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Introduction

Unmanned Aerial Vehicles (UAVs) represent an area of great interest in the automatic control community. The absence of the pilot renders them best suited to solve dangerous situations. However, it requires signicant attention in the ight control design since the vehicle may experience large parameter variations and external disturbances. The largest use of the UAVs is within military applications but they are also used in a growing number of civil applications such as reghting, digital mapping or monitoring. To increase the usefulness of UAVs, the capability of the autonomous controller to track a reference path is essential. Moreover, the robustness with respect to environmental disturbances must be considered. For example, small UAVs are signicantly sensitive to wind since its magnitude may be comparable to the UAVs speed.

A wide range of trajectory tracking controllers for autonomous vehicles could be found in literature. In [START_REF] Silvestre | On the design of gain-scheduled trajectory tracking controllers[END_REF], the authors addressed the problem of trajectory tracking as a gain scheduling control problem. The proposed methodology was illustrated for an autonomous underwater vehicle that was scheduled on yaw rate and path angle. A nonlinear design was obtained from the interpolation of six linear controllers computed for dierent values of the gain scheduling variables. The problem of external disturbances was not addressed in this paper.

In gain scheduling theory the system dynamics are considered slowly varying [2] [START_REF] Shamma | Guaranteed Properties of Gain Scheduled Control of Linear Parameter-Varying Plants[END_REF] which reduces the ight capabilities of an airplane. Trajectory linearization control (TLC) was used in [START_REF] Adami | 6DOF ight control of xed-wing aircraft by Trajectory Linearization[END_REF] to avoid the use of gain scheduling and to enable operation across the full ight-envelope for a 6DoF xed-wing aircraft model. The controller design combined dynamic inversion of the nonlinear equations of motion, to generate nominal force and torque commands, with a linear time varying tracking error regulator to account for model uncertainty. Simulations results were presented for a climbing, bank-to-turn maneuver.

A method based on the vector eld approach was proposed in [START_REF] Nelson | Vector eld path following for small unmanned air vehicles[END_REF] for the case where the time dimension of the reference trajectory is removed. Path following was achieved for straight-lines and circular arcs and orbits in the presence of constant wind disturbances. The algorithm was validated through simulations and real ight tests of a xed-wing miniature air vehicle.

When accurate knowledge of the vehicle dynamics is not available, adaptive control design can be employed in order to estimate the uncertain parameters. Many of the results in adaptive control are derived from Lyapunov stability theory [START_REF] Slotine | Applied Nonlinear Control[END_REF]- [START_REF] Krstic | Nonlinear and Adaptive Control Design[END_REF]. Several ight control algorithms which combines adaptation with other control tools, such as backstepping, neural networks or sliding mode control, can be found in the literature. For instance in [START_REF] Harkergard | Backstepping and Control Allocation with Applications to Flight Control[END_REF], ight control laws for two dierent control objectives were designed employing backstepping technique: maneuvering purpose and automatic control for the ight path angle. Also, two schemes based on adaptive backstepping and nonlinear observer design were proposed for estimating model errors. The proposed controllers were evaluated through simulations.

Likewise, a Lyapunov-based adaptive backstepping approach with online estimation of the uncertain aerodynamic forces and moments was used in [START_REF] Sonneveldt | Adaptive Backstepping Flight Control for Modern Fighter Aircraft[END_REF] to design a ight-path controller for a nonlinear high-delity F-16 model. It was shown that trajectory control can still be accomplished with these uncertainties while good tracking performance is maintained. On the other hand, in [START_REF] Gavilan | Control of the longitudinal ight dynamics of an UAV using adaptive backstepping[END_REF] the authors introduced the design of an adaptive backstepping controller for longitudinal ight-path control when the aerodynamic coecients are not known exactly. The system followed references in velocity and ight path angle and showed good performance in simulations.

Even if there are many adaptive approaches to ight control design, only few have been developed to realize airplane directional control in presence of unknown wind gusts. The goal of this work is to stabilize an airplane under crosswind and to realize the convergence to zero of the cross track error with respect to a desired trajectory. Moreover, the adaptive controller must be robust, by construction, with respect to external and unknown disturbances. We focus mainly in the lateral dynamic of the plane, for this, an analysis of this dynamic is presented in section 2. Likewise, in this section we introduce the airframe addressed in this paper, the cross track error and the dynamic velocity of the plane with respect to the desired path. An adaptive control strategy is developed and presented in section 3 in order to follow the trajectory in presence of wind. Besides, the stability properties of the controller are discussed at the end of this section. The validation of the proposed control scheme is done in simulations and the main results are depicted in graphs in section 4. Additionally, an embedded control system was developed to validate the control algorithm, the main characteristics of this hardware platform are described in section 5. And nally in section 6, the conclusion and future work are discussed.

Aircraft system

The dynamic characteristics of an airplane strongly depend on many parameters such as altitude, speed, conguration or environmental disturbances. As a result, its complete dynamic is nonlinear, uncertain and complex for control purposes. In this section we rst introduce the airframe employed, then the lateral dynamics of the airplane in a non-steady atmosphere is derived.

A robust airframe possessing reliable ight characteristics is essential for real ight tests. Long duration ight and sucient payload capacity to carry the weight of sensors and batteries are two features of great interest. Fig. 1 shows the commercially available Multiplex Twinstar II model used in our study. Its conguration is based on the classic aerodynamic layout and it is made of molded Elapor foam. Two brushless motors were mounted on the airfoil-shaped wings to power the airplane. A couple of ailerons, an elevator and a rudder are used as control surfaces and are actuated by servo motors. The technical characteristics of the Multiplex Twinstar II are given in Table 1. A payload of approximately 300 g, consisting of sensors and a central processing unit, was added to the airframe as the embedded electronics. The developed hardware platform is described in detail in section 5. 

Airplane dynamics

The problem of trajectory following becomes complex when considering the complete dynamics of the airplane. In order to simplify the analysis and to better state the problem, let us explore only the airplane lateral motion and to consider that the path to be followed is a straight-line, as shown in Fig. 2. In addition, we assume that the airplane has a control system to hold the longitudinal variables stabilized to y in level ight. That implies constant velocity, small roll and pitch angles and zero ight path angle , γ, see [START_REF] Etkin | Dynamics of Atmospheric Flight[END_REF]. Consequently, the airplane velocity and the roll and pitch angles vary slowly compared to the other parameters and their time derivatives can be neglected in the ight dynamics. Under the above assumptions, the control problem to be solved simplies to producing the yawing moment required for an airplane to change its direction according to the desired trajectory. Two reference frames are used in order to derive the equations of motion: the Earth-xed frame, denoted by F E , and the body-xed frame represented by F B . F E and F B have two dimensions since only the lateral dynamics are considered in this study. The origin of F B coincides with the vehicle's center of mass and the direction of its axes is according to Fig. 2. F E is employed as an inertial frame and one of its axis is chosen northwards while the other points East.

In real conditions, the performance of an airplane is modied by environmental disturbances like wind. In such conditions it begins to sideslip or to be yawed out of its ight path. The classical relation of the aircraft velocity relative to the Earth is

V = V + W (1)
where V = [u v] T denotes the velocity of the aircraft relative to the local atmosphere and W represents the wind relative to F E . Besides, we only consider in this study the case of a crosswind which is dened as a lateral wind perpendicular to the vehicle but parallel to the ground, having North, W N , and East velocity components, W E .

Denote VB = u E v E T as the velocity of the aircraft relative to the Earth in the directions of the body frame axes. Thus, from (1) it follows

u E v E = u v + B B W N W E
where B B denes the complete transformation from F E to F B assuming constant pitch angle and it is given by

B B = c θ c ψ c θ s ψ s φ s θ c ψ -c φ s ψ s φ s θ s ψ + c φ c ψ
where s θ and c θ denote sin(θ) and cos(θ), respectively.

Then, the dierential equations for the coordinates of the ight path in

F E are ẋ ẏ = B T B VB or ẋ = u E c θ c ψ + v E s φ s θ c ψ -v E c φ s ψ ẏ = u E c θ s ψ + v E s φ s θ s ψ + v E c φ c ψ with u E = u + W N c θ c ψ + W E c θ s ψ v E = v + W N s φ s θ c ψ -W N c φ s ψ + W E s φ s θ s ψ + W E c φ c ψ
where x and y represent the inertial position in the x-axis (North) and in the y-axis (East). Remember that the pitch and roll angles are small so that sin{θ, φ} ≈ 0 and cos{θ, φ} ≈ 1. Moreover, considering a symmetrical airplane with a rigid spinning rotor placed in the front of its body, it can then be considered, without loss of generality, V acting only in the x-axis, see Fig. 2. Hence, the following expression can be stated

v << 1 u ≈ V and consequently ẋ = V cos ψ + ω cos ψ ω ẏ = V sin ψ + ω sin ψ ω
where ω cos ψ ω = W N , ω sin ψ ω = W E , ω is the wind velocity and ψ ω describes the wind direction. The motion of the airplane with respect to a stationary desired straight-line path of angle ψ d can then be expressed as

ẋ = V cos (ψ -ψ d ) + ω cos (ψ ω -ψ d ) ẏ = V sin (ψ -ψ d ) + ω sin (ψ ω -ψ d )
Notice that the above equations are relatively proportional to the variation of the yaw angle. Considering that the motors of the airplane produce the same amount of thrust, then the yaw angular acceleration can be controlled using the rudder deection. The dierential equations describing this dynamics are

ψ ≈ r ṙ ≈ cτ ψ
where r stands for yaw rate, τ ψ represents the yawing moment and c is a constant related to the aircraft moment of inertia.

Fig. 3 shows an analysis of the nonlinear model of the airplane when it ies in stable or moving atmosphere. The desired trajectory is plotted in thick dashed line while the solid path describes the real airplane trajectory. The crosswind has North and East velocity components of W N = -3 m/s and W E = 5 m/s, respectively. The airplane velocity relative to the surrounding air mass is 20 m/s. Fig. 3 Earth-Relative Aircraft Location. First, the plane ies in stable atmosphere and it is capable to follow the desired path. When the atmosphere moves relative to the Earth, the airplane diverge from the path.

Control design

The main control objective is to obtain directional control in order to follow a desired trajectory even in presence of unknown crosswind. To simplify the analysis, let assume that the desired trajectory is aligned with the North axis of the reference frame, then, the desired path angle, ψ d , is equal to zero. Therefore, the amount of the trajectory deviation will depend on the velocity of the airplane and wind and also on the angle of the wind in relation to the airplane. In addition we consider, for control design, that the wind velocity changes slowly such that it can be considered quasi-constant. However, it will be proved in simulations that the closed-loop system remains stable even with no constant wind.

Thus, without loss of generality, the airplane dynamics for trajectory following purpose can be dened as

ḋ ≡ ẏ = V sin ψ + k ω (2) ψ = r (3) ṙ = cτ ψ (4)
where k ω = ω sin(ψ ω ) is considered, for control design, quasi-constant and it is due to the wind perturbation, and d represents the cross track error from the desired trajectory.

To stabilize the system (2)-( 4), the control law will be constructed using the adaptive backstepping approach. Dene the following error variable

e 1 = d -d min (5)
where d min is the minimum constant distance from the desired trajectory. Thus,

ė1 = V sin ψ + k ω (6)

Convergence of e 1 to zero

Propose the following positive function

V L 1 = 1 2 e 2 1
thus

VL 1 = e 1 (V sin ψ + k ω )
To stabilize e 1 we introduce ψ v as a virtual control in the following form

V sin ψ v = -c 1 e 1 -kω 1
where kω 1 is the estimate of k ω and c 1 > 0 is a constant. Evaluating VL 1 when ψ → ψ v it follows that

VL 1 | ψ=ψ v = -c 1 e 2 1 + e 1 kω 1
where

kω 1 = k ω -kω 1 . Notice from the above equation that if kω 1 → k ω then VL 1 ≤ 0. Thus, rewriting V L 1 , it yields V L 1 = 1 2 e 2 1 + 1 γ 1 k2 ω 1
where γ 1 > 0 denotes a constant adaptation gain. Then

VL 1 | ψ=ψ v = -c 1 e 2 1 + e 1 - kω 1 γ 1 kω 1
Choosing the update law as

kω 1 = γ 1 e 1 (7) 
It follows that

VL 1 | ψ=ψ v = -c 1 e 2 1 3.2 Convergence of ψ to ψ v
Dene the error

e 2 = V sin ψ -V sin ψ v = V sin ψ + c 1 e 1 + kω 1 (8) 
and rewrite [START_REF] Slotine | Applied Nonlinear Control[END_REF] in terms of e 1 and e 2 ė1 = e 2c 1 e 1 + kω 1

This implies that

ė2 = V r cos ψ + γ 1 -c 2 1 e 1 + c 1 e 2 + c 1 kω 1 (10) 
Notice that cos ψ = 1 -(sin ψ) 2 . From ( 8)

sin ψ = e 2 -c 1 e 1 -kω 1 V
and assuming thatπ 2 < ψ < π 2 it follows that (10) becomes

ė2 = rR + γ 1 -c 2 1 e 1 + c 1 e 2 + c 1 kω 1 (11) 
with R = V 2 -e 2 -c 1 e 1 -kω 1

2

.

Introduce the following positive function

V L 2 = V L 1 + 1 2 e 2 2 = 1 2 e 2 1 + 1 γ 1 k2 ω 1 + e 2 2
From ( 7), ( 9) and ( 11) the derivative reads

VL 2 = -c 1 e 2 1 + e 2 c 1 e 2 + e 1 (γ 1 + 1 -c 2 1 ) + c 1 kω 1 + rR
By selecting the virtual control as 

r v R = -e 2 (c 1 + c 2 ) -e 1 (γ 1 + 1 -c 2 1 ) -c 1 ( kω 2 + kω 1 ) VL 2 becomes when r → r v VL 2 | r=r v = -c 1 e 2 1 -
V L 2 = V L 1 + 1 2 e 2 2 + 1 γ 2 k2 ω 2
with γ 2 > 0 and constant. Hence VL 2 becomes

VL 2 | r=r v = c 1 e 2 1 -c 2 e 2 2 + kω 2 c 1 e 2 - kω 2 γ 2
Proposing the update law

kω 2 = γ 2 c 1 e 2
then, it follows

VL 2 | r=r v = c 1 e 2 1 -c 2 e 2 2

Convergence of r to r v

Let us dene the third error variable

e 3 = rR -r v R = rR + L 2 e 2 + L 1 e 1 + c 1 ( kω 2 -kω 1 ) (12) 
where

L 1 = 1 -c 2 1 + γ 1 , L 2 = c 1 + c 2 .
Rewriting the error system representation, we obtain

ė1 ė2 = -c 1 1 -1 -c 2 e 1 e 2 + kω 1 e 3 + c 1 kω 2
thus, the derivative of e 3 yields

ė3 =cτ ψ R - r(e 2 -c 1 e 1 -kω 1 )(e 3 -L 2 e 2 -L 1 e 1 + c 1 kω 1 -c 1 kω 2 ) R + L 2 e 3 + L 3 e 2 + L 4 e 1 + c 1 L 2 kω 2 + L 1 kω 1 with L 3 = -c 1 c 2 -c 2 1 -c 2 2 + 1 + γ 1 + c 2 1 γ 2 and L 4 = -2c 1 -c 2 + c 3 1 -2c 1 γ 1 .
Finally, introduce the following Lyapunov function

V L = 1 2 e 2 1 + 1 γ 1 k2 ω 1 + e 2 2 + 1 γ 2 k2 ω 2 + e 2 3 then VL = -c 1 e 2 1 -c 2 e 2 2 + e 3 ( ė3 + e 2 ) (13) 
Propose the control input as

cτ ψ = - e 3 (L 2 + c 3 ) + e 2 (L 3 + 1 -r 2 ) + e 1 (L 4 + c 1 r 2 ) R - kω 3 (L 1 + c 1 L 2 ) -kω 2 c 1 L 2 -kω 1 (L 1 -r 2 )

R

where kω 3 = k ω -kω 3 and c 3 is a positive constant gain. Notice that the unknown term k ω appears again in VL , thus we propose a correction factor in order to realize the convergence of the states.

Introducing the above into (13), we have

VL = -c 1 e 2 1 -c 2 e 2 2 -c 3 e 2 3 + e 3 (L 1 + c 1 L 2 ) kω 3 Observe that VL ≤ 0 if kω 3 → k ω . Therefore augmenting V L , it yields V L = 1 2 e 2 1 + 1 γ 1 k2 ω 1 + e 2 2 + 1 γ 2 k2 ω 2 + e 2 3 + 1 γ 3 k2 ω 3 and VL = -c 1 e 2 1 -c 2 e 2 2 -c 3 e 2 3 + kω 3 e 3 (L 1 + c 1 L 2 ) - kω 3 γ 3 Choosing kω 3 = γ 3 (L 1 + c 1 L 2 )e 3 VL becomes VL = -c 1 e 2 1 -c 2 e 2 2 -c 3 e 2 3 ( 14 
)
The error representation of the closed-loop adaptive system is summarized below

  ė1 ė2 ė3   =   -c 1 1 0 -1 -c 2 1 0 -1 -c 3     e 1 e 2 e 3   +   kω 1 c 1 kω 2 L 5 kω 3       kω 1 kω 2 kω 3     =   γ 1 0 0 0 c 1 γ 2 0 0 0 L 5 γ 3     e 1 e 2 e 3   (15) where L 5 = c 1 c 2 + γ 1 + 1.
Rewriting the control input cτ ψ in terms of d, ψ, r we have

cτ ψ = tan ψ(r 2 -L 6 ) -L 7 r - L 8 d + L 9 kω 1 + L 10 kω 2 + L 11 kω 3 V cos ψ (16)
with the updated parameters

kω 1 = γ 1 d kω 2 = γ 2 c 1 V sin ψ + c 1 d + kω 1 kω 3 = γ 3 L 11 V [r cos ψ + L 2 sin ψ] + γ 3 L 11 dL 11 + c 1 kω 2 + c 2 kω 1
where

L 6 = 1 + L 2 c 3 + L 2 2 + L 3 L 7 = L 2 + c 3 L 8 = L 7 (L 1 + c 1 L 2 ) + c 1 (L 3 + 1) + L 4 L 9 = 1 -c 1 L 7 + L 3 -L 1 + L 2 L 7 L 10 = c 1 L 7 -c 1 L 2 L 11 = L 1 + c 1 L 2
Notice from ( 14) that VL ≤ 0 and it estates the global stability of the equilibrium (e i , kω i ) =(0, 0). From the LaSalle-Yoshizawa theorem, we have that e i and kω i ; i = 1, 2, 3; are bounded and go to zero as t → ∞. From ( 5) it follows that d → d min . [START_REF] Kokotovic | The joy of Feedback : Nonlinear and Adaptive[END_REF] implies that kω 1 is also bounded and

lim t→∞ ψ = arcsin - kω 1 V ( 17 
)
Observe that from (12) r is bounded and r → 0. On the other hand, from (16) it follows that cτ ψ is bounded.

LaSalle's invariance principle assures that the state (e i , kω i ) converges to the largest invariant set M contained in {(e 1 , e 2 , e 3 , kω 1 , kω 2 , kω 3 ) ∈ R 6 | VL = 0}. On this invariant set, we have e i ≡ 0 and ėi ≡ 0. From (15) it yields kω i = 0 and kω i = 0. Thus, the largest invariant set M is

M ={(e i , kω i ) ∈ R 6 |e i = 0, kω i = 0} ={(d, ψ, r, kω 1 , kω 2 , kω 3 ) ∈ R 6 |(d, ψ, r, kω 1 , kω 2 , kω 3 ) = (0, arcsin(- kω 1 V ), 0, k ω , k ω , k ω )}
The manifold M is the single point d = 0, ψ = arcsin(-kω 1 V ), r = 0, kω i = k ω for i = 1, 2 and 3, which is globally asymptotically stable.

Simulation results

The proposed control strategy was validated in closed-loop system in simulations with various wind conditions. Remember that we have considered the desired trajectory aligned with the North axis of the inertial frame which makes the desired path angle ψ d = 0 • . In addition, the airplane is ying with a constant speed equal to 20 m/s and the crosswind has a direction West-East perpendicular to the desired path. For a smoother convergence we have used the following parameters in simulations:

c 1 = c 3 = 1.5; c 2 = 1.3; γ 1 = 1; γ 2 = 1.1; γ 3 = 1.4.

Case constant wind

Several simulations were performed to validate the controller and representative results are presented. The rst simulations were carried out with a constant wind velocity of 7 m/s. The initial conditions are: d = 2 m, ψ = -10 • and r = 0 rad/s. For comparative control purpose, a standard nonlinear backstepping algorithm was developed (see Appendix A) to control the system (2)-( 4) and it is given by

cτ ψ b = -3r + tan ψ(r 2 -5) - 3d + 5k ω V cos ψ (18) 
In Fig. 4 we show the time evolution of the aircraft deviation from the desired trajectory for constant wind when employing the controllers ( 16) and ( 18). The wind parameter, denoted by k ω , is not known and therefore considered zero in (18). Notice from this gure that the controller proposed in ( 16) is able to provide cross track error regulation due to the adaptation laws presented in (15). For this case, the closed-loop adaptive system shows good response even in presence of unknown disturbance. Fig. 5 reveals the fact that to maintain alignment with the desired trajectory during a crosswind ight requires the controller to y the airplane at a sideslip angle. Indeed, when the position error converges to zero, the yaw angle is stabilized around a constant value and the airplane keeps moving toward North. Notice that the yaw angle is nonzero unless the atmosphere is at rest.

On the other hand, the proposed adaptation scheme guarantees the convergence of the unknown parameter estimates towards its true constant value, see Fig. 6. The Lyapunov function, plotted in Fig. 7, is semi-positive denite and continually decreasing which proves the stability properties of the system. Indeed, in Fig. 8 we illustrate the control input response. In order to demonstrate the robustness (in simulation) of the proposed control algorithm, some variations are included in the wind parameters and noise is considered in sensor measurements. For this purpose, we assume that the wind varies in magnitude and orientation, as shown in Fig. 9. Notice in this gure that, at time 20s, a sudden increase of 2 m/s is presented in speed of the wind.

The airspeed, the distance relative to the path, the yaw angle and the yaw rate are computed by sensors placed onboard whose measurements are aected by random variations. To approximate as much as possible a real life scenario, let us evaluate the controller in presence of normal gaussian noise. To this end, the outputs of the airspeed and distance sensors are perturbed by the noise represented in Fig. 10 The overall system has been simulated for the case when the path to be followed is a four straight-line segments combination. The rst segment is aligned with the reference while the angles of the three following segments are 55 • , 110 • and 160 • relative to the North axis, see Fig. 11. Initial deviation of the airplane from the path is -15 m while its initial orientation is considered as for the previous simulations.

The main results are displayed in Figures 1112131415. Observe that path following is achieved even in presence of sudden changes in path direction, variations in wind parameters and sensor noise. The wind deviates the airplane from the reference trajectory toward the wind direction but the controller ( 16) is able to recover the aircraft and to converge the position error to zero, see Fig. When aligned with the reference trajectory, the airplane is own at a sideslip angle to maintain directional control, see Fig. 13. The adaptation laws are used to estimate the value of k ω = ω sin(ψ ωψ d ), which varies mainly according to ψ d as shown in Fig. 14. Notice from this gure that the convergence time is relatively small and that the estimated unknown parameters are in agreement with the real value. The control eort is illustrated in Fig. 15. In this section we introduce an overview of the onboard hardware developed in order to carry out ight tests. The airplane used is the Multiplex TwinStar II. The central processing unit, represented by the RabbitCore RCM4300 Microprocessor, collects the measurements of the IMU (Inertial Measurement Unit employed to estimate the airplane attitude and angular rates), of the airspeed sensor and of the GPS system, to compute the control law. The control responses are sent to the servo signal generator/receiver unit and also to the two electric speed controllers to activate the brushless motors. Indeed, a modem is added to send and receive data from a base station. The electronic scheme is presented in Fig. 

CONCLUSIONS AND FUTURE WORK

An adaptive control algorithm based on the backstepping approach has been proposed in this paper. The control strategy was focused on reducing the position deviation of the airplane with respect to a desired path in the lateral dynamics in presence of unknown wind. The control scheme was derived considering adaptation laws to estimate the unknown wind parameters. The closed-loop system was evaluated in several simulations and the main results, showing the good performance, were introduced by some graphs. An embedded control system was developed in order to validate the control strategy in ight tests. Future work will include real time implementation of the ight controller using the developed hardware platform.

A Standard nonlinear backstepping design

Let us rewrite the nonlinear system described by ( 2)-( 4)

ḋ = V sin ψ + kω ψ = r ṙ = cτ ψ
where kω is a constant perturbation due to the wind. We intend to achieve regulation of d(t) designing backstepping control, for this purpose we dene the following error variable The e 1 term can be stabilized if we introduce ψ v as virtual control in the form

V sin ψ v = -e 1 -kω
Evaluating VL 1 when ψ → ψ v it follows that

VL 1 | ψ=ψ v = -e 2 1
Since ψ is not the real control, let us dene the deviation from its desired value Using the virtual control r v in the form

r v R = -2e 2
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 1 Fig. 1 Airplane model

Fig. 2

 2 Fig. 2 Problem formulation for path following

Fig. 4

 4 Fig. 4 Position error for unknown wind. Solid line represents the proposed controller (16) whilst dashed line the standard backstepping control algorithm (18).
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 56 Fig. 5 Yaw angle for kω = 7 m/s

Fig. 7 Fig. 8

 78 Fig. 7 Lyapunov function for kω = 7 m/s

  (a) while the outputs of the yaw angle yaw rate sensors by the noise represented in Fig. 10(b).
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 9 Fig. 9 Variable wind gust
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 10 Fig. 10 Normal Gaussian noise
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 11 Fig. 11 The path to be followed consists of a combination of four straight-line segments.
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 1315 Fig. 13 Yaw angle for variable wind and sensor noise
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 16 Fig. 16 The onboard electronics
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  Fig.17The electronic scheme

e 1 = 1 = 1 2 e 2 1 thusVL 1 =

 1111 dd min where d min is the minimum constant distance from the desired trajectory. The dynamics of e 1 yields ė1 = V sin ψ + kω (19) Let us consider the following positive function V L e 1 (V sin ψ + kω)

e 2 = 2 ė1 = e 2 -e 1 ( 21 )V L 2 VL 2 = -e 2 1 +

 22121221 V sin ψ -V sin ψ v = V sin ψ + e 1 + kω(20) and rewrite (19) in terms of e 1 and e This implies that ė2 = V r cos ψ + e 2e 1 (22) Notice that cos ψ = 1 -(sin ψ) 2 . From (20) sin ψ = e 2e 1kω V and assuming thatπ 2 < ψ < π 2 it follows that (22) becomes ė2 = rR + e 2e 1 (23) with R = V 2 -(e 2 -e 1 -kω) 2 . Let us consider the positive denite function e 2 (e 2 + rR)

Table 1

 1 Parameters of the airplane.

	Parameter	Value
	Wingspan	1420 mm / 55.9 in
	Fuselage length	1085 mm / 42.7 in
	Wing area	43 dm 2 / 666.5 inch 2
	Weight approx.	1340 g / 47.3 oz
	Wing loading	31.2 g/dm 2 / 10.3 oz/sq.ft
	RC functions	Aileron, elevator, rudder, throttle

  c 2 e 2 2 + c 1 e 2 kω 2 where kω 2 = k ω -kω 2 , kω 2 represents a new estimate for k ω and c 2 denotes a positive constant gain. Notice that if we had employed the existing estimate kω 1 , we would have had no design freedom left to cancel the unknown parameter from VL 2 . Additionally, kω 2 could be seen as a factor correction for kω 1 . Notice from the above equation that if kω 2 → k ω then VL 2 ≤ 0. Thus, rewriting V L 2 , it yields

Let e 3 be the deviation of r from its desired value

This implies

It is more convenient to write the error system representation 

Using ( 24), the control law takes the form

Thus, (28) becomes

which proves that in the (d, e 1 , e 2 ) coordinates the equilibrium (0, 0, 0) is GAS. In view of (d, ψ, r), the resulting control is cτ ψ = -3r + tan ψ(r 2 -5) -3d + 5kω

V cos ψ (32)