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In this note we propose an exact simulation algorithm for the solution of

where b is a smooth real function except at point 0 where b(0+) = b(0-). The main idea is to sample an exact skeleton of X using an algorithm deduced from the convergence of the solutions of the skew perturbed equation

towards X solution of (1) as β = 0 tends to 0.

 for the solutions of (2) towards a limit algorithm. Thanks to stability properties of the rejection procedures involved as β tends to 0, we prove that this limit algorithm is an exact simulation algorithm for the solution of the limit equation (1). Numerical examples are shown to illustrate the performance of this exact simulation algorithm.

Introduction 1.Motivations and exposition of the problem

Exact simulation methods for trajectories of one-dimensional SDEs has been a subject of much interest in the last years : see for example [START_REF] Beskos | Exact simulation of diffusions[END_REF], [3], [START_REF] Beskos | A factorisation of diffusion measure and finite sample path constructions[END_REF], [START_REF] Reutenauer | Exact simulation of prices and greeks: application to cir[END_REF], [START_REF] Sbai | Modélisation de la dépendance et simulation de processus en finance[END_REF]. Unlike the classical simulation methods, which all involve some kind of discretization error (see for example [1] for the Euler Scheme), the exact simulation methods are constructed in such a way that they do not present any discretization error (under the strong hypothesis that the diffusion coefficient is constant and equal to one). In the last years, the original method presented in the fundamental article [3] has been extended to overcome various limitations of the initial algorithm ; it has been generalized to include the cases of unbounded drifts ( [START_REF] Beskos | A factorisation of diffusion measure and finite sample path constructions[END_REF], [START_REF] Beskos | MCMC methods for diffusion bridges[END_REF]) and extended to various 'non classical' type of SDE ( [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF]).

In this paper, we present an attempt for the adaptation of the exact simulation methods of [3] to onedimensional SDEs that possess a discontinuous drift at point 0. Namely, our object of study is (X t ) t≥0 solution of

dX t = W t + b(X t )dt, X 0 = x, (3) 
where b is a smooth real function except possibly at point 0 where b(0+) = b(0-).

The simplest case of a process solution of an equation of type ( 3) is surely the so-called 'Brownian motion with two valued drift' solution of

dX t = W t + (θ 0 ½ Xt>0 + θ 1 ½ Xt<0 ) dt, X 0 = x, (4) 
where (θ 0 , θ 1 ) ∈ R 2 . For a general reference concerning these types of motions, we refer to [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] p.440-441

or [START_REF] Karatzas | Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control[END_REF]. These motions appear in stochastic control problems (see for example [2], [START_REF] Karatzas | Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control[END_REF]) and also theoretical studies concerning representations of reflected Brownian motion with drift (see [START_REF] Graversen | An extension of P. Lévy's distributional properties to the case of a Brownian motion with drift[END_REF] in the case θ 0 = -θ 1 ).

Even though there exist explicit representation formulae for the densities of such Brownian motions with two valued drift in terms of combination of convolution integrals (see [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] p.440-441), up to our knowledge there is no exact numerical simulation algorithm for such motions available in the literature. The algorithm presented in this paper gives an answer to this question.

Main ideas of the paper

In [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF], the authors manage to adapt the exact simulation methods of [3] to the case of one-dimensional SDEs that possess an additional term involving the local time of the unknown process at point 0. Namely, the exact simulation methods of [3] are modified in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] to include the case where (X β t ) t≥0 is the solution of

dX β t = W t + b(X β t )dt + βdL 0 t (X β ), X 0 = x. (5) 
In this situation 0 = |β| < 1, L 0 t (X) denotes the symmetric local time of X β in zero at time t, and b is still allowed to be discontinuous at 0.

The main idea in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] was to propose an exact rejection simulation algorithm for the solutions of (5) using as sampling reference measure the law of some drifted skew Brownian motion with prescribed terminal distribution and with drift of magnitude 1/β avoiding the case where β = 0, for which we propose a proper treatment here. Our contribution in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] deals mainly on the simulation of bridges of such drifted skew Brownian motions using a classical rejection procedure and looking for tractable rejection functions.

Unfortunately, a direct exact simulation method along the same lines as [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] cannot be properly defined in the case where β = 0. However, we know from Le Gall in [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF] that X β solution of (5) tends strongly to X the solution of (3) as β tends to 0 on each time interval [0, T ]. This leads us to examine what happens at the level of the algorithms proposed in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] as β tends to 0.

In fact, we check here by computations that there is indeed a convergence phenomenon at the level of rejection functions and rejection sets involved in the exact simulation algorithms given in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF]. This convergence gives rise naturally to a nice and implementable limiting algorithm.

The main problem becomes then to prove rigorously that this limiting algorithm is indeed an exact simulation algorithm for the solution of (3). In particular, as far as we see, the direct interpretation of this limiting algorithm is not clear ; for the time being, we have to confess that we really understand the construction of the limiting algorithm exposed in this paper only via the convergence procedure explained above. Let us also emphasize that this new algorithm is still a rejection algorithm, and one may naturally ask for a direct interpretation of its corresponding reference measure. In Remark 3.1 we give an interpretation of the reference measure (corresponding to the limit rejection algorithm) in terms of a standard Brownian motion conditioned on prescribed laws for its final position and its local time at 0 at time horizon T .

Outline of the paper

The paper is organized as follows. In the preliminary Section 2, we explain the convergence of rejection sampling algorithms in a general framework. The result exposed in this section will be used to justify that our limiting algorithm is indeed an exact simulation algorithm for the solution of (3). The exact simulation problem treated here is presented in Section 3, where we explain the manner in which we adapt the exact simulation methods of [3] to our situation. Yet, the resulting algorithm adapted from [3] is not directly implementable in our context because we have to sample from a complicated reference probability measure Z. The sections 4 and 5 are devoted to the interpretation of Z as a limit of some sequence Z n of better known probability measures. Finally in Section 6, we apply the results of the preliminary Section 2 to the sequence Z n . This gives rise to a directly implementable limit algorithm for the exact simulation of a skeleton along the reference probability Z. We end up the article with numerical results and illustrative examples shown in Section 7.

2. Preliminary : convergence of abstract rejection sampling algorithms Proposition 2.1. i) Assume that we have a sequence (ξ n ) of probability measures on a measurable space (S, S), and ξ dom a probability measure on (S, S), satisfying for any n ∈ N

dξ n dξ dom = 1 ε n f n , with ε n > 0 and 0 ≤ f n ≤ 1.
Assume that f n → f as n → ∞ point-wise on S.

Then, (ξ n ) converges towards a probability measure ξ satisfying

dξ dξ dom = 1 ε f, (6) 
with ε = lim n→∞ ε n .

ii) Moreover, let (Y k , I k ) k≥1 be a sequence of i. Proof. For any A ∈ S we have ξ n (A) = 1 εn A f n (z)ξ dom (dz). By dominated convergence we have

A f n (z)ξ dom (dz) ----→ n→∞ A f (z)ξ dom (dz).
Taking A = S, and as ξ n (S) = 1 for any n ∈ N, we have

ε n = 1 S f n (z)ξ dom (dz) ----→ n→∞ 1 S f (z)ξ dom (dz) =: ε.
Setting now for any A ∈ S, ξ(A)

:= 1 ε A f (z)ξ dom (dz), it is clear that ∀A ∈ S, ξ n (A) ----→ n→∞ ξ(A).
Then ξ is a probability measure on (S, S). It satisfies [START_REF] Beskos | Exact simulation of diffusions[END_REF] by construction. This proves point i). For the proof of point ii), see Proposition 1 in [START_REF] Beskos | Exact simulation of diffusions[END_REF].

3. Exact sampling algorithm for a SDE with discontinuous drift (inspired by [3])

Assumptions

The function b : R → R is bounded with bounded first derivative on R * ,+ and R * ,-with a possible discontinuity at point {0}. We set M a constant such that

sup z∈R | b(z)| ≤ M. (7) 
We suppose that both limits lim We introduce the notation Let P be a probability measure on (C, C) and W a Brownian motion under P together with its completed natural filtration (F t ) t≥0 . We will denote

θ := b(0+) -b(0-) 2 . ( 8 
P x = P (• | W 0 = x).
When necessary we will denote by ω = (ω t ) 0≤t≤T the coordinate process.

We consider the following SDE

dX t = dW t + b(X t )dt, X 0 = x. ( 9 
)
Our objective is to sample along X T .

Let us define on (C, C) the probability measure W by

dW dP = exp - T 0 b(X t )dW t - 1 2 T 0 b2 (X t )dt .
(Note that the assumptions in § 3.1 ensure that W is well defined).

Under W the process X is a Brownian motion and we have,

dP dW = exp T 0 b(X t )dX t - 1 2 T 0 b2 (X t )dt .
Thus for any bounded continuous functional F : (C, C) → R we have,

E x P [F (X)] = E x W F (X) exp T 0 b(X t )dX t - 1 2 T 0 b2 (X t )dt . (10) 
We set B(x) =

x 0 b(y)dy. Using the symmetric Itô-Tanaka formula (see Exercise VI-1-25 in [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]), and the Occupation times formula ( [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]) we get

B(X T ) -B(X 0 ) = T 0 b(X t )dX t + 1 2 T 0 b′ (X t )dt + b(0+) -b(0-) 2 L 0 T (X),
Thus [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] becomes,

E x P [F (X)] = E x W F (X) exp B(X T ) -B(x) -θL 0 T (X) - T 0 φ(X t )dt ,
where we have set

φ(x) := b2 (x) + b′ (x) 2 .
Setting now

φ(x) = φ(x) -inf x∈R φ(x),
we finally get that for any bounded and continuous functional F : (C, C) → R we have,

E x P [F (X)] ∝ E x W F (X) exp B(X T ) -B(x) -θL 0 T (X) exp - T 0 φ(X t )dt .
Let us now introduce the probability measure Z on (C, C) defined in the following way

dZ dW (ω) ∝ exp B(X T (ω)) -B(x) -θL 0 T (X)(ω) .
Under the assumptions of § 3.1, Z is well defined.

In the sequel we note Z the probability measure induced on (C, C) by the law of X under Z. We have

E x P [F (X)] = c E x Z F (ω) exp - T 0 φ(ω t )dt , ( 11 
)
where c is a normalizing constant (we make it explicit in the expression above for the purpose of proving Proposition 5.1 below).

Remark 3.1. (Interpretation of the probability Z)

Recall that under W the process X is a Brownian motion and that, by definition,

dZ dW (ω) ∝ exp B(X T (ω)) -B(x) -θL 0 T (X)(ω) .
In particular, under the probability Z, X is a Brownian motion conditioned on

(X T , L 0 T ) ∼ h(y, ℓ)dydℓ with h(y, ℓ)dydℓ ∝ exp (B(y) -B(x) -θℓ) W x X T ∈ dy, L 0 T ∈ dℓ .
This makes it difficult to sample exactly X t under Z for t ∈ (0, T ).

Exact simulation algorithm for the solution of (9) starting from x

Let us denote by K an upper bound for φ(x). Following the spirit of [3] we can thus sample from X T using the following algorithm.

EXACT SIMULATION ALGORITHM FOR THE SOLUTION OF (9) starting from x.

Simulate a Poisson Point Process with unit density on

[0, T ] × [0, K]. The result is a random number N of points of coordinates (t 1 , z 1 ), . . . , (t N , z N ).
2. Simulate a skeleton (ω t1 , . . . , ω tN , ω T ) where ω ∼ Z.

3. If ∀i ∈ {1, . . . , N } φ(ω ti ) ≤ z i accept the skeleton. Else return to step 1.

This algorithm produces an exact sampling of X T under P: it is the final instance ω T of an accepted skeleton.

The main issue in the above algorithm is to sample a skeleton of the canonical process under Z (Step 2).

Remark 3.2. (Other exact simulation algorithms)

Other probability changes might be performed in order to try to tackle the exact simulation problem presented in the introduction. For example (though we will not prove it here) it is possible to swap to a probability measure S under which X has the law of some Brownian motion with a symmetric two valued drift (solution of equation ( 4) in the case where θ 0 = -θ 1 ) with some prescribed terminal law. Even though the density probability distribution of such bridges may be explicitly computed, it seems difficult to find tractable general rejection bounds for these laws.

Recalls on the skew Brownian motion with drift

In this section, we recall some basic facts concerning the skew Brownian motion with constant drift.

Although these facts seem at first quite far away from our purpose, they will be used in the sequel in order to justify that the limit rejection algorithm presented in Section 6 returns an exact sampling under Z. At the end of this section, we give an algorithm for the simulation of bridges of SBM with constant drift that will be used as a basic building block in the sequel.

The transition function of the skew Brownian motion with drift

Let us recall that the Skew Brownian Motion (SBM) with constant drift component µ ∈ R, denoted by

B β,µ , solves dB β,µ t = dW t + µdt + βdL 0 t (B β,µ ).
This SDE with local time has a unique strong solution as soon as |β| < 1 (see [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF]). The process B β,µ enjoys the homogeneous Markov property. We shall denote by p β,µ (t, x, y) its transition function.

Let us introduce the function v β,µ (t, x, y) defined by

v β,µ (t, x, y) = (1 -exp(-2xy t ))1 xy>0 +(1 + Sgn(y)β) exp(-2xy t 1 xy>0 ) 1 -βµ √ 2πt exp{ (|x|+|y|+tβµ) 2 2t }N c ( βµt+|x|+|y| √ t ) , (12) 
where

N c (y) = 1 √ 2π ∞
y e -z 2 /2 dz. With this notation we can rewrite the expression of p β,µ (t, x, y) given in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF].

Proposition 4.1. We have for all t > 0, all x, y ∈ R, p β,µ (t, x, y) = p 0,µ (t, x, y)v β,µ (t, x, y).

(

) 13 
Proof. See [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] (Proposition 4.7).

Bounds for the transition function of the SBM with drift

In this paragraph, we give bounds on the transition function of the SBM with drift. These bounds will be used in the sequel to find tractable rejection bounds for our algorithm.

Let us set α = max( 1+β 2 , 1-β 2 ) and

γ β,µ (t, z) = 1 -βµ √ 2πt exp( (z + tβµ) 2 2t )N c ( βµt + z √ t ). (14) 
We also set

c β,µ t,x =    2α if βµ ≥ 0 2αγ β,µ (t, |x|) if βµ < 0. (15) 
We have the following result.

Lemma 4.1. Let (β, µ) ∈ (-1, 1) × R. We have v β,µ (t, x, y) ≤ c β,µ t,x , ∀x, y ∈ R. ( 16 
)
Proof. Equation ( 16) comes from ( 13) and the fact that, if βµ ≥ 0, we have p β,µ (t, x, y) ≤ 2 ᾱp 0,µ (t, x, y) for all x, y ∈ R, and if βµ < 0, we have p β,µ (t, x, y) ≤ 2 ᾱγ β,µ (t, |x|)p 0,µ (t, x, y) for all x, y ∈ R (see, in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF],

Lemma 5.3 and its proof).

We also have the following lemma.

Lemma 4.2. Let (β, µ) ∈ (-1, 1) × R. We have

v β,µ (t, x, y) ≤ c β,µ t,y , ∀x, y ∈ R. ( 17 
)
Proof. This comes again from ( 13), together with the fact that p β,µ (t, x, y) ≤ c β,µ t,y p 0,µ (t, x, y), for all x, y ∈ R (see again, in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF], Lemma 5.3, especially the proof of Equation (5.7)).

Remark 4.1. Note that v β,µ (t, x, y) > 0 and γ β,µ (t, z) > 0 for any t ∈ R * ,+ , x, y, z ∈ R, even for large values of µ (see Remark 4.8 in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF]).

Sampling bridges of the SBM with drift

We denote by q β,µ (t, T, a, b, y) the density defined (for t < T ) by

P[ B β,µ t ∈ dy | B β,µ 0 = a, B β,µ T = b] = q β,µ (t, T, a, b, y)dy.
The function (t, y) → q β,µ (t, T, a, b, y) is the transition density function of a bridge of a SBM with drift relating points a and b in T unit time.

As q 0,µ (t, T, a, b, y) = q 0,0 (t, T, a, b, y), by Proposition 4.1 we get, q β,µ (t, T, a, b, y) = q 0,0 (t, T, a, b, y)

v β,µ (t, a, y)v β,µ (T -t, y, b) v β,µ (T, a, b) . ( 18 
)
Let us set

C β,µ t,T,a,b =    4α 2 if βµ ≥ 0 4α 2 γ β,µ (t, |a|)γ β,µ (T -t, |b|) if βµ < 0. (19) 
We have q β,µ (t, T, a, b, y) q 0,0 (t, T, a, b, y)

= C β,µ t,T,a,b v β,µ (T, a, b) f B,β,µ a,b (y) 
,

with f B,β,µ a,b (y) 
:= v β,µ (t, a, y)v β,µ (T -t, y, b) C β,µ t,T,a,b , (20) 
where the superscript B appears for the word "Bridge".

Considering (15), ( 16), ( 17) and ( 19) it is clear that

f B,β,µ a,b (y) ≤ 1, ∀y ∈ R.
We thus propose the following rejection algorithm in order to sample along q β,µ (t, T, a, b, y)dy.

Auxiliary Algorithm 1: Sampling along q β,µ (t, T, a, b, y)dy 1. Sample a Brownian bridge Y along q 0,0 (t, T, a, b, y). defined respectively in ( 12),( 14), (15) (19), and (20) involved in the above algorithm depend only on µ through the product βµ. This computational fact gives the key ensuring the construction of the limit algorithm by convergence performed at the beginning of Section 6.

Evaluate

f B,β,µ a,b (Y ) ≤ 1. 3. Draw U ∼ U([0, 1]). If U ≤ f B,β,µ a,b ( 

Convergence of a sequence of probability measures towards Z

In this section, for any n ∈ N we denote by X n the solution of

dX n t = dW t + b(X n t )dt + 1 n dL 0 t (X n ), X n 0 = x. (21) 
For the existence and uniqueness of solutions to (21) see [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF].

The starting point of our ideas is that, not surprisingly, we have the following strong convergence result, due to the consistency properties of SDEs with local time (see [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF]).

Theorem 5.1. (Le Gall [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF], 1984.) Let X be the solution of ( 9) and (X n ) the sequence of solutions of (21). We have for all 0 < t < T ,

E sup 0≤s≤t |X s -X n s | ----→ n→∞ 0.
Proof. See the Appendix.

In particular (X n ) converges in law to X under P. This fact will allow us to construct a suitable sequence Z n of probability measures converging towards Z.

Recall the definition (8) of θ. Let us set

µ n = 1 + 1/n 2/n b(0+) - 1 -1/n 2/n b(0-) = b(0+) + b(0-) 2 + θn, (22) 
and b n (x) = b(x) -µ n .
From (21) we have,

X n T = x + W SD,n T + µ n T + 1 n L 0 T (X n ),
where the process W SD,n given by

dW SD,n t = dW t + b n (X n t )dt
is a Brownian motion under the probability measure W SD,n defined by

dW SD,n dP = exp - T 0 b n (X n t )dW t - 1 2 T 0 b 2 n (X n t )dt . ( 23 
)
Note that the assumptions in § 3.1 ensure that W SD,n is well defined for all fixed n ∈ N and that the law of X n under W SD,n is the one of a SBM with drift.

Let us now set B n (x) =

x 0 b n (z)dz. As shown in [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] pp 47-48, using a symmetric Itô-Tanaka formula we can prove that for any bounded measurable functional F : (C, C) → R,

E x P [F (X n )] = E x W SD,n F (X n ) exp B n (X n T ) -B n (x) - T 0 φ n (X n t )dt , ( 24 
)
where

φ n (x) = b 2 n (x) + b ′ n (x) + 2µ n b n (x) 2 .
Remark 5.1. Note that, because of the definition of b n , there is no local time appearing in equality (24)

after the application of the symmetric Itô-Tanaka formula. This ensures that there is no local time involved in the exponential martingale of the probability change, which makes it tractable (from the point of view of our numerical perspective). Retrospectively, this explains why we defined b n depending on n as bµ n (and not just kept the initial function b to perform our computations).

We see that

φ n (x) = b2 (x) + b′ (x) 2 - µ 2 n 2 = φ(x) - µ 2 n 2 ,
and

φ n (x) -inf x∈R φ n (x) = φ(x) - µ 2 n 2 -inf x∈R (φ(x) - µ 2 n 2 ) = φ(x),
so that φ ninf φ n does not depend on n ! Consequently, we have that

E x P [F (X n )] ∝ E x W SD,n F (X n ) exp B n (X n T ) -B n (x) - T 0 φ(X n t )dt .
Let us now define the probability measure Z n on (C, C) by

dZ n dW SD,n (ω) ∝ exp B n (X n T (ω)) -B n (x) , (25) 
and Z n the probability measure induced on (C, C) by the law of X n under Z n . Under the assumptions in § 3.1 the probability measures Z n and Z n are well defined for all fixed n ∈ N. We have

E x P [F (X n )] = c n E x Zn F (ω) exp - T 0 φ(ω t )dt , (26) 
with c n a finite normalizing constant.

The law Z n can be well described: it is the law of a SBM with drift whose terminal position is distributed along a density h n depending on the function B n (see Subsection 5.2).

In [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] we managed to sample exactly along (21) using skeletons under Z n as proposals and the function exp -T 0 φ(ω t )dt for a rejection rule. Remember that (X n ) converges in law to X under P. Hence, comparing [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF] and (26) indicates that the sequence of probability measures ( Z n ) converges weakly to Z. This is shown rigorously in the following subsection. Combining then the results of Subsection 5.2 and Proposition 2.1 will enable us to sample along Z (see Section 6).

5.1. The probability measure Z as a limit of the sequence ( Z n ) Proposition 5.1. We have

Z n w ----→ n→∞ Z.
Once ω T has been sampled along h n (y)dy, we can sample ω t1 along q 1 n ,µn (t 1 , T, x, ω T , y 1 )dy 1 and each ω ti+1 along q 1 n ,µn (t i+1t i , Tt i , ω ti , ω T , y i+1 )dy i+1 , using the Auxiliary Algorithm 1.

In order to sample along h n (y)dy we make use of the following considerations. We have

h n (y) =C n exp B n (y) -B n (x) p 0,µn (T, x, y)v 1 n ,µn (T, x, y) =C n exp -µ n (y -x) + y x b(z)dz × exp + µ n (y -x) - µ 2 n 2 T p 0,0 (T, x, y)v 1 n ,µn (T, x, y) =C n e -µ 2 n 2 T exp B(y) -B(x) v 1 
n ,µn (T, x, y)p 0,0 (T, x, y).

Recall that M denotes an upper bound for the function z → | b|(z) (see [START_REF] Étoré | Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process[END_REF] of our assumptions in § 3.1). Then, using the result of Lemma 4.1 and performing easy computations, we easily see that for any

0 < δ < 1 : h n (y) p 0,0 (T /(1 -δ), x, y) = C n e T 2 M 2 /δ √ 1 -δ e -µ 2 n 2 T c 1 n ,µn T,x f h, 1 n ,µn δ (y), with f h, 1 n ,µn δ (y) = √ 1 -δ exp B(y) -B(x) - T 2 M 2 δ p 0,0 (T, x, y) p 0,0 (T /(1 -δ), x, y) v 1 n ,µn (T, x, y) c 1 n ,µn T,x
.

Using (16) one may easily check that f h, 1 n ,µn δ (y) ≤ 1 for any y ∈ R. One might then optimize w.r.t. δ ∈ (0, 1) in order to find f h, 1 n ,µn δ closest to 1.

Let us set for simplicity

, f h, 1 n ,µn = f h, 1 n ,µn 1/2
. We deduce therefore the following procedure in order to sample along h n (y)dy.

Auxiliary Algorithm 2: Sampling along h n (y)dy 1. Sample Y ∼ N (x, 2T ). 

Evaluate

f h, 1 n ,µn (Y ) ≤ 1. 3. Draw U ∼ U([0, 1]). If U ≤ f h,
+ |x| + |y| √ t ) , γ θ (t, z) = 1 -θ √ 2πt exp( (z + tθ) 2 2t )N c ( θt + z √ t ), c θ t,x =    1 if θ ≥ 0 γ θ (t, |x|) if θ < 0,
and

C θ t,T,a,b =    1 if θ ≥ 0 γ θ (t, |a|)γ θ (T -t, |b|) if θ < 0.
Remember our definitions ( 12),( 14),( 15) and ( 19) and Remark 4.2. It is clear from ( 22) that 1 n µ n → θ (as n tends to +∞), so that we have,

v 1 n ,µn (t, x, y) ----→ n→∞ v θ (t, x, y) ∀(t, x, y) ∈ R + × R × R, γ 1 n ,µn (t, z) ----→ n→∞ γ θ (t, z) ∀(t, z) ∈ R + × R, c 1 n ,µn t,x ----→ n→∞ c θ t,x ∀(t, x) ∈ R + × R, C 1 n ,µn t,T,a,b ----→ n→∞ C θ t,T,a,b ∀(t, T, a, b) ∈ R + × R + × R × R.
Let us now examine the sequence (f

h, 1 n ,µn δ
) of the rejection functions used in the Auxiliary Algorithm 2.

From the same reasons as above, it is clear that (f h, 1 n ,µn δ

) converges towards

f h,θ δ (y) = √ 1 -δ exp B(y) -B(x) - T 2 M 2 δ p 0,0 (T, x, y) p 0,0 (T /(1 -δ), x, y) v θ (T, x, y) c θ T,x ≤ 1,
this convergence being dominated. Thus, applying the result of Proposition 2.1, the sequence of laws (h n (y)dy) converges to some limit law h θ (y)dy.

In the same manner, for any fixed a, b ∈ R, the sequence (f

B, 1 n ,µn a,b
) of rejection functions used in Auxiliary Algorithm 1 converges towards

f B,θ a,b (y) := v θ (t, a, y)v θ (T -t, y, b) C θ t,T,a,b ≤ 1,
this convergence being dominated.

Consequently, the law q 1 n ,µn (t, T, a, b, y)dy converges towards a limit law q θ (t, T, a, b, y)dy. Let again n 0 be fixed and 0 < t 1 < . . . < t n0 < T . Passing to the limit in (30) we get that the law of (ω t1 , . . . , ω tn 0 , ω T ) under Z n converges (with y 0 = x) towards h θ (y) n 0 -1 i=0 q θ (ti+1ti, Tti, yi, y, yi+1)dy1 . . . dyn 0 dy.

(31)

Consequently, from Proposition 5.1, we conclude that the law given by (31) is nothing else than the law of (ω t1 , . . . , ω tn 0 , ω T ) under Z.

Exact Euler CPU times 2111s 9521s

Table 1: CPU times for 10 6 simulations of a Brownian motion with two-valued drift with θ0 = 2 and θ1 = -1 (x = 0.0 and T = 1).

Exact Algorithm Bridges

Acceptance Ratio 20.4% 58,6% In this paragraph, we choose to exhibit numerical results obtained with the exact limit algorithm for the simplest non-trivial cases 1)). Indeed, in this symmetric case a benchmark is provided by the explicit and computable density of X T given in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] p. 440-441.

dX t = dW t ± sgn(X t )dt, X 0 = 0, corresponding to either θ 0 = -θ 1 = ±1 in (4) ( b(y) = ±sgn(y) in (
We draw the renormalized histogram of 10 6 samples of X T and compare it to the explicit density of X T (Figure 1 for the outgoing case θ 0 = 1 and Figure 2 for the incoming case θ 0 = -1).

In the non-symmetric case we can still use our limit algorithm but the density of X T becomes less explicit (see formula (6.5.12) in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]). Thus we will use as a benchmark the renormalized histogram of 10 6 samples of X ∆ T , where (X ∆ ) denotes an Euler Scheme with time step ∆ = T.10 -5 . We chose θ 0 = 2, θ 1 = -1, T = 1 and x = 0.0. We plot the corresponding renormalized histograms on Figure 3.

In Table 1 we report the CPU times needed to get the 10 6 samples, with the exact limit algorithm and the Euler scheme. Programs were written in C-language and executed on a personal computer equipped with an Intel Core 2 duo processor, running at 2.23 Ghz. We report in Table 2 the acceptance ratios.

On this example the acceptance ratios are good and the exact method is nearly four times faster than the Euler scheme with time step ∆ = T.10 -5 .

Exact simulation of an SDE with a discontinuous drift coefficient

We consider now the SDE (1) with b Exact Euler (∆t = 10 -n , n = 2, 5)

(x) =          -π 2 cos π 5 x if x ≥ 0 3π 2 -π 2 cos π 5 x if x < 0. (32) 

CPU times 11813s 20s 12952s

Table 3: CPU times for 10 6 simulations of XT for the case where b is given by (32) (x = 0.0 and T = 1).

Let 0 < T < ∞. We wish to sample along X T .

We have θ = -3π/4 and φ(x) = b2 (x) + b′ (x) 2 + π 2 20 .

We take K = 2π 2 + π 2 10 as an upper bound for φ. This allows to use the limit Algorithm. Figure 3 shows a comparison between a renormalized histogram of 10 6 samples of X T obtained with the exact limit algorithm, and a renormalized histogram of 10 6 samples of X ∆ T , where (X ∆ ) denotes an Euler Scheme with time step ∆. We chose x = 0.0, T = 1 and time-steps ∆ = T.10 -2 and ∆ = T.10 -5 .

In Table 3 we report the CPU times needed to get the 10 6 samples, with the exact limit algorithm and the Euler scheme (and, for the later one, with the different time steps we have used). We report in Table 4 the acceptance ratios.

On this example the exact simulation is competitive, compared to schemes with very fine grids. 

Exact Algorithm Bridges

Acceptance Ratio 3.6% 50,7%

Table 4: Acceptance ratios for the case where b given by (32) (x = 0.0 and T = 1).

Appendix

Proof of Theorem 5.1. We use the notations of [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF]. Using the Occupation times formula we can rewrite Equation (21) as dX n t = dW t + R ν n (dy) dL y t (X n ), X n 0 = x, with ν n (dy) = b(y)dy + 1 n δ 0 (dy). Lemma 2.1 in [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF] asserts that there is for each n ∈ N a function f νn , unique up to a multiplicative constant, satisfying f ′ νn (dy) + (f νn (y) + f νn (y-))ν n (dy), where the notation f ′ νn (dy) is for the derivative of f νn in the generalized sense. Lemma 2.1 in [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF] also asserts that if we require that f νn (x) → 1 as x → -∞ then, f (y) dy = That is to say X is the solution of (9).

  i.d. random elements taking values in S × {0, 1} such that Y 1 ∼ ξ dom and P[I 1 = 1|Y 1 = y] = f (y) for all y ∈ S. Define τ := min(k ≥ 1 = I k = 1). Then, P(Y τ ∈ dy) = ξ(dy).

  z→0+ b(z) = b(0+) and lim z→0-b(z) = b(0-) exist and are finite. The value b(0) of the function b at 0 is of no importance and can be fixed arbitrarily to some constant (possibly different from either b(0+) or b(0-)).

) 3 . 2 .

 32 Change of probability Let 0 < T < ∞. Denote C = C([0, T ], R) the set of continuous mappings from [0, T ] to R and C the Borel σ-field on C induced by the supreme norm.

Remark 4 . 2 .

 42 Y ) accept the proposed value Y . Else return to Step 1. Note that the quantities v β,µ , γ β,µ , c β,µ t,x , C β,µ t,T,a,b , and f B,β,µ a,b

Figure 1 :

 1 Figure 1: Brownian motion with two-valued drift, case θ0 = -θ1 = 1 (T = 1).

Figure 2 :

 2 Figure 2: Brownian motion with two-valued drift, case θ0 = -θ1 = -1 (T = 1).

Figure 3 :

 3 Figure 3: Limit algorithm v.s. Euler Scheme for Brownian motion with drift with θ0 = 2 and θ1 = -1 (x = 0.0 and T = 1).

Figure 4 :

 4 Figure 4: Limit algorithm v.s. Euler Scheme for the case where b is given by (32) (x = 0.0 and T = 1).
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 2 The sequence of functions (f νn ) n clearly converges point-wise to f (y) = exp -2 y -∞ b(z)dz . By dominated convergence we have for all K > 0 that K -K |f νnf |(y)dy → 0 as n → ∞. Thus Theorem 3.1 in[START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF] asserts thatE sup 0≤s≤t |X s -X n s | ----→ n→∞ 0,with X the solution ofdX t = dW t + R ν(dy) dL y t (X), X 0 = x,where ν(dy) = -f ′ (dy) f (y)+f (y-) = -1 ′ (y)

Table 2 :

 2 Acceptance ratios for the case of a Brownian motion with two-valued drift with θ0 = 2 and θ1 = -1
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Proof. Let P (resp. P n ) denote the probability measure induced on (C, C) by the law of X (resp. of X n ) under P. It is clear from Theorem 5.1 that P n w ----→ n→∞ P.

Let us define

Note that 0 < Φ(ω) ≤ 1. Thanks to [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF] and (26) we have

and thus, d

Under the assumptions of § 3.1, the functional ω → 1/Φ(ω) is easily seen to be bounded and continuous from (C, C) to R for the topology of the supreme norm. Using that P n w ----→ n→∞ P we see that

Since Z n is a probability measure on (C, C), we also have

In view of ( 27) and (28) this implies that necessarily (1/c n ) n is a convergent sequence and that

Therefore, for any bounded and continuous funcional ω

and the result follows.

Sampling a skeleton under Z n

We have the following proposition.

Proposition 5.2. For any n ∈ N the law Z n is the one of a SBM B 1 n ,µn with drift µ n conditionally on

where C n is the normalizing constant such that h n (y)dy = 1.

Proof. See [3].

Let n 0 be fixed and 0 = t 0 < t 1 < . . . < t n0 < T . Set y 0 = x to simplify the notations, the law of (ω t1 , . . . , ω tn 0 , ω T ) under Z n is given by hn(y)