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Abstract

In this note we propose an exact simulation algorithm for the solution of

dXt = dWt + b̄(Xt)dt, X0 = x, (1)

where b̄ is a smooth real function except at point 0 where b̄(0+) 6= b̄(0−). The main idea is to
sample an exact skeleton of X using an algorithm deduced from the convergence of the solutions of
the skew perturbed equation

dXβ
t = dWt + b̄(Xβ

t )dt+ βdL0
t

(
Xβ

)
, X0 = x (2)

towards X solution of (1) as β 6= 0 tends to 0.
In this note, we show that this convergence induces the convergence of exact simulation algo-

rithms proposed by the authors in [7] for the solutions of (2) towards a limit algorithm. Thanks
to stability properties of the rejection procedures involved as β tends to 0, we prove that this limit
algorithm is an exact simulation algorithm for the solution of the limit equation (1). Numerical
examples are shown to illustrate the performance of this exact simulation algorithm.

Keywords:
Exact simulation methods ; Brownian motion with Two-Valued Drift ; One-dimensional diffusion ;
Local Time.

1. Introduction

1.1. Motivations and exposition of the problem

Exact simulation methods for trajectories of one-dimensional SDEs has been a subject of much
interest in the last years : see for example [6], [3], [4], [12], [14]. Unlike the classical simulation
methods, which all involve some kind of discretization error (see for example [1] for the Euler
Scheme), the exact simulation methods are constructed in such a way that they do not present any
discretization error (under the strong hypothesis that the diffusion coefficient is constant and equal
to one). In the last years, the original method presented in the fundamental article [3] has been
extended to overcome various limitations of the initial algorithm ; it has been generalized to include
the cases of unbounded drifts ([4], [5]) and extended to various ’non classical’ type of SDE ([7]).

In this paper, we present an attempt for the adaptation of the exact simulation methods of [3]
to one-dimensional SDE that possess a discontinuous drift at point 0. Namely, our object of study
is (Xt)t≥0 solution of

dXt = Wt + b̄(Xt)dt, X0 = x, (3)
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where b̄ is a smooth real function except possibly at point 0 where b̄(0+) 6= b̄(0−).
The simplest case of a process solution of an equation of type (3) is surely the so-called ’Brownian

motion with two valued drift’ solution of

dXt = Wt + (θ01Xt>0 + θ11Xt<0) dt, X0 = x, (4)

where (θ0, θ1) ∈ R
2. For a general reference concerning these type of motions, we refer to [10]

p.440-441 or [9]. These motions appear in stochastic control problems (see for example [2], [9]) and
also theoretical studies concerning representations of reflected Brownian motion with drift (see [8]
in the case θ0 = −θ1). Even though there exists explicit representation formulae for the densities
of such Brownian motions with two valued drift in terms of combination of convolution integrals
(see [10] p.440-441), up to our knowledge there is no exact numerical simulation algorithm for such
motions available in the literature. The algorithm presented in this paper gives an answer to this
question.

1.2. Main ideas of the paper

In [7], the authors manage to adapt the exact simulation methods of [3] to the case of one-
dimensional SDEs that possess an additional term involving the local time of the unknown process
at point 0. Namely, the exact simulation methods of [3] are modified in [7] to include the case where
(Xβ

t )t≥0 is the solution of

dXβ
t = Wt + b̄(Xβ

t )dt+ βdL0
t (X

β), X0 = x. (5)

In this situation 0 6= |β| < 1 (with β 6= 0), L0
t (X) denotes the symmetric local time of Xβ in zero

at time t, and b̄ is still allowed to be discontinuous at 0.
The main idea in [7] was to propose an exact rejection simulation algorithm for the solutions

of (5) using as sampling reference measure the law of some drifted skew Brownian motion with
prescribed terminal distribution and with drift of magnitude 1/β avoiding the case where β = 0, for
which we propose a proper treatment here. Our contribution in [7] deals mainly on the simulation
of such bridges of drifted skew Brownian motions using a classical rejection procedure and looking
for tractable rejection functions.

Unfortunately, a direct exact simulation method along the same lines as [7] cannot be properly
defined in the case where β = 0. However, we know from Le Gall in [11] that Xβ solution of (5)
tends strongly to X the solution of (3) as β tends to 0 on each time interval [0, T ]. This leads us
to examine what happens at the level of the algorithms proposed in [7] as β tends to 0.

In fact, we check here by computations that there is indeed a convergence phenomenon at the
level of rejection functions and rejection sets involved in the exact simulation algorithms given in
[7]. This convergence gives rise naturally to a nice and implementable limiting algorithm.

The main problem becomes then to prove rigorously that this limiting algorithm is indeed
an exact simulation algorithm for the solution of (3). In particular, as far as we see, the direct
interpretation of this limiting algorithm is not clear ; for the time being, we have to confess that
we really understand the construction of the limiting algorithm exposed in this paper only via
the convergence procedure explained above. Let us also emphasize that this new algorithm is still
a rejection algorithm, and one may naturally ask for a direct interpretation of its corresponding
reference measure. In Remark 1 we give an interpretation of the reference measure (corresponding
to the limit rejection algorithm) in terms of a standard Brownian motion conditioned on prescribed
laws for its final position and its local time at 0 at time horizon T .

1.3. Outline of the paper

The paper is organized as follows. In the preliminary Section 2, we explain the convergence of
rejection sampling algorithms in a general framework. The result exposed in this section will be used
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to justify that our limiting algorithm is indeed an exact simulation algorithm for the solution of (3).
The exact simulation problem treated here is presented in Section 3, where we explain the manner
in which we adapt the exact simulation methods of [3] to our situation. Yet, the resulting algorithm
adapted from [3] is not directly implementable in our context because we have to sample from a
complicated reference probability measure Ẑ. The sections 4 and 5 are devoted to the interpretation

of Ẑ as a limit of some sequence
(
Ẑn

)
of better known probability measures. Finally in Section

6, we apply the results of the preliminary Section 2 to the sequence
(
Ẑn

)
. This gives rise to a

directly implementable limit algorithm f! or the exact simulation of a skeleton along the reference
probability Ẑ. We end up the article with numerical results and illustrative examples shown in
Section 7.

2. Preliminary : convergence of abstract rejection sampling algorithms

Proposition 1 i) Assume that we have a sequence (ξn) of probability measures on a measurable
space (S,S), and ξdom a probability measure on (S,S), satisfying for any n ∈ N

dξn
dξdom

=
1

εn
fn,

with εn > 0 and 0 ≤ fn ≤ 1.
Assume that fn → f as n → ∞ point-wise on S and that fn ≤ M for any n ∈ N, with M < ∞.
Then, (ξn) converges towards a probability measure ξ satisfying

dξ

dξdom
=

1

ε
f, (6)

with ε = limn→∞ εn.

ii) Moreover, let (Yk, Ik)k≥1 be a sequence of i.i.d. random elements taking values in S × {0, 1}
such that Y1 ∼ ξdom and P[I1 = 1|Y1 = y] = f(y) for all y ∈ S. Define τ = min(k ≥ 1 = Ik = 1).
Then, P(Yτ ∈ dy) = ξ(dy).

Proof. For any A ∈ S we have ξn(A) =
1
εn

∫
A fn(z)ξdom(dz). By dominated convergence we have

∫

A
fn(z)ξdom(dz) −−−→

n→∞

∫

A
f(z)ξdom(dz).

Taking A = S, and as ξn(S) = 1 for any n ∈ N, we have

εn =
1∫

S fn(z)ξdom(dz)
−−−→
n→∞

1∫
S f(z)ξdom(dz)

=: ε.

Setting now for any A ∈ S, ξ(A) = 1
ε

∫
A f(z)ξdom(dz), it is clear that

∀A ∈ S, ξn(A) −−−→
n→∞

ξ(A).

Then ξ is a probability measure on (S,S). It satisfies (6) by construction. This proves point i). For
the proof of point ii), see Proposition 1 in [6].
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3. Exact sampling algorithm for an SDE with discontinuous drift (inspired by the
seminal paper [6])

3.1. Assumptions

The function b̄ : R → R is bounded with bounded first derivative on R
∗,+ and R

∗,− with
a possible discontinuity at point {0}. We suppose that both limits limz→0+ b̄(z) = b̄(0+) and
limz→0− b̄(z) = b̄(0−) exist and are finite. The value b̄(0) of the function b̄ at 0 is of no importance
and can be fixed arbitrarily to some constant (possibly different from either b̄(0+) or b̄(0−)).

We introduce the notation

θ =
b̄(0+)− b̄(0−)

2
. (7)

3.2. Change of probability

Let 0 < T < ∞. Denote C = C([0, T ],R) the set of continuous mappings from [0, T ] to R and
C the Borel σ-field on C induced by the supreme norm.

Let P be a probability measure on (C, C) and W a Brownian motion under P together with its
completed natural filtration (Ft)t≥0. We will denote P

x = P (· |W0 = x). When necessary we will
denote by ω = (ωt)0≤t≤T the coordinate process.

We consider the following SDE

dXt = dWt + b̄(Xt)dt, X0 = x. (8)

Our objective is to sample along XT .
Let us define on (C, C) the probability measure W by

dW

dP
= exp

{
−

∫ T

0
b̄(Xt)dWt −

1

2

∫ T

0
b̄2(Xt)dt

}
.

Under W the process X is a Brownian motion and we have,

dP

dW
= exp

{∫ T

0
b̄(Xt)dXt −

1

2

∫ T

0
b̄2(Xt)dt

}
.

Thus for any bounded measurable functional F : (C, C) → R we have,

E
x
P[F (X)] = E

x
W

[
F (X) exp

{∫ T

0
b̄(Xt)dXt −

1

2

∫ T

0
b̄2(Xt)dt

}]
. (9)

We set B(x) =
∫ x
0 b̄(y)dy. Using the symmetric Itô-Tanaka formula (see Exercise VI-1-25 in

[13]), and the Occupation times formula ([13]) we get

B(XT )−B(X0) =

∫ T

0
b̄(Xt)dXt +

1

2

∫ T

0
b̄′(Xt)dt+

b̄(0+)− b̄(0−)

2
L0
T (X),

Thus (9) becomes,

E
x
P[F (X)] = E

x
W

[
F (X) exp

{
B(XT )−B(x)− θL0

T (X)−
∫ T

0
φ(Xt)dt

}]
,

where we have set

φ(x) =
b̄2(x) + b̄′(x)

2
.

Setting now
φ̃(x) = φ(x)− inf

x∈R
φ(x),
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we finally get that for any bounded and measurable functional F : (C, C) → R we have,

E
x
P[F (X)] ∝ E

x
W

[
F (X) exp

{
B(XT )−B(x)− θL0

T (X)
}
exp

{
−

∫ T

0
φ̃(Xt)dt

}]
.

Let us now introduce the probability measure Z on (C, C) defined in the following way

dZ

dW
(ω) ∝ exp

{
B(XT (ω))−B(x)− θL0

T (X)(ω)
}
.

We have

E
x
P[F (X)] ∝ E

x
Z

[
F (X) exp

{
−

∫ T

0
φ̃(Xt)dt

}]
.

In the sequel we note Ẑ the probability measure induced on (C, C) by the law of X under Z.

Remark 1 (Interpretation of the probability Ẑ)
Recall that under W the process X is a Brownian motion and that, by definition,

dZ

dW
(ω) ∝ exp

{
B(XT (ω))−B(x)− θL0

T (X)(ω)
}
.

In particular, under the probability Z, X is a Brownian motion conditioned on (XT , L
0
T ) ∼ h(y, ℓ)dydℓ

with
h(y, ℓ)dydℓ ∝ exp (B(y)−B(x)− θℓ)Wx

(
XT ∈ dy, L0

T ∈ dℓ
)
.

This makes it difficult to sample exactly Xt under Z for t ∈ (0, T ).

3.3. Exact simulation algorithm for the solution of (8) starting from x

Let us denote by K an upper bound for φ̃(x). Following the spirit of [3] we can thus sample
from XT using the following algorithm.

EXACT SIMULATION ALGORITHM FOR THE SOLUTION OF (8) starting from x.

1. Simulate a Poisson Point Process with unit density on [0, T ]× [0,K]. The result
is a random number N of points of coordinates (t1, z1), . . . , (tN , zN ).

2. Simulate a skeleton (ωt1 , . . . , ωtN , ωT ) where ω ∼ Ẑ.

3. If ∀i ∈ {1, . . . , N} φ̃(ωti) ≤ zi accept the skeleton. Else return to step 1.

This algorithm produces an exact sampling of XT under P: it is the final instance ωT of an
accepted skeleton.

The main issue in the above algorithm is to sample a skeleton of the canonical process under Ẑ

(Step 2).

Remark 2 (Other exact simulation algorithms ?)
Other probability changes might be performed in order to try to tackle the exact simulation

problem presented in the introduction. For example (though we will not prove it here) it is possible
to swap to a probability measure S under which X has the law of a some Brownian motion with
a symmetric two valued drift (solution of equation (4) in the case where θ0 = −θ1) with some
prescribed terminal law. Although the density probability distribution of such bridges may be
explicitly computed, because of their particular form, it seems difficult to find tractable general
rejection bounds for these laws.
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4. Recalls on the skew Brownian motion with drift

In this section, we recall some basic facts concerning the skew Brownian motion with constant
drift. Although these facts seem at first quite far away from our purpose, they will be used in the
sequel in order to justify that the limit rejection algorithm presented in Section 6 returns an exact
sampling under Ẑ. At the end of this section, we give an algorithm for the simulation of bridges of
SBM with constant drift that will be used as a basic building block in the sequel.

4.1. The transition function of the skew Brownian motion with drift

Let us recall that the Skew Brownian Motion (SBM) with constant drift component µ ∈ R,
denoted by Bβ,µ, solves

dBβ,µ
t = dWt + µdt+ βdL0

t (B
β,µ).

This SDE with local time has a unique strong solution as soon as |β| < 1 (see [11]). The
process Bβ,µ enjoys the homogeneous Markov property. We shall denote by pβ,µ(t, x, y) its transition
function.

Let us introduce the function vβ,µ(t, x, y) defined by

vβ,µ(t, x, y) = (1− e−2xy/t)1xy>0

+(1 + Sgn(y)β)e−2xy/t
[
1− βµ

√
2πt exp{ (|x|+|y|+tβµ)2

2t }N c(βµt+|x|+|y|√
t

)
]
,

(10)

where N c(y) = 1√
2π

∫∞
y e−z2/2dz.

With this notation we can rewrite the expression of pβ,µ(t, x, y) given in [7].

Proposition 2 We have for all t > 0, all x, y ∈ R,

pβ,µ(t, x, y) = p0,µ(t, x, y)vβ,µ(t, x, y). (11)

Proof. See [7]

4.2. Bounds for the transition function of the SBM with drift

In this paragraph, we give bounds on the transition function of the SBM with drift. These
bounds will be used in the sequel to find tractable rejection bounds for our algorithm.

Let us set α = max(1+β
2 , 1−β

2 ) and

γβ,µ(t, z) = 1− βµ
√
2πt exp(

(z + tβµ)2

2t
)N c(

βµt+ z√
t

). (12)

We also set

cβ,µt,x =

{
2α if βµ ≥ 0
2αγβ,µ(t, |x|) if βµ < 0.

(13)

We have the following result.

Lemma 1 Let (β, µ) ∈ (−1, 1) × R. We have

vβ,µ(t, x, y) ≤ cβ,µt,x , ∀x, y ∈ R. (14)

Proof. Equation (14) comes from (11) and the fact that, if βµ ≥ 0, we have pβ,µ(t, x, y) ≤
2ᾱp0,µ(t, x, y) for all x, y ∈ R, and if βµ < 0, we have pβ,µ(t, x, y) ≤ 2ᾱγβ,µ(t, |x|)p0,µ(t, x, y)
for all x, y ∈ R (see, in [7], Lemma 4 and its proof).

We also have the following lemma.

6



Lemma 2 Let (β, µ) ∈ (−1, 1) × R. We have

vβ,µ(t, x, y) ≤ cβ,µt,y , ∀x, y ∈ R. (15)

Proof. This comes again from (11), together with the fact that pβ,µ(t, x, y) ≤ cβ,µt,y p
0,µ(t, x, y), for

all x, y ∈ R (see again, in [7], Lemma 4, especially the proof of Equation (19)).

Remark 3 Note that vβ,µ(t, x, y) > 0 and γβ,µ(t, z) > 0 for any t ∈ R∗,+, x, y, z ∈ R, even for
large values of µ (see Remark 6 in [7]).

4.3. Sampling bridges of the SBM with drift

We denote by qβ,µ(t, T, a, b, y) the density defined (for t < T ) by

P[Bβ,µ
t ∈ dy | Bβ,µ

0 = a, Bβ,µ
T = b] = qβ,µ(t, T, a, b, y)dy.

The function (t, y) 7→ qβ,µ(t, T, a, b, y) is the transition density function of a bridge of an SBM with
drift relating points a and b in T unit time.

As q0,µ(t, T, a, b, y) = q0,0(t, T, a, b, y), by Proposition 2 we get,

qβ,µ(t, T, a, b, y) = q0,0(t, T, a, b, y)
vβ,µ(t, a, y)vβ,µ(T − t, y, b)

vβ,µ(T, a, b)
. (16)

Let us set

Cβ,µ
t,T,a,b =

{
4α2 if βµ ≥ 0
4α2γβ,µ(t, |a|)γβ,µ(T − t, |b|) if βµ < 0.

(17)

We have
qβ,µ(t, T, a, b, y)

q0,0(t, T, a, b, y)
=

Cβ,µ
t,T,a,b

vβ,µ(T, a, b)
fβ,µ
a,b (y),

with

fB,β,µ
a,b (y) =

vβ,µ(t, a, y)vβ,µ(T − t, y, b)

Cβ,µ
t,T,a,b

, (18)

where the superscript B appears for the wording Bridge.
Considering (13), (14), (15) and (17) it is clear that

fB,β,µ
a,b (y) ≤ 1, ∀y ∈ R.

We thus propose the following rejection algorithm in order to sample along qβ,µ(t, T, a, b, y)dy.

Auxiliary Algorithm 1: Sampling along qβ,µ(t, T, a, b, y)dy

1. Sample a Brownian bridge Y along q0,0(t, T, a, b, y).
2. Evaluate

fB,β,µ
a,b (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fB,β,µ
a,b (Y ) accept the proposed value Y . Else return

to Step 2.

Remark 4 Note that the quantities vβ,µ, γβ,µ, cβ,µt,x , Cβ,µ
t,T,a,b, and fB,β,µ

a,b defined respectively in
(10),(12), (13) (17), and (18) involved in the above algorithm depend only on β and µ through the
product βµ. This computational fact gives the key ensuring the construction of the limit algorithm
by convergence performed at the beginning of Section 6.
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5. Convergence of a sequence of probability measures towards Ẑ

In this section, for any n ∈ N we denote by Xn the solution of

dXn
t = dWt + b̄(Xn

t )dt+
1

n
L0
t (X

n), Xn
0 = x. (19)

For the existence and uniqueness of solutions to (19) see [11].

5.1. A strong convergence result

Theorem 1 (Le Gall [11], 1984) Let X be the solution of (8) and (Xn) the sequence of solutions
of (19). We have for all 0 < t < T ,

E
[
sup

0≤s≤t
|Xs −Xn

s |
]
−−−→
n→∞

0.

Proof. We use the notations of [11]. Using the Occupation times formula we can rewrite Equation
(19) as

dXn
t = dWt +

∫

R

νn(dy) dL
y
t (X

n), Xn
0 = x,

with νn(dy) = b̄(y)dy + 1
nδ0(dy). Lemma 2.1 in [11] asserts that there is for each n ∈ N a function

fνn , unique up to a multiplicative constant, satisfying f ′
νn(dy) + (fνn(y) + fνn(y−))νn(dy), where

the notation f ′
νn(dy) is for the derivative of fνn in the generalized sense. Lemma 2.1 in [11] also

asserts that if we require that fνn(x) → 1 as x → −∞ then,

fνn(y) = exp
(
− 2

∫ y

−∞
b̄(z)dz

)
× 1y≥0

1− 1/n

1 + 1/n
.

The sequence of functions (fνn)n clearly converges point-wise to f(y) = exp
(
− 2

∫ y
−∞ b̄(z)dz

)
. By

dominated convergence we have for all K > 0 that
∫ K
−K |fνn − f |(y)dy → 0 as n → ∞. Thus

Theorem 3.1 in [11] asserts that

E
[
sup

0≤s≤t
|Xs −Xn

s |
]
−−−→
n→∞

0,

with X the solution of

dXt = dWt +

∫

R

ν(dy) dLy
t (X), X0 = x,

where ν(dy) = − f ′(dy)
f(y)+f(y−) = −1

2
f ′(y)
f(y) dy = b̄(y)dy. That is to say X is the solution of (8).

5.2. The probability measure Ẑ as a limit of a sequence (Ẑn)n

Recall the definition (7) of θ. Let us set

µn =
1 + 1/n

2/n
b̄(0+)− 1− 1/n

2/n
b̄(0−) =

b̄(0+) + b̄(0−)

2
+ θn, (20)

and bn(x) = b̄(x)− µn.
We have,

Xn
T = x+W SD,n

T + µnT +
1

n
L0
T (X

n),

where the process W SD,n defined by

dW SD,n
t = dWt + bn(X

n
t )dt

8



is a Brownian motion under the probability measure W
SD,n defined by

dWSD,n

dP
= exp

{
−
∫ T

0
bn(X

n
t )dWt −

1

2

∫ T

0
b2n(X

n
t )dt

}
.

Let us now set Bn(x) =
∫ x
0 bn(z)dz. As shown in [7] using a symmetric Itô-Tanaka formula we

have for any bounded measurable functional F : (C, C) → R,

E
x
P[F (Xn)] = E

x
WSD,n

[
F (Xn) exp

{
Bn(X

n
T )−B(x)−

∫ T

0
φn(X

n
t )dt

}]
,

where φn(z) =
b2n(z) + b′n(z) + 2µnbn(z)

2
. Notice that the law of Xn under W

SD,n is the one of a

SBM with drift.
Let us define the probability measure Zn on (C, C) by

dZn

dWSD,n
(ω) ∝ exp

{
Bn(X

n
T (ω))−Bn(x)

}
,

and Ẑn the probability measure induced on (C, C) by the law of Xn under Zn.

The law Ẑn can be well described (see Subsection 5.3). Thus in [7] we managed to sample
exactly along (19) using skeletons under Ẑn as proposals and exp

{
−

∫ T
0 (φn(ωt)− inf φn)dt

}
for a

rejection rule.

For our present purpose it turns out that we have the following result.

Proposition 3 We have
Ẑn

w−−−→
n→∞

Ẑ.

Proof. Let be F : (C, C) → R a bounded measurable functional. We have

E
x
Ẑn
[F (ω)] = E

x
Zn
[F (Xn)]

=cnE
x
WSD,n[F (Xn) exp{Bn(X

n
T )−Bn(x)}]

=cnE
x
P[F (Xn) exp{B(Xn

T )−B(x)} exp{−µn(X
n
T − x)−

∫ T

0
bn(X

n
t )dWt −

1

2

∫ T

0
b2n(X

n
t )dt}].

But

− µn(X
n
T − x)−

∫ T

0
bn(X

n
t )dWt −

1

2

∫ T

0
b2n(X

n
t )dt

=− µnWT −
∫ T

0
µnb̄(X

n
t )dt−

1

n
µnL

0
T (X

n)−
∫ T

0
b̄(Xn

t )dWt + µnWT

− 1

2

∫ T

0
b̄2(Xn

t )dt+

∫ T

0
µnb̄(X

n
t )dt−

1

2
µ2
nT

=− 1

n
µnL

0
T (X

n)−
∫ T

0
b̄(Xn

t )dWt −
1

2

∫ T

0
b̄2(Xn

t )dt−
1

2
µ2
nT.

Thus,

E
x
Ẑn

[F (ω)]

= cne
−µ2nT

2 E
x
P[F (Xn) exp{B(Xn

T )−B(x)− µn

n
L0
T (X

n)} exp{−
∫ T

0
b̄(Xn

t )dWt −
1

2

∫ T

0
b̄2(Xn

t )dt}].
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From (20), we see that µn

n → θ as n → ∞, and combining the results of Theorem 1 and Lebesgue’s
convergence theorem for stochastic integrals (see for example Theorem (2.12) p.142 in [13]), we have

lim
n→∞

E
Ẑn

[F (ω)]

= lim
n→∞

(cne
−µ2nT

2 )Ex
P[F (X) exp{B(XT )−B(x)− θL0

T (X)} exp{−
∫ T

0
b̄(Xt)dWt −

1

2

∫ T

0
b̄2(Xt)dt}]

and by definition of W,

lim
n→∞

E
Ẑn
[F (ω)]

= lim
n→∞

(cne
−µ2nT

2 )Ex
W[F (X) exp{B(XT )−B(x)− θL0

T (X)}]

= lim
n→∞

(cne
−µ2nT

2 )Ex
Z[F (X)]

= lim
n→∞

(cne
−µ2nT

2 )Ex
Ẑ
[F (ω)].

For the special case F ≡ 1, the above computation ensures that limn→∞(cne
−µ2nT

2 ) = 1. Thus, for
any bounded and measurable F : (C, C) → R we have

lim
n→∞

E
x
Ẑn

[F (ω)] = E
x
Ẑ
[F (ω)]

and the proposition is proved.

5.3. Sampling a skeleton under Ẑn

We have the following proposition.

Proposition 4 For any n ∈ N the law Ẑn is the one of a SBM with drift B
1

n
,µn conditionally on

B
1

n
,µn

T ∼ hn with

hn(y) = Cn exp (Bn(y)−Bn(x)) p
1

n
,µn(T, x, y),

where Cn is the normalizing constant such that
∫
hn(y)dy = 1.

Proof. See [3].

Let n0 be fixed and 0 = t0 < t1 < . . . < tn0
< T . Set y0 = x to simplify the notations, the law

of (ωt1 , . . . , ωtn0
, ωT ) under Ẑn is given by

hn(y)

n0−1∏

i=0

q
1

n
,µn(ti+1 − ti, T − ti, yi, y, yi+1)dy1 . . . dyn0

dy. (21)

Once ωT has been sampled along hn(y)dy, we can sample ωt1 along q
1

n
,µn(t1, T, x, ωT , y1)dy1

and each ωti+1
along q

1

n
,µn(ti+1 − ti, T − ti, ωti , ωT , yi+1), using the Auxiliary Algorithm 1.

In order to sample along hn(y)dy we make use of the following considerations. We have

hn(y) =Cn exp
(
Bn(y)−Bn(x)

)
p0,µn(T, x, y)v

1

n
,µn(T, x, y)

=Cn exp
(
− µn(y − x) +

∫ y

x
b̄(z)dz

)
× exp

(
+ µn(y − x)− µ2

n

2
T
)
p0,0(T, x, y)v

1

n
,µn(T, x, y)

=Cne
−µ2n

2
T exp

(
B(y)−B(x)

)
v

1

n
,µn(T, x, y)p0,0(T, x, y).

10



Let us denote by M an upper bound for the function z 7→ |b̄|(z) (see our assumptions in § 3.1).
Then, using the result of Lemma 1 and performing easy computations, we easily see that for any
0 < δ < 1 :

hn(y)

p0,0(T/(1 − δ), x, y)
= Cn

eT
2M2/δ

√
1− δ

e−
µ2n
2
T c

1

n
,µn

T,x f
h, 1

n
,µn

δ (y),

with

f
h, 1

n
,µn

δ (y) =
√
1− δ exp

(
B(y)−B(x)− T 2M2

δ

)
p0,0(T, x, y)

p0,0(T/(1 − δ), x, y)

v
1

n
,µn(T, x, y)

c
1

n
,µn

T,x

.

Using (14) one may easily check that f
h, 1

n
,µn

δ (y) ≤ 1 for any y ∈ R. One might then optimize

w.r.t. δ ∈ (0, 1) in order to find f
h, 1

n
,µn

δ closest to 1.

Let us set for simplicity, f h, 1
n
,µn = f

h, 1
n
,µn

1/2 . We deduce therefore the following procedure in order
to sample along hn(y)dy.

Auxiliary Algorithm 2: Sampling along hn(y)dy

1. Sample Y ∼ N (x, 2T ).

2. Evaluate
f h, 1

n
,µn(Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ f h, 1
n
,µn(Y ) accept the proposed value Y . Else return

to Step 1.

6. Direct exact sampling of a skeleton under Ẑ (performing Step 2 of the Exact Simu-
lation Algorithm)

Proposition 1 will now play a crucial role.
Recall the definition (7) of θ. Let us denote

vθ(t, x, y) = (1− e−2xy/t)1xy>0 + e−2xy/t
[
1− θ

√
2πt exp{(|x| + |y|+ tθ)2

2t
}N c(

θt+ |x|+ |y|√
t

)
]
,

γθ(t, z) = 1− θ
√
2πt exp(

(z + tθ)2

2t
)N c(

θt+ z√
t

),

cθt,x =

{
1 if θ ≥ 0
γθ(t, |x|) if θ < 0,

and Cθ
t,T,a,b =

{
1 if θ ≥ 0
γθ(t, |a|)γθ(T − t, |b|) if θ < 0.

From the fact that 1
nµn → θ (as n tends to +∞) and Remark 4, we clearly have that

v
1

n
,µn(t, x, y) −−−→

n→∞
vθ(t, x, y) ∀(t, x, y) ∈ R

+ × R× R,

γ
1

n
,µn(t, z) −−−→

n→∞
γθ(t, z) ∀(t, z) ∈ R

+ × R,

c
1

n
,µn

t,x −−−→
n→∞

cθt,x ∀(t, x) ∈ R
+ × R,

C
1

n
,µn

t,T,a,b −−−→n→∞
Cθ
t,T,a,b ∀(t, T, a, b) ∈ R

+ × R
+ ×R× R.
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Let us now examine the sequence (f
h, 1

n
,µn

δ ) of the rejection functions used in the Auxiliary

Algorithm 2. From the same reasons as above, it is clear that (f
h, 1

n
,µn

δ ) converges towards

f h,θ
δ (y) =

√
1− δ exp

(
B(y)−B(x)− T 2M2

δ

)
p0,0(T, x, y)

p0,0(T/(1 − δ), x, y)

vθ(T, x, y)

cθT,x
≤ 1,

this convergence being dominated. Thus, applying the result of Proposition 1, the sequence of laws
(hn(y)dy) converges to some limit law hθ(y)dy.

In the same manner, for any fixed a, b ∈ R, the sequence (f
B, 1

n
,µn

a,b ) of rejection functions used
in Auxiliary Algorithm 1 converges towards

fB,θ
a,b (y) =

vθ(t, a, y)vθ(T − t, y, b)

Cθ
t,T,a,b

≤ 1,

this convergence being dominated.
Consequently, the law q

1

n
,µn(t, T, a, b, y)dy converges towards a limit law qθ(t, T, a, b, y)dy.

Let again n0 be fixed and 0 < t1 < . . . < tn0
< T . Passing to the limit in (21) we get that the

law of (ωt1 , . . . , ωtn0
, ωT ) under Ẑn converges (with y0 = x) towards

hθ(y)

n0−1∏

i=0

qθ(ti+1 − ti, T − ti, yi, y, yi+1)dy1 . . . dyn0
dy. (22)

Consequently, from Proposition 3, we conclude that the law given by (22) is nothing else than
the law of (ωt1 , . . . , ωtn0

, ωT ) under Ẑ.
Using again Proposition 1 and the above considerations we can propose the expected algorithm

in order to sample skeletons under Ẑ. It will use the two following Limit Auxiliary Algorithms.

Limit Auxiliary Algorithm 1: Sampling along hθ(y)dy

1. Sample Y ∼ N (x, 2T ).

2. Evaluate
f h,θ(Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ f h,θ(Y ) accept the proposed value Y . Else return to
Step 1.

Limit Auxiliary Algorithm 2: Sampling along qθ(t, T, a, b, y)dy

1. Sample a Brownian bridge Y along q0,0(t, T, a, b, y).

2. Evaluate
fB,θ
a,b (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fB,θ
a,b (Y ) accept the proposed value Y . Else return to

Step 2.

12



Figure 1: Brownian motion with two-valued drift, case θ0 = −θ1 = 1 (T = 1).

Performing Step 2 of the Exact Simulation Algorithm.
Sampling (ωt1 , . . . , ωtn0

, ωT ) under Ẑ (starting from x)

1. Sample ωT along hθ(y)dy using the Limit Auxiliary Algorithm 1.

2. Sample ωt1 along qθ(t1, T, x, ωT , y)dy using the Limit Auxiliary Algorithm 2.

3. For i = 2, . . . , n0, sample ωti+1
along qθ(ti+1 − ti, T − ti, ωti , ωT , y)dy using the Limit

Auxiliary Algorithm 2.

7. Numerical Experiments

7.1. Exact simulation of a Brownian motion with two-valued (or alternate) drift

In this paragraph, we exhibit numerical results obtained with the exact limit algorithm for the
simplest non-trivial cases

dXt = dWt ± sgn(Xt)dt, X0 = 0,

corresponding to either θ0 = −θ1 = ±1 in (4) (b̄(y) = ±sgn(y) in (1)).
We draw the renormalized histogram of 106 samples of XT and compare it to the explicit density

of XT given in [10] p. 440-441 (Figure 1 for the outgoing case θ0 = 1 and Figure 2 for the incoming
case θ0 = −1).

13



Figure 2: Brownian motion with two-valued drift, case θ0 = −θ1 = −1 (T = 1).

7.2. Exact simulation of an SDE with a discontinuous drift coefficient

We consider now the SDE (1) with

b̄(x) =





−π
2 cos

(
π
5x

)
if x ≥ 0

3π
2 − π

2 cos
(
π
5x

)
if x < 0.

(23)

Let 0 < T < ∞. We wish to sample along XT .
We have θ = −3π/4 and

φ̃(x) =
b̄2(x) + b̄′(x)

2
+

π2

20
.

We take K = 2π2 + π2

10 as an upper bound for φ̃. This allows to use the limit Algorithm.
Figure 3 shows a comparison between a renormalized histogram of 106 samples of XT obtained

with the exact limit algorithm, and a renormalized histogram of 106 samples of X∆
T , where (X∆)

denotes an Euler Scheme with time step ∆. We chose time-steps ∆ = T.10−1 and ∆ = T.10−5.
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