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Abstract 

The difficulties to efficiently discriminate between weeds and crop by computer vision 
remains today a major obstacle to the promotion of localized weeding practices. The 
objective of the present study was to evaluate the potential of hyperspectral imagery for the 
detection of dicotyledonous weeds in durum wheat during weeding period (end of winter). An 
acquisition device based on a push-broom camera mounted on a motorized rail has been 
used to acquire top-view images of crop at a distance of one meter. A reference surface set 
in each image, as well as specific spectral pre-processing, allow overcoming variable outdoor 
lighting conditions. Spectral discrimination between weeds and crop, obtained by PLS-LDA, 
appears quite efficient, with a 8% prediction error on an independent test set.   
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1. Introduction 

Precision Agriculture concept relies on the spatial modulation of crop processing operations, 
for a better adaptation to heterogeneities inside the parcel. This concept, which was raised 
more than twenty years ago, is now currently applied in nitrogen input management, allowing 
a better control on yield and product saving.  

However, for weeding operations, despite considerable environmental and economical 
issues, the common practice still consist in applying an assurance strategy: herbicides are 
uniformly spread over the entire parcel whatever is the actual level of infestation. 

The reason is mainly technological.  Currently some devices are proposed on the market to 
operate localized spraying of herbicides on bare soil (the vegetation being detected by 
photocells). However, no commercial setup addresses localized weeding operations after 
crop emergence, because it requires a perception system based on computer vision, able to 
discriminate weeds from crop. 

Indeed, the identification of species inside vegetation is today the main obstacle to localized 
weeding. Numerous scientific studies have addressed this problem, and can be classified in 
two main approaches (Slaughter et al., 2008): 

- The spectral approach, which focuses on the plant reflectance, and involves multispectral 
or hyperspectral imagery (Feyaerts & van Gool, 2001), (Vrindts et al., 2002). In this case, the 
difficulty consists in establishing spectral differences that are robust with respect to variable 
lighting conditions. 

- The spatial approach, which relies on spatial criteria such as plant morphology (Chi et al., 
2003), (Manh et al., 2001), texture analysis (Burks et al., 2000) or spatial organization (Gée 
et al., 2008). In this case, the natural complexity and variability of vegetation scenes are the 
main difficulties for classification. 

The study presented here follows the first approach, in the particular case of durum wheat 
crop. The objective was to evaluate, as a first step, if the leaf reflectance contains enough 
spectral information to make a reliable discrimination between crop and dicotyledonous 
weeds. For this purpose, hyperspectral images of crop scenes have been acquired during 
the weeding period. Then specific correction procedures have been applied to overcome the 
variability of lighting conditions and of spatial orientation of leaves in natural crop scenes. 
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Finally, a Partial Least Square Linear Discrimination Analysis (PLS-LDA) discrimination 
model has been calibrated and tested on the corrected hyperspectral images. The 
discrimination results are presented and discussed. 

 

2. Material and methods 

2.1. Image acquisition and correction 

Hyperspectral images of durum wheat have been acquired in an experimental station near 
Montpellier, south of France, in March 2011 and 2012. Images were acquired using a device 
specially developed by Irstea for in-field short-range hyperspectral imagery. The device 
consists in a push-broom CCD camera (HySpex VNIR 1600-160, Norsk Elektro Optikk, 
Norway) fitted on a tractor-mounted motorised rail. The camera has a spectral range from 0.4 
µm to 1µm with a spectral resolution of 3.7nm. The first dimension of the CCD matrix is the 
spatial dimension (1600 pixels across track) and the second dimension is the spectral 
dimension (160 bands).  

Each image represents about 0.30m across track by 1.50m along track seen at 1m above 
the canopy, the lens, and the view angle being fixed. The spatial resolution across track is 
0.2 mm. The spatial resolution along track, depending on the motion speed, has therefore 
been adjusted. 

In Fig. 1, two hyperspectral images are shown with false colours, i.e. using 3 bands 
respectively at 615, 564 and 459 nm as R, G, and B channels. These images illustrate the 
difference in lightning conditions we have to face in the following.   

 

 

FIGURE 1: Two reflectance images in false RGB colours with different lighting conditions 
without shadow (up), with shadows (down). On the left : the ceramique plate. 

In order to be able to compare spectral data collected in different outdoor conditions, it is 
necessary to have hyperspectral images independent of illumination, i.e. reflectance images. 
The reflectance of a given material is the ratio of reflected light to incident light. Therefore, 
we need to know solar lighting at each acquisition time. Hence, Spectralon (Labsphere, 
Inc., New Hampshire, USA.) is generally used because it is a lambertian surface and it 
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reflects 99 % of received signal whatever the wavelength. Therefore, it provides a good 
approximation of solar incident light in outdoor conditions. However, in our case, we have 
chosen to use a commercial ceramic plate, which is more robust to damage or dirt due to 
field experiment conditions.  

The bidirectional reflectance distribution function (BRDF) of the ceramic has been measured 
in laboratory. As for many ordinary materials, it is the summation of a lambertian term and a 
specular term, the latter depending on the incident and viewing angles. However, because 
the specular term is directive enough, it can be totally neglected in our field operating 
conditions (horizontal plate observed with a zenithal view under non-zenithal solar lighting 
incidence, according to the latitude and season). We can thus consider the ceramic plate as 
a lambertian material with a known hemispheric reflectance )(Rc  

Finally, for a given luminance image, the average luminance )(Lc  measured on the 
ceramic plate can be used to compute the horizontal irradiance )(E  on the scene

)(/)()(  RcLcE  .This allows applying the following reflectance correction to every 
pixel in the image: 
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                             (1) 

Where ),( yx  are the pixel coordinates and  the wavelength. 

The reflectance correction specified in (1) takes into account the irradiance )(E measured 
by means of a horizontal ceramic plate. However, leaf surfaces in the vegetation scene are 
not horizontal. Therefore, their irradiance can be higher or lower than the ceramic plate’s 
one, according to the cosine of the angle between their surface normal and the lighting 

incidence. This introduces an unknown multiplicative factor 1k  on the pixel spectrum 
collected in the reflectance image, with respect to the real leaf reflectance. 

Also, the BRDF of leaves includes a specular term (Bousquet et al., 2005). Due to a random 
spatial orientation, this specular reflection may be directed toward the image sensor. The 
corresponding specular light is not spectrally modified by the material and only contributes to 

the apparent reflectance as an additive term 2k .  

As a summary, the leaf pixel values in the reflectance image do not correspond to the actual 

leaf lambertian reflectance ),,( yxR f but to an apparent reflectance: 

21),,( kkyxRR fapp                                                      (2)                           

Where 1k  and 2k  are unknown terms. 

In order to remove these unknown terms, a Standard Normal Variate (SNV) transformation 
will be applied consistently to all spectra before any further processing. It consists in centring 
the spectrum and setting its standard deviation equal to one. 

 

2.2. Modelling procedure (experiment’s design) 

Since we have an important amount of spectra, we choose to build the model which gives 
the most reliable error estimation using an independant test set. In order to create this proper 
discrimination model, a calibration set, a validation set and a test set have to be built. A 
major sampling condition we took into consideration while designing the experiment is the 
independence between each set. For this purpose, we first split our images into three 
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groups. Then, in each of these groups, we have manually selected some spectra according 
to three classes: durum wheat, dicotyledonous weeds and soil. By this way, in each set, both 
X-values (spectrum) and Y-values (classes) are known. Y is coded using a disjunctive binary 
coding (0 or 1). Table 1 details the number of selected spectra in each class for each set.  

TABLE 1: Experiment’s design (number of spectrum samples per set) 

 Calibration Validation Test 

Wheat 200 200 320 

Weed 150 150 240 

Soil 150 150 240 

 

In the following, the calibration set and the validation set are used only to create the 
classification model and to find the best number of Latent Variable (LV). The test set is used 
only to estimate the prediction error.  

PLS-LDA  

Because they contain accurate information about the chemical content of materials, spectra 
are often used for quantitative evaluation of component concentration, or for material 
discrimination. However, due to the high dimension of spectral data (hundreds of variables), 
classical multivariate regression or discrimination tools are not directly usable, and a first 
step of dimension reduction is generally required. In this context, the Partial-Least-Square 
(PLS) has become a very commonly used tool, thanks to its ability to determinate a pertinent 
subspace, called scores subspace, for a given regression problem. Unlike other dimension 
reduction methods, the PLS takes into account the covariance of both inputs and outputs to 
determine this scores subspace. To find the score subspace, PLS iteratively find the Latent 
Variables (LV) that produce the best trade-off between the explanation of the input, the 
explanation of the output, and the relation between the input and the output.  

Then, both input and output are projected onto the formerly found LV and a new iteration 
begins. The number of iterations (the number of latent variables) is determined empirically 
using the V-shape of the Root Mean Square Error of Validation (RMSEV) described below.  

Finally, a LDA is performed on the LV. This LDA consist in finding the linear subspace that 
allow the easiest discrimination. The well known solution to this problem is the subspace that 
maximise the variance between the classes and minimise the variance within the classes.  

Calibration/Validation phase 

During this phase, we want to figure out how many LV we need to keep for the model. To this 
purpose, we create a model using the variables in the calibration set. This procedure 
consists in creating models, with an increasing number of LV, using the calibration set. 
Applying these models on the validation set allows a computation of the RMSEV. The 
RMSEV is calculated by comparing the real valY  of the validation set with the estimated valŶ  
given by the model. Plotting this error for an increasing number of LV gives the commonly 
used V-shaped curve of RMSEV. The lowest RMSEV gives an estimation for the number of 
LV to keep. Another interesting plot present in Fig. 2 is the Root Mean Square Error of 

Calibration (RMSEC). This RMSEC is calculated by comparing calY  and calŶ , where the 
latter represent the results testing the calibration model directly on the calibration data. 

Test phase 

Applying this model on the independent test set allows the calculation of the Root Mean 
Square Error of Prediction (RMSEP). This RMSEP is the most reliable measure of prediction 
for this kind of model.  
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3. Results and discussion 

3.1. Model calibration/validation 

In order to illustrate the classification procedure, the RMSEC and the RMSEV curves are 
plotted in Fig. 2, for 1 to 20 LV. According to this plot, 7 LV are chosen for the PLS-LDA 
model.  

In Table 2 the resulting confusion matrix of the validation. As it could be expected, the best 
membership estimation is obtained for the soil, which is spectrally very different from 
vegetation. The classification performances are good, with a global error rate of 8.4% and a 
maximal error of 11%. 

 
TABLE 2: Confusion matrix of validation  

 Classified as wheat Classified as weed Classified as soil 

Wheat 177 (88.5%) 22 (11%) 1 (0.5%) 

Weed 16 (10.7%) 132 (88%) 2 (1.3%) 

Soil 1 (0.6%) 0 149 (99.3%) 

 
3.2. Model test 

Then, applying this model onto the test set testX  and calculating the confusion matrix gives 
the results presented on Table 3. From these results, the global error of prediction is 7.9% 
which correspond to the global error during the validation. However, the maximal error is 
slightly superior with 14.6% of misclassified weed pixels.   

 
TABLE 3: Confusion matrix of prediction  

Classified as \ real Classified as wheat Classified as weed Classified as soil 

Wheat 293 (91.6%) 26 (8.1%) 1 (0.3%) 

Weed 35 (14.6%) 205 (85.4%) 0 

Soil 0 1 (0.4%) 239 (99.6%) 

 
This test set validation confirms the robustness of the model created with a totally 
independent calibration test. Also, since images have been taken with a high difference of 
illumination, at different times and over two different years, we have a good chance that the 
model we produced will still be robust for the next season.  

 

4. Conclusion 

The results obtained above show the potential of detailed spectral information to discriminate 
vegetation species, provided the influence of lighting variability has been overcome using a 
reference material, and provided efficient chemometric tools such are PLS-LDA are utilised. 
However, despite the robustness, the classification errors are still important, due to the 
variability of the images taken at different time, different parcels and over two different years.  

Moreover, the high number of required latent variables indicates that very tiny differences in 
the spectral shapes are taken into account to achieve an accurate discrimination. 

The following step will be to evaluate the possibility of introducing spatial constraints to help 
the discrimination stage. Also, reducing the number of required bands, e.g. through a 
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detailed study of the latent variable shapes would open the door to an operational device 
based on multispectral image acquisition. 

 
FIGURE 2: Red : Root Mean Square Error of Validation, Blue : Root Mean Square Error of 

Calibration, for 1 to 20 Latent Variables 
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