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Abstract An adaptive backstepping approach to obtain directional control of a
�xed-wing UAV in presence of unknown crosswind is developed in this paper. The
dynamics of the cross track error with respect to a desired trajectory is derived
from the lateral airplane equations of motion. Adaptation laws are proposed to
estimate the parameters of the unknown disturbances and are employed in closed-
loop system. The stability analysis is proved using Lyapunov theory. In addition,
several simulations taking into account unknown wind gusts are performed to
analyze the behavior and the robustness of the control scheme. A test platform
has been developed in order to validate the proposed control law.

Keywords Adaptive control · Fixed-wing UAV · Lyapunov stability

1 Introduction

Unmanned Aerial Vehicles (UAVs) represent an area of great interest in the au-
tomatic control community. The absence of the pilot renders them best suited to
solve dangerous situations. However, it requires signi�cant attention in the �ight
control design since the vehicle may experience large parameter variations and
external disturbances. The largest use of the UAVs is within military applications
but they are also used in a growing number of civil applications such as �re�ghting,
digital mapping or monitoring. To increase the usefulness of UAVs, the capability
of the autonomous controller to track a reference path is essential. Moreover, the
robustness with respect to environmental disturbances must be considered. For
example, small UAVs are signi�cantly sensitive to wind since its magnitude may
be comparable to the UAVs speed.
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A wide range of trajectory tracking controllers for autonomous vehicles could
be found in literature. In [1], the authors addressed the problem of trajectory
tracking as a gain scheduling control problem. The proposed methodology was
illustrated for an autonomous underwater vehicle that was scheduled on yaw rate
and path angle. A nonlinear design was obtained from the interpolation of six
linear controllers computed for di�erent values of the gain scheduling variables.
The problem of external disturbances was not addressed in this paper.

In gain scheduling theory the system dynamics are considered slowly varying
[2][3] which reduces the �ight capabilities of an airplane. Trajectory linearization
control (TLC) was used in [4] to avoid the use of gain scheduling and to enable
operation across the full �ight-envelope for a 6DoF �xed-wing aircraft model.
The controller design combined dynamic inversion of the nonlinear equations of
motion, to generate nominal force and torque commands, with a linear time varying
tracking error regulator to account for model uncertainty. Simulations results were
presented for a climbing, bank-to-turn maneuver.

A method based on the vector �eld approach was proposed in [5] for the case
where the time dimension of the reference trajectory is removed. Path following
was achieved for straight-lines and circular arcs and orbits in the presence of
constant wind disturbances. The algorithm was validated through simulations and
real �ight tests of a �xed-wing miniature air vehicle.

When accurate knowledge of the vehicle dynamics is not available, adaptive
control design can be employed in order to estimate the uncertain parameters.
Many of the results in adaptive control are derived from Lyapunov stability theory
[6]-[9]. Several �ight control algorithms which combines adaptation with other
control tools, such as backstepping, neural networks or sliding mode control, can
be found in the literature. For instance in [10], �ight control laws for two di�erent
control objectives were designed employing backstepping technique: maneuvering
purpose and automatic control for the �ight path angle. Also, two schemes based on
adaptive backstepping and nonlinear observer design were proposed for estimating
model errors. The proposed controllers were evaluated through simulations.

Likewise, a Lyapunov-based adaptive backstepping approach with online es-
timation of the uncertain aerodynamic forces and moments was used in [11] to
design a �ight-path controller for a nonlinear high-�delity F-16 model. It was
shown that trajectory control can still be accomplished with these uncertainties
while good tracking performance is maintained. On the other hand, in [12] the
authors introduced the design of an adaptive backstepping controller for longitu-
dinal �ight-path control when the aerodynamic coe�cients are not known exactly.
The system followed references in velocity and �ight path angle and showed good
performance in simulations.

Even if there are many adaptive approaches to �ight control design, only few
have been developed to realize airplane directional control in presence of unknown
wind gusts. The goal of this work is to stabilize an airplane under crosswind and
to realize the convergence to zero of the cross track error with respect to a desired
trajectory. Moreover, the adaptive controller must be robust, by construction, with
respect to external and unknown disturbances. We focus mainly in the lateral
dynamic of the plane, for this, an analysis of this dynamic is presented in section
2. Likewise, in this section we introduce the airframe addressed in this paper, the
cross track error and the dynamic velocity of the plane with respect to the desired
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path. An adaptive control strategy is developed and presented in section 3 in order
to follow the trajectory in presence of wind. Besides, the stability properties of the
controller are discussed at the end of this section. The validation of the proposed
control scheme is done in simulations and the main results are depicted in graphs in
section 4. Additionally, an embedded control system was developed to validate the
control algorithm, the main characteristics of this hardware platform are described
in section 5. And �nally in section 6, the conclusion and future work are discussed.

2 Aircraft system

The dynamic characteristics of an airplane strongly depend on many parameters
such as altitude, speed, con�guration or environmental disturbances. As a result,
its complete dynamic is nonlinear, uncertain and complex for control purposes. In
this section we �rst introduce the airframe employed, then the lateral dynamics of
the airplane in a non-steady atmosphere is derived.

A robust airframe possessing reliable �ight characteristics is essential for real
�ight tests. Long duration �ight and su�cient payload capacity to carry the weight
of sensors and batteries are two features of great interest. Fig. 1 shows the commer-
cially available Multiplex Twinstar II model used in our study. Its con�guration
is based on the classic aerodynamic layout and it is made of molded Elapor foam.
Two brushless motors were mounted on the airfoil-shaped wings to power the air-
plane. A couple of ailerons, an elevator and a rudder are used as control surfaces
and are actuated by servo motors. The technical characteristics of the Multiplex
Twinstar II are given in Table 1. A payload of approximately 300 g, consisting of
sensors and a central processing unit, was added to the airframe as the embedded
electronics. The developed hardware platform is described in detail in section 5.

Fig. 1 Airplane model
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Table 1 Parameters of the airplane.

Parameter Value

Wingspan 1420 mm / 55.9 in
Fuselage length 1085 mm / 42.7 in
Wing area 43 dm2 / 666.5 inch2

Weight approx. 1340 g / 47.3 oz
Wing loading 31.2 g/dm2 / 10.3 oz/sq.ft
RC functions Aileron, elevator, rudder, throttle

2.1 Airplane dynamics

The problem of trajectory following becomes complex when considering the
complete dynamics of the airplane. In order to simplify the analysis and to better
state the problem, let us explore only the airplane lateral motion and to consider
that the path to be followed is a straight-line, as shown in Fig. 2. In addition, we
assume that the airplane has a control system to hold the longitudinal variables
stabilized to �y in level �ight. That implies constant velocity, small roll and pitch
angles and zero �ight path angle , γ, see [13]. Consequently, the airplane velocity
and the roll and pitch angles vary slowly compared to the other parameters and
their time derivatives can be neglected in the �ight dynamics. Under the above
assumptions, the control problem to be solved simpli�es to producing the yawing
moment required for an airplane to change its direction according to the desired
trajectory.

Fig. 2 Problem formulation for path following
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Two reference frames are used in order to derive the equations of motion: the
Earth-�xed frame, denoted by FE , and the body-�xed frame represented by FB .
FE and FB have two dimensions since only the lateral dynamics are considered in
this study. The origin of FB coincides with the vehicle's center of mass and the
direction of its axes is according to Fig. 2. FE is employed as an inertial frame
and one of its axis is chosen northwards while the other points East.

In real conditions, the performance of an airplane is modi�ed by environmental
disturbances like wind. In such conditions it begins to sideslip or to be yawed out
of its �ight path. The classical relation of the aircraft velocity relative to the Earth
is

V̄ = V +W (1)

where V = [u v]T denotes the velocity of the aircraft relative to the local atmo-
sphere and W represents the wind relative to FE . Besides, we only consider in
this study the case of a crosswind which is de�ned as a lateral wind perpendicular
to the vehicle but parallel to the ground, having North, WN , and East velocity
components, WE .

Denote V̄B =
[

uE vE
]T

as the velocity of the aircraft relative to the Earth in
the directions of the body frame axes. Thus, from (1) it follows

[

uE

vE

]

=
[

u

v

]

+BB

[

WN

WE

]

where BB de�nes the complete transformation from FE to FB assuming constant
pitch angle and it is given by

BB =

(

cθcψ cθsψ
sφsθcψ − cφsψ sφsθsψ + cφcψ

)

where sθ and cθ denote sin(θ) and cos(θ), respectively.
Then, the di�erential equations for the coordinates of the �ight path in FE are

[

ẋ

ẏ

]

= B
T
BV̄B

or

ẋ = u
E
cθcψ + v

E
sφsθcψ − v

E
cφsψ

ẏ = u
E
cθsψ + v

E
sφsθsψ + v

E
cφcψ

with

u
E = u+WNcθcψ +WEcθsψ

v
E = v +WNsφsθcψ −WNcφsψ +WEsφsθsψ +WEcφcψ

where x and y represent the inertial position in the x-axis (North) and in the
y-axis (East).

Remember that the pitch and roll angles are small so that sin{θ, φ} ≈ 0 and
cos{θ, φ} ≈ 1. Moreover, considering a symmetrical airplane with a rigid spinning
rotor placed in the front of its body, it can then be considered, without loss of
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generality, V acting only in the x-axis, see Fig. 2. Hence, the following expression
can be stated

v << 1

u ≈ V

and consequently

ẋ = V cosψ + ω cosψω

ẏ = V sinψ + ω sinψω

where ω cosψω = WN , ω sinψω = WE , ω is the wind velocity and ψω describes
the wind direction. The motion of the airplane with respect to a stationary desired
straight-line path of angle ψd can then be expressed as

ẋ = V cos (ψ − ψd) + ω cos (ψω − ψd)

ẏ = V sin (ψ − ψd) + ω sin (ψω − ψd)

Notice that the above equations are relatively proportional to the variation
of the yaw angle. Considering that the motors of the airplane produce the same
amount of thrust, then the yaw angular acceleration can be controlled using the
rudder de�ection. The di�erential equations describing this dynamics are

ψ̇ ≈ r

ṙ ≈ cτψ

where r stands for yaw rate, τψ represents the yawing moment and c is a constant
related to the aircraft moment of inertia.

Fig. 3 shows an analysis of the nonlinear model of the airplane when it �ies in
stable or moving atmosphere. The desired trajectory is plotted in thick dashed line
while the solid path describes the real airplane trajectory. The crosswind has North
and East velocity components of WN = −3 m/s and WE = 5 m/s, respectively.
The airplane velocity relative to the surrounding air mass is 20 m/s.

Fig. 3 Earth-Relative Aircraft Location. First, the plane �ies in stable atmosphere and it is
capable to follow the desired path. When the atmosphere moves relative to the Earth, the
airplane diverge from the path.
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3 Control design

The main control objective is to obtain directional control in order to follow a
desired trajectory even in presence of unknown crosswind. To simplify the analysis,
let assume that the desired trajectory is aligned with the North axis of the reference
frame, then, the desired path angle, ψd, is equal to zero. Therefore, the amount
of the trajectory deviation will depend on the velocity of the airplane and wind
and also on the angle of the wind in relation to the airplane. In addition we
consider, for control design, that the wind velocity changes slowly such that it can
be considered quasi-constant. However, it will be proved in simulations that the
closed-loop system remains stable even with no constant wind.

Thus, without loss of generality, the airplane dynamics for trajectory following
purpose can be de�ned as

ḋ ≡ ẏ = V sinψ + kω (2)

ψ̇ = r (3)

ṙ = cτψ (4)

where kω = ω sin(ψω) is considered, for control design, quasi-constant and it is due
to the wind perturbation, and d represents the cross track error from the desired
trajectory.

To stabilize the system (2)−(4), the control law will be constructed using the
adaptive backstepping approach. De�ne the following error variable

e1 = d− dmin (5)

where dmin is the minimum constant distance from the desired trajectory. Thus,

ė1 = V sinψ + kω (6)

3.1 Convergence of e1 to zero

Propose the following positive function

VL1
=

1

2
e
2

1

thus
V̇L1

= e1 (V sinψ + kω)

To stabilize e1 we introduce ψv as a virtual control in the following form

V sinψv = −c1e1 − k̂ω1

where k̂ω1
is the estimate of kω and c1 > 0 is a constant. Evaluating V̇L1

when
ψ → ψv it follows that

V̇L1
|ψ=ψv = −c1e

2

1 + e1k̃ω1

where k̃ω1
= kω − k̂ω1

. Notice from the above equation that if k̂ω1
→ kω then

V̇L1
≤ 0. Thus, rewriting VL1

, it yields

VL1
=

1

2

(

e
2

1 +
1

γ1
k̃
2

ω1

)
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where γ1 > 0 denotes a constant adaptation gain. Then

V̇L1
|ψ=ψv = −c1e

2

1 +

(

e1 −
˙̂
kω1

γ1

)

k̃ω1

Choosing the update law as
˙̂
kω1

= γ1e1 (7)

It follows that

V̇L1
|ψ=ψv = −c1e

2

1

3.2 Convergence of ψ to ψv

De�ne the error

e2 = V sinψ − V sinψv = V sinψ + c1e1 + k̂ω1
(8)

and rewrite (6) in terms of e1 and e2

ė1 = e2 − c1e1 + k̃ω1
(9)

This implies that

ė2 = V r cosψ +
(

γ1 − c
2

1

)

e1 + c1e2 + c1k̃ω1
(10)

Notice that cosψ =
√

1− (sinψ)2. From (8)

sinψ =
e2 − c1e1 − k̂ω1

V

and assuming that −π
2
< ψ < π

2
it follows that (10) becomes

ė2 = rR+
(

γ1 − c
2

1

)

e1 + c1e2 + c1k̃ω1
(11)

with R =

√

V 2 −
(

e2 − c1e1 − k̂ω1

)

2

.

Introduce the following positive function

VL2
= VL1

+
1

2
e
2

2 =
1

2

(

e
2

1 +
1

γ1
k̃
2

ω1
+ e

2

2

)

From (7), (9) and (11) the derivative reads

V̇L2
= −c1e

2

1 + e2

[

c1e2 + e1(γ1 + 1− c
2

1) + c1k̃ω1
+ rR

]

By selecting the virtual control as

r
v
R = −e2(c1 + c2)− e1(γ1 + 1− c

2

1)− c1(k̂ω2
+ k̂ω1

)
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V̇L2
becomes when r → rv

V̇L2
|r=rv = −c1e

2

1 − c2e
2

2 + c1e2k̃ω2

where k̃ω2
= kω − k̂ω2

, k̂ω2
represents a new estimate for kω and c2 denotes a

positive constant gain. Notice that if we had employed the existing estimate k̂ω1
,

we would have had no design freedom left to cancel the unknown parameter from
V̇L2

. Additionally, k̂ω2
could be seen as a factor correction for k̂ω1

.
Notice from the above equation that if k̂ω2

→ kω then V̇L2
≤ 0. Thus, rewriting

VL2
, it yields

VL2
= VL1

+
1

2

(

e
2

2 +
1

γ2
k̃
2

ω2

)

with γ2 > 0 and constant. Hence V̇L2
becomes

V̇L2
|r=rv = c1e

2

1 − c2e
2

2 + k̃ω2

(

c1e2 −
˙̂
kω2

γ2

)

Proposing the update law
˙̂
kω2

= γ2c1e2

then, it follows
V̇L2

|r=rv = c1e
2

1 − c2e
2

2

3.3 Convergence of r to rv

Let us de�ne the third error variable

e3 = rR− r
v
R

= rR+ L2e2 + L1e1 + c1(k̂ω2
− k̂ω1

) (12)

where L1 = 1− c21 + γ1, L2 = c1 + c2. Rewriting the error system representation,
we obtain

[

ė1

ė2

]

=

[

−c1 1
−1 −c2

] [

e1

e2

]

+

[

k̃ω1

e3 + c1k̃ω2

]

thus, the derivative of e3 yields

ė3 =cτψR−
r(e2 − c1e1 − k̂ω1

)(e3 − L2e2 − L1e1 + c1k̂ω1
− c1k̂ω2

)

R

+ L2e3 + L3e2 + L4e1 + c1L2k̃ω2
+ L1k̃ω1

with L3 = −c1c2 − c21 − c22 + 1 + γ1 + c21γ2 and L4 = −2c1 − c2 + c31 − 2c1γ1.

Finally, introduce the following Lyapunov function

VL =
1

2

(

e
2

1 +
1

γ1
k̃
2

ω1
+ e

2

2 +
1

γ2
k̃
2

ω2
+ e

2

3

)

then
V̇L = −c1e

2

1 − c2e
2

2 + e3 (ė3 + e2) (13)
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Propose the control input as

cτψ =−
e3(L2 + c3) + e2(L3 + 1− r2) + e1(L4 + c1r

2)

R

−
k̂ω3

(L1 + c1L2)− k̂ω2
c1L2 − k̂ω1

(L1 − r2)

R

where k̃ω3
= kω − k̂ω3

and c3 is a positive constant gain. Notice that the unknown
term kω appears again in V̇L, thus we propose a correction factor in order to realize
the convergence of the states.

Introducing the above into (13), we have

V̇L = −c1e
2

1 − c2e
2

2 − c3e
2

3 + e3 (L1 + c1L2) k̃ω3

Observe that V̇L ≤ 0 if k̂ω3
→ kω. Therefore augmenting VL, it yields

VL =
1

2

(

e
2

1 +
1

γ1
k̃
2

ω1
+ e

2

2 +
1

γ2
k̃
2

ω2
+ e

2

3 +
1

γ3
k̃
2

ω3

)

and

V̇L = −c1e
2

1 − c2e
2

2 − c3e
2

3 + k̃ω3

[

e3 (L1 + c1L2)−
˙̂
kω3

γ3

]

Choosing
˙̂
kω3

= γ3(L1 + c1L2)e3

V̇L becomes
V̇L = −c1e

2

1 − c2e
2

2 − c3e
2

3 (14)

The error representation of the closed-loop adaptive system is summarized
below





ė1
ė2
ė3



 =





−c1 1 0
−1 −c2 1
0 −1 −c3









e1
e2
e3



+





k̃ω1

c1k̃ω2

L5k̃ω3













˙̂
kω1

˙̂
kω2

˙̂
kω3









=





γ1 0 0
0 c1γ2 0
0 0 L5γ3









e1
e2
e3



 (15)

where L5 = c1c2 + γ1 + 1.

Rewriting the control input cτψ in terms of d, ψ, r we have

cτψ = tanψ(r2 − L6)− L7r −
L8d+ L9k̂ω1

+ L10k̂ω2
+ L11k̂ω3

V cosψ
(16)

with the updated parameters

˙̂
kω1

= γ1d

˙̂
kω2

= γ2c1

(

V sinψ + c1d+ k̂ω1

)

˙̂
kω3

= γ3L11V [r cosψ + L2 sinψ] + γ3L11

[

dL11 + c1k̂ω2
+ c2k̂ω1

]
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where

L6 = 1 + L2c3 + L
2

2 + L3

L7 = L2 + c3

L8 = L7(L1 + c1L2) + c1(L3 + 1) + L4

L9 = 1− c1L7 + L3 − L1 + L2L7

L10 = c1L7 − c1L2

L11 = L1 + c1L2

Notice from (14) that V̇L ≤ 0 and it estates the global stability of the equilib-
rium (ei, k̃ωi

) =(0, 0). From the LaSalle-Yoshizawa theorem, we have that ei and
k̃ωi

; i = 1, 2, 3; are bounded and go to zero as t → ∞. From (5) it follows that
d→ dmin. (8) implies that k̂ω1

is also bounded and

lim
t→∞

ψ = arcsin

(

−
k̂ω1

V

)

(17)

Observe that from (12) r is bounded and r → 0. On the other hand, from (16)
it follows that cτψ is bounded.

LaSalle's invariance principle assures that the state (ei, k̃ωi
) converges to the

largest invariant set M contained in {(e1, e2, e3, k̃ω1
, k̃ω2

, k̃ω3
) ∈ R

6|V̇L = 0}. On

this invariant set, we have ei ≡ 0 and ėi ≡ 0. From (15) it yields
˙̃
kωi

= 0 and
k̃ωi

= 0. Thus, the largest invariant set M is

M ={(ei, k̃ωi
) ∈ R

6|ei = 0, k̃ωi
= 0}

={(d, ψ, r, k̂ω1
, k̂ω2

, k̂ω3
) ∈ R

6|(d, ψ, r, k̂ω1
, k̂ω2

, k̂ω3
)

= (0, arcsin(−
k̂ω1

V
), 0, kω, kω, kω)}

The manifold M is the single point d = 0, ψ = arcsin(−
k̂ω1

V
), r = 0, k̂ωi

= kω for
i = 1, 2 and 3, which is globally asymptotically stable.

4 Simulation results

The proposed control strategy was validated in closed-loop system in simulations
with various wind conditions. Remember that we have considered the desired tra-
jectory aligned with the North axis of the inertial frame which makes the desired
path angle ψd = 0◦. In addition, the airplane is �ying with a constant speed equal
to 20 m/s and the crosswind has a direction West-East perpendicular to the de-
sired path. For a smoother convergence we have used the following parameters in
simulations: c1 = c3 = 1.5; c2 = 1.3; γ1 = 1; γ2 = 1.1; γ3 = 1.4.
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4.1 Case constant wind

Several simulations were performed to validate the controller and representative
results are presented. The �rst simulations were carried out with a constant wind
velocity of 7 m/s. The initial conditions are: d = 2 m, ψ = −10◦ and r = 0 rad/s.
For comparative control purpose, a standard nonlinear backstepping algorithm
was developed (see Appendix A) to control the system (2)-(4) and it is given by

cτψb
= −3r + tanψ(r2 − 5)−

3d+ 5kω
V cosψ

(18)

In Fig. 4 we show the time evolution of the aircraft deviation from the desired
trajectory for constant wind when employing the controllers (16) and (18). The
wind parameter, denoted by kω, is not known and therefore considered zero in
(18). Notice from this �gure that the controller proposed in (16) is able to provide
cross track error regulation due to the adaptation laws presented in (15). For this
case, the closed-loop adaptive system shows good response even in presence of
unknown disturbance.

Fig. 5 reveals the fact that to maintain alignment with the desired trajectory
during a crosswind �ight requires the controller to �y the airplane at a sideslip
angle. Indeed, when the position error converges to zero, the yaw angle is stabilized
around a constant value and the airplane keeps moving toward North. Notice that
the yaw angle is nonzero unless the atmosphere is at rest.

On the other hand, the proposed adaptation scheme guarantees the conver-
gence of the unknown parameter estimates towards its true constant value, see
Fig. 6. The Lyapunov function, plotted in Fig. 7, is semi-positive de�nite and con-
tinually decreasing which proves the stability properties of the system. Indeed, in
Fig. 8 we illustrate the control input response.

0 5 10 15 20

0

10

20

25

Time [s]

C
ro

ss
 T

ra
ck

 E
rr

or
 [m

]

Fig. 4 Position error for unknown wind. Solid line represents the proposed controller (16)
whilst dashed line the standard backstepping control algorithm (18).
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Fig. 5 Yaw angle for kω = 7 m/s
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Fig. 6 Parameter estimation for kω = 7 m/s
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Fig. 7 Lyapunov function for kω = 7 m/s
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Fig. 8 Control input for kω = 7 m/s

4.2 Case variable wind and sensor noise

In order to demonstrate the robustness (in simulation) of the proposed control
algorithm, some variations are included in the wind parameters and noise is con-
sidered in sensor measurements. For this purpose, we assume that the wind varies
in magnitude and orientation, as shown in Fig. 9. Notice in this �gure that, at
time 20s, a sudden increase of 2 m/s is presented in speed of the wind.

The airspeed, the distance relative to the path, the yaw angle and the yaw
rate are computed by sensors placed onboard whose measurements are a�ected
by random variations. To approximate as much as possible a real life scenario, let
us evaluate the controller in presence of normal gaussian noise. To this end, the
outputs of the airspeed and distance sensors are perturbed by the noise represented
in Fig. 10(a) while the outputs of the yaw angle yaw rate sensors by the noise
represented in Fig. 10(b).
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Fig. 9 Variable wind gust
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a. Noise of the airspeed and distance sensors

b. Noise of the yaw angle and yaw rate sensors

Fig. 10 Normal Gaussian noise

The overall system has been simulated for the case when the path to be followed
is a four straight-line segments combination. The �rst segment is aligned with the
reference while the angles of the three following segments are 55◦, 110◦ and 160◦

relative to the North axis, see Fig. 11. Initial deviation of the airplane from the path
is −15 m while its initial orientation is considered as for the previous simulations.

The main results are displayed in Figures 11 - 15. Observe that path following
is achieved even in presence of sudden changes in path direction, variations in wind
parameters and sensor noise. The wind deviates the airplane from the reference
trajectory toward the wind direction but the controller (16) is able to recover the
aircraft and to converge the position error to zero, see Fig. 12.

Fig. 11 The path to be followed consists of a combination of four straight-line segments.
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When aligned with the reference trajectory, the airplane is �own at a sideslip
angle to maintain directional control, see Fig. 13. The adaptation laws are used to
estimate the value of kω = ω sin(ψω − ψd), which varies mainly according to ψd
as shown in Fig. 14. Notice from this �gure that the convergence time is relatively
small and that the estimated unknown parameters are in agreement with the real
value. The control e�ort is illustrated in Fig. 15.
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Fig. 12 Position error for variable wind and sensor noise
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Fig. 13 Yaw angle for variable wind and sensor noise
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Fig. 14 Parameter estimation for variable wind and sensor noise
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Fig. 15 Control input for variable wind and sensor noise

5 Onboard electronics

In this section we introduce an overview of the onboard hardware developed in
order to carry out �ight tests. The airplane used is the Multiplex TwinStar II. The
central processing unit, represented by the RabbitCore RCM4300 Microprocessor,
collects the measurements of the IMU (Inertial Measurement Unit employed to
estimate the airplane attitude and angular rates), of the airspeed sensor and of
the GPS system, to compute the control law. The control responses are sent to the
servo signal generator/receiver unit and also to the two electric speed controllers
to activate the brushless motors. Indeed, a modem is added to send and receive
data from a base station. The electronic scheme is presented in Fig. 17.

Fig. 16 The onboard electronics
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Fig. 17 The electronic scheme

6 CONCLUSIONS AND FUTURE WORK

An adaptive control algorithm based on the backstepping approach has been pro-
posed in this paper. The control strategy was focused on reducing the position
deviation of the airplane with respect to a desired path in the lateral dynamics in
presence of unknown wind. The control scheme was derived considering adaptation
laws to estimate the unknown wind parameters. The closed-loop system was eval-
uated in several simulations and the main results, showing the good performance,
were introduced by some graphs. An embedded control system was developed in
order to validate the control strategy in �ight tests. Future work will include real
time implementation of the �ight controller using the developed hardware plat-
form.

References

1. C. Silvestre, A. Pascoal and I. Kaminer, On the design of gain-scheduled trajectory tracking
controllers, International Journal of Robust and Nonlinear Control 12, 797-839, 2002.

2. W. J. Rugh and J. S. Shamma, Research on Gain Scheduling, Automatica 36, pg. 1401-1425,
2000.



Airplane trajectory following in unknown wind 19

3. J. S. Shamma and M. Athans, Guaranteed Properties of Gain Scheduled Control of Linear
Parameter-Varying Plants, Automatica, Vol. 27, No. 3, pp. 559-565, May 1991.

4. T. M. Adami and J. Jim Zhu, 6DOF �ight control of �xed-wing aircraft by Trajectory
Linearization, Proceedings of the 2011 American Control Conference, pg. 1610-1617, June
2011.

5. D. R. Nelson, D. B. Barber, T. W. McLain and R. W. Beard, Vector �eld path following
for small unmanned air vehicles, IEEE Transactions on Robotics and Automation 23(3), pp.
519-529, 2007.

6. J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cli�s,
1991.

7. H.Khalil, Nonlinear Systems, Macmillan Publishing Company, New York, 1992.
8. P. V. Kokotovic, The joy of Feedback : Nonlinear and Adaptive, IEEE Control Systems,
Vol. 12, No. 3, pp 7-17, 1992.

9. M. Krstic, I. Kanellakopoulos and P. V. Kokotovic, Nonlinear and Adaptive Control Design,
John Wiley & Sons, New York, 1995.

10. O. Harkergard, Backstepping and Control Allocation with Applications to Flight Control,
Ph.D. thesis, Linkoping University, 2003.

11. L. Sonneveldt, Q.P. Chu and J.A. Mulder, Adaptive Backstepping Flight Control for Mod-
ern Fighter Aircraft, Advances in Flight Control Systems, Agneta Balint (Ed.), ISBN: 978-
953-307-218-0, InTech, 2011.

12. F. Gavilan, J. A. Acosta and R. Vazquez, Control of the longitudinal �ight dynamics of
an UAV using adaptive backstepping, IFAC World Congress, 2011.

13. Bernard Etkin, Dynamics of Atmospheric Flight, John Wiley & Sons, New York, 1972.
14. http://www.stack.nl/~jwk/latex/



20 A. Brezoescu et al.

A Standard nonlinear backstepping design

Let us rewrite the nonlinear system described by (2)-(4)

ḋ = V sinψ + kω

ψ̇ = r

ṙ = cτψ

where kω is a constant perturbation due to the wind. We intend to achieve regulation of d(t)
designing backstepping control, for this purpose we de�ne the following error variable

e1 = d− dmin

where dmin is the minimum constant distance from the desired trajectory. The dynamics of
e1 yields

ė1 = V sinψ + kω (19)

Let us consider the following positive function

VL1
=

1

2
e21

thus
V̇L1

= e1 (V sinψ + kω)

The e1 term can be stabilized if we introduce ψv as virtual control in the form

V sinψv = −e1 − kω

Evaluating V̇L1
when ψ → ψv it follows that

V̇L1
|ψ=ψv = −e21

Since ψ is not the real control, let us de�ne the deviation from its desired value

e2 = V sinψ − V sinψv = V sinψ + e1 + kω (20)

and rewrite (19) in terms of e1 and e2

ė1 = e2 − e1 (21)

This implies that
ė2 = V r cosψ + e2 − e1 (22)

Notice that cosψ =
√

1− (sinψ)2. From (20)

sinψ =
e2 − e1 − kω

V

and assuming that −π
2
< ψ < π

2
it follows that (22) becomes

ė2 = rR+ e2 − e1 (23)

with R =
√

V 2 − (e2 − e1 − kω)2. Let us consider the positive de�nite function

VL2
=

1

2

(

e21 + e22
)

whose derivative is
V̇L2

= −e21 + e2 (e2 + rR)

Using the virtual control rv in the form

rvR = −2e2
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V̇L2
becomes when r → rv

V̇L2
|r=rv = −e21 − e22

Let e3 be the deviation of r from its desired value

e3 = rR− rvR = rR+ 2e2 (24)

This implies

r =
e3 − 2e2

R

It is more convenient to write the error system representation

ė1 = −e1 + e2 (25)

ė2 = −e1 − e2 + e3 (26)

ė3 = cτψR−
(e3 − 2e2)2(e2 − e1 − kω)

V 2 − (e2 − e1 − kω)2
− 2e2 − 2e1 + 2e3 (27)

Introducing VL = 1

2
e1

2 + 1

2
e2
2
+ 1

2
e2
3
as the Lyapunov function, then

V̇L = −e21 − e22 + e3(e2 + ė3) (28)

Let us propose the control input as

cτψ =
(e3 − 2e2)2(e2 − e1 − kω)

[V 2 − (e2 − e1 − kω)2]R
+
e2 − 3e3 + 2e1

R
(29)

Using (24), the control law takes the form

cτψ = −3r −
5e2 − 2e1 − r2(e2 − e1 − kω)

R
(30)

Thus, (28) becomes

V̇L = −e21 − e22 − e23 (31)

which proves that in the (d, e1, e2) coordinates the equilibrium (0, 0, 0) is GAS. In view of
(d, ψ, r), the resulting control is

cτψ = −3r + tanψ(r2 − 5)−
3d+ 5kω

V cosψ
(32)


