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Abstract  

Most Ground Penetrating Radar (GPR) measurements are performed on nearly flat areas. If 

strongly dipping reflections and/or diffractions are present in the GPR data, a classical 

migration processing step is needed in order to determine the geometries of shallow 

structures. Nevertheless, a standard migration routine is not suitable for GPR data collected on 

areas showing a variable and large topographic relief. To account for the topographic 

variations, the GPR data are, in general, corrected by applying static shifts instead of using an 

appropriate topographic migration which would place the reflectors at their correct locations 

with the right dip angle. In this article we present an overview of Kirchhoff’s migration and 

show the importance of topographic migration in the case where the depth of the target 

structures is of the same order as the relief variations. Examples of synthetic and real GPR 

data are shown to illustrate the efficiency of the topographic migration. 

Keywords: Ground Penetrating Radar (GPR), static corrections, diffraction hyperbola, 

topographic Kirchhoff migration.  

 

Résumé  

La plupart des mesures géoradar sont effectuées sur des zones relativement planes. Lorsque 

des réflexions à fort pendage et/ou des diffractions sont présentes dans les données, un 

algorithme de migration classique est nécessaire pour retrouver les géométries des structures 

souterraines. Cependant une migration standard n’est pas adaptée aux données géoradar 

enregistrées sur des zones présentant de fortes variations du relief. Pour prendre en compte les 

variations de la topographie, une correction statique est généralement appliquée aux données 

géoradar. Une migration topographique serait plus appropriée pour replacer les réflecteurs à 

leur vraie position, avec leur vrai pendage. Dans cet article, nous présentons une vue 

d’ensemble de la migration de Kirchhoff et montrons l’importance de la migration 

topographique dans le cas où la profondeur des structures et les variations du relief sont du 
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même ordre de grandeur. Des exemples, basés sur des données radar synthétiques et réelles, 

permettent d’illustrer l’efficacité de la méthode. 

Mots clefs : Géoradar, corrections statiques, hyperboles de diffractions, migration 

topographique de Kirchhoff. 
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1. Introduction 

The ground penetrating radar reflection (GPR) technique, a geophysical method based 

on high frequency (10-2300 MHz) electromagnetic (EM) wave propagation, can provide very 

detailed and continuous images of the subsurface. One of the goals of GPR measurements is 

to determine the geometries of fine structures by imaging the shallow subsurface. In general, 

the GPR measurements are performed on nearly flat surfaces and in this case, if highly 

dipping reflections and/or diffractions are present in the data, a standard migration is needed 

in order to precisely determine the geometries of shallow structures (Zeng et al., 2004; Feng et 

al. 2009).  

For a variable topographic relief, a standard processing procedure includes the 

application of static shifts (Sheriff and Geldart 1995; Annan, 1991) followed by a classical 

migration commonly performed with a flat datum plane. Nevertheless, this processing 

technique does not give good results for large topographic variations. In addition, the 

inadequacy of conventional elevation static corrections in accounting for a gentle to rugged 

topographic relief was shown to be a particular problem (Lehmann and Green, 2000). To 

obtain reliable images from GPR data acquired on areas showing irregular topography, a 

special processing which accounts for the topography may be required. Although the relief 

variation, in seismic acquisition, is small compared to the investigation depth, various 

migration methods with topography have been developed for seismic data (Berryhill, 1979; 

Wiggins, 1984; Shtivelman and Canning, 1988; and Bevc, 1997). These migration techniques 

could be of a more important use in GPR data than in seismic, as the target structures have 

often the same order of depth as the topographic relief variations.  

Lehmann and Green (2000) adapted a topographic migration for GPR data based on 

the Kirchhoff algorithm proposed by Wiggins (1984) for the seismic data collected in 

mountainous areas. According to these authors, the topographic migration should be 
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considered when the surface slope exceeds 10%.This migration method has been successfully 

used, in 3D, by e.g. McClymont et al. (2008) for the GPR data acquired on active fault areas 

showing a rugged topography. 

In this article, we first present an overview of the Kirchhoff topographic migration 

algorithm and demonstrate the diffraction equation used in this method as presented by 

Lehmann et al. (1998). To show the efficiency of the method, we first use synthetic data from 

a single diffraction point model, and compare the migration results with flat datum and 

topography, respectively. Then, we present two different examples of real GPR data recorded 

in areas presenting local and large topographic variations as well as a mean slope of less than 

10%. The first example is from a dry sand dune of the Chadian desert, presenting a high 

velocity medium with local topographic variations, while the second one is from Mongolia 

presenting a topographic slope of 10 %. Finally, we show and compare the results of GPR 

profiles processed with static shift followed by migration, migration followed by static shift 

and topographic migration, and discuss the superiority of the later one even in the cases where 

the topographic slope is lower than 10%.  

2. The Kirchhoff topographic migration 

2.1. The Kirchhoff migration 

Let us consider a simple 2D geological model (x-z plane) composed of a diffraction 

point (diffractor) placed on a perfectly resistive medium with a constant electromagnetic 

(EM) velocity. The coordinates of this diffractor are xd and zd, respectively (Figure 1a). We 

assume a zero offset survey with transmitting and receiving antennas which move on a flat 

horizontal surface at z = 0 (dashed line in Figure 1a). In this case, the result of the zero offset 

GPR profile in time (x-t plane) will be a diffraction hyperbola (shown by the dashed line in 

Figure 1b) and the electric field variation can be described by a scalar wave propagation 

equation, which is similar to the acoustic wave equation (Leparoux et al., 2001).  
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The goal of the migration is to find the geological model (in the x-z plane) from the 

zero offset GPR profile (in the x-t plane). For a resistive medium (high frequency 

approximation) we can use the Kirchhoff method which gives the wave field at the location of 

the diffractor (xd, zd) from the zero-offset wave field measured at the surface z = 0 (Schneider, 

1978; Feng et al. 2009). Practically, the Kirchhoff migration will calculate the diffraction 

hyperbola (migration template) for each point of the GPR profile and, by adding the 

amplitudes along the template, will place it at the top of the template in the migrated profile 

(Claerbout, 1985; Yilmaz, 2001). Migrating each of these points for a given velocity will 

focus the amplitudes at their correct positions and the reflector is imaged with its true position 

and dip angle.  

2.2. Effect of the topography 

When GPR measurements are performed over a surface with a topography, the 

migration template is no longer a diffraction hyperbola, instead it will be a distorted 

diffraction curve. This is shown in Figure 1 where the topography is chosen to be a circle 

whose centre is on the diffraction point (xd, zd), and on both sides of which the topography is 

flat (see the thick line in Figure 1a). The distance between the diffraction point and the 

antennas (in zero offset), moving on the surface along the circle, is constant. Therefore the 

migration template, shown by the thick line in Figure 1b, will be flat on the top, and on both 

sides it will be represented by two flanks of a diffraction hyperbola. In this case the imaging 

result of the classical Kirchhoff migration with a flat datum plane will be spurious (see Figure 

4 below). For this reason we absolutely need to take into account the topography of the GPR 

acquisition surface.  

2.3. Migration with topography 
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For the standard Kirchhoff migration, at a location x on the surface z = 0 (i.e. the 

antennas move on the flat datum plane), the two-way travel time t(x) along the gray line path 

in Figure 2 is given by:  
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where t0= 2zd/V is the two-way travel time above the diffraction point (black dot in Figure 2), 

xd is the horizontal position of the diffraction point, zd is the depth of the diffraction point 

from the flat datum surface (see Figure 2) and V is the EM wave velocity. This is the equation 

of a diffraction hyperbola (or migration template) which is used in the standard Kirchhoff 

migration scheme with a flat datum plane.  

Correcting for the topography means to choose for the migration template the thick 

line of Figure 1b, instead of using the dashed one, which is exactly a diffraction hyperbola. 

This will allow the template to follow exactly the real travel path of the GPR data. Indeed, for 

the same x location (Figure 2), the z position of the antennas (moving on the rugged surface) 

has been changed and the two-way travel time t(x) is now calculated along the thick line path 

in Figure 2 to obtain: 
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where z(x) is the topography of the acquisition surface shown by the thick line in Figure 2. 

Substituting equation (3) into equation (2) we obtain: 
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This equation is the same as the one given without any demonstration by Lehmann et 

al. (1998) in the case of a 2D migration. Figure 3 presents an overview of the different steps 

to compute the topographic migration. We have used the same notations as in equations (1) to 

(4). 

In figure 4 we compare the results of the classical migration with flat datum plane, the 

classical migration after static shift and the topographic Kirchhoff migration. Figure 4b 

displays the synthetic radargram computed with the model of figure 4a. This radargram is 

obtained by using a second order Ricker source having a dominant frequency of 500MHz, 

located over a homogeneous medium with a velocity of 0.1m/ns. The distance between traces 

is 2 cm. 

Figure 4c shows the classical migration of the zero offset GPR synthetic data of Figure 

4b. One can see a flat horizontal 2 m wide layer located at a depth of 1.5 m, as well as a bright 

spot in the middle of the section at a depth of around 1m (Figure 4c). The imaging result is 

very poor and might lead to a misinterpretation of the data. The actual classical procedure is a 

static shift followed by a classical migration. Figure 4d shows the synthetic data after the 

static shift, and Figure 4e displays the migration after the static shift. The result seems to be 

better than the one of Figure 4c. In Figure 4e we observe not only a bright spot at the correct 

depth of 1.5m, but also two strong spots located on both sides of the diffraction point (around 

a depth of 1.2m). In Figure 4f we present the result of the topographic migration appropriately 

weighted by an amplitude factor proportional to cos( = ttop/t(x) which also depends on the 

topography (see Figure 2). The amplitude factor is added to take into account the directivity 

factor which describes the angle dependence of amplitudes and is given by the cosine of the 

angle between the propagation direction and the vertical axis (Yilmaz, 2001; Claerbout, 
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1985).The data are well imaged and, as expected, are focused on a single bright spot located 

at its real depth of 1.5m (Figure 4f).  

 

3. Real GPR data examples 

3.1. The Chad Dunes 

The first example is a GPR profile collected over an aeolian dry dune in the Chadian 

desert (Bano et al., 1999). The goal of this survey was to image the interior and the base of the 

dunes to better understand the sedimentological processes. The GPR profile has been obtained 

using a 450 MHz shielded antenna. The acquisition mode was a constant offset of 0.25 m, the 

antennas were moved by 0.125 m steps with a stack of 64 to improve the signal-to-noise ratio. 

A standard processing (with in-house interactive GPR software) has been applied and 

the resulting profile is displayed in Figure 5a. The following processing sequence was used: 

constant shift to adjust the time zero followed by normal move-out corrections; running 

average (DC) filter to remove the low frequency; flat reflections filter to remove some clutter 

noise (continuous flat reflections) caused by multiple reflections between shielded antennas 

and the ground surface; a band-pass filter and finally a time-varying gain function. The same 

standard processing is applied to all GPR data presented in this section. 

The GPR profile of Figure 5a shows complex geometries, with imbricate reflections 

corresponding to different deposit phases. The undulating reflection indicated by four white 

arrows in this figure represents the base of the dune, which in fact is nearly flat and consists of 

pebbles (>2.0 mm in diameter). This reflection is from the contact between the aeolian sands 

near the surface and deeper lake deposits consisting of an unconsolidated silty sandstone layer 

of very fine to medium grain-size. In order to apply the topographic static shift and/or 

migration, we need to know the velocity of the GPR waves. In Figure 5a we also observe a 

nice 10 m wide (80 traces) diffraction hyperbola situated just under the base of the dune (see 
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black circle). After analyzing this diffraction, with different velocities, we found that it can be 

fitted very well with a constant velocity model of 0.18 m/ns. This value represents an average 

velocity from the surface of the dune to the diffraction point and it is in good agreement with 

values found in the literature for dry sands (Gómez et al., 2009; Guillemoteau et al., 2012).  

Figure 5b shows the same GPR profile as in Figure 5a, but when a standard migration 

followed by topographic corrections are performed, using a velocity of 0.18m/ns. The 

topography shows a local variation of about 30 % (at profile coordinate 38 m, black arrow on 

figure 5b) and its global variation of about 5 m (5%) is comparable to the investigation depth. 

The diffraction hyperbola is well collapsed (at profile coordinate 25 m, black circle) and the 

reflection from the base of the dune is roughly flattened. Below the area of high topographic 

gradient (38 m horizontally) we observe a very bad feature (black arrow). The whole area 

looks blurred, and reflectors are losing consistency. The results of the standard migration 

followed by topographic corrections are bad.  

Figure 5c presents the profile after a static shift followed by a standard migration. The 

migration hyperbola (black circle) is slightly over-migrated. The bad feature indicated by the 

black arrow in figure 5b is corrected. The reflectors are now consistent and the dipping 

reflector shown by the black arrow (Figure 5c) has been moved up-dip.  

Figure 5d presents the topographic migration with the same velocity (0.18 m/ns, as in 

both previous cases) and a specific migration template 13 m wide (100 traces) has been 

chosen, which is slightly larger than the width of the observed hyperbola (10 m) on the 

profile. The base of the dune is flattened and the diffraction at 25 m is now correctly focused 

on a single point inside the black circle, which justifies our choice of 0.18 m/ns for the GPR 

velocity. The dipping reflector shown by the black arrow has undergone a vertical and 

horizontal shift of 1.1 and 3.8 m, respectively. It starts at the base of the dune and goes up-dip 
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rightwards as expected (on the non-migrated section of Figure 5a, these reflections were 

crossing the base of the dune).  

The measured dips on the topographic migrated section of the same reflectors (shown 

by white arrows) are slightly larger than the dips measured on Figure 5c (static shift followed 

by standard migration).Their values are now 26.5° and 19.5° on the topographic migrated 

section, instead of 25° and 17.7° in Figure 5c. Although the global topographic variation of 

the profile does not exceed 5%, the result of the topographic migration is slightly better than 

the result of the static shift followed by the standard migration. Remember here that the later 

routine over-migrates the data at large depth (case of the diffraction under the base of the 

dune). 

Figure 6 shows a portion of the profile of Figure 5d with topographic migration for 

different velocities ranging from 0.16 m/ns (left) to 0.20 m/ns (right) with a 0.1 m/ns 

increment. The hyperbola is not collapsed for the two first figures, while it is over-migrated 

for the last two. The middle figure shows the migrated image with the correct velocity of 0.18 

m/ns. The depths and the dips of the reflectors are also changed. The depth of the diffracting 

point is ranging from 6.5 m (for a velocity of 0.16 m/ns) to 7.8 m (for a velocity of 0.20 

m/ns). Therefore, a change of around 5% in the velocity causes a change in depth of nearly 

0.3m (for a depth of around 7 m). The dip of the reflector indicated by the arrow is ranging 

from 22.6° (velocity of 0.16 m/ns) to 29.9° (velocity of 0.20 m/ns). The dip increases by 

roughly 2° per 0.01m/ns velocity increase. To have a correct migration, we conclude that the 

precision in the estimation of the velocity should be better than 5% of the true velocity. 

3.2. Example of a fault in Mongolia  

In 2010 we conducted a GPR campaign in Mongolia, 80 km to the west of the capital 

Ulaanbaatar. The context of this study was seismic hazard. Figure 7 shows a GPR profile 

obtained with an unshielded 50 MHz Rough Terrain Antenna (RTA). The profile is more than 
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200 m long and is perpendicular to the Hustay Fault. This is in a context of a very low slip 

rate (most likely less than 1mm per year), and the fault geomorphology has been smoothed 

during a long period of erosion. Therefore displacements in the topography are not 

observable. However, in the field, evidences of the fault plane are still visible. Most of the 

profiles acquired in this area display a strong reflection, which corresponds to the fault plane. 

These profiles give complementary information such as the dip of the structure and the exact 

location of the fault near the surface to help design the layout of future paleoseismic 

campaigns. The acquisition mode was a constant offset of 4.1m, traces have been recorded 

every 0.2m with a stack of 16 to improve the signal-to-noise ratio. 

The processing used to obtain Figure 7a is similar to the one used in the case of the 

Chadian GPR data. A velocity analysis, which is not presented here, has been done over the 

surveying area by analysing diffraction hyperbolae present in the GPR data. A mean velocity 

of 0.12 m/ns has been determined for the whole area. As in the previous example, the 

topographic variation of 20 m (slope less than 10%) is comparable to the investigation depth. 

Figures 7b, 7c and 7d respectively display the data after standard migration followed by static 

shift, static shift followed by standard migration, and topographic migration. The diffraction 

hyperbola indicated by the black circle is well focused in Figures7b and 7d, and appears 

slightly over-migrated in Figure 7c (as in the case of the Chad dune). The dipping reflector 

(fault plane) indicated by the white arrow now displays a constant slope down to a depth of 24 

m in Figures 7b and 7d. However, on the section of Figure 7c, the reflector is attenuated at a 

depth of 17 m and has lost its continuity. Its dip angle is changing from 32.2° (migration and 

static shift) to 34° (static shift and migration and migration with topography). The main 

observation is the location of the reflector, which is very similar in the case of Figures 7b and 

7d, while in Figure 7c the reflector has been shifted (5.5 m horizontally and 2.6 m vertically) 

and is reaching the surface. In this case, the migration followed by static shift seems to give 
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more convincing results than the static shift followed by migration (which is the opposite of 

what was observed in the Chadian dune example). From this result, we conclude that 

topographic migration should be considered at any location where the subsurface shows steep 

dip angle structures (exceeding 30°), even in the case where the surface slope is less than 

10%. 

As in the previous case, we performed a velocity sensitivity analysis by using a 

topographic migration of the fault plane reflection with different velocities ranging from 0.1 

m/ns to 0.14 m/ns with a 0.01 m/ns step. After topographic migrations, the slope of this 

reflector is varying from 28.9° to 39.5° and increases by roughly 2.65° for a 0.01 m/ns 

increase in the velocity. In this case, for a correct topographic migration, the estimation of the 

velocity should be better than 8%. 

4. Conclusion 

In the presence of relief variations of the same order as the investigation depth of GPR 

data, a topographic migration is necessary to correctly locate the dipping reflectors and focus 

the diffractions. The topographic migration, presented in this article, is based on Kirchhoff’s 

algorithm similar to the method proposed by Lehmann and Green (2000). The application 

may be more useful for GPR data than for seismic data, as the topographic variations are 

comparable to the depth of the target structures. We demonstrate the template migration 

equation, as a function of the topography, along which the amplitudes are added together to 

give a single point on the migrated section.  

By comparing processed sections obtained from GPR data measured over media of 

high EM velocity (dry sand) having large local topographic variations within a global 

topographic slope of 5%, we show that reflectors obtained by standard processing (static shift 

corrections followed by migration) have dip angles that deviate from the angles in a 

topographically migrated profile by 1 to 2 degrees. Their locations are also changing by a few 
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meters even for reflectors close to the surface. Thus, for high velocity media with large local 

topographic variations, even in the case where the global surface slope does not exceed 5%, 

the application of the topographic migration is necessary and efficient. We also show that 

topographic migration should be considered at any location where the subsurface shows 

steeply dipping structures (>30°), even for surface topographic slopes of less than 10%. 

Finally, we have shown that the precision in the velocity estimation should be from 5 to 10 % 

of the true velocity, in order to have a correct topographic migration. 
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Figure Captions 

Figure 1: a) A geological model composed of a diffraction point (black dot) placed on (xd, zd). 

The dashed line represents the flat datum plane located at z0 = 0, while the thick line shows 

the acquisition surface with topography. b) Zero offset GPR profiles obtained by moving the 

antennas on both surfaces. The dashed line (a diffraction hyperbola) corresponds to the 

acquisition on the flat datum plane (dashed line in Fig 1a), while the thick line represents the 

case where the acquisition is performed on the surface with topography (thick line in Fig. 1a). 

Note the difference between the two observed curves. 

Figure 2: Schematic presentation showing the topographic correction for the Kirchhoff 

migration. For a given position x at the surface z0 = 0, we take into account the topography 

z(x) instead of considering the flat datum plane (dashed line at z0=0). The travel time t(x) is 

now calculated along the thick line path rather than along the gray line one. 

Figure 3: Diagram showing the different steps of the Kirchhoff topographic algorithm. The 

names of the variables are the same as the ones used in equations (1) to (4) and Figure 2. A 

first matrix with the data (data), a vector Z with the topography, and an empty matrix for the 

model (model) are required. The algorithm starts with a first loop on the x position of the 

diffraction point (xd). We move around the xd position to get x and z(x) (position of the 

antenna) in a second loop. The third loop is running on the depth location of the diffraction 

point (zd). Finally we calculate the two-way travel-time between the antennas location [x, 

z(x)] and the diffraction location (xd, zd) using equation (2) to fill the model.  

Figure 4: a) The diffraction point model, with topography (thick line); b) Zero offset GPR 

data corresponding to a survey over this area. Note the distorted diffraction curve (migration 

template); c) Classical Kirchhoff migration with a flat surface at z = 0; d) GPR data after the 

static shift; e) Classical Kirchhoff migration after static shift; f) The result of the topographic 

migration; the thick line on Figure c, e and f corresponds to the real topography. 

Figure 5: GPR profile acquired over a Chadian dry dune with a 450 MHz antenna. a) After 

the standard processing described in the text. b) After a standard migration followed by a 

static shift, with a velocity of 0.18 m/ns. This same velocity has been used for all the following 

migrations and topographic corrections. c) After static shift followed by standard migration 

and d) After Kirchhoff’s topographic migration.  
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Figure 6: Detailed area of the base of the dune showing the topographic migration of the 

diffraction curve (under the base of the dune) for different velocities ranging from 0.16 m/ns 

(on the left) to 0.20 m/ns (on the right) with a 0.01 m/ns increment. The Figure in the middle 

shows the correct topographic migration with V = 0.18 m/ns. 

Figure 7: GPR profile obtained in Mongolia with an unshielded 50 MHz Rough Terrain 

Antenna. a) Standard processing (see the text). b) With standard migration followed by static 

shift. c) With static shift followed by standard migration and d) With topographic migration. 

Static corrections and migration are performed with a constant 0.12m/ns velocity.  
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Légende des figures 

Figure 1: a) Modèle géologique composé d’un point diffractant (point noir), placé en (xd, zd). 

La ligne pointillée représente la surface plane théorique, situé en z0 = 0. La ligne épaisse 

représente la surface d’acquisition réelle. b) Profil géoradar à offset nul obtenu en déplaçant 

les antennes sur les deux surfaces. La ligne pointillée (hyperbole de diffraction) correspond à 

l’acquisition sur la surface plane théorique (ligne pointillée, Fig 1a). La ligne épaisse 

représente l’acquisition sur la surface avec topographie (ligne épaisse, Fig 1a). Noter la 

différence entre les deux résultats. 

Figure 2: Schéma illustrant la correction topographique pour la migration de Kirchhoff. 

Pour une position x donnée sur la surface z0 = 0, la topographie z(x) est utilisée au lieu de 

considérer la surface plane théorique (ligne pointillée à z0=0). Le temps de trajet t(x) est 

alors calculé le long de la ligne noire plutôt que le long de la ligne grise. 

Figure 3: Schéma représentant les différentes étapes de l’algorithme de la migration de 

Kirchhoff. Les noms des variables sont les mêmes que ceux utilisés dans les équations (1) à 

(4) et dans la Figure 2. Une première matrice avec les données (data), un vecteur Z 

comprenant la topographie, et une matrice vide pour le modèle (model) sont requis. 

L’algorithme commence par une première boucle sur l’abscisse du point diffractant (xd). 

Dans une seconde boucle, la position des antennes est déplacée autour de la position xd pour 

obtenir x et z(x) (position des antennes). La troisième boucle incrémente sur la profondeur du 

point diffractant considéré (zd). Le temps de trajet aller-retour entre la position des antennes 

[x, z(x)] et la position du point diffractant (xd, zd) est calculé via l’équation (2) pour remplir la 

matrice modèle (model). 

Figure 4: a) Modèle du point diffractant avec la topographie (ligne noire continue) ;b) 

Données géoradar à offset nul correspondant à un levé sur la zone. A noter : la distorsion de 

la courbe de diffraction (maquette de migration) ; c) Migration de Kirchhoff classique avec 

une surface plane à z = 0 ; d) Données géoradar après corrections statiques ; e) Migration de 

Kirchhoff classique après corrections statiques ; f) Migration avec topographie. La ligne 

noire continue sur les Figures c, e et f correspond à la vraie topographie. 

Figure 5: Profil géoradar enregistré sur une dune de sable sec, dans le désert du Tchad, avec 

une antenne de 450MHz. a) Après le traitement classique décrit dans le texte. b) Après 

migration classique suivie d’une correction statique, avec une vitesse de 0.18m/ns. Cette 

vitesse a été utilisée pour toutes les migrations et les corrections statiques qui suivent. c) 
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Après corrections statiques suivies par une migration classique. d) Après migration 

topographique. 

Figure 6: Zoom sur la base de la dune montrant la migration topographique de l’hyperbole 

de diffraction (sous la base de la dune) pour différentes vitesses allant de 0.16 m/ns (à 

gauche) à 0.2 m/ns (à droite) avec un incrément de 0.01 m/ns. La figure du milieu montre la 

migration topographique correcte avec une vitesse de 0.18m/ns. 

Figure 7: Profil géoradar obtenu en Mongolie avec une antenne non blindée de 50MHz. a) 

Après traitement standard des données (voir dans le texte). b) Après migration standard 

suivie par une correction statique. c) Après correction statique suivie par une migration 

classique et d) Après migration topographique. Les corrections statiques et les migrations ont 

été faites avec une vitesse constante de 0.12 m/ns. 
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Figure 1: a) A geological model composed of a diffraction point (black dot) placed on (xd, zd). 

The dashed line represents the flat datum plane located at z = 0, while the thick line shows 

the acquisition surface with topography. b) Zero offset GPR profiles obtained by moving the 

antennas on both surfaces. The dashed line (a diffraction hyperbola) corresponds to the 

acquisition on the flat datum plane (dashed line in Fig. 1a), while the thick line represents the 

case where the acquisition is performed on the surface with topography (thick line in Fig. 1a). 

Note the difference between the two observed curves. 
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Figure 2: Schematic presentation showing the topographic correction for the Kirchhoff 

migration. For a given position x at the surface z = z0 = 0, we take into account the 

topography z(x) instead of considering the flat datum plane (dashed line at z0). The travel 

time t(x) is now calculated along the thick line path rather than along the gray line one. 
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Figure 3: Diagram showing the different steps of the Kirchhoff topographic algorithm. The 

names of the variables are the same as the ones used in equations (1) to (4) and Figure 2. A 

first matrix with the data (data), a vector Z with the topography, and an empty matrix for the 

model (model) are required. The algorithm starts with a first loop on the x position of the 

diffraction point (xd). We move around the xd position to get x and z(x) (position of the 

antenna) in a second loop. The third loop is running on the depth location of the diffraction 

point (zd). Finally we calculate the two-way travel-time between the antennas location [x, 

z(x)] and the diffraction location (xd,zd) using equation (2) to fill the model. 
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Figure 4: a) The diffraction point model, with topography (thick line); b) Zero offset GPR 

data corresponding to a survey over this area. Note the distorted diffraction curve (migration 

template); c) Classical Kirchhoff migration with a flat surface at z = 0; d) GPR data after the 

static shift; e) Classical Kirchhoff migration after static shift; f) The result of the topographic 

migration; The thick line on figure c, e and f corresponds to the real topography. 
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Figure 5: GPR profile acquired over a Chadian dry dune with a 450 MHz antenna. a) After 

the standard processing described in the text. b) After a standard migration followed by a 

static shift, with a velocity of 0.18 m/ns. This same velocity has been used for all the following 

migrations and topographic corrections. c) After static shift followed by standard migration 

and d) After Kirchhoff’s topographic migration. 



26 
 

 

 

 

 

 

 

 

 

Figure 6: Detailed area of the base of the dune showing the diffraction topographic migration 

(under the base of the dune) for different velocities ranging from 0.16 m/ns (on the left) to 

0.20 m/ns (on the right) with a 0.01 m/ns increment. The Figure in the middle shows the 

correct topographic migration with V = 0.18 m/ns. 
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Figure 7: GPR profile obtained in Mongolia with an unshielded 50 MHz Rough Terrain 

Antenna. a) Standard processing (see the text). b) With standard migration followed by static 

shift. c) With static shift followed by standard migration and d) With topographic migration. 

Static corrections and migrations are performed with a constant velocity of 0.12m/ns. 

 

 


