
HAL Id: hal-00775871
https://hal.science/hal-00775871v3

Submitted on 4 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact simulation for solutions of one-dimensional
Stochastic Differential Equations with discontinuous

drift
Pierre Etoré, Miguel Martinez

To cite this version:
Pierre Etoré, Miguel Martinez. Exact simulation for solutions of one-dimensional Stochastic Differ-
ential Equations with discontinuous drift. ESAIM: Probability and Statistics, 2014, 18, pp.686-702.
�10.1051/ps/2013053�. �hal-00775871v3�

https://hal.science/hal-00775871v3
https://hal.archives-ouvertes.fr


(October 4, 2013)
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Abstract

In this note we propose an exact simulation algorithm for the solution of

dXt = dWt + b̄(Xt)dt, X0 = x, (1)

where b̄ is a smooth real function except at point 0 where b̄(0+) 6= b̄(0−). The

main idea is to sample an exact skeleton of X using an algorithm deduced from

the convergence of the solutions of the skew perturbed equation

dX
β
t = dWt + b̄(Xβ

t )dt+ βdL
0
t (X

β), X0 = x (2)

towards X solution of (1) as β 6= 0 tends to 0.

In this note, we show that this convergence induces the convergence of exact

simulation algorithms proposed by the authors in [7] for the solutions of (2)

towards a limit algorithm. Thanks to stability properties of the rejection

procedures involved as β tends to 0, we prove that this limit algorithm is an

exact simulation algorithm for the solution of the limit equation (1). Numerical

examples are shown to illustrate the performance of this exact simulation

algorithm.
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1. Introduction

1.1. Motivations and exposition of the problem

Exact simulation methods for trajectories of one-dimensional SDEs has been a subject of much interest

in the last years : see for example [6], [3], [4], [12], [14]. Unlike the classical simulation methods, which all

involve some kind of discretization error (see for example [1] for the Euler Scheme), the exact simulation

methods are constructed in such a way that they do not present any discretization error (under the strong

hypothesis that the diffusion coefficient is constant and equal to one). In the last years, the original method

presented in the fundamental article [3] has been extended to overcome various limitations of the initial

algorithm ; it has been generalized to include the cases of unbounded drifts ([4], [5]) and extended to various

’non classical’ type of SDE ([7]).

In this paper, we present an attempt for the adaptation of the exact simulation methods of [3] to one-

dimensional SDEs that possess a discontinuous drift at point 0. Namely, our object of study is (Xt)t≥0

solution of

dXt = Wt + b̄(Xt)dt, X0 = x, (3)

where b̄ is a smooth real function except possibly at point 0 where b̄(0+) 6= b̄(0−).

The simplest case of a process solution of an equation of type (3) is surely the so-called ’Brownian motion

with two valued drift’ solution of

dXt = Wt + (θ01Xt>0 + θ11Xt<0) dt, X0 = x, (4)

where (θ0, θ1) ∈ R2. For a general reference concerning these types of motions, we refer to [10] p.440-441

or [9]. These motions appear in stochastic control problems (see for example [2], [9]) and also theoretical

studies concerning representations of reflected Brownian motion with drift (see [8] in the case θ0 = −θ1).

Even though there exist explicit representation formulae for the densities of such Brownian motions with

two valued drift in terms of combination of convolution integrals (see [10] p.440-441), up to our knowledge

there is no exact numerical simulation algorithm for such motions available in the literature. The algorithm

presented in this paper gives an answer to this question.

1.2. Main ideas of the paper

In [7], the authors manage to adapt the exact simulation methods of [3] to the case of one-dimensional

SDEs that possess an additional term involving the local time of the unknown process at point 0. Namely,

the exact simulation methods of [3] are modified in [7] to include the case where (Xβ
t )t≥0 is the solution of

dXβ
t = Wt + b̄(Xβ

t )dt+ βdL0
t (X

β), X0 = x. (5)

In this situation 0 6= |β| < 1, L0
t (X) denotes the symmetric local time of Xβ in zero at time t, and b̄ is still

allowed to be discontinuous at 0.
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The main idea in [7] was to propose an exact rejection simulation algorithm for the solutions of (5)

using as sampling reference measure the law of some drifted skew Brownian motion with prescribed terminal

distribution and with drift of magnitude 1/β avoiding the case where β = 0, for which we propose a proper

treatment here. Our contribution in [7] deals mainly on the simulation of bridges of such drifted skew

Brownian motions using a classical rejection procedure and looking for tractable rejection functions.

Unfortunately, a direct exact simulation method along the same lines as [7] cannot be properly defined in

the case where β = 0. However, we know from Le Gall in [11] that Xβ solution of (5) tends strongly to X

the solution of (3) as β tends to 0 on each time interval [0, T ]. This leads us to examine what happens at

the level of the algorithms proposed in [7] as β tends to 0.

In fact, we check here by computations that there is indeed a convergence phenomenon at the level

of rejection functions and rejection sets involved in the exact simulation algorithms given in [7]. This

convergence gives rise naturally to a nice and implementable limiting algorithm.

The main problem becomes then to prove rigorously that this limiting algorithm is indeed an exact

simulation algorithm for the solution of (3). In particular, as far as we see, the direct interpretation of

this limiting algorithm is not clear ; for the time being, we have to confess that we really understand the

construction of the limiting algorithm exposed in this paper only via the convergence procedure explained

above. Let us also emphasize that this new algorithm is still a rejection algorithm, and one may naturally ask

for a direct interpretation of its corresponding reference measure. In Remark 3.1 we give an interpretation

of the reference measure (corresponding to the limit rejection algorithm) in terms of a standard Brownian

motion conditioned on prescribed laws for its final position and its local time at 0 at time horizon T .

1.3. Outline of the paper

The paper is organized as follows. In the preliminary Section 2, we explain the convergence of rejection

sampling algorithms in a general framework. The result exposed in this section will be used to justify that

our limiting algorithm is indeed an exact simulation algorithm for the solution of (3). The exact simulation

problem treated here is presented in Section 3, where we explain the manner in which we adapt the exact

simulation methods of [3] to our situation. Yet, the resulting algorithm adapted from [3] is not directly

implementable in our context because we have to sample from a complicated reference probability measure

Ẑ. The sections 4 and 5 are devoted to the interpretation of Ẑ as a limit of some sequence
(
Ẑn

)
of better

known probability measures. Finally in Section 6, we apply the results of the preliminary Section 2 to the

sequence
(
Ẑn

)
. This gives rise to a directly implementable limit algorithm for the exact simulation of a

skeleton along the reference probability Ẑ. We end up the article with numerical results and illustrative

examples shown in Section 7.
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2. Preliminary : convergence of abstract rejection sampling algorithms

Proposition 2.1. i) Assume that we have a sequence (ξn) of probability measures on a measurable space

(S,S), and ξdom a probability measure on (S,S), satisfying for any n ∈ N

dξn
dξdom

=
1

εn
fn,

with εn > 0 and 0 ≤ fn ≤ 1.

Assume that fn → f as n → ∞ point-wise on S.

Then, (ξn) converges towards a probability measure ξ satisfying

dξ

dξdom
=

1

ε
f, (6)

with ε = limn→∞ εn.

ii) Moreover, let (Yk, Ik)k≥1 be a sequence of i.i.d. random elements taking values in S × {0, 1} such

that Y1 ∼ ξdom and P[I1 = 1|Y1 = y] = f(y) for all y ∈ S. Define τ := min(k ≥ 1 = Ik = 1). Then,

P(Yτ ∈ dy) = ξ(dy).

Proof. For any A ∈ S we have ξn(A) =
1
εn

∫
A fn(z)ξdom(dz). By dominated convergence we have

∫

A

fn(z)ξdom(dz) −−−−→
n→∞

∫

A

f(z)ξdom(dz).

Taking A = S, and as ξn(S) = 1 for any n ∈ N, we have

εn =
1∫

S
fn(z)ξdom(dz)

−−−−→
n→∞

1∫
S
f(z)ξdom(dz)

=: ε.

Setting now for any A ∈ S, ξ(A) := 1
ε

∫
A
f(z)ξdom(dz), it is clear that

∀A ∈ S, ξn(A) −−−−→
n→∞

ξ(A).

Then ξ is a probability measure on (S,S). It satisfies (6) by construction. This proves point i). For the

proof of point ii), see Proposition 1 in [6].

3. Exact sampling algorithm for a SDE with discontinuous drift (inspired by [3])

3.1. Assumptions

The function b̄ : R → R is bounded with bounded first derivative on R∗,+ and R∗,− with a possible

discontinuity at point {0}. We set M a constant such that

sup
z∈R

|b̄(z)| ≤ M. (7)
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We suppose that both limits limz→0+ b̄(z) = b̄(0+) and limz→0− b̄(z) = b̄(0−) exist and are finite. The

value b̄(0) of the function b̄ at 0 is of no importance and can be fixed arbitrarily to some constant (possibly

different from either b̄(0+) or b̄(0−)).

We introduce the notation

θ :=
b̄(0+)− b̄(0−)

2
. (8)

3.2. Change of probability

Let 0 < T < ∞. Denote C = C([0, T ],R) the set of continuous mappings from [0, T ] to R and C the Borel

σ-field on C induced by the supreme norm.

Let P be a probability measure on (C, C) and W a Brownian motion under P together with its completed

natural filtration (Ft)t≥0. We will denote Px = P (· |W0 = x). When necessary we will denote by ω =

(ωt)0≤t≤T the coordinate process.

We consider the following SDE

dXt = dWt + b̄(Xt)dt, X0 = x. (9)

Our objective is to sample along XT .

Let us define on (C, C) the probability measure W by

dW

dP
= exp

{
−
∫ T

0

b̄(Xt)dWt −
1

2

∫ T

0

b̄2(Xt)dt
}
.

(Note that the assumptions in § 3.1 ensure that W is well defined).

Under W the process X is a Brownian motion and we have,

dP

dW
= exp

{∫ T

0

b̄(Xt)dXt −
1

2

∫ T

0

b̄2(Xt)dt
}
.

Thus for any bounded continuous functional F : (C, C) → R we have,

E
x
P[F (X)] = E

x
W

[
F (X) exp

{∫ T

0

b̄(Xt)dXt −
1

2

∫ T

0

b̄2(Xt)dt
}]
. (10)

We set B(x) =
∫ x

0
b̄(y)dy. Using the symmetric Itô-Tanaka formula (see Exercise VI-1-25 in [13]), and

the Occupation times formula ([13]) we get

B(XT )−B(X0) =

∫ T

0

b̄(Xt)dXt +
1

2

∫ T

0

b̄′(Xt)dt+
b̄(0+)− b̄(0−)

2
L0
T (X),

Thus (10) becomes,

E
x
P[F (X)] = E

x
W

[
F (X) exp

{
B(XT )−B(x)− θL0

T (X)−
∫ T

0

φ(Xt)dt
}]
,

where we have set

φ(x) :=
b̄2(x) + b̄′(x)

2
.
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Setting now

φ̃(x) = φ(x) − inf
x∈R

φ(x),

we finally get that for any bounded and continuous functional F : (C, C) → R we have,

E
x
P
[F (X)] ∝ E

x
W

[
F (X) exp

{
B(XT )−B(x) − θL0

T (X)
}
exp

{
−
∫ T

0

φ̃(Xt)dt
}]
.

Let us now introduce the probability measure Z on (C, C) defined in the following way

dZ

dW
(ω) ∝ exp

{
B(XT (ω))−B(x) − θL0

T (X)(ω)
}
.

Under the assumptions of § 3.1, Z is well defined.

In the sequel we note Ẑ the probability measure induced on (C, C) by the law of X under Z. We have

E
x
P
[F (X)] = cEx

Ẑ

[
F (ω) exp

{
−
∫ T

0

φ̃(ωt)dt
}]
, (11)

where c is a normalizing constant (we make it explicit in the expression above for the purpose of proving

Proposition 5.1 below).

Remark 3.1. (Interpretation of the probability Ẑ)

Recall that under W the process X is a Brownian motion and that, by definition,

dZ

dW
(ω) ∝ exp

{
B(XT (ω))−B(x) − θL0

T (X)(ω)
}
.

In particular, under the probability Z, X is a Brownian motion conditioned on (XT , L
0
T ) ∼ h(y, ℓ)dydℓ with

h(y, ℓ)dydℓ ∝ exp (B(y)−B(x)− θℓ)Wx
(
XT ∈ dy, L0

T ∈ dℓ
)
.

This makes it difficult to sample exactly Xt under Z for t ∈ (0, T ).

3.3. Exact simulation algorithm for the solution of (9) starting from x

Let us denote by K an upper bound for φ̃(x). Following the spirit of [3] we can thus sample from XT

using the following algorithm.

EXACT SIMULATION ALGORITHM FOR THE SOLUTION OF (9) starting from x.

1. Simulate a Poisson Point Process with unit density on [0, T ] × [0,K]. The result is a

random number N of points of coordinates (t1, z1), . . . , (tN , zN ).

2. Simulate a skeleton (ωt1 , . . . , ωtN , ωT ) where ω ∼ Ẑ.

3. If ∀i ∈ {1, . . . , N} φ̃(ωti) ≤ zi accept the skeleton. Else return to step 1.
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This algorithm produces an exact sampling of XT under P: it is the final instance ωT of an accepted

skeleton.

The main issue in the above algorithm is to sample a skeleton of the canonical process under Ẑ (Step 2).

Remark 3.2. (Other exact simulation algorithms)

Other probability changes might be performed in order to try to tackle the exact simulation problem

presented in the introduction. For example (though we will not prove it here) it is possible to swap to a

probability measure S under which X has the law of some Brownian motion with a symmetric two valued

drift (solution of equation (4) in the case where θ0 = −θ1) with some prescribed terminal law. Even though

the density probability distribution of such bridges may be explicitly computed, it seems difficult to find

tractable general rejection bounds for these laws.

4. Recalls on the skew Brownian motion with drift

In this section, we recall some basic facts concerning the skew Brownian motion with constant drift.

Although these facts seem at first quite far away from our purpose, they will be used in the sequel in order

to justify that the limit rejection algorithm presented in Section 6 returns an exact sampling under Ẑ. At

the end of this section, we give an algorithm for the simulation of bridges of SBM with constant drift that

will be used as a basic building block in the sequel.

4.1. The transition function of the skew Brownian motion with drift

Let us recall that the Skew Brownian Motion (SBM) with constant drift component µ ∈ R, denoted by

Bβ,µ, solves

dBβ,µ
t = dWt + µdt+ βdL0

t (B
β,µ).

This SDE with local time has a unique strong solution as soon as |β| < 1 (see [11]). The process Bβ,µ

enjoys the homogeneous Markov property. We shall denote by pβ,µ(t, x, y) its transition function.

Let us introduce the function vβ,µ(t, x, y) defined by

vβ,µ(t, x, y) = (1− exp(− 2xy
t ))1xy>0

+(1 + Sgn(y)β) exp(− 2xy
t 1xy>0)

[
1− βµ

√
2πt exp{ (|x|+|y|+tβµ)2

2t }N c(βµt+|x|+|y|√
t

)
]
,

(12)

where N c(y) = 1√
2π

∫∞
y

e−z2/2dz.

With this notation we can rewrite the expression of pβ,µ(t, x, y) given in [7].

Proposition 4.1. We have for all t > 0, all x, y ∈ R,

pβ,µ(t, x, y) = p0,µ(t, x, y)vβ,µ(t, x, y). (13)
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Proof. See [7] (Proposition 4.7).

4.2. Bounds for the transition function of the SBM with drift

In this paragraph, we give bounds on the transition function of the SBM with drift. These bounds will

be used in the sequel to find tractable rejection bounds for our algorithm.

Let us set α = max(1+β
2 , 1−β

2 ) and

γβ,µ(t, z) = 1− βµ
√
2πt exp(

(z + tβµ)2

2t
)N c(

βµt+ z√
t

). (14)

We also set

cβ,µt,x =





2α if βµ ≥ 0

2αγβ,µ(t, |x|) if βµ < 0.
(15)

We have the following result.

Lemma 4.1. Let (β, µ) ∈ (−1, 1)× R. We have

vβ,µ(t, x, y) ≤ cβ,µt,x , ∀x, y ∈ R. (16)

Proof. Equation (16) comes from (13) and the fact that, if βµ ≥ 0, we have pβ,µ(t, x, y) ≤ 2ᾱp0,µ(t, x, y)

for all x, y ∈ R, and if βµ < 0, we have pβ,µ(t, x, y) ≤ 2ᾱγβ,µ(t, |x|)p0,µ(t, x, y) for all x, y ∈ R (see, in [7],

Lemma 5.3 and its proof).

We also have the following lemma.

Lemma 4.2. Let (β, µ) ∈ (−1, 1)× R. We have

vβ,µ(t, x, y) ≤ cβ,µt,y , ∀x, y ∈ R. (17)

Proof. This comes again from (13), together with the fact that pβ,µ(t, x, y) ≤ cβ,µt,y p
0,µ(t, x, y), for all

x, y ∈ R (see again, in [7], Lemma 5.3, especially the proof of Equation (5.7)).

Remark 4.1. Note that vβ,µ(t, x, y) > 0 and γβ,µ(t, z) > 0 for any t ∈ R
∗,+, x, y, z ∈ R, even for large

values of µ (see Remark 4.8 in [7]).

4.3. Sampling bridges of the SBM with drift

We denote by qβ,µ(t, T, a, b, y) the density defined (for t < T ) by

P[Bβ,µ
t ∈ dy | Bβ,µ

0 = a, Bβ,µ
T = b] = qβ,µ(t, T, a, b, y)dy.

The function (t, y) 7→ qβ,µ(t, T, a, b, y) is the transition density function of a bridge of a SBM with drift

relating points a and b in T unit time.
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As q0,µ(t, T, a, b, y) = q0,0(t, T, a, b, y), by Proposition 4.1 we get,

qβ,µ(t, T, a, b, y) = q0,0(t, T, a, b, y)
vβ,µ(t, a, y)vβ,µ(T − t, y, b)

vβ,µ(T, a, b)
. (18)

Let us set

Cβ,µ
t,T,a,b =





4α2 if βµ ≥ 0

4α2γβ,µ(t, |a|)γβ,µ(T − t, |b|) if βµ < 0.
(19)

We have

qβ,µ(t, T, a, b, y)

q0,0(t, T, a, b, y)
=

Cβ,µ
t,T,a,b

vβ,µ(T, a, b)
fB,β,µ
a,b (y),

with

fB,β,µ
a,b (y) :=

vβ,µ(t, a, y)vβ,µ(T − t, y, b)

Cβ,µ
t,T,a,b

, (20)

where the superscript B appears for the word "Bridge".

Considering (15), (16), (17) and (19) it is clear that

fB,β,µ
a,b (y) ≤ 1, ∀y ∈ R.

We thus propose the following rejection algorithm in order to sample along qβ,µ(t, T, a, b, y)dy.

Auxiliary Algorithm 1: Sampling along qβ,µ(t, T, a, b, y)dy

1. Sample a Brownian bridge Y along q0,0(t, T, a, b, y).

2. Evaluate

fB,β,µ
a,b (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fB,β,µ
a,b (Y ) accept the proposed value Y . Else return to Step 1.

Remark 4.2. Note that the quantities vβ,µ, γβ,µ, cβ,µt,x , Cβ,µ
t,T,a,b, and fB,β,µ

a,b defined respectively in (12),(14),

(15) (19), and (20) involved in the above algorithm depend only on µ through the product βµ. This

computational fact gives the key ensuring the construction of the limit algorithm by convergence performed

at the beginning of Section 6.
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5. Convergence of a sequence of probability measures towards Ẑ

In this section, for any n ∈ N we denote by Xn the solution of

dXn
t = dWt + b̄(Xn

t )dt+
1

n
dL0

t (X
n), Xn

0 = x. (21)

For the existence and uniqueness of solutions to (21) see [11].

The starting point of our ideas is that, not surprisingly, we have the following strong convergence result,

due to the consistency properties of SDEs with local time (see [11]).

Theorem 5.1. (Le Gall [11], 1984.) Let X be the solution of (9) and (Xn) the sequence of solutions of

(21). We have for all 0 < t < T ,

E
[
sup

0≤s≤t
|Xs −Xn

s |
]
−−−−→
n→∞

0.

Proof. See the Appendix.

In particular (Xn) converges in law to X under P. This fact will allow us to construct a suitable sequence(
Ẑn

)
of probability measures converging towards Ẑ.

Recall the definition (8) of θ. Let us set

µn =
1 + 1/n

2/n
b̄(0+)− 1− 1/n

2/n
b̄(0−) =

b̄(0+) + b̄(0−)

2
+ θn, (22)

and bn(x) = b̄(x) − µn.

From (21) we have,

Xn
T = x+WSD,n

T + µnT +
1

n
L0
T (X

n),

where the process WSD,n given by

dWSD,n
t = dWt + bn(X

n
t )dt

is a Brownian motion under the probability measure W
SD,n defined by

dWSD,n

dP
= exp

{
−
∫ T

0

bn(X
n
t )dWt −

1

2

∫ T

0

b2n(X
n
t )dt

}
. (23)

Note that the assumptions in § 3.1 ensure that WSD,n is well defined for all fixed n ∈ N and that the law of

Xn under WSD,n is the one of a SBM with drift.

Let us now set Bn(x) =
∫ x

0
bn(z)dz. As shown in [7] pp 47-48, using a symmetric Itô-Tanaka formula we

can prove that for any bounded measurable functional F : (C, C) → R,

E
x
P[F (Xn)] = E

x
WSD,n

[
F (Xn) exp

{
Bn(X

n
T )−Bn(x)−

∫ T

0

φn(X
n
t )dt

}]
, (24)

where φn(x) =
b2n(x) + b′n(x) + 2µnbn(x)

2
.
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Remark 5.1. Note that, because of the definition of bn, there is no local time appearing in equality (24)

after the application of the symmetric Itô-Tanaka formula. This ensures that there is no local time involved

in the exponential martingale of the probability change, which makes it tractable (from the point of view of

our numerical perspective). Retrospectively, this explains why we defined bn depending on n as b̄− µn (and

not just kept the initial function b̄ to perform our computations).

We see that

φn(x) =
b̄2(x) + b̄′(x)

2
− µ2

n

2
= φ(x) − µ2

n

2
,

and

φn(x)− inf
x∈R

φn(x) = φ(x) − µ2
n

2
− inf

x∈R

(φ(x) − µ2
n

2
) = φ̃(x),

so that φn − inf φn does not depend on n !

Consequently, we have that

E
x
P[F (Xn)] ∝ E

x
WSD,n

[
F (Xn) exp

{
Bn(X

n
T )−Bn(x) −

∫ T

0

φ̃(Xn
t )dt

}]
.

Let us now define the probability measure Zn on (C, C) by

dZn

dWSD,n
(ω) ∝ exp

{
Bn(X

n
T (ω))−Bn(x)

}
, (25)

and Ẑn the probability measure induced on (C, C) by the law of Xn under Zn. Under the assumptions

in § 3.1 the probability measures Zn and Ẑn are well defined for all fixed n ∈ N. We have

E
x
P[F (Xn)] = cnE

x
Ẑn

[
F (ω) exp

{
−
∫ T

0

φ̃(ωt)dt
}]

, (26)

with cn a finite normalizing constant.

The law Ẑn can be well described: it is the law of a SBM with drift whose terminal position is distributed

along a density hn depending on the function Bn (see Subsection 5.2).

In [7] we managed to sample exactly along (21) using skeletons under Ẑn as proposals and the function

exp
{
−
∫ T

0 φ̃(ωt)dt
}

for a rejection rule.

Remember that (Xn) converges in law to X under P. Hence, comparing (11) and (26) indicates that

the sequence of probability measures (Ẑn) converges weakly to Ẑ. This is shown rigorously in the following

subsection. Combining then the results of Subsection 5.2 and Proposition 2.1 will enable us to sample along

Ẑ (see Section 6).

5.1. The probability measure Ẑ as a limit of the sequence (Ẑn)

Proposition 5.1. We have

Ẑn
w−−−−→

n→∞
Ẑ.
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Proof. Let P̂ (resp. P̂n) denote the probability measure induced on (C, C) by the law of X (resp. of Xn)

under P. It is clear from Theorem 5.1 that P̂n
w−−−−→

n→∞
P̂.

Let us define Φ : (C, C) → R by

Φ(ω) := exp
{
−
∫ T

0

φ̃(ωt)dt
}
, ∀ω ∈ C.

Note that 0 < Φ(ω) ≤ 1. Thanks to (11) and (26) we have

dP̂

dẐ
(ω) = cΦ(ω) and

dP̂n

dẐn

(ω) = cn Φ(ω)

and thus,
dẐ

dP̂
(ω) =

1

c

1

Φ(ω)
and

dẐn

dP̂n

(ω) =
1

cn

1

Φ(ω)
. (27)

Under the assumptions of § 3.1, the functional ω 7→ 1/Φ(ω) is easily seen to be bounded and continuous

from (C, C) to R for the topology of the supreme norm. Using that P̂n
w−−−−→

n→∞
P̂ we see that

∫

C

P̂n(dω)

Φ(ω)
−−−−→
n→∞

∫

C

P̂(dω)

Φ(ω)
. (28)

Since Ẑn is a probability measure on (C, C), we also have 1 = Ẑn(C) = Ẑ(C). In view of (27) and (28) this

implies that necessarily (1/cn)n is a convergent sequence and that

lim
n

1

cn
=

1

c
. (29)

Therefore, for any bounded and continuous funcional ω 7→ F (ω) from (C, C) to R,

∫

C

F (ω)dẐn =
1

cn

∫

C

F (ω)
P̂n(dω)

Φ(ω)
−−−−→
n→∞

1

c

∫

C

F (ω)
P̂(dω)

Φ(ω)
=

∫

C

F (ω)dẐ

and the result follows.

5.2. Sampling a skeleton under Ẑn

We have the following proposition.

Proposition 5.2. For any n ∈ N the law Ẑn is the one of a SBM B
1
n
,µn with drift µn conditionally on

B
1
n
,µn

T ∼ hn with

hn(y) = Cn exp (Bn(y)−Bn(x)) p
1
n
,µn(T, x, y),

where Cn is the normalizing constant such that
∫
hn(y)dy = 1.

Proof. See [3].

Let n0 be fixed and 0 = t0 < t1 < . . . < tn0
< T . Set y0 = x to simplify the notations, the law of

(ωt1 , . . . , ωtn0
, ωT ) under Ẑn is given by

hn(y)

n0−1∏

i=0

q
1
n
,µn(ti+1 − ti, T − ti, yi, y, yi+1)dy1 . . . dyn0

dy. (30)
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Once ωT has been sampled along hn(y)dy, we can sample ωt1 along q
1
n
,µn(t1, T, x, ωT , y1)dy1 and each

ωti+1
along q

1
n
,µn(ti+1 − ti, T − ti, ωti , ωT , yi+1)dyi+1, using the Auxiliary Algorithm 1.

In order to sample along hn(y)dy we make use of the following considerations. We have

hn(y) =Cn exp
(
Bn(y)−Bn(x)

)
p0,µn(T, x, y)v

1
n
,µn(T, x, y)

=Cn exp
(
− µn(y − x) +

∫ y

x

b̄(z)dz
)
× exp

(
+ µn(y − x) − µ2

n

2
T
)
p0,0(T, x, y)v

1
n
,µn(T, x, y)

=Cne
−µ2

n
2

T exp
(
B(y)−B(x)

)
v

1
n
,µn(T, x, y)p0,0(T, x, y).

Recall that M denotes an upper bound for the function z 7→ |b̄|(z) (see (7) of our assumptions in §

3.1). Then, using the result of Lemma 4.1 and performing easy computations, we easily see that for any

0 < δ < 1 :

hn(y)

p0,0(T/(1− δ), x, y)
= Cn

eT
2M2/δ

√
1− δ

e−
µ2
n
2

T c
1
n
,µn

T,x f
h, 1

n
,µn

δ (y),

with

f
h, 1

n
,µn

δ (y) =
√
1− δ exp

(
B(y)−B(x)− T 2M2

δ

)
p0,0(T, x, y)

p0,0(T/(1− δ), x, y)

v
1
n
,µn(T, x, y)

c
1
n
,µn

T,x

.

Using (16) one may easily check that f
h, 1

n
,µn

δ (y) ≤ 1 for any y ∈ R. One might then optimize w.r.t.

δ ∈ (0, 1) in order to find f
h, 1

n
,µn

δ closest to 1.

Let us set for simplicity, fh, 1
n
,µn = f

h, 1
n
,µn

1/2 . We deduce therefore the following procedure in order to

sample along hn(y)dy.

Auxiliary Algorithm 2: Sampling along hn(y)dy

1. Sample Y ∼ N (x, 2T ).

2. Evaluate

fh, 1
n
,µn(Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fh, 1
n
,µn(Y ) accept the proposed value Y . Else return to

Step 1.
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6. Direct exact sampling of a skeleton under Ẑ (Step 2 of the Exact Simulation Algorithm)

Proposition 2.1 will now play a crucial role.

Recall the definition (8) of θ. Let us denote

vθ(t, x, y) = (1− e−2xy/t)1xy>0 + e−2xy/t
[
1− θ

√
2πt exp{ (|x|+ |y|+ tθ)2

2t
}N c(

θt+ |x|+ |y|√
t

)
]
,

γθ(t, z) = 1− θ
√
2πt exp(

(z + tθ)2

2t
)N c(

θt+ z√
t

),

cθt,x =





1 if θ ≥ 0

γθ(t, |x|) if θ < 0,
and Cθ

t,T,a,b =





1 if θ ≥ 0

γθ(t, |a|)γθ(T − t, |b|) if θ < 0.

Remember our definitions (12),(14),(15) and (19) and Remark 4.2. It is clear from (22) that 1
nµn → θ (as n

tends to +∞), so that we have,

v
1
n
,µn(t, x, y) −−−−→

n→∞
vθ(t, x, y) ∀(t, x, y) ∈ R+ × R× R,

γ
1
n
,µn(t, z) −−−−→

n→∞
γθ(t, z) ∀(t, z) ∈ R+ × R,

c
1
n
,µn

t,x −−−−→
n→∞

cθt,x ∀(t, x) ∈ R+ × R,

C
1
n
,µn

t,T,a,b −−−−→n→∞
Cθ

t,T,a,b ∀(t, T, a, b) ∈ R+ × R+ × R× R.

Let us now examine the sequence (f
h, 1

n
,µn

δ ) of the rejection functions used in the Auxiliary Algorithm 2.

From the same reasons as above, it is clear that (f
h, 1

n
,µn

δ ) converges towards

fh,θ
δ (y) =

√
1− δ exp

(
B(y)−B(x)− T 2M2

δ

)
p0,0(T, x, y)

p0,0(T/(1− δ), x, y)

vθ(T, x, y)

cθT,x

≤ 1,

this convergence being dominated. Thus, applying the result of Proposition 2.1, the sequence of laws

(hn(y)dy) converges to some limit law hθ(y)dy.

In the same manner, for any fixed a, b ∈ R, the sequence (f
B, 1

n
,µn

a,b ) of rejection functions used in Auxiliary

Algorithm 1 converges towards

fB,θ
a,b (y) :=

vθ(t, a, y)vθ(T − t, y, b)

Cθ
t,T,a,b

≤ 1,

this convergence being dominated.

Consequently, the law q
1
n
,µn(t, T, a, b, y)dy converges towards a limit law qθ(t, T, a, b, y)dy.

Let again n0 be fixed and 0 < t1 < . . . < tn0
< T . Passing to the limit in (30) we get that the law of

(ωt1 , . . . , ωtn0
, ωT ) under Ẑn converges (with y0 = x) towards

hθ(y)

n0−1∏

i=0

q
θ(ti+1 − ti, T − ti, yi, y, yi+1)dy1 . . . dyn0

dy. (31)

Consequently, from Proposition 5.1, we conclude that the law given by (31) is nothing else than the law

of (ωt1 , . . . , ωtn0
, ωT ) under Ẑ.
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Using again Proposition 2.1 and the above considerations we can propose the expected algorithm in order

to sample skeletons under Ẑ. It will use the two following Limit Auxiliary Algorithms.

Limit Auxiliary Algorithm 1: Sampling along hθ(y)dy

1. Sample Y ∼ N (x, 2T ).

2. Evaluate

fh,θ(Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fh,θ(Y ) accept the proposed value Y . Else return to Step 1.

Limit Auxiliary Algorithm 2: Sampling along qθ(t, T, a, b, y)dy

1. Sample a Brownian bridge Y along q0,0(t, T, a, b, y).

2. Evaluate

fB,θ
a,b (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fB,θ
a,b (Y ) accept the proposed value Y . Else return to Step 1.

Performing Step 2 of the Exact Simulation Algorithm.

Sampling (ωt1 , . . . , ωtn0
, ωT ) under Ẑ (starting from x)

1. Sample ωT along hθ(y)dy using the Limit Auxiliary Algorithm 1.

2. Sample ωt1 along qθ(t1, T, x, ωT , y)dy using the Limit Auxiliary Algorithm 2.

3. For i = 2, . . . , n0, sample ωti+1
along qθ(ti+1− ti, T − ti, ωti , ωT , y)dy using the Limit Auxiliary

Algorithm 2.
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Exact Euler

CPU times 2111s 9521s

Table 1: CPU times for 106 simulations of a Brownian motion with two-valued drift with θ0 = 2 and θ1 = −1

(x = 0.0 and T = 1).

Exact Algorithm Bridges

Acceptance Ratio 20.4% 58,6%

Table 2: Acceptance ratios for the case of a Brownian motion with two-valued drift with θ0 = 2 and θ1 = −1

(x = 0.0 and T = 1).

7. Numerical Experiments

7.1. Exact simulation of a Brownian motion with two-valued (or alternate) drift

In this paragraph, we choose to exhibit numerical results obtained with the exact limit algorithm for the

simplest non-trivial cases

dXt = dWt ± sgn(Xt)dt, X0 = 0,

corresponding to either θ0 = −θ1 = ±1 in (4) (b̄(y) = ±sgn(y) in (1)). Indeed, in this symmetric case a

benchmark is provided by the explicit and computable density of XT given in [10] p. 440-441.

We draw the renormalized histogram of 106 samples of XT and compare it to the explicit density of XT

(Figure 1 for the outgoing case θ0 = 1 and Figure 2 for the incoming case θ0 = −1).

In the non-symmetric case we can still use our limit algorithm but the density of XT becomes less explicit

(see formula (6.5.12) in [10]). Thus we will use as a benchmark the renormalized histogram of 106 samples

of X∆
T , where (X∆) denotes an Euler Scheme with time step ∆ = T.10−5. We chose θ0 = 2, θ1 = −1, T = 1

and x = 0.0. We plot the corresponding renormalized histograms on Figure 3.

In Table 1 we report the CPU times needed to get the 106 samples, with the exact limit algorithm and

the Euler scheme. Programs were written in C-language and executed on a personal computer equipped

with an Intel Core 2 duo processor, running at 2.23 Ghz. We report in Table 2 the acceptance ratios.

On this example the acceptance ratios are good and the exact method is nearly four times faster than the

Euler scheme with time step ∆ = T.10−5.

7.2. Exact simulation of an SDE with a discontinuous drift coefficient

We consider now the SDE (1) with

b̄(x) =





−π
2 cos

(
π
5x

)
if x ≥ 0

3π
2 − π

2 cos
(
π
5x

)
if x < 0.

(32)
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Figure 1: Brownian motion with two-valued drift, case θ0 = −θ1 = 1 (T = 1).

Figure 2: Brownian motion with two-valued drift, case θ0 = −θ1 = −1 (T = 1).
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Figure 3: Limit algorithm v.s. Euler Scheme for Brownian motion with two-valued drift with θ0 = 2 and θ1 = −1

(x = 0.0 and T = 1).

Exact Euler

(∆t = 10−n, n = 2, 5)

CPU times 11813s 20s

12952s

Table 3: CPU times for 106 simulations of XT for the case where b̄ is given by (32) (x = 0.0 and T = 1).

Let 0 < T < ∞. We wish to sample along XT .

We have θ = −3π/4 and

φ̃(x) =
b̄2(x) + b̄′(x)

2
+

π2

20
.

We take K = 2π2 + π2

10 as an upper bound for φ̃. This allows to use the limit Algorithm.

Figure 3 shows a comparison between a renormalized histogram of 106 samples of XT obtained with the

exact limit algorithm, and a renormalized histogram of 106 samples of X∆
T , where (X∆) denotes an Euler

Scheme with time step ∆. We chose x = 0.0, T = 1 and time-steps ∆ = T.10−2 and ∆ = T.10−5.

In Table 3 we report the CPU times needed to get the 106 samples, with the exact limit algorithm and

the Euler scheme (and, for the later one, with the different time steps we have used). We report in Table 4

the acceptance ratios.

On this example the exact simulation is competitive, compared to schemes with very fine grids.
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Figure 4: Limit algorithm v.s. Euler Scheme for the case where b̄ is given by (32) (x = 0.0 and T = 1).

Exact Algorithm Bridges

Acceptance Ratio 3.6% 50,7%

Table 4: Acceptance ratios for the case where b̄ is given by (32) (x = 0.0 and T = 1).

8. Appendix

Proof of Theorem 5.1. We use the notations of [11]. Using the Occupation times formula we can rewrite

Equation (21) as

dXn
t = dWt +

∫

R

νn(dy) dL
y
t (X

n), Xn
0 = x,

with νn(dy) = b̄(y)dy + 1
nδ0(dy). Lemma 2.1 in [11] asserts that there is for each n ∈ N a function fνn ,

unique up to a multiplicative constant, satisfying f ′
νn(dy) + (fνn(y) + fνn(y−))νn(dy), where the notation

f ′
νn(dy) is for the derivative of fνn in the generalized sense. Lemma 2.1 in [11] also asserts that if we require

that fνn(x) → 1 as x → −∞ then,

fνn(y) = exp
(
− 2

∫ y

−∞
b̄(z)dz

)
× 1y≥0

1− 1/n

1 + 1/n
.

The sequence of functions (fνn)n clearly converges point-wise to f(y) = exp
(
−2

∫ y

−∞ b̄(z)dz
)
. By dominated

convergence we have for all K > 0 that
∫K

−K |fνn − f |(y)dy → 0 as n → ∞. Thus Theorem 3.1 in [11] asserts
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that

E
[
sup

0≤s≤t
|Xs −Xn

s |
]
−−−−→
n→∞

0,

with X the solution of

dXt = dWt +

∫

R

ν(dy) dLy
t (X), X0 = x,

where ν(dy) = − f ′(dy)
f(y)+f(y−) = − 1

2
f ′(y)
f(y) dy = b̄(y)dy. That is to say X is the solution of (9).
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