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The glottal shape parameter R d provides a onedimensional parameterisation of the Liljencrants-Fant (LF) model which describes the deterministic component of the glottal source. In this paper we first propose to estimate the R d parameter by means of extending a state-ofthe-art method based on the phase minimization criterion. Then we propose an adaption of the standard R d parameter regression which enables us to coherently assess the normal and the upper R d range. By evaluating the confusion matrices depicting the error surfaces of the involved different R d parameter estimation methods and by objective measurement tests we verify the overall improvement of one new method compared to the state-of-the-art baseline approach.

Introduction

The voice quality of human speech production is related to the glottal source, that is the vibration mode of the vocal folds. The convolution of the glottal excitation waveform with the impulse responses of the vocal-tract filter (VTF) and the filters defining the radiation at the lips and nostrils level results in the human speech signal. Much effort has been conducted by the speech research community to establish a reliable, robust and efficient method to extract the deterministic source from a recorded speech signal. Various algorithms have been proposed for this challenging task, as summarized in [START_REF] Walker | A review of glottal waveform analysis[END_REF]. Due to the complexity of the problem, the robust estimation of the glottal source is still an open research question.

Similar to the minimum/maximum-phase decomposition paradigm, like Complex Cepstrum (CC) [START_REF] Drugman | Causal-anticausal decomposition of speech using complex cepstrum for glottal source estimation[END_REF] or Zeros of the Z-Transform (ZZT) [START_REF] Bozkurt | Zeros of z-transform (zzt) decomposition of speech for source-tract separation[END_REF], we exploit the different properties of the phase spectra of the glottal source and vocal tract filter models. We propose three phase minimization methods extending the method proposed in [START_REF] Degottex | Phase minimization for glottal model estimation[END_REF][START_REF] Degottex | Glottal source and vocal tract separation[END_REF] to estimate the glottal shape parameter R d [START_REF] Fant | The lf-model revisited. transformation and frequency domain analysis[END_REF] describing the parameters of the glottal source model LF [START_REF] Fant | A four-parameter model of glottal flow[END_REF]. The first two proposed methods extent the phase minimization paradigm by applying different differentiation-integration schemata. The third proposed method achieves a more robust estimation of the glottal shape parameter R d by means of superimposing the eval-uation errors calculated by the different phase error methods. The objective of this paper is to identify the methods achieving the most reliable R d estimation. For the usage of the normal and upper R d range we propose to adapt the equations defining the predicted waveshape R * p parameter set for the regression of the glottal shape parameter R d . Additionally be propose to extent the R d parameter range. The experimental findings show that the methods are as well beneficial to estimate R d for abducted phonations to describe with the upper R d range breathy voice qualities at word or speaking pause boundaries.

The article is organized as follows. In Section 2 the model for the human speech production is introduced. It is utilized in Section 3 in which the baseline and the different proposed extentions for the glottal pulse parameter estimation methods are explained. The adaptation and extention of the R d parameter regression is explained in Section 4. The confusion matrices of the different phase minimization methods are evaluated in Section 5. Section 6 presents an objective evaluation validating the improvement for one method.

Voice production model

The human voice production model S(ω) as in [START_REF] Degottex | Glottal source and vocal tract separation[END_REF] consists of the acoustic excitation at the glottis level G(ω), the resonating filter of the vocal tract C(ω), the nasal and lip radiation L(ω) and the harmonic excitation H(w, f 0 , D) parameterized by the fundamental frequency f 0 and the delay between pulse sequence and frame center in terms of the phase delay D of the fundamental:

S(ω) = G(ω) • C(ω) • L(ω) • H(w, f 0 , D) (1) 
Following Eq. 1, we contruct a discrete spectrum S k of a single period as in [START_REF] Degottex | Phase minimization for glottal model estimation[END_REF] with each bin k representing a single quasi-harmonic sinusoidal partials k. These partials are estimated from a Fourier transform of a windowed speech signal. The voice production model of the deterministic component of the speech signal is expressed by:

S k = e jkφ • G Rd k • C k-• L k (2)
The linear-phase term e jkφ defines the time position of the glottal pulse in the period. G Rd k represents the LF glottal model, parameterized by the R d parameter. The vocal-tract filter C k-is assumed to be minimum-phase. The term L k represents the radiation at the lips and nos-trils level. According to [START_REF] Markel | Linear Prediction of Speech, chapter 12[END_REF] the filter L k can be approximated by a time derivative and is thus set to L k = jk.

The VTF can be expressed with respect to the shape parameter R d of the glottal model by division in the frequency domain:

C Rd k = E - S k G Rd k • jk (3) 
The operator E -(.) is the minimum-phase realization of its argument, calculated by using the real cepstrum [START_REF] Oppenheim | Digital Signal Processing[END_REF].

Glottal shape parameter estimation

The VTF expression C Rd k of Eq. 3 is inserted into the voice production model of Eq. 2 to form the mathematical basis for the definition of the convolutive residual R (θ,φ) k in Eq. 4. The shape of the glottal pulse is denoted by θ, while φ refers to the position of the glottal pulse with respect to the fundamental period in the time domain [START_REF] Degottex | Glottal source and vocal tract separation[END_REF].

R (θ,φ) k = S k e jkφ • G θ k • jk • E -(S k /G θ k • jk) (4) 
The division of S k , G θ k and jk by their respective minimum-phase versions flattens their amplitude spectrum. The remaining convolutive residual R (θ,φ) k is thus all-pass for any chosen glottal model. Its modulus is of unit amplitude:

|R (θ,φ) k | = 1 ∀ k, θ, φ.
Therefore, a mismatch of the model parameters to describe the observed speech signal affects only the phase spectrum of R

(θ,φ) k .
The result is that the better the estimate of the fitted voice model S k , the closer is the convolutive residual R (θ,φ) k to a Dirac delta function with a flat amplitude and zero phase spectrum. Hence, the smaller the phase spectrum of R (θ,φ) k the closer is the R d value utilized to synthesize the glottal model G θ k to the true glottal shape contained in the observed signal [START_REF] Degottex | Glottal source and vocal tract separation[END_REF]. This solution is unique as long as the glottal pulse that is present in the speech signal is covered by the R d parameter space.

The main problem with the convolutive residual R (θ,φ) k is its dependency on the pulse position φ. As shown in [START_REF] Degottex | Phase minimization for glottal model estimation[END_REF] we can remove this dependency by means of applying a 2 nd order difference operator

∆ 2 ∠X k = ∠ X k+1 • X k-1 X 2 k (5)
centered on each of the harmonics k of the convolutive residual in the complex plane. This removes the linearphase component of the observed phase spectrum and removes therefore the dependency to φ. Only the deviation from a linear phase trend remains. To find the optimal R d parameter the phase of the convolutive residual can be compared to the optimal target value 0. Note, however, that the difference operator of Eq. 5 not only removes the linear phase. It also applies a highpass filter to the phase difference that will be used to determine the optimal R d parameter. To compensate this high-pass filter a phase integration can be applied

∆ -1 X k = ∠ k n=1 X k (6) 
that invertes the high-pass filter without re-establishing the linear phase trend. The main objetive of the following experimental investigation is to determine the number of integration steps to be performed that creates the objective function leading to the most reliable R d estimates.

For this we compare setups with L integrations with L being in the set [0,1,2]. These objective functions will be denoted MSPDaIb with a being the number of differentiations and b representing the number of integrations. The different objective functions described as [MSPD2I0, MSPD2I1, MSPD2I2] present a different and not necessarily correlated error surface.

The phase slope is set to zero for each method as a result of the preceeding differentiation operations in order to be independent to the position of the glottal pulse with respect to the window position in time. Each integration step leads to a different weighting of the phase errors of the convolutive residual. The emphasis of the phase distortion by the shape error optimizes the shape parameter.

Objective function MSPD2I0: The objective function to minimize the results of Eq. 5 is the proposed new method MSPD2I0:

MSPD2I0(θ, N ) = 1 N N k=1 ∆ 2 ∠R θ k 2 (7) 
Objective function MSPD2I1: An anti-difference operation (∆ -1 )

∆ -1 ∆ 2 ∠X k = ∠ k n=1 X n+1 • X n-1 X 2 n ( 8 
)
applied to the second order phase difference of Eq. 5 performs an integration according to Eq. 6 to retrieve again the first order frequency derivative representation.

The results of Eq. 8 are evaluated by the corresponding objective function named MSPD 2 in [START_REF] Degottex | Phase minimization for glottal model estimation[END_REF][START_REF] Degottex | Glottal source and vocal tract separation[END_REF]. In this study we refer to this state-of-the-art baseline method by MSPD2I1 to be consistent with our naming convention:

MSPD2I1(θ, N ) = 1 N N k=1 ∆ -1 ∆ 2 ∠R θ k 2 (9) 
Objective function MSPD2I2: Applying two antidifference operators (∆ -2 ) to the second order phase difference of Eq. 5 computes the twice differentiated and twice integrated phase term:

∆ -2 ∆ 2 ∠X k = ∠ k n=2 k n=2 X n+1 • X n-1 X 2 n ( 10 
)
The corresponding objective function to minimize the results of Eq. 10 is the proposed new method MSPD2I2:

MSPD2I2(θ, N ) = 1 N N k=1 ∆ -2 ∆ 2 ∠R θ k 2 (11) 
MSPD2I2 is the most selective and most distinctive among the different phase minimization methods and weights slight differences of the matched glottal model to the observed glottal source the most.

Objective function MSPD2IX: It might be beneficial to combine error surfaces of different objective functions by means of MSPD2IX(w0,w1,w2) = w0 • MSPD2I0 + w1 • MSPD2I1 + w2 • MSPD2I2 (12) In this paper we will demonstrate that the weighting w0=w1=w2=1/3 slightly improves the robustness of the method. Not presented are the results of an investigation showing that more refined variations of the weighting sequence do not lead to major improvements. Therefore we will present only results obtained with equal weighting and denote this objective function as MSPD2IX.

R d regression adaptation and extention

The derivation of the predicted waveshape R * p parameter set as in [START_REF] Fant | The lf-model revisited. transformation and frequency domain analysis[END_REF] describes the LF model from the glottal shape parameter R d by means of a statistical regression. To derive the predicted waveshape R * p parameters from an estimated R d value we consider equations 2 to 4 of [START_REF] Fant | The lf-model revisited. transformation and frequency domain analysis[END_REF] for the normal R d range R d <2. 

R d confusion matrices

To understand the properties of the different objective functions we will show and discuss examples of their R d parameter confusion matrices [START_REF] Degottex | Glottal source and vocal tract separation[END_REF] which show the sensitivity of the objective functions with respect to the variation of R d over its complete range. According to [START_REF] Drugman | Glottal source estimation robustness -a comparison of sensitivity of voice source estimation techniques[END_REF] the robustness of the R d estimate depends mainly on the fundamental frequency f 0 , the first formant F 1 and the glottal formant F g . As experimental setup we simulate the first formant F 1 by convolving the synthetic glottal pulses G Rd with a 2-pole filter having a pole position at 800 Hz and radius 0.98, with f 0 set to 80 Hz.

We build as in [START_REF] Degottex | Glottal source and vocal tract separation[END_REF] a confusion matrix to detect ambiguities of the functions for phase minimization by calculating each R d value on a grid against all other R d values on the same grid. The resulting error surface constitutes a proof-of-concept of how well the method under investigation is able to distinguish between the shape of a fitting or mismatching glottal formant of the synthetic model, under the influence of the first formant. An ideal error surface would have a tiny black error valley at the matching diagonal axis with the rest of the error surface in clear white colour indicating a complete mismatch. Since it is not predictable how many stable sinusoidal partials are observable from the speech signal for each frame, we present due to space constraints only the case of 7 partials as a realistic expectation before the harmonic content is masked by noise. Note that for other numbers of partials the results are qualitatively the same.

By visual inspection of Fig. 1 one can observe that each integration step leads to a more tiny error valley (black) being delimited by broader error hills (white). Broader error valleys appear more at the upper R d range R d >2.7 and may lead to unnatural broad steps when estimating R d especially at word or pause boundaries of a continuous speech signal. MSPD2I1 may suffer from ambiguities from the additional error valleys for low R d values R d <0.5 versus higher R d values R d >3 at the upper left and lower right, while MSPD2I2 may be mislead by several appearing side minima. The combinatorial error surface of MSPD2IX exhibits the least ambiguities, a quasi-ideal small error valley and not any significant sim-ilarity for two or more R d values.

6. Evaluation 6.1. Synthetic f 0 and noise test We conduct a similar test setup as in [START_REF] Degottex | Phase minimization for glottal model estimation[END_REF] by synthesizing 16 synthetic vowels using Maeda's digital simulator [START_REF] Maeda | A digital simulation method of the vocal-tract system[END_REF] at 10 different f 0 values within the range [80 293] Hz. Each vowel is convolved with a glottal formant parameterized by an R d value within the range [0. 1 6] and on a grid of step size 0.1. We add 5 Gaussian noise levels between -50 to -30 dB as glottal source noise n σg 2 exhibits the overall lowest error and is just slightly less performant for middle frequencies around 180 Hz compared to MSPD2I1. MSPD2I2 in dotted lines outperforms MSPD2I1 dash-dotted lines only for lower frequencies up to 150 Hz. MSPD2I0 performs in general worse. Minimizing only the combination of equations 9 and 11 does not perform better because the improvement by MSPD2IX is not achieved by adding up the different failures present but by suppressing the occuring side minima.

Spectral distortion effect

An explanation of the R d estimation errors is given by the fact that the complete VTF cannot always be observed because some sinusoidal partials may be covered by noise. The evaluation shown in Fig. 3 examines how many stable sinusoidal partials N harms from the harmonic model are required to reliably construct the minimum-phase spectrum of the first N bins of S k . We choose N=7, vary the amount of N harms and measure the mean error of the R d estimation. For N harms =11 the error function is already reasonably attenuated because the boundary effects that are introduced at the spectral border have sufficiently diminished. 

Conclusions

The results of Section 5 demonstrate a promising proofof-concept which have partially been validated by the objective evaluation in Section 6. This leads us to believe that the proposed objective function MSPD2IX improves the state-of-the-art R d estimation method based on the phase minimization schemata. In general it can be stated that the higher f 0 the more difficult is to evaluate the minimum-phase property of the vocal tract filter within a single fundamental period and accordingly the systematic errors of the R d estimator will increase with f 0 .

  7 and equations 8 to 11 for the upper R d range R d >2.7 of [10]. However, following the proposed equations defining the waveshape R * p parameter set for the upper R d range and joining them at the interconnection point R d =2.7 with the waveshape R * p parameter set for the normal R d range results in a discontinuity and does not derive the expected contour of the waveshape parameters R kp and R gp as shown in Fig. 2 of [6]. Our proposed set of equations to define the adaptation of the waveshape parameter regression of R d for an extended R d range of [0.01 6] is: d <0.21 (-1 + 4.8 • R d )/100 ∀ 0.21≤R d ≤2.70 (32.3/R d ) /100 ∀ R d >2.70 (13)OQ upp = 1 -1/(2.17 • R d ) ∀ R d >2.7(14) R kp = (22.4 + 11.8 • R d )/100 ∀ R d ≤2.70 (2 • R gp • OQ upp ) -1.04 ∀ R d >2.70 (15) R gp =    0.25•R kp 0.11•R d 0.5+1.2•R kp -Rap ∀ R d ≤1.85 0.00935 + 596•10 -2 7.96-2•OQupp ∀ R d >1.85 (16)
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 1 Figure 1: R d confusion matrices for N=7 partials

  [n] and as environmental noise n σe [n] to the voiced signal to simulate acoustic turbulences present in real speech signals. A possible error introduced by different positions of the window with respect to the period in time is simulated by synthesizing each parameter set on a grid of 4 different delays φ * covering the range [-0.5 • T 0.5 • T ].
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 2 Figure2: R d estimation evaluation on f 0 and noise MSPD2IX with a solid line in Fig.2exhibits the overall lowest error and is just slightly less performant for middle frequencies around 180 Hz compared to MSPD2I1. MSPD2I2 in dotted lines outperforms MSPD2I1 dash-dotted lines only for lower frequencies up to 150 Hz. MSPD2I0 performs in general worse. Minimizing only the combination of equations 9 and 11 does not perform better because the improvement by MSPD2IX is not achieved by adding up the different failures present but by suppressing the occuring side minima.

  error by no. of harmonics N harms
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 3 Figure 3: R d estimation error by no. of harmonics