É Janvresse 
email: elise.janvresse@univ-rouen.fr
  
A A Prikhod'ko 
  
T De 
  
L A Rue 
  
V V Ryzhikov 
  
WEAK LIMITS OF POWERS OF CHACON'S AUTOMORPHISM

We completely describe the weak closure of the powers of the Koopman operator associated to Chacon's classical automorphism. We show that weak limits of these powers are the ortho-projector to constants and an explicit family of polynomials. As a consequence, we answer negatively the question of α-weak mixing for Chacon's automorphism.

Introduction

The classical version of Chacon's automorphism, which is the main subject of the present work, was described by Friedman in [START_REF] Friedman | Introduction to ergodic theory[END_REF]. It is a famous example of a rank-one automorphism, for which we recall briefly the construction by cutting and stacking: We start with a Rokhlin tower of height h 0 := 1, called Tower 0. At step n, Tower n-1 (of height h n-1 ) is cut into 3 sub-columns, a spacer is inserted above the middle column before stacking all parts to get Tower n, of height h n = 3h n-1 + 1. This transformation, denoted hereafter by T and acting on a standard Borel probability space (X, A , µ), is known to present an interesting combination of ergodic and spectral properties. It is weakly mixing but not strongly mixing (see [START_REF] Chacon | Weakly mixing transformations which are not strongly mixing[END_REF], where the historical version of Chacon's automorphism is constructed with only 2 subcolumns, but whose arguments also apply in the classical case). Del Junco proved in [START_REF] Del | A simple measure-preserving transformation with trivial centralizer[END_REF] that T has trivial centralizer, then improved this result by showing with Rahe and Swanson that it has minimal self-joinings [START_REF] Del Junco | Chacon's automorphism has minimal self-joinings[END_REF]. The second and fourth author proved in [START_REF] Prikhod | Disjointness of the convolutions for Chacon's automorphism[END_REF] that the convolution powers of its maximal spectral type are pairwise mutually singular. Their method involves the identification, in the weak closure of the powers of the associated Koopman operator T , of an infinite family of polynomials in T .

An automorphism S is said to be α-weakly mixing (for some 0 ≤ α ≤ 1) if there exists a sequence (k j ) of integers such that Ŝkj converges weakly to αΘ + (1 -α) Id, where Θ is the ortho-projector to constants. The disjointness of the convolution powers is automatically satisfied in the case of α-weakly mixing transformations with 0 < α < 1 (see Katok [START_REF] Katok | Combinatorial constructions in ergodic theory and dynamics[END_REF] and Stepin [START_REF] Stepin | Spectral properties of generic dynamical systems[END_REF]). This property has been applied for numerous counterexamples in ergodic theory [START_REF] Del | Generic spectral properties of measure-preserving maps and applications[END_REF]. The question of α-weak mixing for Chacon's automorphism is a special case of a general problem to tell which operators can be obtained as weak limits of powers of T . For a recent application of weak limits of powers of the Koopman operator, see [START_REF] El Abdalaoui | On spectral disjointness of powers for rank-one transformations and möbius orthogonality[END_REF]. Examples of transformations with non-trivial explicit weak closure of powers are given in [START_REF] Ryzhikov | Minimal self-joinings, bounded constructions, and weak closure of ergodic actions[END_REF].

The purpose of the present paper is to completely describe the weak closure

L := WCl({ T -k , k ∈ Z}) = lim j→∞ T -kj for a sequence of integers (k j ) .
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of the powers of T . Our main result, Theorem 5.1, states that L is reduced to Θ and an explicit family of polynomials in T . Our result implies in particular that T is not α-weakly mixing for any 0 < α < 1. Note that partial results in the description of L have also been given by Ageev [START_REF] Ageev | On asymmetry of the future and the past for limit self-joinings[END_REF] who gave all polynomials in T of degree at most 1 in L .

An essential ingredient in our description of L is the identification of particular weak limits, along the sequences (mh n ) n≥1 , where h n is the height of the n-th tower in the cutting-and-stacking construction. As observed in [START_REF]Several questions and hypotheses concerning the limit polynomials for chacon transformation[END_REF], these weak limits are given by a family of polynomials (P m ( T )). In Section 2, we give a definition of these polynomials P m based on the representation of T as an integral automorphism over the 3-adic odometer (this representation was already used in [START_REF] Prikhod | Disjointness of the convolutions for Chacon's automorphism[END_REF]). We provide inductive formulas for these polynomials in Section 3. These formulas enable us to derive useful results about the asymptotic behavior of their coefficients (Section 4). Then, by expanding the integers (k j ) along the heights (h n ), we prove that if the weak limit of T -kj is not Θ, then it can be factorized by some polynomial P m ( T ) (Proposition 5.6).

Representation of Chacon's automorphism as integral

automorphisms over the 3-adic odometer 2.1. Definition of the polynomials P m in the 3-adic group. Consider the compact group of 3-adic numbers

Γ := Z 3 = x = (x 0 , x 1 , x 2 , . . . ), x k ∈ {0, 1, 2} .
We denote by λ the Haar measure on Γ: Under λ, the coordinates (x k ) k are i.i.d., uniformly distributed in {0, 1, 2}. We introduce two λ-preserving transformations on Γ:

• The shift-map σ : x = (x 0 , x 1 , . . . ) ∈ Γ → σx = (x 1 , x 2 , . . . ) ∈ Γ.

• The adding-machine transformation S : x ∈ Γ → x + 1 ∈ Γ, where 1 ∈ Γ is identified with the sequence (1, 0, 0, . . . ). (In general, each integer j is identified with an element of Γ, so that S j x = x + j for all j ∈ Z and all x ∈ Γ.)

We define the cocycle φ : Γ \ {(2, 2, . . . )} → Z, where φ(x) is the first coordinate of x which is different from 2:

φ(x) := 0 if x = 2 . . . 20 * 1 if x = 2 . . . 21 * .
We set φ (0) (x) := 0 and for m ≥ 1,

φ (m) (x) := φ(x) + φ(Sx) + • • • + φ(S m-1 x).
Let us define π m as the probability distribution of φ (m) on Z: π m (j) := λ(φ (m) = j), and the polynomial P m by

P m (X) := E λ X φ (m) = m j=0 π m (j)X j .
Note that the degree of P m is strictly less than m as soon as m > 2.

2.2. Integral automorphisms over the 3-adic odometer. We will make use of the following representations of Chacon's automorphism. For each n ≥ 0, we define We consider the transformation T n of X n , defined by

X n := {(x, i) : x ∈ Γ, 0 ≤ i ≤ h n -1 + φ(x)} (see Figure 1). Γ X n 0 1 . . . h n -1 0 * 1 * 20 * 21 * . . .
T n (x, i) := (x, i + 1) if i + 1 ≤ h n -1 + φ(x) (Sx, 0) if i = h n -1 + φ(x).
Let us introduce the map ψ n : X n → X n+1 defined by

ψ n (x, i) := (σx, x 0 h n + i + ½ x0=2 ).
Observe that ψ n is bijective. Moreover, it conjugates the transformations T n and T n+1 . We consider the probability measure µ n on X n : For a fixed i and a set A ⊂ {(x, i), x ∈ Γ},

µ n (A) := 1 h n + 1/2 λ ({x ∈ Γ, (x, i) ∈ A}) .
The transformation T n preserves µ n and the map ψ n sends µ n to µ n+1 . It follows that all the measure-preserving dynamical systems (X n , T n , µ n ) are isomorphic. For 0

≤ i ≤ h n -1, we set E n,i := {(x, i) : x ∈ Γ} ⊂ X n . We have E n,i = T i n E n,0 , hence
{E n,0 , . . . , E n,hn-1 } is a Rokhlin tower of height h n for T n . Moreover, for any n ≥ 0, and any 0

≤ i ≤ h n -1, ψ n (E n,i ) = E n+1,i ⊔ E n+1,hn+i ⊔ E n+1,2hn+i+1
. Fix n 0 . By composition of the isomorphisms (ψ n ), we can view all these Rokhlin towers inside X n0 . The above formula shows that the towers are embedded in the same way as the towers of Chacon's automorphism. Therefore, (X n0 , µ n0 , T n0 ) is isomorphic to (X, µ, T ).

Weak limits along subsequences (mh

n ) n≥1 . Lemma 2.1. Let m ≥ 1 and u ≥ 0 be fixed integers. Then sup A,B µ T mhn+u B ∩ A - i∈Z π m (i + u) µ T -i B ∩ A ----→ n→∞ 0.
where the supremum is taken over any sets A and B which are union of levels of Tower n.

Proof. We may identify (X, µ, T ) with (X n , µ n , T n ) and the level j of Tower n with

E n,j = {(x, j) : x ∈ Γ} ⊂ X n . Assume that A = E n,k for 0 ≤ k ≤ h n -1 and B = E n,j for m ≤ j ≤ h n -1 . We have T mhn B = T mhn E n,j = (S m x, j -φ (m) (x)), x ∈ Γ .
Then, viewed in X n ,

T mhn B ∩ A = S m x ∈ Γ : φ (m) (x) = j -k × {k},
and µ T mhn B ∩ A = λ φ (m) = j -k µ(E n,k ) = π m (j -k)µ(E n,k ). Moreover, µ T -i B ∩ A = µ(E n,k ) if k = j -i, and zero otherwise. We obtain that µ T mhn B ∩ A = i∈Z π m (i) µ T -i B ∩ A .
By additivity of the measure µ, the above equality remains true if A is a union of levels of Tower n, and if B is a union of levels j ≥ m of Tower n. Finally, removing the restriction on the levels in B, we have

µ T mhn B ∩ A - i∈Z π m (i) µ T -i B ∩ A ≤ 2m µ(E n,0 ) ----→ n→∞ 0.
This proves the lemma for u = 0. For an arbitrary u, we apply this result to the part of T u B which remains in the n-th tower. We get an extra error term of order |u| µ(E n,0 ).

As a direct consequence of Lemma 2.1, we recover the result from [10]:

Theorem 2.2. For any m ≥ 1, we have the weak convergence

T -mhn = P m ( T ).

Recurrence formulas for

P m 3.1. Description of the sequence (φ(S j x)) j∈Z . Let x ∈ Γ \ {(2, 2, . . . )}. We say that order(x) = k ≥ 0 if x 0 = • • • = x k-1 = 2 and x k = 2.
Since the first digit in the sequence (. . . , x -1, x, x + 1, . . . ) follows a periodic pattern . . . 012012012 . . . , the contribution of points of order 0 in the sequence (φ(S j x)) j∈Z provides a periodic sequence of blocks 01 separated by one symbol given by a point of higher order (see Figure 2). To fill in the missing symbols corresponding to positions j such that order(x + j) ≥ 1, we observe that, if x starts with a 2, then for all j ∈ Z,

φ(x + 3j) = φ(σx + j).
Hence the missing symbols are given by the sequence (φ(S j σx)) j∈Z . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 ← contribution of order 0 0 1 . 0 1 ← contribution of order 1 0 ← higher orders 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 ← the whole sequence Proof. This is an easy consequence of the above construction of the sequence (φ(S j x)) j∈Z and the fact that σ preserves the measure λ.

Lemma 3.2. The coefficients of the polynomial P m are symmetrical: For all 0 ≤ j ≤ m, π m (j) = π m (m -j).

Proof. The coefficient π m (m -j) is equal to the probability to see (m -j) digits equal to 1 when looking at m consecutive terms of the sequence (φ(S j x)) j∈Z . Thus, π m (m -j) is also equal to the probability to see j digits equal to 0 when looking at m consecutive terms. Using Lemma 3.1, we conclude that π m (m -j) = π m (j).

3.2.

Recurrence formulas for P m . Theorem 3.3. For all m ≥ 0,

P 3m (X) = X m P m (X); P 3m+1 (X) = 1 3 X m (1 + X)P m (X) + P m+1 (X) ; P 3m+2 (X) = 1 3 X m XP m (X) + (1 + X)P m+1 (X) .
Proof. Let x ∈ Γ \ {(2, 2, . . . )}. In the computation of φ (3m) (x), the contribution of the 2m points x + j (0 ≤ j ≤ 3m -1) of order 0 is always m. Because of the structure of the sequence φ(S j x) j∈Z described in section 3.1, the contribution of the other m points is φ (m) (σx). Hence,

(2)

φ (3m) (x) = m + φ (m) (σx), which proves that P 3m = X m P m . Let us compute φ (3m+1) (x): If x 0 = 0, then φ (3m+1) (x) = φ (3m) (x + 1), which is equal to m + φ (m) (σ(x + 1)) by (2). Hence, φ (3m+1) (x) = m + φ (m) (σx). If x 0 = 1, then φ (3m+1) (x) = 1 + φ (3m) (x + 1). Hence, φ (3m+1) (x) = 1 + m + φ (m) (σ(x + 1)) = 1 + m + φ (m) (σx). If x 0 = 2, then φ (3m+1) (x) = φ(x) + φ (3m) (x + 1). Since φ(x) = φ(σx), we get φ (3m+1) (x) = φ(σx) + m + φ (m) (σx + 1) = m + φ (m+1) (σx). (3) φ (3m+1) (x) =      m + φ (m) (x) if x 0 = 0, 1 + m + φ (m) (σx) if x 0 = 1, m + φ (m+1) (σx) if x 0 = 2.
Since each digit appears with probability 1/3 in first position, and since the distribution of σx conditioned on the first digit is λ, we get

P 3m+1 (X) = 1 3 E λ X m+φ (m) + E λ X m+1+φ (m) + E λ X m+φ (m+1) .
This yields the desired formula for P 3m+1 .

In the same way, we compute φ (3m+2) (x):

(4)

φ (3m+2) (x) =      1 + m + φ (m) (σx) if x 0 = 0, 1 + m + φ (m+1) (σx) if x 0 = 1, m + φ (m+1) (σx) if x 0 = 2,
and we obtain the recurrence formula for P 3m+2 .

3.3. Recurrence formulas for reduced polynomials. For m ≥ 0, let ℓ(m) be the highest power of X dividing P m , so that

P m (X) = X ℓ(m) Pm (X),
where Pm is the reduced polynomial of order m, Pm (0) = 0.

Observe that ℓ(m) is the minimum value taken by the cocycle φ (m) . Hence it is easy to see that m → ℓ(m) is non-decreasing, and that

s m := ℓ(m + 1) -ℓ(m) ∈ {0, 1}.
Moreover, by Lemma 3.2, [START_REF] Del | Generic spectral properties of measure-preserving maps and applications[END_REF] ℓ(m) + deg(P m ) = m.

Thanks to the recurrence formulas for P m (see Theorem 3.3), we deduce recurrence formulas for ℓ(m):

ℓ(3m) = m + ℓ(m), ℓ(3m + 1) = m + ℓ(m), (6) 
ℓ(3m + 2) = m + ℓ(m + 1).
We also get recurrence formulas for the reduced polynomials: of Pm are increasing.

Proposition 3.4. Let m ≥ 0. then P3m (X) = Pm (X); 3 P3m+1 (X) = (1 + X) Pm (X) + X sm Pm+1 (X); 3 P3m+2 (X) = X 1-sm Pm (X) + (1 + X) Pm+1 (X),
Proof. The lemma holds for P0 = 1 and P1 (X) = (1 + X)/2. Using Proposition 3.4, we prove the lemma by induction on m. Assume the property we want to prove is satisfied for some m and m + 1 and let us prove it is also true for 3m, 3m + 1, 3m + 2 and 3m + 3. It obviously holds for 3m and 3m + 3 since P3m = Pm and P3m+3 = Pm+1 . We can assume without loss of generality that d m < d m+1 (that is s m = 0). Indeed, the recurrence formulas have the form

P3m , P3m+1 , P3m+2 , P3m+3 = F Pm , Pm+1 ,
where F is such that P3m+3 , P3m+2 , P3m+1 , P3m = F Pm+1 , Pm .

By Proposition 3.4, we have 3b . This proves that the property holds for P3m+1 . A similar argument proves the property for P3m+2 .

As a consequence of Lemma 3.2 and Lemma 4.1, we obtain: Proposition 4.2. For all m ≥ 1, the probability distribution π m is symmetric and unimodal.

4.2.

Asymptotic behavior of π m when d m → ∞. Recall that, for all m, the coefficients of the polynomial P m are given by the probability distribution π m on Z which is symmetric and unimodal (see Proposition 4.2). Recall that d m is the degree of the reduced polynomial Pm , that is (d m + 1) is the number of nonzero coefficients of P m .

For any m ≥ 1, consider the Fourier transform π m defined by

π m (z) := j π m (j)z -j ∀z ∈ S 1 .
Observe that π m (z) = P m (1/z) = P m (z)z -m . Moreover, we recover π m (j) by the inverse Fourier transform

π m (j) = S 1 z j π m (z) dz. Lemma 4.3. sup j∈Z π m (j) -----→ dm→∞ 0.
Proof. Observe that for any j ∈ Z, 

π m (j) ≤ S 1 | π m (z)| dz =
|P m (z)| ≤ 1 + |1 + z| 3 sup (|P m ′ (z)|, |P m ′′ (z)|) ,
Moreover, by [START_REF] Katok | Combinatorial constructions in ergodic theory and dynamics[END_REF],

d m ′ ≥ d m -2, and d m ′′ ≥ d m -2. Since |P 1 (z)| ≤ 1 and |P 2 (z)| ≤ 1, we easily prove by induction on m that (9) ∀m ≥ 1, |P m (z)| ≤ |α(z)| (dm-2)/2 ,
where α(z) := 1+|1+z|

3

. Since |α(z)| < 1 for z = 1, we conclude the proof of the lemma.

Weak limits of powers of T

Recall that L is the set of all weak limits of powers of T , and that Θ is the ortho-projector to constants. The purpose of this section is to prove the following Theorem: Theorem 5.1.

L = {Θ} ∪ {P m1 ( T ) . . . P mr ( T ) T n , r ≥ 0, 1 ≤ m 1 ≤ • • • ≤ m r , n ∈ Z}.
Moreover, limits of the form T n for some n ∈ Z can only be obtained as limits of T -kj for bounded sequences (k j ).

5.1.

Correspondence between elements of L and measures on Z. Any L ∈ L is associated with a self-joining ρ by

ρ(A × B) := L½ A , ½ B , ∀A, B.
Since T has minimal self-joinings, ρ is of the form

ρ ν := j∈Z ν(j)∆ -j + (1 -ν(Z))µ ⊗ µ,
where ∆ -j (A× B) := µ(A∩T -j B) and ν is a positive measure on Z with ν(Z) ≤ 1. Therefore, L has the form

L = L ν := j∈Z ν(j) T j + (1 -ν(Z))Θ.
We set, for any positive measure ν on Z with ν(Z) ≤ 1,

δ(ν) := j∈Z |ν(j + 1) -ν(j)|.
Lemma 5.2. For any positive measures ν and ν ′ on Z of total mass ≤ 1, we have

δ(ν * ν ′ ) ≤ δ(ν). Proof. δ(ν * ν ′ ) = j∈Z |ν * ν ′ (j + 1) -ν * ν ′ (j)| = j∈Z k ν(j + 1 -k) -ν(j -k) ν ′ (k) ≤ k ν ′ (k) j∈Z |ν(j + 1 -k) -ν(j -k)| ≤ δ(ν). Lemma 5.3. Let (ν ℓ ) ℓ be a sequence of positive measures with ν ℓ (Z) ≤ 1, such that δ(ν ℓ ) → 0 as ℓ → ∞. Then L ν ℓ → Θ.
Proof. For any A, B, we have

ρ ν ℓ (A × B) = j ν ℓ (j) µ(A ∩ T -j B) + (1 -ν ℓ (Z))µ(A)µ(B)
and

ρ ν ℓ (A × T B) = j ν ℓ (j + 1) µ(A ∩ T -j B) + (1 -ν ℓ (Z))µ(A)µ(B).
Hence,

|ρ ν ℓ (A × B) -ρ ν ℓ (A × T B)| ≤ j |ν ℓ (j + 1) -ν ℓ (j)| µ(A ∩ T -j B) ≤ δ(ν ℓ ).
It follows that any self-joining ρ which is a limit of a subsequence of (ρ ν ℓ ) satisfies:

∀A, B ρ(A × B) = ρ(A × T B).
By ergodicity of T , we get that ρ = µ ⊗ µ and this proves the convergence of L ν ℓ to Θ. Lemma 5. [START_REF] Del | A simple measure-preserving transformation with trivial centralizer[END_REF].

sup 1≤m1≤•••≤mr δ (π m1 * • • • * π mr ) ---→ r→∞ 0.
Proof. Let us fix (m i ) 1≤i≤r larger than 1. Using the fact that the convolution of symmetric unimodal distributions remains symmetric and unimodal (see [START_REF] Purkayastha | Simple proofs of two results on convolutions of unimodal distributions[END_REF]), we obtain by Proposition 4.2 that π m1 * • • • * π mr is symmetric and unimodal. Thus

δ (π m1 * • • • * π mr ) ≤ 2 sup j∈Z π m1 * • • • * π mr (j).
Moreover, by ( 9), we have for all j

|π m1 * • • • * π mr (j)| = S 1 z j r i=1 π mi (z) dz ≤ S 1 β(z) r dz,
where β(z)

:= sup |P 1 (z)|, |P 2 (z)|, α(z) . Since β(z) < 1 if z = 1,
this ends the proof of the lemma.

Factorization in L .

Lemma 5.5. Let (k j ) be a sequence of integers such that

k j = mh nj + k ′ j , where k ′ j /h nj → 0 and lim j→∞ T -k ′ j = L ′ . Then lim j→∞ T -kj = P m ( T )L ′ .
Proof. Let A and B be unions of levels of a fixed tower. For j large enough, A and B are stilll unions of levels in Tower n j , and there exists A j , union of levels in Tower n j , such that

µ(T -k ′ j A △ A j ) ≤ |k ′ j |/h nj . Then we have ½ A , T -kj ½ B = µ(T -k ′ j A ∩ T mhn j B) = µ(A j ∩ T mhn j B) + O(k ′ j /h nj ) Fix ε > 0. By Lemma 2.1, for j large enough, µ(A j ∩ T mhn j B) is within ε of i∈Z π m (i)µ(T -i B ∩ A j ). The latter expression is equal, up to a correction of order k ′ j /h nj , to i∈Z π m (i)µ(T -i B ∩ T -k ′ j A) = ½ A , T -k ′ j P m ( T )½ B , which converges to ½ A , L ′ P m ( T )½ B as j → ∞.
Let L ∈ L : There exists a sequence (k j ) of integers such that

lim j→∞ T -kj = L.
If the sequence (k j ) is bounded, then L is of the form T n for some n ∈ Z. Otherwise, without loss of generality, we can assume that k j is positive and k j → +∞.

Recall that the heights (h n ) of the Rokhlin towers satisfy: h n+1 = 3h n + 1. We decompose k j by the greedy algorithm along the integers (h n ):

k j = α j 0 h nj + α j 1 h nj -1 + • • • + α j nj h 0
, where α j 0 = 0, 0 ≤ α j ℓ ≤ 3 for all 0 ≤ ℓ ≤ n j . Observe that if α j ℓ = 3, then α j s = 0 for all s > ℓ.

Using a diagonal procedure to extract a subsequence if necessary, we can suppose that for all ℓ, α j ℓ → α ℓ as j goes to ∞. We have 0 ≤ α ℓ ≤ 3, α 0 = 0 and if α ℓ = 3, then α s = 0 for all s > ℓ.

Proposition 5.6. Let L ∈ L , and let (k j ) and (α ℓ ) be as above. If there exists r such that α ℓ = 2 for all ℓ > r, or α ℓ = 0 for all ℓ > r, then there exist m ≥ 1 and a sequence (k ′ j ) such that lim

j→∞ T -kj = P m ( T ) L ′ ,
where L ′ = lim j→∞ T -k ′ j . If there exist infinitely many ℓ's such that α ℓ = 2 and infinitely many ℓ's such that α ℓ = 0, then L = Θ.

Proof. Since h n+s = 3 s (h n + 1/2) -1/2, for all n, s ≥ 0, note that for all r ≥ 0 and all j large enough, [START_REF]Several questions and hypotheses concerning the limit polynomials for chacon transformation[END_REF] 

r ℓ=0 α ℓ h nj -ℓ = m r h (nj-r) + u r , where m r := α 0 3 r + α 1 3 r-1 + • • • + α r and u r := r-1 ℓ=0 α ℓ h r-ℓ-1 .
First assume that α ℓ = 0 for all ℓ > r. Then for j large enough

k j = α 0 h nj + α 1 h nj -1 + • • • + α r h (nj -r) + k ′ j
where k ′ j ≪ h (nj -r) . By [START_REF]Several questions and hypotheses concerning the limit polynomials for chacon transformation[END_REF], we can rewrite k j as k j = m r h (nj -r) + k ′ j + u r , where k ′ j + u r ≪ h (nj -r) . Extracting a subsequence if necessary, we can assume that T -(k ′ j +ur) converges to some L ′ . We conclude using Lemma 5.5. Assume now that α ℓ = 2 for all ℓ > r. Then for j large enough

k j = α 0 h nj + α 1 h nj -1 + • • • + α r h (nj -r) + 2 r ′ ℓ=1 h nj -r-ℓ + k ′ j where k ′ j < h nj-r-r ′ . Since 2 r ′ ℓ=1 h nj -r-ℓ = h (nj-r) -h nj -r-r ′ -r ′ , we get k j = α 0 h nj + α 1 h nj -1 + • • • + (α r + 1)h (nj -r) + k ′′ j , where |k ′′ j | = |k ′ j -h nj-r-r ′ -r ′ | ≪ h (nj -r)
. We get the conclusion using the same argument as above. This proves the first part of the proposition.

Assume now that there exist an infinity of r such that α r = 2 and an infinity of r such that α r = 0. By [START_REF]Several questions and hypotheses concerning the limit polynomials for chacon transformation[END_REF], for all r ≥ 0, and for all j large enough (depending on r),

k j = m r h (nj -r) + u r + k ′ j ,
where 0 ≤ k ′ j < h (nj -r) . We know that d mr goes to infinity as r → ∞ (see Section 3.4) by hypotheses on the sequence (α ℓ ). By Lemma 4.3, since π mr is unimodal, we get δ(π mr * δ k ) → 0 as r → ∞ uniformly with respect to k ∈ Z.

Let us fix A 0 and B 0 some sets which are union of levels of a fixed tower, say Tower n. Fix ε > 0. By Lemma 5.3, P mr ( T ) T k ---→ r→∞ Θ uniformly with respect to k ∈ Z. Hence, we can find r large enough so that for all k ∈ Z,

(11) i∈Z π mr (i + k) µ(A 0 ∩ T -i B 0 ) -µ(A 0 )µ(B 0 ) < ε.
Then, we can choose j large enough to satisfy α j ℓ = α ℓ for all ℓ ≤ r, and

A,B µ A ∩ T mrh (n j -r) +ur B - i∈Z π m (i + u r ) µ A ∩ T -i B < ε, (12) sup 
where the supremum is taken over any sets A and B which are union of levels of Tower (n j -r) (see Lemma 2.1). We also assume that (n j -r) ≥ n, so that A 0 and B 0 are unions of levels in Tower (n j -r).

We want to use [START_REF] Ryzhikov | Minimal self-joinings, bounded constructions, and weak closure of ergodic actions[END_REF] in order to estimate

µ(A 0 ∩ T kj B 0 ) = µ A 0 ∩ T mrh (n j -r) +ur (T k ′ j B 0 ) .
The problem is that, although B 0 is a union of levels in Tower (n j -r), this is not always the case for T k ′ j B 0 . Therefore we cut B 0 into 4 disjoint parts:

B 0 = B 1 ⊔ B 2 ⊔ B 3 ⊔ B 4 , where • B 1 is the part of B 0 contained in the first (h (nj -r) -k ′ j
) levels of Tower (n j -r), so that T k ′ j B 1 is a union of levels in Tower (n j -r) which is included in T k ′ j B 0 . • B 2 is the part of B 0 contained in the last (k ′ j -1) levels of Tower (n j -r) which is not under a spacer, so that T k ′ j B 2 is included in a union of levels in Tower (n j -r) which is itself included in T k ′ j -h (n j -r) B 0 . • B 3 is the part of B 0 contained in the last (k ′ j -1) levels of Tower (n j -r) which is under a spacer, so that T k ′ j B 3 is included in a union of levels in Tower (n j -r) which is itself included in T k ′ j -h (n j -r) -1 B 0 . • B 4 is the part of B 0 contained in level h (nj -r) -k ′ j of Tower (n j -r): µ(T k ′ j B 4 ) ≤ 1/h (nj-r) . Using three times ( 12) and ( 11), we get

µ(A 0 ∩ T kj B 0 ) ≤ i∈Z π m (i + u r ) µ A 0 ∩ T -i T k ′ j B 0 + i∈Z π m (i + u r ) µ A 0 ∩ T -i T k ′ j -h (n j -r) B 0 + i∈Z π m (i + u r ) µ A 0 ∩ T -i T k ′ j -h (n j -r) -1 B 0 + 3ε + 1/h (nj-r)
≤ 3µ(A 0 ) µ(B 0 ) + 6ε + 1/h (nj-r) .

Hence, the self joining ρ defined by Observe that if L = Θ, then r L = ∞ (because for all m, P m ( T )Θ = Θ). Conversely, we prove that if r L = ∞, then L = Θ: Suppose that r L = ∞. Then for any r, we can write L = r i=1 P mi ( T )L ′ with L ′ ∈ L . We know that L and L ′ are of the form L ν and L ν ′ respectively. Moreover, we have 
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 1 Figure 1. The space X n

Figure 2 .

 2 Figure 2. Structure of the sequence (φ(S j x)) j∈Z .

Lemma 3 . 5 . 3 . 4 .Corollary 3 . 6 . 4 . 4 . 1 .Lemma 4 . 1 .

 35343644141 Consider the 3-expansion of m: m = j≥0 m j 3 j , where m j ∈ {0, 1, 2}. Let i := inf{j : m j = 1}. Then s m = 1 if m i = 2 and s m = 0 if m i = 0. Proof. By (6), we see that s 3m = 0 and s 3m+2 = 1. Moreover, s 3m+1 = s m . Degree of Pm . Let d m be the degree of Pm : Using (5), we get d m = deg(P m ) -ℓ(m) = m -2ℓ(m). Hence, we easily check that (7) d m+1 -d m = 1 -2s m ∈ {-1, 1}, and s m = ½ {dm>dm+1} . By Proposition 3.4, we have (8) d 3m = d m , d 3m+1 = d m + 1, d 3m+2 = d m+1 + 1 and d 3m+3 = d m+1 . We thus get an algorithm to compute the degree d m of Pm . Consider the 3expansion of m: m = j≥0 m j 3 j . In this expansion, remove all 1's and count the number of blocks of 2's. Then d m is equal to the number of removed 1's plus twice the number of 2-blocks. Example: Consider m whose expansion in base 3 is 212202. Remove one 1, you get 22202 (two 2-blocks). Hence d m = 1 + 2 × 2 = 5. The first appearance of a reduced polynomial of degree d is ob-Properties of the probability distribution π m Unimodality of the distribution π m . We set b (m) j := π m (j + ℓ(m)) = λ φ (m) = j + ℓ(m) Observe that by Lemma 3.2, the coefficients of Pm are symmetric: b for all 0 ≤ j ≤ d m . For any m ≥ 0, the coefficients b (m) j 0≤j≤[dm/2]

.

  Recall that d 3m+1 = d m + 1 (see Section 3.4) and we assumed thatd m+1 = d m + 1. Hence, if d m is even, we have [d 3m+1 /2] = [d m /2] = [d m+1 /2]and the three terms on the RHS of the above equation are increasing functions of j ∈ {0, . . . , [d 3m+1 /2]}. If d m is odd, only the first term on the RHS may not be increasing for the largest value of j. But in this case, because of the symmetry of the coefficients (seeLemma 3.

S 1 |P

 1 m (z)| dz. By Theorem 3.3, we have for any m ≥ 3: If m is a multiple of 3, then |P m (z)| = |P m/3 (z)|. Otherwise, there exist m ′ < m and m ′′ < m such that

T -kj = r i=1 P

 i=1 ρ(A × B) := lim j→∞ µ(A ∩ T kj B) = ½ A , L½ B , ∀A, B, satisfies ρ ≤ 3µ ⊗ µ. By ergodicity of µ ⊗ µ, we conclude that ρ = µ ⊗ µ and L = Θ. proof of Theorem 5.1. First, fix integers n ∈ Z, r ≥ 1 and 1 ≤ m 1 ≤ • • • ≤ m r . Using r times Lemma 5.5, we easily construct a sequence (k j ) such that lim j→∞ mi ( T ) T n .Conversely, we now want to prove that any L ∈ L has this form. For L ∈ L , setr L := sup{0} ∪ r ≥ 1 : ∃(m i ) i≤r , ∃L ′ ∈ L s.t. L = r i=1 P mi ( T )L ′ .

ν

  = π m1 * • • • * π mr * ν ′ . By Lemma 5.2, δ(ν) ≤ δ(π m1 * • • • * π mr ).But the right-hand side goes to 0 as r → ∞ by Lemma 5.4, so that δ(ν) = 0. We conclude that ν(Z) = 0 and L = Θ.Assume now that r L < ∞. Let (k j ) be such that L = lim j T -kj . If the sequence (k j ) is bounded, then L = T n for some n ∈ Z, otherwise Proposition 5.6 applies, and since L = Θ there exists L ′ ∈ L and m ≥ 1 such that L = P m ( T )L ′ . We then have r L ≥ r L ′ + 1, and we can prove by induction on r L that L is of the formL = r i=1P mi ( T ) T n .