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Closed prime ideals for discontinuous algebra seminorms on

C(K) (preliminary version)

J. Esterle

1 Introduction

Let K be a compact space, let C(K) (resp. CR(K)) denote the algebra of continuous complex
valued (resp. real valued) functions on K. An algebra seminorm ‖.‖ on C(K) is a seminorm satisfying
‖fg‖ ≤ ‖f‖g‖ for every f, g ∈ C(K), and such a seminorm is said to be continuous if there exists
k > 0 such that ‖f‖ ≤ k‖f‖K for every f ∈ C(K), where ‖f‖K := maxt∈K |f(t)| denotes the usual
norm on C(K). A classical result of Kaplansky [19] shows that if ‖.‖ is any algebra norm on C(K)
we have

‖f‖ ≥ ‖f‖K for every f ∈ C(K).

The existence of a discontinouous algebra seminorm on C(K), which is equivalent to the existence
of a discontinuous algebra norm on C(K) and to the existence of a discontinuous homomorphism
from C(K) into a Banach algebra, is the well-known Kaplansky’s problem, which turns out to be
undecidable in ZFC. H.G. Dales and the author [4], [11], [6] proved independently that if 2ℵ0 = ℵ1,
which means that the continuum hypothesis (CH) is assumed, then discontinuous algebra seminorms
exist on C(K) for every compact space K. Those commutative Banach algebras A for which a
discontinuous homomorphism φ : C(K) → A does exist under CH were characterized in [12], see
also [5]. On the other direction Solovay and Woodin constructed models of set theory including the
axiom of choice and Martin’s axiom in which all algebra seminorms on C(K) are continuous, see [7]
for details. Notice that models of set theory in which 2ℵ0 = ℵ2 and in which all algebra seminorms
on C(K) are continuous for every compact space K were constructed independently by Frankiewicz-
Zbierski and Woodin [15] [29].

The structure of closed ideals of C(K) for discontinuous algebra seminorms was investigated by
A.M. Sinclair [27] and later, independently, by the author [9], who showed that the closure of an
ideal is the intersection of all closed prime ideals which contain it. Also a chain of nonmaximal
closed prime ideals is well-ordered with respect to inclusion, see [9]. If K is an F -space, which means
that f and |f | generate the same ideal of C(K) for every f ∈ C(K), then the family Prim(q) of all
nonmaximal prime ideals which are closed with respect to an algebra seminorm q on C(K) is a finite
union of well-ordered chains of nonmaximal prime ideals.

Pham [22], [23], [24] showed that the situation is much more complicated in the general case. To
describe his deep contributions we will need the following notions ;

Definition 1.1 A family (Fλ)λ∈Λ of subsets of a set E is said to be
– pseudo-finite if the set {λ ∈ Λ | a /∈ Fλ} is finite for every a ∈ ∪λ∈ΛFλ.
– intersection redundant if ∩µ6=λFµ ⊆ Fλ for some λ ∈ Λ.
– intersection non-redundant if no subfamily of (Fλ)λ∈Λ is intersection redundant.

Definition 1.2 Let q be an algebra seminorm on C(K). The continuity ideal I(q) of q is the set
of all f ∈ C(K) such that there exists kf > 0 satisfying q(fg) ≤ kf‖g‖K for every g ∈ C(K).
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It follows from the definition of the continuity ideal that it contains every ideal I such that the
restriction of q to I is continuous, and it is known that the restriction of q to its continuity ideal is
in fact continuous. Also the continuity ideal is the intersection of all minimal elements of Prim(q).
Pham proved in [22] that if there exists a discontinuous algebra seminorm q on C(K) such that the
continuity ideal of q is not the intersection of a finite family of prime ideals then C(K) possesses
an infinite intersection non-redundant pseudo-finite family of nonmaximal prime ideals. Conversely
if I is the intersection of an infinite intersection non-redundant pseudo-finite family of nonmaximal
prime ideals, and if |C(K)/I| = 2ℵ0 , then assuming (CH) there exists an algebra seminorm q on
C(K) (or, equivalently, an algebra norm q on C(K), see [9]) such that the continuity ideal of q equals
I.

Now if K is compact define ∂K to be the set of all non-isolated points of K, so that ∂K 6= ∅
unless K is finite. Starting with an infinite compact space K, we define a non-increasing sequence
(∂nK)n∈Z+ of compact subsets of K as follows :

– (i) ∂0K = K
– (ii) for each n ∈ Z+, ∂n+1K = ∂∂nK.
Define ∂∞(K) = ∩n∈Z+∂n(K). Then either ∂∞K 6= ∅, or ∂mK = ∅ for some m ∈ Z+. In the

former case, we say that K has infinite limit level ; in the latter, we say that K has finite limit level.
Assume that K is a compact metric space. Pham proved in [22] that if t ∈ K, then the maximal
ideal Mt := {f ∈ C(K) | f(t) = 0} contains an infinite peudo-finite family of nonmaximal prime
ideals if and only if t ∈ ∂∞K. In particular if K is countable compact metric space of infinite level
then assuming CH there exists a discontinuous algebra seminorm q on C(K) such that the continuity
ideal I(q) of q is not a finite intersection of prime ideals. The situation is even more complicated on
C([0, 1]) : it follows from [23] that the maximal ideal Mt contains for every t ∈ [0, 1] an intersection
non-redundant pseudo-finite family (Iλ)λ∈Λ such that |Λ| = 2ℵ0 , and so assuming (CH) there exists a
discontinuous algebra seminorm on C([0, 1]) such that the continutity ideal of q is not the intersection
of any countable family of nomaximal prime ideals.

In [24], Pham discusses the structure of continuity ideals in the general case. He shows that
the continuity ideal of a discontinuous algebra seminorm on C(K) is always the intersection of an
intersection non-redundant family J of nonmaximal prime ideals such that every infinite sequence of
elements of J contains an infinite pseudo-finite subsequence. He obtains a partial converse, assuming
(CH) : if J is an intersection non-redundant family J of nonmaximal prime ideals such that every
infinite sequence of elements of J contains an infinite pseudo-finite subsequence, and if the two
following conditions are satisfied

1. |C(K)/ ∩I∈J I| = 2ℵ0

2. ∩I∈J I is the intersection of a countable family of non-maximal prime ideals

then there exists a discontinuous algebra seminorm q on C(K) such that the continuity ideal of
q equals ∩I∈J I.

A discussion at the end of [24] suggests that condition 2 above is not necessary. We were not able
to remove this condition in the present article, in which we present a slightly different approach to
these questions.

In section 2, we discuss the set Prim(q) of all nonmaximal prime ideals which are closed with
respect to some discontinuous algebra seminorm q on C(K), and the related set U (Prim(q)) of
all unions of elements of Prim(q). Using results of [12], we show that every chain of elements of
U (Prim(q)) is well-ordered with respect to inclusion.

Recall that an ideal I in a commutative ring A is said to be semiprime if I contains every a ∈ A
such that an ∈ A for some positive integer n, which is equivalent to the fact that I equals the
intersection of the prime ideals of A which contain it. We will say that a semiprime ideal I of a
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commutative algebra A is pure if for every maximal ideal M of A containing I there exists a prime
ideal J of A such that I ⊂ J ( M.

Our discussion of the continuity ideal I(q) involves the following notion.

Definition 1.3 Let A be a commutative ring. A Badé-Curtis ideal of A is an ideal I of A such that,
for every sequence (fn)n≥1 of elements of A such that fnfm = 0 for n 6= m, there exists p ≥ 1 such
that fn ∈ I for every n ≥ p.

A standard consequence of the Badé-Curtis main boundedness theorem [2], theorem 2.1, and of
Sinclair’s stability lemma, [5], 5.2.7 or [28], 1.6 is that the continuity ideal of a discontinuous algebra
seminorm on C(K) is a semiprime pure Badé-Curtis ideal of C(K) (a proof of this result using a
general property of linear seminorms on RN instead of using the stability lemma can be found in
[12]). In fact we will show in section 2 that if I is an ideal of C(K), then the following conditions
imply each other :

1. I is a (pure) semiprime Badé-Curtis ideal

2. There exists a family I of (nonmaximal) prime ideals of C(K) such that ∩{J : J ∈ I} = I and
such that every chain of unions of elements of I is well-oredered with respect to inclusion.

3. There exists an intersection non-redundant family J of (nonmaximal) prime ideals of C(K)
such that ∩{J : J ∈ J } = I and such that every chain of unions of elements of J is well-
oredered with respect to inclusion.

Now let E be a set, and let F = (Fλ)λ∈Λ be a family of subsets of E. We observe in section 2
that the following conditions imply each other :

1. Every chain of unions of subfamilies of the family F is well-ordered with respect to inclusion.

2. Every infinite sequence of elements of the family F contains an infinite pseudo-finite subse-
quence.

In particular, the class of semiprime Badé-Curtis ideals of C(K) is the same as the class of
abstract continuity ideals of C(K) introduced by Pham in [24]. Also the fact that if I := (Iλ)λ∈Λ

is a family of prime ideals of C(K) satisfying condition 1 above then the union of any subfamily of
I is a finite union of prime ideals, observed by the author in some unpublished notes, follows from
lemma 5.7 of [24].

In section 3 we discuss a general version of a lifting result which shows that if I and J a prime
ideal of C(K), and if I ⊂ J, then there exists a subalgebra AI,J of the quotient algebra C(K)/J
such that C(K)/J = AI,J ⊕ πJ (I), where πJ : C(K) → C(K)/J denotes the canonical surjection.
It follows immediately from this result that if a nonmaximal prime ideal J is the kernel of some
discontinuous algebra seminorm q on C(K), and if I is a nonmaximal prime ideal containing J, then
there exists another discontinuous seminorm q̃ on C(K) such that Ker(q̃) = I. Our general version
of the lifting theorem provides, given a nonmaximal prime ideal I of C(K), a subalgebra BI of the
quotient algebra C(K)/J (I) such that C(K)/J (I) = BI⊕π(I), where J (I) denotes the intersection
of all prime ideals of C(K) contained in I and where π : C(K) → C(K)/J (I) denotes the canonical
surjection.

If it were possible to construct the algebras AI so that π−1
J (I′)(A

′
I) ⊂ π−1

J (I)(AI) for every pair

(I, I ′) of nonmaximal prime ideals of C(K) such that I ⊂ I ′, it would be possible to remove the
condition that I is a countable intersection of prime ideals in theorem 6.7 (ii) of [24], which would
give a complete characterization of the ideals I of C(K) satisfying |C(K)/I| = 2ℵ0 which are the
continuity ideal of some discontinuous algebra seminorm on C(K) (assuming (CH)).

We were not able to do this, but we conjecture that there exists (assuming CH) a discontinuous
norm on C(K) satisfying Prim(q) = U for every family U of nonmaximal prime ideals of C(K)
satisfying the three following conditions
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– every sequence of elements of U contains a pseudo-finite subsequence,

– U ∪MU is "almost stable under unions", where MU denotes the set of maximal ideals of C(K)
containing some element of U ,

– |C(K)/I| = 2ℵ0 for every I ∈ U .

This conjecture is proved in [14] in the case where U is a chain (in this situation the first condition
just means that U is well ordered).

A major success in the works related to Kaplansky’s problem in the seventies was the fact
that, if the continuum hypothesis is assumed, every complex non-unital commutative algebra U
of cardinality 2ℵ0 possesses an algebra norm. There were two ways to reach this result. The first
one, followed by the author, consisted in showing that a ’big’ algebra of power series, denoted by
Cω1 , does have an algebra norm, and then use the "fundamental theorem on extension of places"
to embedd U in the maximal ideal of a complex valuation algebra which, assuming the continuum
hypothesis, can be embedded into the normable algebra Cω1 . The second one, followed by Dales
and Woodin, consisted in proving that there always exists an ultrafilter U on N such that U embeds
into the quotient algebra c0/U , and then use Dales’ contruction [4] to show that, if CH is assumed,
the quotient algebra c0/U is normable. Pham uses in theorem 6.5 of [22] and proposition 6.2 of [24]
arguments based on Woodin’s embeddings of nonunital integral domains of cardinality 2ℵ0 , based
on the existence of "almost disjoint" infinite families of integers and on Hilbert’s Nullstellensatz, to
obtain the major results of [22] and [24].

In section 4 we propose an alternative to this approach. We show that, if I and J are prime
ideals of C(K), with I ⊂ J, and if B is a subalgebra of the quotient algebra C(K)/I such that
C(K)/I = B ⊕ πI(J), where πI : C(K) → C(K)/I denotes the canonical surjection, then every
one-to-one homomorphism φ : B → Cω1 into a "small" subalgebra of Cω1 can be extended to a
one to one homomorphism ψ : C(K)/I → Cω1 . Using this result it is for example easy to see that
if (Iλ)λ∈Λ is a pseudo-finite family of ideals of C(K), and if |C(K)/Iλ| = 2ℵ0 for λ ∈ Λ, then the
quotient algebra C(K)/∩λ∈ΛIλ has an algebra norm if CH is assumed, a result slightly stronger than
corollary 7.3 of [22]. The proof of our "extension theorem" is based on the "fundamental theorem on
extension of places" and on Kaplansky’s embedding theorem of valued fields into maximal valued
fields [18].

A survey of the current state-of-the-art concerning Kaplansky’s problem and Michael’s problem
on continuity of characters on Fréchet algebras is proposed by the author in [13], where some of the
results of the present paper are announced without proof.

2 Nonmaximal prime ideals closed for a discontinuous algebra

norm on C(K)

In what follows K denotes an infinite compact space. Let Prim(q) be the set of nonmaximal
prime ideals of C(K) which are closed with respect to a discontinous algebra seminorm on C(K), and
let I(q) be the continuity ideal of q, see definition 1.2. As indicated in the introduction, is follows
from automatic continuity theory that we have the following properties.

Theorem 2.1 (i) I(q) = ∩{I : I ∈ Prim(q)}.
(ii) I(q) is the largest ideal I of C(K) such that the restriction of q to I is continuous.
(iii) I(q) is a pure semi-prime Badé-Curtis ideal of C(K).

If I is an ideal of C(K), set Z(I) := {t ∈ K : I ⊂ Mt}, where Mt = {f ∈ C(K) : f(t) = 0}. The
fact that Z(I(q)) is finite was proved by Badé and Curtis in their seminal paper [2]. In fact if Z(I)
is infinite for some ideal I of C(K) then it is possible to construct by induction a sequence (tn)n≥1
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of distinct elements of Z(I) and a sequence Un of disjoint open subsets of K such that tn ∈ Un for
n ≥ 1. There exists for every n ≥ 1 a function fn ∈ C(K), with Supp(fn) ⊂ Un, such that fn(tn) = 1.
Hence fnfm = 0 for n 6= m and fn /∈ I for evey n ≥ 1, which shows that I is not a Badé-Curtis ideal
(this argument applies to Badé-Curtis ideals of semi-simple commutative regular Banach algebras).

Let Ωq be the Stone-Cĕch compactification of K \ Z(I(q)), identify the closure I(q) := {f ∈
C(K) : f(t) = 0 ∀t ∈ Z(I(q)} of I(q) in C(K) to the set of functions f ∈ C(Ωq) vanishing on

Ωq \ (K \ Z(I(q))) , and denote by Ĩ(q) the set of all functions f ∈ C(Ωq) such that fg ∈ I(q) for

every g ∈ I(q). Using similar arguments, it is shown in [9] that the set Z(Ĩ(q)) is a finite subset of
Ωq \ (K \ Z(I(q))) .

Recall that a linear subspace L of C(K) is said to be absolutely convex if g ∈ L for every g ∈ C(K)
satisfying |g| ≤ |f | for some f ∈ L. We will use the following lemma.

Lemma 2.2 Let L be a family of absolutely convex linear subspaces of C(K), and let U(L) be the
family of all sets of the form SN := ∪{L : L ∈ N} where N ⊂ L. If U(L) contains a chain which
is not well-ordered with respect to inclusion, then at least one of the two following conditions holds

(i) there exists a sequence (Ln)n≥1 of elements of L such that Ln+1 ( Ln for every n ≥ 1,

(ii) there exists a sequence (Ln)n≥1 of elements of L such that Ln * ∪m 6=nLm for every n ≥ 1.

Proof : There exists a sequence (Ln)n≥1 of subsets of L such that ∪{L : L ∈ Ln+1} ( ∪{L : L ∈
Ln}, and we can find a sequence (Ln)n≥1 of elements of L such that Ln ∈ Ln and Ln * ∪m≥n+1Lm

for n ≥ 1. Let S be the set of all integers n ≥ 1 such that Ln does not contain Lm for any m 6= n.
If S is empty or finite there exists p ≥ 1 such that n /∈ S for n ≥ p. Let n ≥ p, and let m 6= n

such that L
m

⊂ Ln. Since Lm is not contained in ∪k>mLk, we have m > n, and we can construct
by induction a strictly increasing sequence (nk)k≥1 of positive integers such that Lnk+1

is strictly
contained in Lnk

for k ≥ 1.
Now if S is infinite, let (nk)k≥1 be a strictly increasing sequence of positive integers such that

nk ∈ S for every k ≥ 1. Set L̃k = Lnk
, and let k ≥ 2. Then L̃k is not contained in ∪l>kL̃l, and so

there exists gk ∈ L̃k such that gk /∈ ∪l>kL̃l. Now let j ∈ {0, ..., k − 1}. Since nj ∈ S, L̃j does not

contain L̃k and so there exists f a function gk,j ∈ L̃k \ L̃k ∩ L̃j. Using absolute convexity, we see that

fk := |gk|+
k−1
∑

j=1

|gk,j | ∈ L̃k, but that fk /∈ L̃l for l 6= k, which completes the proof of the lemma. �

The link with Pham’s discussion of continuity ideals is given by the following observation.

Lemma 2.3 Let E be a set, let F be a family of subsets of E, and let U(F) be the family of all sets
of the form SG := ∪{F : F ∈ G}, where G ⊂ F . Then the following conditions imply each other :

(i) Every chain of elements of U(F) is well-ordered with respect to inclusion.

(ii) Every sequence of elements of F possesses a pseudo-finite subsequence.

(iii) Every sequence of elements of U(F) possesses a pseudo-finite subsequence.

Proof : Assume that a sequence (Fn)n≥1 of elements of F does not possess any pseudo-finite
subsequence. Then we could construct by induction a sequence (An)n≥1 of infinite subsets of Z+ and
a sequence (un)n≥1 of elements of E such that An+1 ⊂ An, un ∈ ∪n∈An

Fn and un /∈ ∪n∈An+1Fn,
which contradicts the fact that every chain of elements of U(F) is well-ordered with respect to
inclusion. Hence (i) implies (ii).

Now assume that some chain of elements of U(F) is not well-ordered with respect to inclusion.
Then there exists a sequence Gn of subsets of F such that ∪{F : F ∈ Gn+1} ( ∪{F : F ∈ Gn}
for n ≥ 1. We can then construct a sequence (Fn)n≥1 of elements of F such that Fn ∈ Gn and
Fn * ∪{F : F ∈ Gn+1}. Now let (np)p≥1 be a strictly increasing sequence of positive integers. We
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have Fnp
/∈ ∪q≥p+1Fnq

for p ≥ 1. In particular there exists a ∈ Fn1 such that a /∈ Fnq
for q ≥ 2, and

so the sequence (Fnp
)p≥1 is not pseudo-finite. Hence (ii) implies (i).

Clearly, (iii) implies (ii). Now assume that (i) holds, and let (Un)n≥1 be a sequence of elements
of U(F). There exists an infinite subset W0 of N such that ∪n∈WUn = ∪n∈W0Un for every infinite
subset W of W0, which means that the family {Un}n ∈W0 is pseudo-finite. Hence (i) implies (iii).

�

It follows from [9] that every chain of nonmaximal prime ideals of C(K) which are closed with
respect to a discontinuous algebra norm on C(K) is well-ordered with respect to inclusion. The
following theorem gives an improvement of this result.

Theorem 2.4 Let q be an discontinuous algebra seminorm on C(K), let Prim(q) of all nonmaximal
prime ideals of C(K) which are closed with respect to q, and let U(Prim(q)) be the family of all sets
of the form SN := ∪{I : I ∈ N}, where N ⊂ Prim(q). The set Prim(q) satisfies the following two
equivalent conditions

(i) Every chain of elements of U(Prim(q)) is well-ordered with respect to inclusion.

(ii) Every sequence (In)n≥1 of elements of Prim(q) possesses a pseudo-finite subsequence.

Proof : Assume that (i) is not satisfied. Since any chain of elements of Prim(q) is well-ordered
with respect to inclusion, it would follow from lemma 2.2 that there exists a sequence (In)n≥1 of
elements of Prim(q) such that In * ∪m 6=nIm. It would then follow from lemma 3.9 of [9] that there
exists a sequence (fn)n≥1 of elements of C(K) such that fn /∈ ∩m≥1Im for n ≥ 1 whereas fmfn = 0
for m 6= n, which contradicts the fact that the continuity ideal I(q) = ∩{I : I ∈ Prim(q)} of q is a
Badé-Curtis ideal of C(K).

The fact that conditions (i) and (ii) are equivalent is given by lemma 2.3. �

The following result is essentially a reformulation of lemma 5.7 of [24], where Pham shows that
every "compact" family of prime ideals of C(K) admits a finite number of "roofs", in a slightly more
general context.

Proposition 2.5 Let F be a family of prime ideals of C(K) such that every sequence of elements of
F has a pseudofinite subsequence, and let V(F) be the set of ideals of C(K) which belong to U(F).

(i) Let S ∈ U(F), and let GS be the set of all J ∈ V(F) contained in S. Then the set ∆S of
maximal elements of GS is finite, and S = ∪{J : J ∈ ∆S}.

(ii) If S ∈ V(F), and if (An)n≥1 is a family of disjoint maximal chains of elements of GS \ {S},
then S = ∪n≥1Jn for every sequence Jn of ideals of C(K) such that Jn ∈ An for n ≥ 1.

Proof : (i) It follows from Zorn’s lemma that every element of GS belongs to a maximal chain of
elements of GS . Since the union of a chain of elements of GS is a prime ideal contained in S, we see
that every maximal chain of elements of GS has a largest element which is a maximal element of GS .
This shows that S = ∪{J : J ∈ ∆S}.

Assume that ∆S is infinite, and let In be a sequence of distinct elements of ∆S . It follows from
lemma 2.3 that the sequence (In)n≥1 admits a pseudo-finite subsequence (Inp

)p≥1. Set I := ∪p≥1Inp
.

Then I ∈ GS , which contradicts the maximality of the ideals Inp
. Hence ∆S is finite.

(ii) Since every sequence of elements of V(F) possesses a pseudofinite subsequence, we can assume
without loss of generality that the sequence (Jn)n≥1 is pseudofinite. Let J = ∪n≥1Jn, and let L ∈ An.
If L ⊂ Jn, then L ⊂ J, and if Jn ⊂ L then either L ⊂ J or J ⊂ L. So An ∪ J is a chain of elements
of GS for n ≥ 1. But if J 6= S we would have J ∈ ∩n≥1An, which is impossible. Hence J = S.

�

We obtain the following intriguing property, which had been already noticed by the author in
some unpublished notes before he heard of the paper [24].
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Corollary 2.6 Let q be a discontinuous algebra seminorm on C(K), and let S ∈ U(Prim(q)). Then
there exists n ≥ 1 and J1, ..., Jn ∈ U(Prim(q)) satisfying the following properties

(i) J1, ...Jn are prime ideals of C(K), and Ji * Jj if i 6= j.

(ii) S = ∪1≤j≤nJj .

Notice that if (Iλ)λ∈Λ is an uncountable pseudo-finite family of elements of Prim(q) (such families
are constructed in [23] under (CH) for some compact sets) then ∪λ∈ΛIλ ∈ Prim(q). To see this
assume that f ∈ C(K) satisfies limn→∞q(f − fn) = 0, with fn ∈ ∪λ∈ΛIλ for n ≥ 1. Then the set
∪n≥1{λ ∈ Λ : fn /∈ Iλ} is at most countable, and so there exists µ ∈ Λ such that fn ∈ Iµ for
every n ≥ 1, so that f ∈ Iµ ⊂ ∪λ∈ΛIλ. Similarly if ω is a limit ordinal which does not admit any
cofinal sequence, and if (Iζ)ζ<ω is a well-ordered chain of elements of Prim(q) satisfying Iζ ( Iζ′

for ζ < ζ′ < ω, then ∪ζ<ωIζ ∈ Prim(q).
If I is an ideal of a commutative algebra A, we set I : a = {b ∈ A : ab ∈ I} for a ∈ A. We now

introduce a notion used by Pham in [24].

Definition 2.7 Let A be a commutative algebra. An ideal I of A is an abstract continuity ideal if,
for each sequence (an)n≥1 in A, there exists n0 ≥ 1 such that

I : a1...an = I : a1...an+1 (n ≥ n0)

It is possible to deduce the following observation from lemmas 5.6 and 5.7 of [24]. We give a
proof for the sake of completeness.

Proposition 2.8 Let (Pα)α∈Λ be a family of prime ideals of a commutative ring A such that Pα *
Pβ for α 6= β. If the family (Pα)α∈Λ is intersection redundant, then there exists a sequence (αn)n≥1

such that ∪p≥n+1Pαp
( ∪p≥nPαp

for n ≥ 1.

Proof : Let α be such that ∩β 6=αPβ ⊂ Pα, let α1 6= α, and let f1 ∈ Pα1 \ Pα ∩ Pα1 . Since
∩β 6=αPβ ⊂ Pα, there exists α2 ∈ Λ \ {α, α1} such that f1 /∈ Pα2 .

Starting with f1, α1 and α2, we now construct two sequences (fn)n≥1 and (αn)n≥1 such that
fn ∈ Pαn

\ Pαn
∩ Pα and f1...fn /∈ Pαn+1 for n ≥ 1. Assume that f1, ..., fn and α1, ..., αn+1 have

been constructed for some n ≥ 1. Take fn+1 ∈ Pαn+1 \ Pαn+1 ∩ Pα. Then f1...fn+1 ∈ ∩1≤p≤n+1Pαp
,

and since f1...fn+1 /∈ Pα there exists αn+2 ∈ Λ \ {α, α1, ..., αn+1} such that f1...fn+1 /∈ Pαn+2 . So
we can construct the sequences (fn)n≥1 and (αn)n≥1 by induction.

We have fn ∈ Pαn
⊂ ∪p≥nPαp

. But if p ≥ n+ 1 we have f1...fp−1 /∈ Pαp
. A fortiori fn /∈ Pαp

and fn /∈ ∪p≥n+1Pαp
, which concludes the proof of the proposition. �

Corollary 2.9 Let L be a family of prime ideals in a commutative ring A satisfying one of the
equivalent conditions of lemma 2.3. If J * L for I ∈ L, J ∈ L, J 6= L, then the family L is
intersection non-redundant.

Proof : Since every subfamily of L also satisfies the equivalent conditions of lemma 2.3, the
corollary follows immediately from proposition 2.8. �

We will say that an abstract continuity ideal is pure if every for every maximal ideal M of A
containing I there exists a prime ideal J of A such that I ⊆ J ( M. Now if L is a family of ideals
of C(K), we will denote again by U(L) the family of sets of the form SN := ∪{I : I ∈ N}, where
N ⊂ L.

Using corollary 4.12 of [24], we obtain the following result.
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Theorem 2.10 : Let I be an ideal of C(K), let P(I) be the set of prime ideals of C(K) containing
I and let P0(I) be the set of minimal elements of P(I). The following conditions imply each other.

(i) I is a pure semiprime Badé-Curtis ideal.

(ii) I is a pure abstract continuity ideal.

(iii) There exists a family L of nonmaximal prime ideals of C(K) such that every chain of
elements of U(L) is well-ordered with respect to inclusion which satisfies I = ∩{P : P ∈ L}.

(iv) There exists a family L of nonmaximal prime ideals of C(K) such that every sequence of
elements of L contains a pseudo-finite subsequence which satisfies I = ∩{P : P ∈ L}.

(v) I is semiprime, every element of P0(I) is nonmaximal, and every chain of elements of
U(P0(I)) is well-ordered with respect to inclusion.

(vi) I is semiprime, every element of P0(I) is nonmaximal, and every sequence of elements of
P0(I) possesses a pseudo-finite subsequence.

If these conditions are satisfied then P0(I) is intersection non-redundant, and every S ∈ U(P0(I))
can be written under the form S = ∪1≤j≤nJj , where Ji ∈ U(P0(I)) is a prime ideal of C(K) for
1 ≤ j ≤ n, and where Ji * Jj for i 6= j. Also if L is a family of prime ideals such that P * Q and
Q * L for P ∈ L, Q ∈ L, P 6= Q, and if I = ∩{P : P ∈ L}, then L = P0(I).

Proof : It follows from lemma 2.3 that (iii) and (iv) are equivalent and that (v) and (vi) are
equivalent, and it follows from corollary 4.13 of [24] that (ii), (iv) and (vi) are equivalent. Since
every subfamily of a family of ideals satisfying one of the equivalent conditions of lemma 2.3 also
satisfies these conditions, (iii) implies (v) and (v) obviously implies (iii). Now assume that I is
semiprime, that no element of P0(I) is maximal and that some chain of elements of U(P0(I)) is not
well-ordered with respect to induction. Since every chain of elements of P0(I) is a singleton, it follows
from lemma 2.3 that there exists a sequence (Pn)n≥1 of elements of P0(I) such that Pn * ∪m 6=nPm

for n ≥ 1. It follows then from lemma 3.9 of [9] that there exists a sequence (fn)n≥1 of elements of
C(K) such that fn /∈ ∩m≥1Pm for n ≥ 1 whereas fmfn = 0 for n 6= m. Hence I is not a Badé-Curtis
ideal, which shows that (i) implies (v).

Now assume that (v) holds. Since I is semiprime, we have I = ∪{P : P ∈ P0(I)} and P0(I)
does not contain any maximal ideal of C(K). Let (fn)n≥1 be a sequence of elements of C(K) such
that fmfn = 0 for n 6= m. = 0. Assume that there exists a strictly increasing sequence (nm)n≥1 of
positive integers such that fnm

/∈ I for every m ≥ 1.

Set gp :=
+∞
∑

m=p+1

fnm

2m‖fnm‖ for p ≥ 1. We have gpfnm
=

f2
nm

2m‖fnm‖ /∈ Pλm
for m ≥ p + 1, and so

gp /∈ ∪m≥p+1Pλm
. On the other hand gpfnp

= 0, and so gp ∈ Pλp
. Hence ∪m≥p+1Pλm

( ∪m≥pPλm

for p ≥ 1, which contradicts the fact that every chain of elements of U(P0(I)) is well-ordered with
respect to inclusion. So I is a Badé-Curtis ideal, and (v) impies (i).

Also it follows from corollary 2.9 that condition (vi) implies that P0(I) is intersection non-
redundant, and it follows from lemma 5.7 of [24] that every S ∈ U(P0(I)) can be written under the
form S = ∪1≤j≤nJj , where Jj ∈ U(P0(I)) is a prime ideal of C(K) for 1 ≤ j ≤ n, and where Ji * Jj
if i 6= j.

Now assume that L is a family of prime ideals such that P * Q and Q * L for P ∈ L, Q ∈
L, P 6= Q, and such that I = ∩{P : P ∈ L}. If some chain of elements of U(L) were not well-ordered
with respect to inclusion, it would follow from lemma 2.3 that there would exist a sequence (Pn)n≥1

of elements of L such that Pn * ∪m 6=nPm for n ≥ 1, and it would follow again from lemma 3.9 of [9]
that there would exist a sequence (fn)n≥1 of elements of C(K) such that fn /∈ ∩m≥1Pm for n ≥ 1
whereas fmfn = 0 for n 6= m, which contradicts the fact that I is a Badé-Curtis ideal of C(K). It
follows again from corollary 2.9 that the family L is intersection non-redundant. In particular for
every P ∈ L there exists f ∈ C(K) such that f /∈ P but f ∈ Q for every Q ∈ L\P. Let J be a prime
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ideal of C(K) such that I ⊂ J ⊂ P. If g ∈ P we have fg ∈ I ⊂ J. Hence g ∈ J since f /∈ J, and
P ∈ P0(I). So L ⊂ P0(I). But it follows from the fact that P0(I) is intersection non-redundant that
the intersection of elements of any proper subfamily of P0(I) strictly contains I, and so L = P0(I).

�

3 Lifting results and problems

If A is a commutative ring we will denote by A[x1, ..., xm] (resp. by A[x] if m = 1) the ring of all
polynomials in m indeterminates x1, ..., xm with coefficients in A. Also if B is a commutative ring
containingA, and if c := [c1, ..., cm] ∈ Bm, we will denote byA[c1, ...cm] := {p(c1, ...., cm}p∈A[x1,...,xm]

the subring of B generated by A ∪ {c1, ...cp}.
For f ∈ C(K) we set Z(f) := {t ∈ K |f(t)| = 0}. For t ∈ K, Mt := {f ∈ C(K) : f(t) = 0}

denotes the maximal ideal associated to t, and Ot denotes the space of all functions f ∈ C(K)
for which Z(f) is a neighborhood of t, so that Ot is dense in Mt. We will also use the following
notations, some of which involving the quotient order on CR(K)/P when P is a prime ideal of CR(K),
with respect to which CR(K)/P is totally ordered, see [5],theorem 4.8.13 (Theorem 4.8.13 of [5] also
shows that the field of fractions of CR(K)/P is also a totally ordered field with respect to the order
associated to the quotient order on CR(K)/P ).

Definition 3.1 Let K be an infinite compact space, and let I be a prime ideal of C(K). Denote by
J (I) the intersection of all prime ideals of C(K) contained in I, set AI := C(K)/I, IR := CR(K)∩I,
AI,R := CR(K)/IR, and denote by πI : C(K) → AI the canonical surjection. For f ∈ C(K), set
|πI(f)| := πI(|f |), denote by KI (resp. KI(R)) the field of fractions of AI (resp. AI,R) and set
K+

I := ∪n≥1{u ∈ AI : |u| ≤ n.1} (resp K+
I,R := ∪n≥1{u ∈ AI,R : |u| ≤ n.1}.

A subalgebra A of AI is said to be algebraically closed if A contains every u ∈ AI satisfying
p(u) = 0 for some nonzero p ∈ A[x].

Notice that since every prime ideal I of C(K) is absolutely convex, the inequality | |f | − |g| | ≤
|f − g| shows that the map u→ |u| is well-defined on AI .

It is a standard fact that KI is algebraically closed, or equivalently, that KI,R is "real-closed",
see [8], p.38. More precisely if a0, . . . , an−1 ∈ AI , then there exists u1, . . . , un ∈ AI such that
a0 + a1x + . . . + an−1x

n−1 + xn = (x − u1) . . . (x − un), (this can be proved using exercise 13A of
[16] to adapt to the complex case the argument used in the proof of theorem 3.4 of [16] to prove
an analogous result in the quotient algebra CR(K)/IR when n is odd). Now assume that A is an
algebraically closed subalgebra of AI , let K ⊂ KI be the field of fractions of A and let u ∈ KI \{0} be
algebraic overK. There exists a0, . . . , an ∈ A, with a0 6= 0, an 6= 0, satisfying a0+a1u+. . .+anu

n = 0.
Set v = a0/u. Since vn + a1v

n−1 + . . . + an−2
0 an−1v + an−1

0 an = 0, we have v ∈ AI , and so v ∈ A
and u = a0/v ∈ K. This tautological observation shows that the field of fractions of an algebraically
closed subalgebra of AI is algebraically closed. Notice also that if H is a proper nonzero ideal of AI

then the quotient field of the unital algebra H⊕C.1 is KI , which is algebraically closed, but H⊕C.1
is obviously not an algebraically closed subalgebra of AI in the sense of definition 3.1.

Let I be a prime ideal of C(K). It is well known that if J is a prime ideal contained in I, and if
f /∈ I, g ∈ I, then f + J is a divisor of g + J in C(K)/J. In fact the following more precise result is
true (a less general result in the same direction is given by lemma 5.8 of [24]).

Lemma 3.2 Let I be a prime ideal of C(K). If f /∈ I, then f + J (I) is a divisor of g + J (I) in
C(K)/J (I) for every g ∈ I.

Proof : Assume that f /∈ I and that g ∈ I. Since I is absolutely convex, we have |f | /∈ I and

|g| ∈ I. Hence |f |2 /∈ I and
[

|f |2 − |g|
]+

−
[

|f |2 − |g|
]−

= |f |2 − |g| /∈ I.
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We have 0 ≤
[

|f |2 − |g|
]−

=
[

|g| − |f |2
]+

≤ |g|, and so
[

|f |2 − |g|
]−

∈ I, and
[

|f |2 − |g|
]+

/∈ I.

Since
[

|f |2 − |g|
]+
.
[

|f |2 − |g|
]−

= 0, we see that
[

|f |2 − |g|
]−

∈ J (I).

Set h = |f |2 +
[

|f |2 − |g|
]−
, so that 0 ≤ |g| ≤ |h|, and set u(t) = 0 if h(t) = 0, u(t) = g(t)f(t)

h(t)

otherwise. Then u ∈ C(K).

Now set v =

√

[|f |2 − |g|]−, and set w(t) = 0 if h(t) = 0, w(t) = g(t)v(t)
h(t) otherwise, so that

w ∈ C(K). Since J (I) is semiprime, it contains v and g − fu = vw ∈ J (I). �

Corollary 3.3 Let I, J be prime ideals of C(K), with I ⊆ J, and let πI,J : f + I → f + J be the
canonical surjection of AI onto AJ . If A is an algebraically closed subalgebra of AI , then πI,J(A) is
an algebraically closed subalgebra of AJ .

Proof : Set B = πI,J(A). Let u ∈ AJ \ {0}, and assume that b0 = b1u with b0, b1 ∈ B, b0 6= 0.
Let a0 ∈ π−1

I,J (b0), let a1 ∈ π−1
I,J(b1), let f0 ∈ π−1

I (a0), let f1 ∈ π−1
I (b1), and let g ∈ π−1

J (u).
Then f0 − f1g ∈ J, f1 /∈ J, and it follows from the lemma that there exists h ∈ C(K) such that
f0−f1g−f1h ∈ J (J) ⊂ I. Then h ∈ J, since J is prime, and πI(g+h) ∈ A, since a0−a1πI(g+h) = 0.
Hence u = πI,J(πI(g)) = πI,J(πI(g + h)) ∈ B.

Now let again u ∈ AJ \ {0}, and assume that b0 + b1u + . . . + bnu
n = 0, with b0, . . . , bn ∈ B,

b0 6= 0, bn 6= 0. Let ai ∈ π−1
I,J (bi). There exists v1, . . . , vn ∈ AI such that xn + a1x+ . . .+ an−1

0 an =
(x−v1) . . . (x−vn), and vi ∈ A for 1 ≤ i ≤ n since A is an algebraically closed subalgebra of AI . Set
w = b0/u. Then 0 = wn + b1w

n−1 + . . . bn−1
0 bn = (w − w1) . . . (w − wn), where wi = πI,J(vi) ∈ B.

Hence wiu = b0 for some i ≤ n, and u ∈ B. �

A folklore result, which has been known to the author since the seventies, shows that if I is a
prime ideal of C(K), and if J is a prime ideal of C(K) contained in J, then there exists a subalgebra
AI,J of the quotient algebra C(K)/J such that C(K)/J = AI,J ⊕ π(I), where π : C(K) → C(K)/J
denotes the canonical surjection. The following lemma gives a more general property, which is also
more general than proposition 5.9 of [24]. Notice that the proof uses an argument similar to an
argument used by G.R. Allan in his seminal paper [1] to perform algebraic extensions of embeddings
of subalgebras of C[[X ]], the algebra of all formal power series, into some Banach algebras.

Lemma 3.4 Let I be a prime ideal of C(K), let J be a prime ideal of C(K) contained in I, let
B0 be a unital subalgebra of C(K) such that B0 ∩ I ⊂ J (I), and let B1 be a subalgebra of C(K)
containing B0+J (J) such that πJ (B1) is an algebraically closed subalgebra of AJ . Then there exists
a subalgebra B of B1 containing B0 + J (I) which possesses the following properties

(1) B ∩ I = J (I)
(2) B1 = B + I ∩B1.

Proof : Let F be the family of all subalgebrasB ofB1 containingB0+J (I) such that B∩I = J (I),
so that π̃I(B)∩ π̃I (I) = {0} for every B ∈ F . Since the union of any family of elements of F linearly
ordered with respect to inclusion belongs to F , it follows from Zorn’s lemma that F possesses a
maximal element. Set A0 := πI(B0) and A1 = πI(B1).

We claim that if u ∈ C(K)\I, and if p(u) ∈ J (I) ⊂ J∩B1 for some p ∈ B1[x] such that p′(u) /∈ I,
then u ∈ I.

To see this notice that since πJ (B1) is an algebraically closed subalgebra of AJ , there exists
v ∈ B1 and r ∈ J such that u = v − r. We have

p(v)− p(u) = r



p′(u) +

n
∑

j=2

p(j)(u)

j
rn−1



 ,
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and so p(u)− p(v) ∈ B1 ∩ J ⊂ J (I).
It follows from the lemma that there exists s ∈ J and ρ ∈ J (I) such that r = p′(u)s + ρ. We

obtain

p′(u)2s



1 +

n
∑

j=2

p(j)(u)

j
p′(u)n−2sn−1



 ∈ J (J).

Since the quotient algebra C(K)/J (J) is a local ring, 1 +
∑n

j=2
p(j)(u)

j
p′(u)n−2sn−1 + J (J) is

invertible in C(K)/J (J). Since p′(u)2+J (J) is not a divisor of 0 in C(K)/J (J), we have s ∈ J (J).
Hence r ∈ J (J) ⊂ B1, and u ∈ B1, which proves our claim.

Now let B be an element of F such that B + I ∩ B1 ( B1. For p = a0 + . . .+ anx
n ∈ B[x], set

p̃ = πI(a0) + . . .+ πI(an)x
n ∈ πI(B)[x].

1) Assume that there exists a ∈ B\I∩B and b ∈ B such that au−b ∈ I for some u ∈ B1 such that
u /∈ B + I ∩B1. It follows from the lemma that there exists r ∈ C(K) such that a− bu− br ∈ J (I).
Set v = u + r. It follows from the claim that v ∈ B1, and r ∈ I, since I is prime, which shows that
v /∈ B+I∩B1. Set B̃ = B(v). Let y = a0+a1v+. . .+anv

n ∈ B̃∪I. Set z = a0a
n+a1a

n−1b+. . .+anb
n.

Then any − z ∈ J (I), and z ∈ I ∩ B ⊂ inJ (I). Hence any ∈ J (I), and so y ∈ J (I) since an /∈ I.
This shows thar B̃ ∈ F , and B is not maximal.

2) Assume that b − au /∈ I for a, b ∈ B \ I ∩ B, u ∈ B1 \ B + I ∩ B1, but that there exists a
polynomial p ∈ B[x], of degree n ≥ 2, with p̃ 6= 0, such that p(u) ∈ I for some u ∈ B1 \B + I ∩B1.
with α0 ∈ B \ I ∩ B,αn ∈ B \ I ∩ B. We can assume that the degree of p is minimal among the
degree of polynomials having this property, so that do(p̃) = n, and p′(u) /∈ I. Hence p′(u)2 /∈ I, and
there exists ρ ∈ C(K) such that p(u) − ρp′(u)2 ∈ J (I). Then ρ ∈ I, since I is prime. We have, by
Taylor’s formula, for h ∈ C(K),

p(u+ p′(u)h) = p(u) + p′(u)2h+
n
∑

k=2

p′(u)kp(k)(u)

k!
hk = z + p′(u)2

[

ρ+ h+
n
∑

k=2

p′(u)k−2p(k)(u)

k!
hk

]

,

where z ∈ J (I).

Set φ(h) = h+
∑n

k=2
p′(u)k−2p(k)(u)

k! hk for h ∈ Mt, where t denotes the unique element of Z(I).
Since D(φ)(0) is the identity map, it follows from the inverse function theorem there exists ǫ > 0 such
that the equation φ(h) = g has a solution in Mt for every g ∈ Mt such that ‖g‖ < ǫ. Since J (I) is

dense in Mt, this implies that there exists h ∈ Mt such that ρ+ h+
∑n

k=2
p′(u)k−2q(k)(u)

k! hk ∈ J (I).

Also 1+
∑n

k=2
q′(u)k−2q(k)(u)

k! π(y)k−1+J (I) is invertible in C(K)/J (I), and h ∈ I. Set v = u+q′(u)h.
Then v /∈ B + I, q(v) ∈ J (I), and it follows from the claim that v ∈ B1.

Now let q ∈ B[x] such that q(v) ∈ I. There exists γ ∈ B \ I ∩ B, δ ∈ J (I) and q1, q2 ∈ B[x],
with do(q2) < n, such that γq̃ = p̃q̃1 − q̃2. Hence q2(v) = γq(v) − p(v)q1(v) ∈ I, and so q̃2 = 0 since
do(q2) < n. So q(v) ∈ J (I), since γ + J (I) is not a divisor of 0 in C(K)/J (I). Hence B(v) ∈ F , so
that B is not a maximal element of F .

3) If neither (1) nor (2) are not satisfied, and if u ∈ B1 \ (B + I ∩ B1), then p(u) /∈ I for every
p ∈ B[x] such that π̃p 6= 0. In this situation B(h) ∈ F and B is obviously not maximal.

Hence B1 = B + I ∩B1 for every maximal element B of F . �

We introduce the following natural notion.

Definition 3.5 Let I be a prime ideal of C(K). A subalgebra B of C(K) is said to be a lifting of the
quotient algebra AI if the following two conditions are satisfied
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(1) B ∩ I = J (I)
(2) C(K) = B + I.

If t ∈ K, then the algebra C.1+Ot of functions f ∈ C(K) which are constant on some neighbou-
rhhod of t is a lifting of the quotient algebra AMt

⋍ C. Also if I is a minimal prime ideal of C(K)
then C(K) is obviously a lifting of AI .

We deduce from the lemma the following corollary.

Corollary 3.6 Let I, J, L be prime ideals of C(K) such that J ( I ( L, let BJ be a lifting of AJ

and let BL be a lifting ogf AL such that BL ⊂ BJ . Then there exists a lifting BI of AI such that
BL ⊂ BI ⊂ BK .

This corollary suggests the following problem.

Problem 3.7 Let I be a minimal nonmaximal prime ideal of C(K) and let F be the set of prime
ideals of C(K) containing I. Does there exist a family {BJ}J∈F of subalgebras of C(K) which pos-
sesses the following properties.

(i) BJ is a lifting of the quotient algebra AJ for every J ∈ F .

(ii) If J ∈ F , L ∈ F , and if J ⊂ L, then BL ⊂ BJ .

A positive answer to this problem would give a direct proof the fact that every chain F of
nonmaximal closed prime ideals of C(K) such that |C(K)/I| = 2ℵ0 , where I denotes the smallest
element of F , is contained in Prim(q) for some discontinuous algebra norm on C(K) if CH is assumed
[14].

If A is a family of linear subspaces on a complex linear space E we will denote again by U(A) the
set of all unions of subfamilies of A, and by V(A) the set of all linear subspaces of E which belong
to U(A). We will say that A is stable under unions if V(A) = A. We will need the following notion.

Definition 3.8 Let E be a linear space and let F be a family of linear subspaces of E. We will say
that the family F is almost stable under unions if there exists a sequence (Fn)n≥1 of subfamilies of
F such that ∪n≥1V(Fn) ⊂ F .

A countable family of linear subspaces of E is indeed almost stable under unions. Also, since
V(V(A)) = V(A) for every family A of linear subspaces of E, we see that if F is almost stable
under unions there exists a sequence (Fn)n≥1 of subfamilies of F stable under unions such that
F = ∪n≥1Fn.

Notice that if F is almost stable under unions, and if G is a chain of elements of F which
doest not admit any countable cofinal subset, then G ∪ Fn is cofinal in G for some n ≥ 1, and so
∪{L : L ∈ G} ∈ F . Similarly if (Iλ)λ∈Λ is an uncountable pseudo-finite family of elements of F ,
then ∪λ∈ΛIλ ∈ F , since every sequence of elements of ∪λ∈ΛIλ is contained in Iλ for some λ ∈ Λ.

Let F be a well-ordered chain of prime nonmaximal ideals of C(K) satisfying |C(K)/IF | = 2ℵ0 ,
where IF denotes the smallest element of F and let M be the maximal ideal of C(K) containing the
elements of F . The author proved in [14], theorem 2.8 that if F ∪M is almost stable under unions,
then there exists a discontinous algebra norm on C(K) such that F = Prim(q).

If U is a family of nonmaximal prime ideals of C(K), denote by MU the set of maximal ideals of
C(K) which contain some element of U . Theorem 2.8 of [14] suggests the following conjecture

Conjecture 3.9 (CH) Let U be a family of nonmaximal prime ideals of C(K) satisfying the three
following properties

1) every sequence of elements of U has a pseudo-finite subsequence,
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2) U ∪MU is almost stable under unions,

3) |C(K)/I| = 2ℵ0 for every minimal element I of U .

Then there exists an algebra norm on C(K) such that U = Prim(q).

A weaker form of the conjecture is obtained by replacing condition (2) by the condition

2’) U ∪MU is stable under unions.

This weak form of the conjecture would imply that every ideal I such that |C(K)/I| = 2ℵ0

satisfying the equivalent conditions of theorem 2.10 is the continuity ideal of some discontinuous
homomorphism from C(K) if CH is assumed. In other terms this would show that the continuity
ideals of discontinuous homomorphisms are exactly the pure semiprime Badé-Curtis ideals under CH
(and allow to remove the countability condition in assertion (ii) of theorem 6.7 of [24]). This result
would present some heuristic interest since the fact that the continuity ideal if a pure semiprime
Badé-Curtis ideals is a consequence of the two main tools of automatic continuity theory, the "main
boundedness theorem" of Badé-Curtis [2] and the "stability lemma" of [28] (see also [5], corollary
5.2.7). These two tools would thus provide all the information concerning partial continuity of
homomorphisms from C(K) if CH is assumed.

4 An extension theorem

We present here an alternative approach to Pham’s method based on almost disjoint infinite
families of integers and embeddings of quotient algebras AI = C(K)/I into algebras of the form
(Cκ/U)o, where κ is a cardinal, U an ultrafilter on κ and (Cκ/U)o is the algebra of infinitesimal
elements of the field Cκ/U . This method is used by Pham to obtain theorem 6.5 of [22] and proposi-
tion 6.2 of [24], which are both extensions of Woodin’s embedding theorem, which shows that every
complex algebra A such that |A| = 2ℵ0 can be embedded in c0/U for some free ultrafilter U on N,
see theorem 5.25 of dw1 (this result does not depend on the continuum hypothesis). Theorem 6.5 of
[22] and proposition 6.2 of [24] are the key steps for the proofs of theorem 9.5 of [22] and theorem
6.7 of [24], which show that continuity ideals are not in general finite intersections of prime ideal.

To formulate our result we need to introduce some objects used in the author’s construction of
discontinuous homomorphisms from C(K).

Let ω1 be the smallest uncountable ordinal. We denote by Sω1 ⊂ {0, 1}ω1 the set of all transfinite
dyadic sequences x = (xζ)ζ<ω1 for which there exists η(x) < ω1 such that xη(x) = 1 and such that
xζ = 0 for every ζ > η(x).

Equiped with the lexicographic order, Sω1 is a linearly ordered set, and a classical result of
Sierpiński [26], see also [5] shows that every linearly ordered set of cardinal ≤ ℵ1 is order-isomorphic
to a subset of Sω1 .

Denote by Gω1 ⊂ SR
ω1

the set of all real-valued functions φ on Sω1 such that Supp(φ) := {s ∈
Sω1 | φ(s) 6= 0} is well-ordered and at most countable. For φ ∈ Gω1 \ {0}, denote by ρ(φ) the
smallest element of Supp(φ). By definition, a nonzero element φ ∈ Gω1 is said to be strictly positive
if φ(ρ(φ)) > 0. Equipped with the linear structure inherited from the linear structure of SR

ω1
, Gω1 is

a linearly ordered real vector space, which contains a copy of every linearly ordered group of cardinal
ℵ1.

Now let G be a linearly ordered group, and let k be a field. We will denote by F(G, k) the set of
all functions f : G→ k such that Supp(f) := {τ ∈ G | f(τ 6= 0)} is well-ordered, and we set

F(1)(G, k) := {f ∈ F(G, k) | |supp(g)| ≤ ℵ0}.

Now let f, g ∈ F(G, k), and let τ ∈ G. If τ /∈ Supp(f) + Supp(g) := {α+ β}α∈Supp(f),β∈Supp(g),
set (fg)(τ) = 0. Otherwise set

13



(fg)(τ) =
∑

α∈Supp(f),β∈Supp(g)
α+β=τ

f(α)g(β).

Then fg is well-defined, since the set {(α, β) ∈ Supp(f)×Supp(g) | α+β = τ} is finite for every
τ ∈ Supp(f) + Supp(g), and fg ∈ F(G, k). In fact Hahn observed in 1907 in [17] that F(G, k) is a
field. Set v(f) = inf(Supp(f)) for f ∈ F(G, k) \ {0}. Then v is a valuation on the field F(G, k), and
the valued field F(G, k) is maximal : if U is a field containing F(G, k), and if w is a valuation on U
with values in G such that w(f) = v(f) for every f ∈ F(G, k) \ {0}, then U = F(G, k).

Mac Lane showed in [20] that F(G, k) is algebraically closed if k is algebraically closed and if
the equation nt = τ has a solution in G for every τ ∈ G and every integer n ≥ 2. In particular, the
fields F(Gω1 ,C) and F(1)(Gω1 ,C) are algebraically closed.

We set, with the convention v(0) = +∞ > τ for every τ ∈ G,

Cω1 := {f ∈ F(1)(Gω1 ,C) | v(f) ≥ 0},Mω1 := {f ∈ F(1)(Gω1 ,C) | v(f) > 0},

so that the radical complex algebra Mω1 is the unique maximal ideal of the commutative unital
complex algebra Cω1 . The algebra Cω1 is universal : if the continuum hypothesis is assumed then
Cω1 contains a copy of every commutative unital complex algebra of cardinality 2ℵ0 which is an
integral domain and possesses a character.

If I is a prime ideal of C(K) we denote again by AI the quotient algebra C(K)/I and we denote
by πI : C(K) → C(K)/I the canonical surjection.

Let K be a field. A K-algebra is an algebra over K, and a K-character over a K-algebra A is an
algebra homomorphism from A into K. A K-field is a field which is also a K-algebra.

We will need the following classical result called the fundamental theorem fot the extension of
places.

Theorem 4.1 Let K be an algebraically closed field, and let A be a commutative unital K-algebra
which possesses a K-character φA. Assume that A is contained in a K-field L. Then there exists a
K-algebra V of quotient field L containing A which possesses the following properties :

(i) V is a valuation ring.

(ii) There exists a K-character φV on V such that φV |A = φA.

This result is given in theorem 2.19 of [8] in the case where K = C. The proof given in [8] extends
without modification to algebras over any algebraically closed K. �

Notice that If V is a K-valuation algebra which possesses a K-character φV , then Ker(φV ) is
the unique maximal ideal MV of the valuation ring V, and so MV is a K-subalgebra of V, and
V/MV ≈ K. Let L be the field of fractions of V. Set

ΓV = (L \ {0})/Inv(V ),

and denote by v : L \ {0} → ΓV be the canonical surjection. Set v(a) ≤ v(b) for a, b ∈ L \ {0} if
b ∈ aV. We define an additive law on ΓV by using the formula

v(a) + v(b) = v(ab) (a ∈ L \ {0}, b ∈ L \ {0}).

Standard routine verifications show that ΓV is a linearly ordered group, which is divisible if L is
algebraically closed, and that v : L \ {0} → ΓV is a valuation on L. If we set v(0) = +∞, we have

V = {a ∈ L : v(a) ≥ 0}, Ker(φV ) =MV = {a ∈ L : v(a) > 0}.
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Now assume that L is algebraically closed. If L0 is a subfield of L which is a K algebra, we will
say that a K-homomorphism ψ0 : L0 → F(G,K) is valuation preserving if v(ψ0(a)) = v(a) for every
a ∈ L0 \ {0}, where we also denote by v the standard valuation on F(G,K). Kaplansky’s embedding
theorem [18] shows that if we set G0 = v(L0\{0}) then for every valuation preserving homomorphism
ψ0 : L0 → F(G0,K) there exists a valuation-preserving homomorphism ψ : L → F(G,K) such that
ψ|L0

= ψ0. We now deduce from Kaplansky’s embedding theorem the following lemma.

Lemma 4.2 (CH) Let K be an algebraically closed field, and let A be a commutative unital K-
algebra which possesses a K-character φA. If |A| = 2ℵ0 , then there exists a linearly ordered group G,
with |G| = 2ℵ0 , and a one-to-one unital K-algebra homomorphism ψ = A → F(1)(G

+,K) such that
v(φ(a)) > 0 for every a ∈ Ker(φA).

Proof : Recall that a linearly ordered set S is said to be an α1-set if every nonempty subset of S
has a countable coinitial and cofinal subset G, see definition 1.7 of [8]. Let L be the algebraic closure
of the quotient field of A, which is a K-algebra. Let V be a K-algebra of quotient field L satisfying
conditions (i) and (ii) of theorem 4.1. Set G = ΓV , and let v : L \ {0} → G be the valuation on L
associated to V. Let (aζ)ζ<ω be a transcendence basis of L over K.1, where ω ≤ ω1 is an ordinal.

Set L0 = K, and for 0 < σ ≤ ω denote by Lσ the algebraic closure of the field of fractions
of Lζ(aσ) if σ = ζ + 1 is a successor ordinal, and set Lσ = ∪ζ<σLζ if σ is a limit ordinal. Set
Gσ = v(Lσ \ {0}) for σ < ω.

Let σ < ω is a successor ordinal. Denote by U the field if fractions of Lσ(aσ+1). Since Lσ is
algebraically closed, a standard argument given for example in the proof of proposition 2.27 of [8]
shows that there exists τ ∈ G such that v(U \ {0} = Gζ +Z.τ. Another standard argument given in
the proof of proposition 2.6 of [8] shows that Gσ = ∪n≥1

1
n
v(U \ {0}). So Gσ+1 is an α1-group if Gσ

is an α1-group. Since any countable union of a nondecreasing family of α1-groups is an α1-group,
we see by transfinite induction that Gσ is an α1 group for every σ < ω. Set φ0(k.1) = k for k ∈ K.
Applying Kaplansky’s emmbedding theorem, we can define by transfinite induction for σ < ω a
one-to-one homomorphism φσ : Lσ → F(Gσ,K) = F(1)(Gσ,K) satisfying v(φσ(a)) = v(a) for every
a ∈ Lσ \ {0} such that φσ |ζ = φζ for ζ < σ, and it follows from the definition of φ0 that φσ is a
K-algebra homomorphism. Then the homomorphism φ : L→ F(1)(G,K) = ∪σ<ωF(1)(G,K) defined
by the condition φ|Lσ

= φσ for σ < ω satisfies v(φ(a)) = v(a) for every a ∈ L \ {0}. Since A ⊂ V, we
have φ(a) ∈ F(1)(G,K) for every a ∈ A, and v(φ(a)) = v(a) > 0 for every a ∈ Ker(φA).�

Theorem 4.3 (CH) Let I be a nonmaximal prime ideal of C(K) such that |AI | = 2ℵ0 , and let J be a
nonmaximal prime ideal of C(K) containing I. Let B be a subalgebra of AI such that AI = B⊕πI(J).
Let φ : B → Cω1 be a one-to-one homomorphism. If there exists a noncofinal subgroupH0 of Gω1 such
that Supp(φ(b)) ⊂ H0 for every b ∈ B, then there exists a one-to-one homomorphism ψ : AI → Cω1

such that ψ|B = φ.

Proof : Let K be the field of fractions of B, and let U be the field of fractions of AI . Then K
and U are algebraically closed. Set D = {u = ab−1 : a ∈ AI , b ∈ B \ {0}}. Since a ∈ bAI for every
a ∈ πI(I) and every b ∈ B \ {0}, and since AI = B ⊕ πI(J), we have D = K + πI(J), πI(J) is an
ideal of D, and D is a K-algebra. Since 1 /∈ πI(J), we have K∩ πI(J) = {0}, and so D = K⊕ πI(J).
Hence there exists a K-character φD on D such that πI(J) = Ker(φD). Hence every x ∈ D admits
a unique decomposition of the form x = α(x) + y(x), where α(x) ∈ K and y(x) ∈ πI(J), and the
map φD : x→ α(x) is a K-character on D such that Ker(φD) = πI(J).

It follows from the lemma that there exists a linearly ordered group G satisfying |G| = 2ℵ0

and a one-to-one K-algebra homomorphism δ : D → F(1)(G
+,K) such that v(θ(a)) > 0 for every

a ∈ Ker(φD) = πI(J).
Now assume that φ : B → Cω1 is a one-to-one algebra homomorphism and that H0 is a noncofinal

subgroup of G containing Supp(b) for every b ∈ B, and let τ ∈ Gω1 such that τ > s for every s ∈ H0.
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Denote by r ∈ Sω1 the smallest element of supp(τ), and set S = {s ∈ Sω1 : s < r}. Since Sω1 is a
η1-set, S is also a η1-set, and so the group H := {σ ∈ G : supp(σ) ⊂ S} is a η1-group, see theorem
1.19 in [8] (and it follows from corollary 1.49 of [8] that H is in fact isomorphic to Gω1 as an ordered
group). Since CH is assumed, It follows from theorem 1.46 of [8] that there exist a one-to-one order
preserving homomorphism ρ : G → H. We now define an application θ : F(1)(G,K) → F(1)(Gω1 ,C)
by the formula

{

θ(u)(τ + ρ(s)) = φ̃(u(s))(τ) for τ ∈ H0, s ∈ G
θ(u)(σ) = 0 for σ /∈ H0 + ρ(G)

We have |σ| < |t| for every σ ∈ H0 and every t ∈ H1. Equip the cartesian product H0 × G
with lexicographic order, i.e. (s1, t1) < (s2, t2) if t1 < t2 or if t1 = t2 and s1 < s2. Then the map
(τ, s) → τ + s is an order-preserving group homomorphism from H0 × G into Gω1 , and it follows
from this observation that Supp(θ(u)) is well-ordered for every u ∈ F(1)(G,K). Since a countable
union of countable sets is countable, we see that θ(u) ∈ F(1)(Gω1 ,C) for every u ∈ F(1)(G,K), and
θ is clearly K-linear and one-to-one.

We have, for τinH0, s ∈ G, u, v ∈ F(1)(G,K),

θ(uv)(τ + ρ(s)) = φ̃(uv(s))(τ) = φ̃

(

∑

s1+s2=s

u(s1)v(s2)

)

(τ)

=
∑

s1+s2=s

[

φ̃(u(s1))φ̃(u(s2)
]

(τ) =
∑

τ1+τ2=τ,s1+s2=s

[φ̃(u)(s1)](τ1)[φ̃(u)(s2)](τ2)

=
∑

(τ1+ρ(s1))+(τ2+ρ(s2))=τ+ρ(s)

θ(u)(τ1 + ρ(s1))θ(v)(τ2 + ρ(s2))

= [θ(u)θ(v)](τ + ρ(s)).

So θ(uv) = θ(u)θ(v) and θ is a K-algebra homomorphism.
Denote by ψ the restriction of θ ◦ δ to AI , and let a ∈ AI . If b ∈ B we have δ(b) = bX0, donc

(θ◦δ)(b) = φ̃(b) = φ(b) ∈ Cω1 . Now if c ∈ πI(J) we have s > 0 for every s ∈ Supp(δ(c)), and so every
t ∈ Supp(ψ(c) has the form t = τ + ρ(s) where τ ∈ H0 and where ρ(s) is a strictly positive element
of H1. This shows that t > 0 for every t ∈ Supp(φ(c)). In particular v(φ(c)) > 0, and ψ(c) ∈ Cω1 .
Since AI = B ⊕ πJ (I), we have φ(AI) ⊂ Cω1 , which concludes the proof of the theorem. �

We obtain the following result, which is slightly stronger than corollary 7.3 of [24].

Corollary 4.4 (CH) Let (Iλ)λ∈Λ be a pseudo-finite family of prime ideals of C(K). If |C(K)/Iλ| =
2ℵ0 for λ ∈ Λ, then the quotient algebra C(K)/∩λ∈Λ possesses an algebra norm.

Proof. Set J = ∪λ∈ΛIλ. Then J is a prime ideal of C(K). Denote by J (J) the intersection of all
prime ideals of C(K) contained in J, and let U be a subalgebra of C(K) containing J (J) such
that U ∩ J ⊂ J (J) and such that U + J = C(K). Denote by π : C(K) → C(K)/J (J) and for
λ ∈ Λ denote by πλ : C(K)/Iλ the canonical surjections. Choose a strictly positive τ ∈ Gω1 and set
G := {s ∈ Gω1 : n|s| < τ ∀n ≥ 1}. Then G is an η1-subgroup of Gω1 which is not cofinal in Gω1 . If
π(u)π(v) = 0, with u, v ∈ U, and if u /∈ Iλ for some λ ∈ Λ, then v ∈ Iλ ∩U ⊂ J (J), and so π(v) = 0.
So the algebra π(U) is an integral domain, and it follows again from theorem 1.46 of [8] that there
exists a one-to-one algebra homomorphism φ : π(U) → F(1)(G,C) ⊂ Cω1 .

Since U ∩ Iλ ⊂ J (J), the map θλ : f + J (J) → f + Iλ defines an isomorphism from π(U)
onto πλ(U) for λ ∈ Λ, and we have AIλ = C(K)/Iλ = πλ(U) ⊕ πλ(J). Now set φλ := φ ◦ θ−1

λ . The
map φλ : πλ(U) → Cω1 satisfies the conditions of theorem 4.3, and so there exists a one-to-one
homomorphism ψλ : AIλ → Cω1 such that ψλ(a) = φλ(a) for every a ∈ πλ(U).
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If u ∈ U, we have (ψλ ◦ πλ)(u) = (φλ ◦ πλ)(u) = (φ ◦ θ−1
λ ◦ πλ)(u) = (φ ◦ π)(u), which does not

depend on λ. Now if g ∈ J then the set {λ ∈ Λ : πλ(g) 6= 0} is finite. Since C(K) = U + J, we see
that the set {ψλ(f)}λ∈Λ is finite for every f ∈ C(K).

Let p be an algebra norm on Cω1 , and set, for f ∈ C(K),

‖f‖ = maxλ∈Λp(ψλ(f)).

We obtain an algebra seminorm on C(K), and the kernel of this seminorm is ∩λ∈ΛIλ, which gives
an algebra norm on the quotient algebra C(K)/ ∩λ∈Λ Iλ. �

We thus see that it is possible to use the extension theorem instead of theorem 6.5 of [22] to
complete the proof of the main results of [22]. It is also possible to use the extension theorem instead
of proposition 6.2 of [24] to complete the proof of the main results of [24]. We leave the details to
the reader.
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