engineering, finance, earth sciences, traffic prediction, geological engineering, etc. For example, EVA might be used in the field of hydrology to estimate the value an unusually large flooding event, such as the 100-year flood. Similarly, for the design of a breakwater, a coastal engineer would seek to estimate the 50-year wave and design the structure accordingly.

Let X be a random variable and p(x) its probability density function, F (x) = P (X ≤ x) its distribution function, and Ψ(x) = 1-F (x) its complementary distribution function. We can define a new random variable, Y n , as the maximum of n copies of the random variable X: Y n = max{X 1 , X 2 , ..., X n }. Y n is the nsample maximum of the random variable X. If the events generating the realizations of X are independent, the cumulative distribution of Y n may be expressed as [F (y)] n . Upon definition of a renormalized variable S n = (Y n -b n )/a n , the extreme value theorem establishes that Theorem If

lim n→∞ P (S n < s) = lim n→∞ F n (a n s + b n ) = H(s) (1) 
where a n > 0 and b n are normalization constants, then the function H(s) in Eq. ( 1) must be one of the three following types:

• EV1 or Gumbel: H(s) = exp(-exp(-s))

• EV2 or Fréchet:

H(s) = exp(-s -α ) • EV3 or Weibull: H(s) = exp(-|s| α ) 1
The three asymptotic types, EV1-EV3, can be thought of as special cases of a single Generalized Extreme Value distribution (GEV) :

H GEV (s) = exp -1 + γ s -µ σ -1/γ + (2) 
where (.) + = max(., 0), µ is the location parameter, σ > 0 is the scale parameter, and γ is a shape parameter. The limit γ = 0 corresponds to the EV1 distribution, γ > 0 to the EV2 distribution (with α = 1/γ) and γ < 0 to the EV3 distribution (with α = -1/γ). The function H GEV (s) is usually fitted to the cumulative distribution of non-normalized maxima, so that the location parameter µ and the scale parameter σ are the renormalization parameters b n and a n respectively. However, it is important to note that the distribution describing the n-sample maximum will strictly be a GEV only for large values of n. How large the value of n needs to be should be determined by analyzing the convergence properties based on the observed realizations of X.

When the studied phenomena depends on a covariate, one has to deal with Conditional Extreme Value Analysis (CEVA). This branch of statistics has become very active these past ten years, the main contributions to this domain are listed below:

• Theoretical issues: [68, 65, 67, 26, 32, 20, 31, 33, 30, 5, 27, 13, 52, 25, 

• Quantile regression: [START_REF] Koenker | Quantile regression: An introduction[END_REF][START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF][START_REF] Rosen | Extreme percentile regression[END_REF] • Application to finance: [START_REF] Byström | Managing extreme risks in tranquil and volatile markets using conditional extreme value theory[END_REF][START_REF] Bali | A conditional extreme value volatility estimator based on high-frequency returns[END_REF][START_REF] Ghorbel | Predictive performance of conditional extreme value theory in value-at-risk estimation[END_REF][START_REF] Byström | Extreme value theory and extremely large electricity price changes[END_REF][START_REF] Marimoutou | Extreme value theory and value at risk: application to oil market[END_REF][START_REF] Wang | A model of conditional var of high frequency extreme value based on generalized extreme value distribution[END_REF] Edge estimation [START_REF] Jacob | Regression and edge estimation[END_REF][START_REF] Jacob | Estimating the edge of a poisson process by orthogonal series[END_REF], frontier estimation [START_REF] Rao | Linear aggregation of frontier estimators[END_REF][START_REF] Simar | Performance of the bootstrap for dea estimators and iterating the principle[END_REF][START_REF] Simar | Testing restrictions in nonparametric efficiency models[END_REF][START_REF] Simar | Inferences from cross-sectional, stochastic frontier models[END_REF][START_REF] Simar | Of course we can bootstrap dea scores! but does it mean anything? logic trumps wishful thinking[END_REF][START_REF] Daouia | Frontier estimation and extreme value theory[END_REF][START_REF] Daouia | Asymptotic representation theory for nonstandard conditional quantiles[END_REF][START_REF] Daouia | Functional convergence of quantiletype frontiers with application to parametric approximations[END_REF][START_REF] Bouchard | Nonparametric frontier estimation by linear programming[END_REF][START_REF] Aragon | Nonparametric frontier estimation: A conditional quantile-based approach[END_REF][START_REF] Girard | L 1-optimal nonparametric frontier estimation via linear programming[END_REF][START_REF] Bouchard | Some linear programming methods for frontier estimation[END_REF][START_REF] Peng | Bias-corrected estimators for monotone and concave frontier functions[END_REF][START_REF] Daouia | Regularization of nonparametric frontier estimators[END_REF][START_REF] Simar | Detecting outliers in frontier models: A simple approach[END_REF][START_REF] Simar | Aspects of statistical analysis in dea-type frontier models[END_REF][START_REF] Daouia | Robustness and inference in nonparametric partial frontier modeling[END_REF][START_REF] Simar | Stochastic fdh/dea estimators for frontier analysis[END_REF][START_REF] Park | Efficient semiparametric estimation in a stochastic frontier model[END_REF][START_REF] Daouia | Estimating frontier cost models using extremiles[END_REF][START_REF] Greene | Maximum likelihood estimation of econometric frontier functions[END_REF][START_REF] Gijbels | On estimation of monotone and concave frontier functions[END_REF][START_REF] Martins-Filho | A smooth nonparametric conditional quantile frontier estimator[END_REF][START_REF] Daouia | Robust nonparametric frontier estimators: qualitative robustness and influence function[END_REF][START_REF] Daouia | Nonparametric efficiency analysis: A multivariate conditional quantile approach[END_REF][START_REF] Sengupta | Stochastic data envelopment analysis: a new approach[END_REF][START_REF] Berezkin | Hybrid adaptive methods for approximating a nonconvex multidimensional pareto frontier[END_REF][START_REF] Simar | A general methodology for bootstrapping in non-parametric frontier models[END_REF][START_REF] Cazals | Nonparametric frontier estimation: a robust approach[END_REF][START_REF] Kneip | Asymptotics for dea estimators in nonparametric frontier models[END_REF][START_REF] Kumbhakar | Stochastic frontier analysis[END_REF][START_REF] Schmidt | Simple tests of alternative specifications in stochastic frontier models[END_REF][START_REF] Jeong | Linearly interpolated fdh efficiency score for nonconvex frontiers[END_REF][START_REF] Girard | Frontier estimation via kernel regression on high power-transformed data[END_REF][START_REF] Girard | Frontier estimation with local polynomials and high power-transformed data[END_REF][START_REF] Daouia | Nadarayas estimates for large quantiles and free disposal support curves[END_REF][START_REF] Florens | Parametric approximations of nonparametric frontiers[END_REF][START_REF] Simar | Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models[END_REF][START_REF] Simar | Statistical inference in nonparametric frontier models: The state of the art[END_REF][START_REF] Simar | Statistical inference in nonparametric frontier models: recent developments and perspectives. The measurement of productive efficiency and productivity growth[END_REF][START_REF] Girard | Frontier estimation with kernel regression on high order moments[END_REF][START_REF] Girard | Uniform strong consistency of a frontier estimator using kernel regression on high order moments[END_REF] and boundary estimation [START_REF] Novikov | Linear aggregation methods applied to boundary estimators[END_REF][START_REF] Novikov | Nonlinear aggregation methods for boundary estimators[END_REF][START_REF] Girard | A note on extreme values and kernel estimators of sample boundaries[END_REF][START_REF] Girard | Smoothed extreme value estimators of non-uniform point processes boundaries with application to star-shaped supports estimation[END_REF][START_REF] Girard | Central limit theorems for smoothed extreme value estimates of poisson point processes boundaries[END_REF][START_REF] Girard | Extreme values and kernel estimates of point processes boundaries[END_REF][START_REF] Girard | Projection estimates of point processes boundaries[END_REF][START_REF] Girard | Extreme values and haar series estimates of point process boundaries[END_REF][START_REF] Hall | Local likelihood tracking of fault lines and boundaries[END_REF][START_REF] Delaigle | Estimation of boundary and discontinuity points in deconvolution problems[END_REF][START_REF] Hall | Estimating a changepoint, boundary, or frontier in the presence of observation error[END_REF][START_REF] Bi | Estimating the self-thinning boundary line as a density-dependent stochastic biomass frontier[END_REF][START_REF] Geffroy | Asymptotic normality of the l 1-error of a boundary estimator[END_REF][START_REF] Girard | On the asymptotic normality of the l1-error for haar series estimates of poisson point processes boundaries[END_REF] are particular cases of CEVA. They are embedded in the situation where the conditional extreme-value index is negative. In particular, the uniform distributed case corresponds to γ = -1.