Fast Approximate Kernel-Based Similarity Search for Image Retrieval Task
Résumé
In content based image retrieval, the success of any distance-based indexing scheme depends critically on the quality of the chosen distance metric. We propose in this paper a kernel-based similarity approach working on sets of vectors to represent images. We introduce a method for fast approximate similarity search in large image databases with our kernel-based similarity metric. We evaluate our algorithm on image retrieval task and show it to be accurate and faster than linear scanning.