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GAUSSIAN TYPE BOUNDS FOR THE NEUMANN-GREEN FUNCTION OF A
GENERAL PARABOLIC OPERATOR

MOURAD CHOULLI AND LAURENT KAYSER

ABSTRACT. Based on the fact that the Neumann-Green function can be constructed as a perturbation of the
fundamental solution by a single-layer potential, we establish a gaussian lower bound and a gaussian type
upper bound for the Neumann-Green function for a general parabolic operator. We build our analysis on
old tools coming from the construction of a fundamental solution of a general parabolic operator by means
of the so-called parametrix method. At the same time we provide a simple proof for the gaussian two-sided
bounds for the fundamental solution.

Key words : parabolic operator, fundamental solution, Neumann-Green function, parametrix, heat kernel.

Mathematics subject classification 2010 : 65M80

CONTENTS
1. Introduction 1
2. The parametrix method revisited 3
3. Gaussian lower bound for the Neumann-Green function 6
4. Gaussian type upper bound for the Neumann-Green function 11
References 13

1. INTRODUCTION

Let Q be a bounded domain of R” with C1*-boundary, where 0 < o < 1. Let to < t1, set Q = Q x (to,t1)
and consider the second order differential operator
L= aij(x,t)afj + bi(z, )0 + c(x,t) — Oy
Here and henceforth we use the usual Einstein’s summation convention.

We make the following assumptions on the coefficients of L:
(i) the matrix (a;;(z,t)) is symmetric for any (z,t) € Q,
(ii) a; € WH(Q), by, ¢ € C([to, 1], C*(2)),
(i11) aij(2)&&5 > MEP, (z,t) €Q, £ ER™,
(iv) lagjllwr.o (@) + bkl L= (@) + el (@) < 4,
where A > 0 and A > 0 are two given constants.

Since we will use the fundamental solution in the whole space, we begin by extending the coefficients of L
in a neighborhood Q of O to coefficients having the same regularity. We observe that this is possible in view
of the regularity of 2. For simplicity we keep the same symbols for the extended coefficients. We may also
assume that the ellipticity condition holds for the extended coefficients with the same \. Pick ¢ € C§°(€)
satisfying 0 < 1 < 1 and 1) = 1 in a neighborhood of . We set

Aij = agh + N0 (1 — ), by =bpyp, E=cp
1
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and
L =@ (2, )02 + bi(a, )0y + &z, t) — 0.

Clearly the coefficients of L satisfy the same assumptions as those of L. So in the sequel we will use the
same symbol L for L or its extension L.

We are interested in gaussian two-sided bounds for the Neumann-Green function associated to the operator
L. More specifically, denoting by G the Neumann-Green function for L, we want to prove an estimate of the
form

lz—¢|2

Ot =) 72e 5 < Glatigm) < (Ot - 7)) /%€

le—g|?
= (o€ ) € QPN {t > T},
where the constants C' and C depend only on 2, tg, t; and A.

We succeed in proving that the above gaussian lower bound holds true. But we are only able to prove an
upper bound which is weaker than a gaussian upper bound. Namely we prove an upper bound of the form:

Clz—¢|2

(=)' 4]z —€E)G(a,t,&7) < [Clt—7)] e, (z,t:67) €Q* t>T.

for some constant C' that can depend only on €, tg, t; and A.

It is an open problem to know whether the gaussian upper bound is true for a general smooth bounded
domain 2. We will see in Section 4 how the two-sided gaussian bounds, for the Neumann-Green function,
can be obtained in a straightforward way from the gaussian two-sided bounds for the fundamental solution
when (2 is a half space.

To our knowledge these kind of gaussian estimates have never been established before. The situation
is completely different for the Dirichlet-Green function since this later vanishes on the boundary. One
can prove in a straightforward manner, with the help of the maximum principle, that the Dirichlet-Green
function is non negative and dominated pointwise by the fundamental solution and so it has a gaussian upper
bound. Aronson [Ar2] (Theorem 8 in page 670)* get an interior gaussian lower bound for the Dirichlet-Green
function. Later Cho [Ch], Cho, Kim and Park [CKP] extended this result to a global weighted gaussian
bounds involving the distance to the boundary.

When L has time-independent coefficients a fundamental solution or a Green function is reduced to a
heat kernel. We mention that there is a wide literature dealing with gaussian bounds for heat kernels. We
quote the following classical books: [Dal, [Gr], [Ou] [Sa], [St], but of course there are many other references
on the subject.

As we said in the summary, the main ingredient in our analysis relies on the classical construction of the
fundamental solution by the so-called parametrix method. We revisit this construction in the next section
and we derive from it the gaussian two-sided bounds for the fundamental solution. Special attention is paid
to the dependence of the gaussian upper bound on the lower order coefficients of L. This dependence will
be in the heart of the proof of the gaussian type upper bound for the Neumann-Green function since we
will conjugate L with e?, for some function 1) appropriately chosen. This is a classical argument to derive
a gaussian upper bound from a Nash upper bound. Note however that this argument is not enough to get
a gaussian upper bound for the Neumann-Green function. In our case we need to conjugate again with a
special function together with a maximum principle argument in order to get a gaussian type upper bound.
This is done in Section 4. Before, we prove in Section 3 a gaussian lower bound for the Neumann-Green
function. To do so, we construct the Neumann-Green function as a perturbation of the fundamental solution
by a single-layer potential. The gaussian lower bound is derived from an estimate for the kernel of the
single-layer potential which is the key point in the proof.

et us observe that Theorem 8 in page 670 of [Ar2] can be used to extend the results of Section 3 of [FS] to a general
parabolic operator. In other words, one can obtain a proof of a continuity theorem by Nash [Na] and the Moser’s Harnack
inequality [Mo] for a general parabolic operator, which is based on the two-sided gaussian bounds for the fundamental solution.
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2. THE PARAMETRIX METHOD REVISITED

This section is concerned with gaussian two-sided bounds for the fundamental solution. For a systematic
study of the fundamental solution we refer to the classical monographs by A. Friedman [Fr] and O. A.
Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’tzeva [LSU].

In the sequel P =R" x (to,t1).

We recall that a fundamental solution of Lu = 0 in P is a function E(z,t; £, 7) which is C*1 in P?N{t > 7},
satisfies

E(-,+&7)=0inR" x {7 <t <t1}, for any ({,7) € R™ x [to, 1]
and, for any f € Co(R™) 2,

}{g BE(z,t;6,7)f(§)d¢ = f(x), v €R".

The construction of a fundamental solution by the so-called parametrix method was initiated by E. E.
Levi [Le]. Let a = (a) be the inverse matrix of (a;;), |a| the determinant of a and

Z(z,t;¢,7) = [An(t — 7)] "/2\/76 %W, (z,t:¢,7) € PPN {t> 1}
This function is called the parametrix. It satisfies
LoZ(-,,&,7)=0inR" x {7 <t <t} for any (§,7) € R" X [to, t1],
where
(2.1) Ly = a;; (&, T)@fj — 0.

In the parametrix method we seek E, a fundamental solution of Lu = 0 in P, of the form

(2.2) Ea,t:6,7) = Z(, t:€,7) / / (2, t;17, 0)B(n, 03 €, 7)dndo,

where @ is to be determined in order to satisfy LE(-,-;&,7) = 0 for any (£,7) € R™ X [to, t1].
Following Formulas (4.4) and (4.5) in page 14 of [Fr], ® is given by the series

P = i Dy,
=1

where @4 (x,t;€,7) = LZ(x,t;€,7) and

t
(I)€+1(x7t;€77-) = / / ‘1)1(3U7t;7770)‘1)@(77705577')d77d0, f Z 1.

Here for simplicity we write LZ(x,t; &, 7) instead of [LZ(-,-, &, 7)](x,1).
Let d;, 1 <4 <n, given by

a’ (&, 7)(x; — &)

. 2
Q(t—T) ) (x,t,é,T)EP ﬁ{t>7‘}.

d’i = d’b(xvtagv’r) = -

Then L
()
0.7 =diZ, %7 = |- 5T 4 q.4,| Z.
G { 207 }
Therefore, taking into account (2.1), we get
a’ (& 7)
LZ =L7Z — L0Z = (aij(z,t) — aij(é,T)) *m + djdZ + bkdk +c Z.

20ne can take a larger class of functions. Namely a class of continuous functions satisfying a certain growth condition at
infinity (e.g. formulas (6.1) and (6.2) in page 22 of [Fr]).
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We write LZ = VZ, where

U = (ai;(z,t) —ay(§,7)) |- 2( a(&,T ;erd + bpdy + c.
Let
M = H}%XHainWL“(Q)v N = max(max [|be[| L~ (@). llell (@), 1)-
Since
|di| < M,
t—1T1

|aij(z,t) —aij(§,7)| < M(|lz =&+t —7),
we have
(23) W, t56,7) < N—— P('zﬂ).

Vi—1 \Vt—1

Here P is a polynomial function of degree less or equal to three whose coefficients depend only on M.
Unless otherwise stated, all the constants we use now do not depend on N.
In light of (2.3) we obtain

ILZ| < CN(t — 1)~ (/2 p()e=M/DInl* = ON(t — 7)~(+D/2 {P(n)e—(k/fﬁ)lnlz} e~ (A/8)nl*

with
,o =
N

But the function p € (0, +00) — P(p)e_(k/s)”2 is bounded. Consequently, where \* = \/8,

~ *lp— 2
(2.4) 1@y (2, 15, 7)| = |LZ(x, t:€,7)| < NO(t — 7)~(FD/2e= 5
The following lemma will be useful in the sequel. Its proof is given in page 15 of [Fr].

Lemma 2.1. Let ¢ >0 and —oco < 7,8 <n/2+ 1. Then
t c\a:fn\2 cln— §\
// (t—o) Ve o (0 —71)Pe” o7 dndo
_clegl?

A n/2
- <?) B(n/277+17n/2iﬂ+1)(t )n/2+1 ’Y ﬁ N )

where B is the usual beta function.

We want to show
-1

(2.5) |o(z,1:€,7)| < (NOY O (¢ — 7))~ 202 ] B(1/2,5/2)e”

j=1

\I 5\

L 0>2.

Here C is the same constant as in (2.4) and C = ( )n/Q
As

o2, t:6,7) // (2,651, 0)®1 (1, 03 €, 7)dndo,

estimate (2.4) and Lemma 2.1 with v = 5 = n/2+ 1 show that (2.5) holds true with ¢ = 2. The general case
follows by an induction argument in £. Indeed, using

q)l+1 €Z, t; 55 / / :C t; 31,0 ‘1)2(77,(7 55 )dnda

(2.4), (2.5) for £ and Lemma 2.1 with y =n/2+ 1 and 8 = (n + 2 — £)/2, we obtain easily that (2.5) holds
true with £ 4 1 in place of £.
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If T' is the usual gamma function, we recall that

BO/24/D = T
Therefore
20 ji3<1/z,j/2> ru_ v
(2.4)-(2.6) entail that
(2.7) B(2, 16, 7)) < S @l 156,7)] < C(1+ 8)(t — 1) (rHD/2e= 5
=

with
s=3" [ON(t - T)WY JT(¢/2).
>1
We have I'(¢/2) =T (m) = (m —1)1if £ =2m and T'(¢/2) =T'(m +1/2) > T'(m) = (m — 1)1 if £ = 2m + 1.
Then

s=3 [CN(t - 7)1/2}27" /T(m)+ Y [CN(t - 7)1/2}2m+1 JT(2m +1/2)

m>1 m>0
2m—+1

<y [C’N(th)l/Qrm/(mf D!+ ON(E -2+ [CN(th)l/ﬂ J(m — 1)\,

m>1 m>1
Whence _
S < éeCNz(t_T).
Plugging this estimate into (2.7), we obtain
~ g — 2 ~ 2
(2.8) @ (2, t:€,7)] < C(t — )~ (D2 HON ),
With the help of Lemma 2.1, estimate (2.8) yields

t . o2 | oo
(2.9) / / Z(x,t;m,0)0(n,0;&,7)dndo| < C’(th)_("_l)pe*X = +CN (=),

We obtain as a consequence of this inequality

(2.10) B, t,€,7)] < Ot — 7)~"/2e= T EEHON ),
This estimate is essential when establishing the gaussian type upper bound for the Neumann-Green function.
In the rest of this section we forsake the explicit dependence on N. So the constants below may depend
on 2, \, A, tg and t;.
From (2.9) we deduce in a straightforward manner
(2.11) E(x,t:6,7) > C(t—7)"2, (@, t:6,7) P t>7, Cla—¢P <t—r

By Theorem 11 in page 44 of [Fr], E is positive. Moreover E satisfies the following identity, usually called
the reproducing property,

(2.12) Bla,t:6,7) = / E(a,t:,0)E(n,056,7)dn, 2,6 €R, tg<r<o<t<t.

We can now paraphrase the proof of Theorem 2.7 in page 334 of [FS] to get the gaussian lower bound for E.
We sum up our analysis in the following theorem.

Theorem 2.1. The fundamental solution E satisfies the gaussian two-sided bounds:

(2.13)  [C(t — )] "2 O < Bl tig, ) < (Ot — 1)) 2 C

lz—g|2
t—T1

, (2, t,8,7) e P?x {t >}
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Remark 2.1. Let us observe that the proof of Theorem 2.1 presented here is elementary in comparison with
that given in [F'S] for proving the gaussian two-sided bounds for the operator 9;(a;;(z,t)0d; - ) — 0y with (C>)
smooth coefficients. Of course, Theorem 2.1 applies the operators in divergence form. Note however that
the constants C' and C appearing in (2.13) do not depend on ty and ¢; in the gaussian two-sided bounds
established in [FS]. We mention that gaussian two-sided bounds were obtained by S. D. Eidel’'man and F.
O. Porper [EP] when the coefficients of L satisfy the uniform Dini condition with respect to 2. The main
tool in [EP] is a parabolic Harnack inequality. We refer also to [Arl], [Fal, [It] and [NS], where the reader
can find various results on bounds for the fundamental solution.

3. GAUSSIAN LOWER BOUND FOR THE NEUMANN-GREEN FUNCTION

The unit outward normal vector at x € 9 is denoted by v = v(z). Henceforth ¥ = 9 x (to, t1).

For 7 € [to, t1], set Qr = Q x (7,t1) and X, = 9Q x (7,t1). We consider the Neumann initial-boundary
value problem (IBVP in short) for the operator L:

Lu=0 in Qr,
(3.1) u(-,7) =1 inQ,
O,u=0 on X,.

From Theorem 2 in page 144 of [Fr] and its proof, for any ¢ € C§°(2), the IBVP (3.1) has a unique
solution u € C(Q,) N C%1(Q,) given by

t
(3.2) w(z, t) = / B(z,t;€,0)p(¢, 0)dédo + / E(a, t; €, 7)o (€)de.
T o0 Q
Here
t
(3.3) () = 2Pz, 1) +2 3 / M(x.t:€,0)F, (€, 0)dédo,
>177 o
with

Fo(a.t) = / Oy B, t: €, 7)(€) e

M; = 20,E,
t

M€+1($at;§a7-) = / Ml(xat;naU)Mé(naU;gaT)dndU'
T JOQ

Let, where (z,t) € ¥, and £ € Q,
t

N(z,t;¢,7) = 20, E(z,t;¢,7) +2) My(z,t;n,0)0,E(n, 0; &, 7)dndo.
>177 o0

Assume for the moment (see the proof below) that

(3.4) olat) = [ N tigrveds
We set
t
(3.5) Gla t,6,7) = / / E(a,t:,0)N(n, 036, 7)dndo + Bz, 1€, 7).
T oN

It follows from Fubini’s theorem that
(3.6) u(et) = [ Glotig (e

The function G is called the Neumann-Green function for Lu = 0 in Q.
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We have, for any 0 < ¢ € C5°(2), u > 0 according to the maximum principle (e.g. Theorem 2.9 and
remarks following it in page 15 of [Li]) ; whence G > 0. From the uniqueness of the solution of the IBVP
(3.1) we have also

/ Gz, t; &, 1)v(€)dE = / G(x,t,n,o)dn/ G(n,0,&,m)(€)d¢ for any ¢ € C°(Q), T < o < t.
Q Q Q
Therefore
(37) Glati&.n) = [ Glatino)Gln.o6r)dn, 7 <o <t
Q

That is G has the reproducing property.

Let us observe that, when ¢ = 0, G satisfies in addition
/ Gz, t; &, 1)dE = 1.
Q

We shall need the following key lemma for establishing the gaussian lower bound for G.
Lemma 3.1. For 1 —a/2 < pu <1, we have
(3.8) IN(z,6;£,7)| < C(t — 1) M|z =& ", (z,t) €5,, £€Q, z £ &

The lemma below appears in page 137 of [Fr] as Lemma 1. It is needed for proving Lemma 3.1.

Lemma 3.2. Let 0 < a,b<n—1. Then
(3.9) / & — =y — &by < Bl — 1040,
o0

Proof of Lemma 8.1. Let 1 — /2 < pu < 1 be given. From formula (2.12) in page 137 of [Fr], we have
|8, E(x,t;6,7)| < C(t — 1) H|a — g7 HiHEuta=2)
and then
(3.10) |My (2, t:€,7)| < C(t — 7)F|a — ¢TI+ Rrta=2)
Since t
| My (z,t;:€,7)| S/ /asz | My (z,t;n,0)||M1(n, o3&, 7)|dndo,

(3.10) leads
t

(3.11)  |Ma(z,t:€,7)] < C? /

T

(t—o)™"(r - 0)_“d0/ | TGO g g et Cite 2 gy
o0

Or from Lemma 3.2
(3.12) / |o — | Crtas2) e et Cutas2) gy < O)g — ¢TI 20ta—2)
[219)
On the other hand
t 1
(3.13) / (t — o) (1 — o) Hdo = (t — 1)~ H+HE=w / sTH —s)Pds = (t — 1) PFAH B — p, 1 — p).
T 0

We plug (3.12) and (3.13) into (3.11) ; we obtain
|My(z,t:€,7)| < C2C(t — 7)#H A=W B(1 — p, 1 — p)|a — &7 T1H2C@r+a=2)

Now an induction argument in ¢ yields

l
|MZ($; t7£, 7_)| < C@éf—l(t o T)—p—‘,—(é—l)(l—;,a) F(l — /j/) |$ _ 6|—n+1+€(2u+0¢—2)-

T —w))
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It follows from T'(4(1 — p)) > [€(1 — p)]! (here [-] is the entire part) that the series

“na—p DO =) _
0~ l— 1 (e—1)(1—p) _ l2pta—2)
S(w,t:6,7) ;cc - 7) L

converges uniformly in all its arguments. We complete the proof by noting that

N(z,t;&,7) = (t —7) " Ho — 7" S (2, €, 7).

Proof of (3.4). Let

k t
Nulati€7) =20, B, ti&r) +2 ) [ [ Mo, tin,0)0, En, 036, ryindo
>177 o
k t
ouant) =25 0) 423 [ [ Milatig,0)P¢ o)
>177 o0

In light of Lemma 3.2 and with the help Lebesgue’s dominated convergence theorem we can assert that

Ni(e, 16, ) (€)de —> /Q N, 66, 7Yb(E)dE as k —s +oc.

Q
Or according to Funini’s theorem

vz t) = /Q Nio, €, ) (E)dE.

But ¢ (x,t) — ¢(x,t) when k tends to infinity. Then the uniqueness of the limit yields

p(z,t) = | Nz, 8§ 7)Y(§)dE.

Q

We are now ready to prove

Theorem 3.1. The Green function G satisﬁes the gaussian lower bound:

($ l; 6) )a (iﬂat;f,T) €Q2m{t>7'}.

(3.14) (Ot — 7))/
Proof. Let
Go(x,t;&,7) / E(xz,t;n,0)N(n,0; &, 7)dédo.
Let 0 < 8 < 1 be fixed. From the gaussian uppeigbound for E we obtain in a straightforward way that
Bz, t:6,7)] < C(t — 7)o — g7,
This estimate together with (3.8) imply

Golx, t:€,7)| < C /

T

t

(=) o =)o [ e gy
<Ot —7) P lo— g7,
where we used Lemma 3.2. That is
(3.15) |Go(x,t;€,7)| < C(t —7)"M2F8](t — 7)Yz — €2 7/24+5,
But we already know from (2.11) that
E(z, t;6,7) > C(t —7)™™2, (x,t;€,7) € P%, t > T, a|z — P <t—.
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Hence
G(x,t;&,7) > Bz, 1;€,7) — |Go(2, ;€. 7))
>Ct—7)""20-Ct—7)""), t>7, Cla—¢P <t—T
Consequently,
Gz, t;&,7) > C(t — T)_"/2, (z,t;6,7) € Q% t >, 5'|ac P <t—T.
Or equivalently
(3.16) Gz, t:6,7) > Ct — 7)™, (2, t:;6,7) € Q t>T, o — € < Ct—1)Y/2

Since G > 0 and satisfies (3.7), we proceed as in the proof of Theorem 2.1 to get the gaussian lower bound for
G. Here we rewrite the arguments for the reader convenience. As 2 is connected, we find a path + : [0, 1] — Q
connecting = to £ which is piecewise constant. Let k be a positive integer and set y; = v(i/k), 0 < i < k.
Then it is not difficult to show that there exists a constant ¢ > 1 not depending on k such that

(3.17) v =yl < Tle—gl, 0<i<k-1.

Shortening if necessary the constant Cin (3.16), we make the assumption

(3.18) C(t —7)/? < Adist(v([0, 1]), 09).
When 2¢|z — ¢ < C(t — 7)Y/2 (implying JER C(t —1)Y/2), (3.14) follows immediately from (3.16).
Therefore we may assume that 2¢|lz — &| > C(t — 7)1/2. We choose m > 2 as the smallest integer satisfying
-yl _ &
2c 7 SC(t—T)l/Q.

Set x; = v(i/m), 0 <i <m, and

In light of the reproducing property and the positivity of G we obtain®

Gz, t;€,7) / / (mgl, _1)“7) ..G(WT_l)T,fm_l;«f,T)d§1...d£m_1

. (m=1t47 t+(m-—1)r _
(319) Z/B(th).../B(zm17T)G<$,t,§1,7m )G<7m 7§m1a§77) dfl...dgmfl.

Let &g = x and &,,, = £ ; we have

[z ¢

t2rsc ml/2

| — ¢ +2r <4r, 0<2<m-—1.
m

IEiv1 — &l < w1 — x| +2r <c
Whence

1/2
ot
|€i+1_§i|§0<—7) , 0<i<m-—1.
m

3Note that B(zi,r) C Q,1<i<m—1, as a consequence of (3.18)



10 MOURAD CHOULLI AND LAURENT KAYSER

It follows from (3.16) that

t—r —nm/2
G(,T,t;f,T)Z/ / cm (—) dgl---dgm—l
B(xy,r) B(xm—1,r) m

—nm/2
> w;n—lrn(m—l)cm (t — T)
m

~ n(m—1)/2

0_2 t—T ( )/ om t— 7\ "2
16 m m

> Com™(t— 1)~ V2,

where w,, is the measure of the unit ball of R™. In particular

> wm—l

— n

(3.20) Gz, t:6,7) > Ce ™ (t — 1) 1/2
Or from the definition of m we have
2¢\° |z — yf?
(3.21) m—1< (i) =y
C t—rT
Finally, a combination of (3.20) and (3.21) leads to (3.14). O

We mentioned previously that, when L has time-independent coefficients, the Neumann-Green function in
nothing else but the heat kernel associated to the semi-group generated by L under the Neumann boundary
condition.

To this end we assume that € is of class C? 4, ¢y = 0, t; = T and the coefficients of the operator L are
time-independent. In other words L is of the form

(3.22) L =a; (x)@fj + b (2)0k + c(x) — O
and the following assumption holds true:

(i') the matrix (a;;(x)) is symmetric for any = € Q,

(i) a;; € WH(Q), by, c € C*(Q),

(i43) ai; ()€€ > NEP, (2,t) €Q, € € R,

(") llaijllwroo ) + 1Bkl Lo ) + llell o) < A,

where A > 0 and A > 0 are two given constants.

Under the above mentioned assumptions, it is known (e.g. [Ou]) that the operator
Ap = aij(ac)afj + by(2)0k + c(x), with domain D(Ar) = {u € H*(Q); d,u = 0 on 90},
generates an analytic semi-group ¢4~ on L%(Q).
Let ¢ € C§°(9). Since u(t) = et is the solution of the IBVP (3.1),

ety = [ Gz, t:€,0)0(6)dE, 0 <t <T.
Q

We rewrite this equality as follows:

¢ = [ K6 o€, 0 <t <.
Q

4This assumption is not really necessary, we make it just because in this case the domain of the operator Ay below is a
subset of H2(Q) and therefore the normal derivative of an element of D(Af) exists in the usual trace sense.
5Notice that A, can be rewritten as an operator in divergence form simply by observing that

aj ()87 = 8j(aij(2)9;-) — djaij(x)d;.
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The function
K(z,8,t) = G(z,1;€,0).
is usually called the heat kernel of the semi-group e*4r.

A straightforward consequence of Theorems 3.1 is

Corollary 3.1. The Neumann heat kernel K satisfies the gaussian lower bound:

(3.23) (Ct)y™/2e~

Clz

a2
“E < K(n,61), (2,6 e 0<t<T.

The gaussian lower bound for the Neumann heat kernel was proved in [COY] when L is the laplacien. A
quick examination of the proof show that this result can be extended to an operator of the form (3.22) with
C*>°-smooth coefficients. The key point is the Hélder continuity of 2 — K (x, &, t) which relies on the fact
that u — Ay is an isomorphism from H*(Q) into H*~2(f2), for some large y and s of order n/2 + 1. This
explain why the approach in [COY] can not be used to extend the lower gaussian bound for operators with
less smooth coefficients.

4. GAUSSIAN TYPE UPPER BOUND FOR THE NEUMANN-GREEN FUNCTION

In this section,  is assumed to be of class C%.

We start with the so-called Nash upper bound.

Lemma 4.1. The Green function G satisfies the Nash upper bound:

(4.1) Gla,t:6,7) <Ct—7) "2, (2,t:6,7) € Q* t> .
Proof. From the preceding proof we have, for any 0 < g < 1,

(4.2) G(,t:€,7) < Ot —7) Pl — g7

Or by (3.7) (reproducing property)

(4.3) Gz, t;y,7) = /Q Gz, t,&, (t —1)/2)G(&, (t —7)/2,y,T)dE.

In light of the inequality in Lemma 2 in page 14 of [Fr]®, it follows from (4.2) and (4.3)
Glo16,7) S Ct = 1) |w — g 720,
We find by repeating this argument k-times
(44) Glo,1:6,7) < Ot — 7)™z — g 7HED.
Let k be the smallest integer satisfying n < 2k. Then the choice § = n/(2k) in (4.4) gives (4.1). O

Let ¢ € R™ and set [V]oc = [[|V|[[oc. As §2 is of class C?2, we obtain from Lemma 3.1 in [Cho] that there
exists . € C**(Q) having the properties

(4.5) Oc>1, O:=10n9Q, —0,0c> |v|s|C|on 0.
Moreover examining the proof of Lemma 3.1 in [Cho] we obtain in a straightforward manner that
(4.6) 10i0c|, 10:50¢| < ol
where ¢ is a constant independent on (.
We now conjugate L by eC‘”H‘KK'thg, where K is a constant to be specified later. To this end we consider

¢ = e—C'w—KIClzttgg1LeC'CE+K\C\2t9<_

6Let 0 < a, B < n. Then there exists a positive constant C' such that for any (x,¢) € Q2, 2 # &, we have

[l —ePan < Cle—g" =" ifa+ 5> and [ o= ol *ln—€Pdn < Cita+p<n
Q Q
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An elementary calculation gives LS = LS + ¢¢ with
LS = ;0% + bp0y + 20k (G + 071 010¢) 0 + b (G + 07 ' 0mbc) + ¢+ 07 ai;020¢ — 0,
and
= apgCpCy + 207 'ai; (00 — K|¢[*.
In light of (4.5) and (4.6) we can choose K, independent on ¢, such that ¢¢ < 0 for any ¢ € R™.

Let 0 < ¢ € C§°(2) and u the corresponding solution of the IBVP (3.1). Then v = e*C'I*KK'ZtHC_lu
solves the following IBVP
Lv =0 in Qr,
(4.7) v(-,7) = e’C'z’KKPT@Eld) in Q,
v+ (C-v+0,0c)v=0 onX,.
Next, let ¥ be the solution of the IBVP

246 =0 in Q,
(4.8) (-, 7) = e_C‘m—K\CPTHElz/J in Q,
0,0 = on X,.
Since v > 0,
Lé(v =) = —cSv >0 in Q-,
(v=0)(,7)=0 in ©,

The last inequality is obtained from the third inequality in (4.5). We invoke Theorem 2.9 [Li] to deduce that
v < .

Let E¢ and GS be respectively the fundamental solution and the Neumann-Green function corresponding
to LS. Tt follows from estimate (2.10) that

B, t:6,7) < Ot — 1)/ 2e > E 00 ),
A slight modification of the proofs of Lemmas 3.1 and 4.1 leads to the following Nash upper bound for G¢:
(4.9) G, t;6,7) < Ot — T)7"/266(”‘““('2)(“7).
Therefore, for any 0 < ¢ € C°(Q),

T (e ) = v(e0) < | GGt e RO €

Or
uwt) = [ Glate e
2
Whence
2, = 2
G(a,t,6,7) < e HRIVEGS (2, 46, 7)e S HITT0. ()01 (£).
This and (4.9) imply
(4.10) Gla,t,&,7) < C(t — 7.)—n/2e<‘(w—£)+5(1+\<\+|<|2)(t—f)9<(x)gc—l(,5)
and then -
G(z,t,€,7) < C|C|(t — 7)"/2eS @=OFCAFICHIC) (E=7)
Taking ¢ = (€ —x)/[2C(t — 7)] in the last estimate we get the following result.

Theorem 4.1. The Neumann-Green function satisfies the upper bound:

Clz—¢|2

(=)' + ]z —€)G(a,t,&7) < [Clt— 7)™, (z,6:67) €Q* t>T.
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Remark 4.1. 1) Returning to the proof of Lemma 3.1 in [Chol, we prove that for any compact subset K of
() there exists C'k such that

|9<($)951(€)| <Cg, v€Q, £ € K and ¢ € R".
We derive from (4.10) the following gaussian upper bound

Clz—¢|2

G(z,1,6,7) < Cr(t—7)""2e ==, (2,6;&,7) €Q*N{€ e K, t > T}

2) The construction of the Neumann-Green function is quite simple when € is a half space, say
Q=R"! ={z=(2/,2,) € R" " xR; z,, > 0}.

Assume for simplicity that the original coefficients of L satisfy assumptions (i)-(iv) in the whole space R™
and set

1
Gz, t;&,71) = 5 [E(x,t:€,7) + E(2®,t;¢,7)], x, £ €RY, 7.t € (to, 1), 7 <1,

where z° = (o', —x,,) if © = (2, x,,).
It is not hard to check that G is the Neumann-Green function for L in R”} x (to,?1). In addition observing

that |z —&| < |2° — ¢ for any z,£ € R, we see the gaussian two-sided bounds for £ yield the gaussian
two-sided bounds for G.

For 1 < p,q < oo, let || - ||p,q denotes the norm in L9(tg,t1; LP(£2)). We have similarly to Corollary 7.1 in
page 668 of [Ar2] the following result which is a direct consequence of the upper bound in Theorem 4.1.

Corollary 4.1. Let 1 < p,q < oo be such that
2
DiZcn
p q
Then
1G(@,t5 0 Mlpras 1GC 58Ty <O,

where p', q' are the respective Holder conjugate exponents of p and q.
Let f € C§°(Q~) and p, ¢ be as in the previous lemma. Then the solution of the following BVP

LU:f inQTa
u(,7) =0 inQ,
O,u=20 on X,

can be represented by the formula

t
ue) = [ [ Glati npenaar
T JQ
In light of this formula we have the following immediate consequence of Corollary 4.1:

[elloo,c0 < Cllfllp.a-
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