
HAL Id: hal-00773586
https://hal.science/hal-00773586

Submitted on 14 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Scheduling Algorithm for Parallel Real-time
Graph Tasks

Manar Qamhieh, Serge Midonnet, Laurent George

To cite this version:
Manar Qamhieh, Serge Midonnet, Laurent George. Dynamic Scheduling Algorithm for Parallel Real-
time Graph Tasks. ACM SIGBED Review, 2012, 9 (Special Issue on the Work-in-Progress session of
the 24th Euromicro Conference on Real-Time Systems), pp.12-16. �hal-00773586�

https://hal.science/hal-00773586
https://hal.archives-ouvertes.fr

Dynamic Scheduling Algorithm for Parallel Real-time Graph Tasks

Manar Qamhieh, Serge Midonnet
Université Paris-Est, France

{manar.qamhieh,serge.midonnet}@univ-paris-est.fr

Laurent George
ECE-Paris, France

lgeorge@ece.fr

Abstract—In this paper, we propose a dynamic global
scheduling algorithm for a previously-presented specific
model of real-time tasks called “Parallel Graphs” [1], based
on the Least Laxity First priority assignment policy “LLF”,
we apply LLF policy on each subtask in the graphs individ-
ually, taking in consideration their precedence constraints.
This model of tasks is a combination of graphs and par-
allelism, in which each subtask in the graph can execute
sequentially or parallel according to its number of processors
defined by the model. So we study parallelism possibilities
in order to find the best structure of the tasks according to
the practical specifications of the system.

I. INTRODUCTION

Physical constraints such as chip size and continu-
ous heating forced processors’ manufacturers to produce
multi-processor systems, and as they are constantly grow-
ing, software parallelism has been widely studied and
applied in practice.

However, parallelism in real-time embedded systems is
still a rising challenge with many open questions to be
studied. There are parallel task models exist in practice,
such as the fork-join model used in OpenMP [2] and
has been studied in [3], and a more general model of
parallel tasks has been proposed recently in [4] which
overcomes the restrictions of the fork-join model. Those
models consider the tasks as a sequence of parallel and
sequential tasks.

The graph model of real-time tasks is a general rep-
resentation of the models described previously. In our
previous work [1], we proposed a new model of real-time
tasks called “Parallel Graphs”, which is a combination
of graphs and parallel tasks. By this we added an inner
parallelism level to the graph as will be described in II. In
this paper, we will extend our previous work by proposing
parallelizing options a dynamic scheduling algorithm for
the parallel graphs.

In this paper, firstly we will describe our task model
in section II. In section III we will discuss the various
parallelizing possibilities for parallel graphs. Section IV
will present our dynamic scheduling algorithm. Finally in
section V, we will finish the paper by concluding and
giving perspectives.

II. TASK MODEL

In [1] we presented previously a new model of real-time
tasks called “parallel graphs”. In this model, Each parallel
real-time task is represented by a directed acyclic graph
(DAG), which is a collection of subtasks and directed
edges representing the execution flow of the subtasks and
the precedence constraints between them.

Each parallel graph task τi consists of a set of qi
subtasks and it is denoted as:
τi = ({τi,1, τi,2, ..., τi,qi}, Di, Pi), where Di is the dead-
line of the graph and Pi is its period. Each subtask τi,k is
represented as the following:
τi,k = {ci,k,mi,k}, where ci,k is the total worst execution
time of the subtask, and mi,k is the maximum degree of
parallelism of τi,k, which means that τi,k can be scheduled
on mi,k parallel processors at the most.

Figure 1 shows an example of parallel graph task.
Precedence constraint means that each subtask can start

its execution when all of its predecessors have finished
theirs. If there is an edge from subtask τi,u to τi,v , then
we can say that τi,u is a predecessor of τi,v , and τi,v has
to wait for τi,u to finish its execution before it can start
its own. Each subtask in the graph may have multiple
predecessors, and multiple successors as well, but each
graph should have a single source and a single sink vertex.
!

!1,1
(1,1)

!1,2
(6,2)

!1,3
(2,2)

!1,4
(3,3)

!1,5
(2,1)

!1,6
(1,1)

D1 =T1

Figure 1. Example of the parallel graph model.

In this work, we study the global scheduling of n syn-
chronous periodic parallel real-time graphs with implicit
deadlines on m identical processor system. A task set is
denoted as Γ = {τ1, τ2, ..., τn}, where each graph has
period equals to its deadline. The schedulability is studied
on the hyper period of each taskset.

A. Notation

Definition 1: Critical path [1] of a graph τi is the
longest path in the graph through its subtasks when
respecting their dependencies.

CPi =
∑

j∈critical subtasks

ci,j

The critical path of the graph τ1 from Figure 1 is
(τ1,1, τ1,2, τ1,6) and CP1 = 8.

Definition 2: The worst case execution time of a graph
Ci is the total execution time of all the subtasks in the

graph τi when executed sequentially.

Ci =

qi∑
j=1

ci,j

Definition 3: Laxity of a parallel graph Li is the differ-
ence between its deadline and its critical path execution
time.

Li = Di − CPi

III. DIFFERENT PARALLELIZING ALGORITHMS

In our previous paper [1], we described a parallelizing
algorithm which finds the best structure of the parallel
graph according to the response time of the graph, by max-
imizing the number of parallelized subtasks in the graph.
This algorithm does not consider the number of processors
in the system, so there might be better structures of the
parallel graphs when considering the actual specifications
of the system like the number of processors, the scheduling
policy, etc.

In this section we will discuss 2 possible parallelizing
algorithms, a maximizing and minimizing algorithms ac-
cording to the level of parallelism.

A. Maximizing parallelism

The parallelizing algorithm proposed in [1] is an iter-
ative algorithm whose aim is to parallelize the maximum
number of necessary subtasks in the graph up to their max-
imum level of parallelism, on the basis of the following
algorithm:
• Find the critical path of the graph using the depth-first

search algorithm.
• Parallelize all the subtasks in the critical path up to

their maximum level of parallelism.
• Repeat the 2 previous steps until there is a critical

path with no parallelizable critical subtasks.

B. Minimizing parallelism

Another approach can be considered for this type of
graph which is the reverse of the one in III-A. We can find
the best structure of the graph according to the number of
processors in the system, by trying to stretch the graph
as long as possible in order to execute on a minimum
number of processors without missing their deadline, and
by filling the laxity of the graph with a maximum number
of subtasks.

According to the following equation, a parallel graph τi
can execute sequentially on 1 processor if:

Di

Ci
≥ 1 (1)

Where Di is the deadline of the graph task, and Ci is
defined in II-A.

If this test fails, then we have to reduce the sequential
execution time of the graph by parallelizing some of its
subtasks using the following algorithm:
• Apply equation 1 on the parallel graph τi.
• If the test succeeds, then τi can execute on a mini-

mum number of processors without missing its dead-
line.

• If the test fails, we calculate the critical path of τi,
parallelize the critical subtasks in order to reduce its
sequential worst case execution time Ci.

• Repeat the first step on the newly parallelized graph
τi until the test succeeds.

C. Other possibilities

Choosing the best structure of the parallel graph is not
an easy process. It is controlled by a lot of restrictions and
limitations of the system, for example, using the maximiz-
ing parallelism algorithm will reduce the response time of
the graph if executed on a system with a large number of
processors, and theoretically, it will increase the number of
preemptions and job migrations while scheduling (depends
on the used priority assignment algorithms).

The minimizing algorithm will increase the response
time of the graph while reducing the number of processors
needed, which will decrease the energy consumption as a
result.

There is a large number of parallelizing structures for
the parallel graph task, which affects the schedulability
of the tasks, the migration and preemption costs. In the
future we aim to study those various possibilities and their
effects by comparing them using a real-time simulation
tool, and taking into account the different characteristics
of embedded systems, such as the number of processors,
energy consumption, etc.

IV. SCHEDULING PARALLEL GRAPHS

In this section, we propose a global preemptive schedul-
ing algorithm on an implicit-deadline parallel graph task
set Γi of n graphs, on the hyper period of the taskset:

hyper(Γi) = LCM(τj),∀j : 1 ≤ j ≤ qi1

Since the active subtasks of each graph share the
same period and deadline, we decided to use a dynamic
priority assignment policy based on the least laxity first
technique (LLF), which gives higher priority to tasks with
lower laxity (slack time). Scheduling algorithms based on
this priority assignment are optimal on mono-processor
systems but not on multiprocessor systems, unless laxity
priorities are verified all the time during the scheduling
process to make sure delayed tasks gain higher priorities
in time.

A. Scheduling algorithm

After applying a parallelizing algorithm on each graph
τi in Γi, the generated graph task contains both sequential
and parallel subtasks. A sequential subtask needs one
processor to execute on, while parallel subtasks execute on
multiple processors at the same time. Here we should say
that we are interested in input-data parallelism, in which
the same code is repeated on multiple processors while
only the input data are changed.

As described in Section II, each graph task τi consists
of qi real-time subtask each has a WCET of ci,j , and
due to the precedence constraint on the subtasks of the

1LCM is the Least Common Multiple

same graph, a subtask τi,j cannot be activated unless all
of its predecessor subtasks finish their execution. Because
of that not all of the subtasks in the graph are activated
at the same time or at the very instant of activating the
graph.

There are 2 types of laxity in τi, a general laxity of the
graph as whole, denoted as Li and described in II-A, and
a subtask laxity for each subtask τi,j ∈ τi.

As explained in our previous work in [1], when a
parallelizing algorithm is applied on a graph task τi, we
can also calculate the laxity of each subtask in τi, by
calculating the earliest and the latest finishing time of the
execution time of each of them, the difference between
those 2 time values is the laxity of the subtask. A subtask
with laxity equaling to 0 is a critical subtask in the graph.

In order to organize the scheduling process of the graph
set, we will consider 3 types of subtasks: active jobs,
executing jobs and completed jobs. The active list contains
the jobs that are activated either by the activation of the
original graph (jobs of the starting subtask in the graph),
or when the predecessors of a subtask complete their
execution. When a job starts its execution, it will be moved
to the executing list until its execution is over when it
will be moved to the completed list. If an executing job is
interrupted by a higher priority job, it will be moved back
to the active list.

For each instant in time t where

0 ≤ t ≤ hyper(Γi),

we calculate the dynamic priority Pri,j(t) for each
active job of subtask τi,j of each graph task in Γi, where:

Pri,j(t) = Li + Li,j − (t−Ai,j) (2)

where Ai,j is the activation time of τi,j , subtasks with
lower Pr(t) values have higher priorities.

The scheduling algorithm:
• At t = 0:

Each graph task τi ∈ Γ is activated (since we consider
synchronous activation), which means all the starting
subtasks τi,1 are activated as well and added to the
active list. Then we calculate Pr(0) for all of the
subtasks in the active list using Equation 2.
According to the number of processors in the system,
we start executing the subtasks with the highest
priority which are moved to the executing list at the
same time.
If an executing subtask τi,j is a parallel subtask
according to the parallelizing algorithm, then it will
need mi,j available processors in order to enable all
of its parallel parts to execute concurrently.

• ∀t where 0 < t ≤ hyper(Γi):
If an executing job finishes its execution at this instant
of time, it will be moved to the completed list. And if
all the predecessors of a subtask are in the completed
list, then its job will be activated at this instant of time
and added to the active list.

Since we use dynamic priority assignment, at each in-
stant of time we re-calculate Pri,j(t) for all subtasks
τi,j in the active list. By this, the priority of delayed
active subtasks will be increased in time since their
laxity decreased.
According to the newly assigned priorities of the
active subtasks, we fill the processors available in the
system, and if there are active subtasks with higher
priority than the ones already executing, they are
allowed to interrupt their execution.

• The scheduling algorithm of the graph set Γ will fail
if -at any instance of time t- a job in the active list
reaches a Pr(t) = 0 without having an available
processor to execute on, since at t + 1 this job will
have a negative laxity and miss its deadline.

In the case of equal priorities between 2 active jobs,
we choose the executing one randomly, but if an active
job and an executing job have the same priority, we
give the priority to the executing job to continue its
execution without allowing the active one to interrupt the
execution of the other. In that way we reduce the number
of unnecessary cost of preemptions and migration.

Using this dynamic global scheduling algorithm, we
scheduled each subtask in the graphs individually, by
assigning priorities as shown in the previous algorithm.
Precedence constraints between the subtasks due to the
structure of the graph were visible only in the activation
process. However, this scheduling algorithm was different
from the previous scheduling techniques applied on the
real-time tasks of the graph model seen in the literature.
For example in [4], the authors propose to use a decom-
position algorithm in order to assign local deadlines to the
subtasks in the task, and to schedule each segment of tasks
as independent tasks on multi-processor systems.

B. Scheduling example

In this section, we will apply the above-mentioned
scheduling algorithm described in IV-A on a graph task
set consisting of 2 graphs on a 2-processor system.

graph task set Γ = {τ1, τ2}
τ1 = ({τ1,1(1, 1), τ1,2(3, 1), τ1,3(2, 2), τ1,4(1, 1)}, 10, 10)
τ1 = ({τ2,1(1, 1), τ2,2(1, 1), τ2,3(1, 1), τ2,4(1, 1)}, 5, 5)

The graphs in the task set have implicit deadlines, and
all subtasks of the same graph share the same period
and deadline. The scheduling algorithm is studied on the
hyper period of the task set:

hyper(Γ) = LCM(10, 5) = 10

Figure 2 shows the graphs of the task set with the
precedence constraints.

Graph τ1 has a parallel subtask τ1,3 which needs 2
processors available at the same time in order fo it to
execute, or its execution will be delayed otherwise. All
the other subtasks in this example are sequential.

By applying the critical path calculations described
previously in [1], we find that the laxity of the graph τ1
equals to 5, and 2 for τ2, and all the subtasks of both

Table I
SCHEDULING TABLE OF 2 GRAPH TASKS

Active subtasks in order of priority
Time Highest Lowest
t=0 Pr2,1 = 2 Pr1,1 = 5
t=1 Pr2,2 = 2 Pr2,3 = 2 Pr1,2 = 5 Pr1,3 = 6
t=2 Pr2,4 = 2 Pr1,2 = 4 Pr1,3 = 5
t=3 Pr1,2 = 4 Pr1,3 = 4
t=4 Pr1,3 = 3 Pr1,2 = 4
t=5 Pr2,1 = 2 Pr1,2 = 3 Pr1,3 = 3
t=6 Pr2,2 = 2 Pr2,3 = 2 Pr1,3 = 2
t=7 Pr1,3 = 1 Pr2,4 = 2
t=8 Pr2,4 = 1 Pr1,4 = 1
t=9
t=10

!

!1,1
(1,1)

!1,2
(6,2)

!1,3
(2,2)

!1,4
(3,3)

!1,5
(2,1)

!1,6
(1,1)

D1 =T1

!1,1
(1,1)

!1,2
(3,1)

!1,3
(2,2)

!1,4
(1,1)

D1 = T1 =10
C1 = 9

CP1 = 5

!2,1
(1,1)

!2,2
(1,1)

!2,4
(1,1)

!2,3
(1,1)

D2 = T2 =5
C2 = 4

CP2 = 3

Figure 2. Graph taskset example.

graphs don’t have local laxities (they are critical subtasks),
except for subtask τ1,3 which has a laxity L1,3 = 1.

At t = 0, the first subtasks of the each graph are
activated (τ1,1& τ2,1), according to the mentioned-above
equation 2, we can calculate the priority of the subtasks
as the following:

Pr1,1 = 5 + 0− (0− 0) = 5

Pr2,1 = 2 + 0− (0− 0) = 2

According to the results, τ2,1 has higher priority than
τ1,1, but since we have 2 processors available, both
subtasks will be scheduled. Those calculations will be
repeated at each instant of time in the hyper period of
the task set, unless a deadline miss occurs before the
end of the period. Table IV-B shows the priorities of the
active subtasks of both graphs over the hyper period of
the task set, while Figure 3 shows the final scheduling
of the subtasks on the 2 processors of the system. We
can notice that our proposed global preemptive scheduling
algorithm based on LLF has succeeded in scheduling the
taskset without any subtask misses its deadline.

V. PERSPECTIVE AND CONCLUSION

In this paper, we have introduced a dynamic global
scheduling algorithm on multi-processor systems, for a

!

!1,1
(1,1)

!1,2
(6,2)

!1,3
(2,2)

!1,4
(3,3)

!1,5
(2,1)

!1,6
(1,1)

D1 =T1

!1,1
(1,1)

!1,2
(3,1)

!1,3
(2,2)

!1,4
(1,1)

D1 = T1 =10
C1 = 9

CP1 = 5

!2,1
(1,1)

!2,2
(1,1)

!2,4
(1,1)

!2,3
(1,1)

D2 = T2 =5
C2 = 4

CP2 = 3

!1,1 !1,2

!1,3 !1,3

!1,4

!2,1

!2,2

!2,3 !2,4

 1 2 3 4 5 6 7 8 9 10

!1,2

Figure 3. Graph taskset scheduled using LLF.

specific real-time task set of parallel graph models, based
on the Least Laxity First “LLF” job priority assignment
in order to schedule each subtask in the graphs according
to their laxity while considering the global deadline and
period of the original graph with no need to assign a local
deadline for them, we have also shown by an example the
schedulability of this algorithm on a task set of the graph
model.

The graph model of tasks has been studied recently
in the literature, but adding the parallelism constraint
to this model has raised a schedulability challenge and
made it more complicated. That is why we presented
2 parallelizing algorithms in this paper, both algorithms
depending on the constraints of the embedded systems
which we aim to study in more details in the future.

In order to provide valid results to show the perfor-
mance of our proposed scheduling algorithm, we started
implementing it on a simulation tool called “YARTISS”
[5], developed by a real-time team in the research lab-
oratory of Universit Paris-Est. By using this simulator
we will be able to compare the performance of our own
scheduling algorithm with other techniques and algorithms
used in the literature, which will allow us to enhance its
performance with respect to the practical issues of real
embedded systems such as a limited number of processors,
optimizing the schedulability in order to reduce the energy
consumption by reducing the number of migrations and
preemptions.

In parallel, we would like to study real-time scheduling
anomalies and provide real-time feasibility tests for the
proposed algorithm, in order to support the simulation
results.

Finally, we hope to apply our model of tasks on real
embedded systems, and propose adjustable techniques in
order to enhance their performance such as schedulability
and energy consumption.

REFERENCES

[1] M. Qamhieh, S. Midonnet, and L. George, “A Parallelizing
Algorithm for Real-Time Tasks of Directed Acyclic Graphs
Model,” in RTAS Work-In-Progress Session, 2012.

[2] “Openmp.” [Online]. Available: http://www.openmp.org

[3] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar, “Schedul-
ing Parallel Real-Time Tasks on Multi-core Processors,” in
Proceedings of the 31st IEEE Real-Time Systems Sympo-
sium, 2010.

[4] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core
Real-time Scheduling for Generalized Parallel Task Models,”
in The 32nd IEEE Real-Time Systems Symposium, 2011.

[5] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and
M. Qamhieh, “YARTISS: A Tool to Visualize, Test, Com-
pare and Evaluate Real-time Scheduling Algorithms,” in
WATERS, 2012.

