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1 Introduction

The main purpose of this paper is to implement a mathematical model of confinement in a real-
istic configuration; the model we consider here relies on a previous work by two of the authors
in [FR12]. The concept of confinement was introduced by Guelorget and Perthuisot [GP83a] in
1983. It has latter been widely used, studied, discussed and tested (see Guélorget and Perthuisot
[GP83b, GP83a], Guélorget, Frisoni and Perthuisot [GFP83], Guélorget et al. [GGLP90], Ibrahim
et al. [IGF+85], Debenay, Perthuisot and Colleuil [DPC93], Redois and Debenay [RD96], Barnes
[Bar94], Frénod and Goubert [FG07] and Tagliapietra et al. [TSG09]) leading to the conclusion
that it is a pertinent parameter controlling the features of living benthic population in paralic
ecosystems. Benthic species are species living on the seabed and paralic ecosystems are ecosys-
tems encountered in estuaries, lagoons and closed bays. This is a first motivation to conduct
numerical simulations of confinement in a lagoon.
In addition, since the confinement of an area is closely related to the amount of available nutri-
ent, we will implement our model in a lagoon where shellfishes are farmed, here Étang de Thau,
located on the French Mediterranean shoreline.

We start with recalling in Section 2 the mathematical model introduced in [FR12]. Then, we
perform in Section 3 the numerical simulations of confinement in Étang de Thau, and discuss
how to get rid of the spurious oscillations that occur because of the lack of smoothness of the
computational domain. Finally, we introduce in Section 4 a method that allows to account
for multi-scale aspects of embedded lagoons. This method is based on the theory of absorbing
boundary conditions first introduced in [EM77], and is implemented here in a very simple case.

2 Mathematical modeling

In this section, we want to introduce the mathematical model that will be used in the sequel to
compute confinement fields in Étang de Thau. This model is similar to the PDE model introduced
by two of the autors and we refer the interested reader to [FR12] for additional details.
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2.1 Definitions

The first mathematical definition of confinement was provided by Frénod and Goubert (see
[FG07]) as a controlling parameter of tide-influenced paralic ecosystems:

Definition 1 The confinement value at any point of the lagoon is the time for the sea-water
to reach this point.

In order to account for possible time-oscillations (i.e. tidal oscillations), Frénod and Rousseau
extended the definition in [FR12]:

Definition 2 The instantaneous confinement is, at a given point of the lagoon and at a
given time, the amount of time the water which is at the considered time at the considered point
has spent inside the lagoon water mass.

Definition 3 The effective confinement is the time-average of the instantaneous confinement
over its oscillating period.

2.2 Transport equation for confinement

We consider (see Figure 1) that the lagoon is a cylinder with base a regular, connected and
bounded domain Ω ⊂ R2 with boundary ∂Ω. This boundary is shared into Γ and Γ0 with
Γ ∩ Γ0 = ∅. Any point in Ω is denoted (x, y). The lagoon seabed is described by a piecewise
continuous function b : Ω −→ R+, where b(x, y) represents the bathymetry level at the horizontal
position (x, y) ∈ Ω. The water altitude h is such that h > supΩ{b}, exluding outcrops. In
summary, the geometrical model of the lagoon writes:{

(x, y, z), (x, y) ∈ Ω, b(x, y) < z < h
}
. (1)
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Figure 1: Left: Lagoon geometry; Right: A section of the Lagoon geometry over a line going
from the Lagoon entrance to the Lagoon far end.

In order to compute the instantaneous confinement, we use a passive tracer gt (see below) ad-
vected by the water velocity field uuu. As shown in [FR12], this model is compatible with any
lagoon geometry (shape and bathymetry), with the only restriction that intertidal zones and
seabed outcrops are not taken into account. The idea developped in [FR12] is to solve the fol-
lowing transport problem: for any time t > 0 and given a sufficiently large time T , the solution
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gt = gt(τ, x, y) of
∂gt
∂τ

(τ, x, y) + uuu(t− T + τ, x, y) · ∇gt(τ, x, y) = 0, ∀0 < τ < T,∀(x, y) ∈ Ω,

gt(τ, x, y) = T − τ, ∀0 < τ < T,∀(x, y) ∈ Γ,
gt(0, x, y) = T, ∀(x, y) ∈ Ω,

(2)

is such that gt(T, x, y) is the value of the instantaneous confinement at time t ∈ R+ and position
(x, y) ∈ Ω, where the water velocity field uuu(t, x, y) may be computed by solving the following
equation: 

−∇ ·
[
(h− b)uuu

]
(t, x, y) = θ(t, x, y), ∀t ∈ R, ∀(x, y) ∈ Ω,

uuu · n = F (t, x, y), ∀t ∈ R,∀(x, y) ∈ Γ,
uuu · n = 0, ∀t ∈ R,∀(x, y) ∈ Γ0,

(3)

where F is a function defined on Γ such that :∫
Γ

[
(h− b)F

]
(t, x, y) dl =

∫
Ω
θ(t, x, y) dx dy, ∀t ∈ R. (4)

The velocity field uuu can be separated in several “elementary” velocity fields, each of those being
solely induced by one single process (such as evaporation, tide, river input, etc.). Consequently,
depending on those processes, the function θ can model several phenomena.

Remark 1 If we consider a tide-submitted lagoon, the domain Ω is time-depending. The reader
can refer to [FR12] for more details.

3 Numerical simulations in a realistic geometry

In order to extend the results of [FR12], we now proceed to a numerical simulation of confinement
in a realistic geometry. We consider the case of a lagoon on the French Mediterranean shoreline:
Étang de Thau (see Figure 2).

3.1 Étang de Thau

Étang de Thau is one of the largest lagoons on the French Mediterranean coastline. It is more
than 20km long, from Balaruc-les-Bains (NE end) to Marseillan (SW). A lot of shellfishes live
in this lagoon: Thau is famous for its oyster and mussel farms (see [DDG75]). This lagoon is
constantly monitored because it is a very sensitive area with regard to eutrophication [AAB+99].
The sale of oysters and mussels has even been prohibited several times since the late 80’s. Indeed,
eutrophication induces an ecosystem deficiency: high densities of nitrogen and phosphor make
macroalgae and phytoplankton proliferate, which disturbs herbarium development. Finally, this
leads to spats infirmity in the shellfish farms and ends with weak crops.
In order to quantize eutrophization of a lagoon, we first consider its confinement, with the nat-
ural idea that the more an area is confined, the more it is subject to eutrophication.

In Étang de Thau, most of the seawater flux comes from the Mediterranean Sea by the Graus
de Pisse-Saumes (0.75× 106 m3 by day) and Sète’s channels (3.7× 106 m3 by day). Fresh water
comes from the rain (48× 106 m3 by year) and river input (30× 106 m3 by year) [A.62]. In our
numerical simulations, we will account for both seawater sources, in the (simple) case where the
evaporation rate θ > 0 is constant, letting time and space variations of θ to subsequent studies.
Thanks to data provided by the Languedoc-Roussillon Region, we have built two meshes of
the lagoon including its bathymetry map (see Figure 2) on which we will perform numerical
simulations of the model introduced in Section 2.
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Figure 2: Étang de Thau: bathymetry map
provided by Languedoc-Roussilon region

3.2 Viscosity and mesh influences

In order to compute confinement in Étang de Thau, we plugged the mesh and bathymetry infor-
mations into the software implemented by Frénod and Rousseau in [FR12], thanks to the finite
element toolbox FreeFem++ [HPLH04].
Because of non regular boundaries, the corresponding numerical solutions include spurious nu-
merical oscillations. To overcome this problem, we could either add some artificial viscosity in
the model, or try to use a finer mesh. In the case where a viscous model is used, we have:

∂gt
∂τ

(τ, x, y) + uuu(t− T + τ, x, y) · ∇gt(τ, x, y) + ...

...− ν∆gt(τ, x, y) = 0 ∀0 < τ < T,∀(x, y) ∈ Ω,

gt(τ, x, y) = T − τ ∀0 < τ < T,∀(x, y) ∈ Γ,
gt(0, x, y) = T ∀(x, y) ∈ Ω,

(5)

where ν is the (dimensionnal) artificial viscosity.
Figures 3c and 3d correspond to the same coarse grid and the simulation is run with the same
parameters in Equation (5), except the viscosity that is changed from 100 to 400.1 The reader
can see the oscillations occuring in Figures 3a and 3b (white parts of the plot), close to the two
entrances; these oscillations disappear with an increased viscosity (Figures 3e and 3f), but the
solution has artificially spread inside the domain (Figures 3c and 3d).

Alternatively, we tried to avoid the numerical oscillations whilst keeping a small viscosity: this
necessitates a finer mesh, and was done in Figure 4d. The numerical simulation is improved
with respect to Figure 3c, without any artificial spread (as in Figure 3d). Naturally, this last
simulation is computationally more demanding, since the time step has to be reduced together
with the mesh size (for obvious stability reasons).

1One may first think that these viscosity values are way too high (unphysical), but we want to point out that
those values correspond to orders of magnitude of 10−6 in a nondimensionnal system (remember that the lagoon
is 2.104m long). Consequently, the additional term has very little influence on the tracer gt that remains mainly
driven by the velocity. The viscosity (at least for reasonably small values) only smoothes the solution.
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Figure 3: Confinement field in Étang de Thau with zooms in the NE and SW entrances.
Left: ν = 100, meshsize = 80m. Right: ν = 400, meshsize = 80m.
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Figure 4: Confinement field in Étang de Thau with zooms in the NE and SW entrances.
Left: ν = 100, meshsize = 80m. Right: ν = 100, meshsize = 25m.

4 Multi-scale domain decomposition for embedded lagoons

In this section, we want to account for the possible multi-scale aspect of confinement. Indeed
we considered here Étang de Thau as a lagoon of the Mediterranean Sea, but one could also
focus on a small part of Thau and consider it as one of its sub-lagoons. On the other side, the
Mediterranean Sea can be seen as a (large) lagoon of the North-Atlantic Ocean, etc.
There is thus a need to be able to compute a domain confinement while considering this multi-
scale aspect. In the sequel, we will consider a reference lagoon Ω and perform a classical confine-
ment computation (see above), providing CΩ in Ω. Then, we will truncate the original domain
in order to remove a small part ω of it, corresponding to a sub-lagoon, and compute the solution
CΩ\ω on the truncated domain Ω \ω. If the new boundary conditions that are required on Ω \ω
are well chosen, we will see that the two numerical solutions CΩ and CΩ\ω match in Ω \ ω.
The new boundary that is introduced when we remove ω from Ω has to be carefully studied.
Indeed, we should implement absorbing boundary conditions (ABC) on it (see[EM77, HS89]). In
practice, ABC are very difficult to find and implement; indeed, they lead to nonlocal boundary
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operators (see [EM77]) that are not numerically suitable. But in our case, the velocity equation
is very simple, and the corresponding ABC are no-slip boundary conditions:

uuu · n = uextnu
ext
nu
ext
n , (6)

where uextnu
ext
nu
ext
n is chosen accordingly with the volume of ω (the truncated part of the domain). These

no-slip conditions for uuu write as non-homogeneous Neumann boundary conditions for the velocity
potential (see [FR12]).
As far as the confinement field is concerned, we choose to impose an homogeneous Neumann
condition on the new boundary. This is the simplest approximation of the ABC that one can use
for advection-diffusion equations (see [Hal86]). We will consider improved boundary conditions
(in the sense of [Hal86]), namely first order or second order conditions, in future works.

(a) Confinement (b) Difference between the total domain and
the factorization

Figure 5: Confinement in Étang de Thau with a fine mesh (meshsize = 25m), ν = 100).
Left: confinement computed in the truncated domain Ω\ω with homogeneous Neumann
boundary conditions. Right: relative error between solutions computed in Ω and in
Ω \ ω.

In Figure 5a we plot the confinement computed in the truncated domain Ω\ω: it matches almost
perfectly the previous simulations (see Figure 4d) in Ω \ ω. Actually, one can see in Figure 5b
that there is a slight mismatch located by the new boundary (≈ 10% in L∞ relative error, 0.6%
in L2 relative error), which is due to the approximation of the ABC (see discussion above).

Conclusion

We achieved two goals in this paper. On the one hand, we confirmed that the mathematical
model introduced in [FR12] is suitable for the simulation of confinement in realistic lagoons such
as Étang de Thau; the model may now be used and validated with realistic data (i.e. time series
for the function θ, see Equation (3)). On the other hand, we introduced in Section 4 a method
to perform multi-scale simulations of confinement in the case of embedded lagoons. We will
consider theoretical and numerical improvements of this method (boundary conditions, use of
homogenization methods) in future works.
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