
Two New Graphs Kernels in

Chemoinformatics

Benoit Gaüzère Luc Brun Didier Villemin

2012

Abstract

Chemoinformatics is a well established research field concerned
with the discovery of molecule’s properties through informational tech-
niques. Computer science’s research fields mainly concerned by chemoin-
formatics are machine learning and graph theory. From this point
of view, graph kernels provide a nice framework combining machine
learning and graph theory techniques. Such kernels prove their effi-
ciency on several chemoinformatics problems and this paper presents
two new graph kernels applied to regression and classification prob-
lems. The first kernel is based on the notion of edit distance while the
second is based on subtrees enumeration. The design of this last kernel
is based on a variable selection step in order to obtain kernels defined
on parsimonious sets of patterns. Performances of both kernels are
investigated through experiments.

1 Introduction

Chemoinformatics aims to predict or analyse molecule’s properties through
informational techniques. One of the major principle in this research field is
the similarity principle, which states that two structurally similar molecules
should have similar activities and properties. The structure of a molecule is
naturally encoded by a labeled graph G = (V,E, µ, ν), where the unlabeled
graph (V,E) encodes the structure of the molecule while µ maps each vertex
to an atom’s label and ν characterizes a type of bond between two atoms
(single, double, triple or aromatic).

1

A first family of methods introduced within the Quantitative Structure-
Activity Relationship (QSAR) field is based on the correlation between molecule’s
descriptors and molecule’s properties (e.g. molecule’s boiling point). Vectors
of descriptors may be defined from structural information (Cherqaoui and
Villemin, 1994), physical properties or biological activities and may be used
within any statistical machine learning algorithm to predict molecule’s prop-
erties. Such a scheme allows to benefit from the large set of tools available
within the statistical machine learning framework. However, the definition of
a vector from a molecule, i.e. a graph, induces a loss of information. More-
over, for each application, the definition of a vectorial description of each
molecule remains heuristic.

A slightly different approach is based on graph embedding. Within this
framework, a vectorial description of a graph is automatically build from its
encoding. A vectorial embedding of a graph may, for example, be defined by
associating to each graph its distance to a set of graph prototypes (Emms
et al., 2007). Another graph embedding approach is based on the spectral
analysis of graphs (Caelli and Kosinov, 2004; Luo et al., 2006). In this last
case, the embedding is deduced from the analysis of the eigenvectors and
eigenvalues of the adjacency matrix. This rich framework is closely related
to several graph embedding methods such as the ones based on random and
quantic walks (Berchenko and Teicher, 2009; Emms et al., 2007) or the ones
based on heat kernel equations (Elghawalby and Hancock, 2008, 2009).

A third family of methods, based on graph theory, may be decomposed
in two subfamilies. The first subfamily (Poezevara et al., 2009), related to
the data mining field, aims to discover subgraphs with a large difference of
frequencies in a set of positive and negative examples. The second subfamily
(Brun et al., 2010), more related to the machine learning field, builds a
structural description of each class of molecule so that the classification is
conducted by mean of a structural matching between each prototype and
a graph representation of an input molecule. Both subfamilies are however
mainly restricted to the classification field.

Graph kernels can be understood as symmetric graph similarity measures.
Using a semi definite positive kernel, the value k(G,G′) where G and G′

encode two input graphs corresponds to a scalar product between two vectors
ψ(G) and ψ(G′) in an Hilbert space. Graph kernels provide thus a natural
connection between structural pattern recognition and graph theory on one
hand and statistical pattern recognition on the other hand. A large family
of kernels is based on the definition of a bag of patterns for each graph

2

and deduces graph similarity from the similarity between bags. Many of
them are defined on linear patterns. For example, Kashima et al. (2004)
base graph kernels definition on the comparison of sets of walks extracted
from each graph. Ramon and Gärtner (2003) and Mahé and Vert (2008)
define kernels using an infinite set of tree patterns instead of walks. These
methods improve the limited expressiveness of linear features such as walks.
A common drawback of kernels based on walks and tree patterns is that the
global similarity between two graphs is based on an implicit enumeration of
their common patterns. Such an implicit enumeration, on infinite bags, doers
not allow to analyse the relevance of each pattern according to a given dataset
or a given property. Using such kernels the weight of each pattern is thus
set using generic functions with few parameters allowing to adapt the kernel
to a given dataset. Instead of decomposing graphs into an infinite set of
substructures (i.e. walks or trees), Shervashidze et al. (2009) define a kernel
based on the distribution of a predefined set of unlabeled subgraphs, called
graphlets. The weighting of each graphlet according to a specific dataset is
also not proposed by the authors.

Another approach to the definition of graph kernels is proposed by Neuhaus
and Bunke (2007) and Riesen et al. (2007). This approach aims to define semi
definite positive kernels from the notion of edit distance. The main challenge
of this approach is that edit distance does not always fulfill all requirements
of a metric and hence does not always readily lead to a semi definite positive
kernel. Using non definite positive kernel, the embedding space associated to
the kernel is no more an Hilbert space but a Krein space (Ong et al., 2004)
on which many usual mathematical results should be interpreted differently.
Problems defined using non definite kernels usually provide a more direct
formulation of the problem to minimise but should use with caution most
of usual mathematical operations which must be interpreted within a Krein
space. Conversely, methods based on definite positive kernel may have to
regularize the kernel in order to force its definite positiveness but may ap-
ply confidently a large family of mathematical tools defined within Hilbert
spaces.

Approaches based on bag of patterns and graph edit distance have com-
plementary advantages and drawbacks. Indeed, the first approach based on
the notion of bag of substructures does not readily allows to capture global
information about graphs. This last point may be an advantage when a given
physical property should be explained by the presence of several substruc-
tures instead of the global shape of the molecule. Conversely, properties

3

explained by global molecule’s similarities may be better captured by an
approach based on graph edit distance.

This paper presents two new kernels: A first kernel, presented in Section 2,
is explicitly based on the problem stated by classification or regression kernel
methods. This kernel, based on both graph edit distance and graph Laplacian
kernel, is regularised in order to force the definite positiveness of the kernel.
These points distinguish our kernel from the ones presented, for example, by
Neuhaus and Bunke (2007). A method to update efficiently this kernel is
also proposed.

Our second kernel, presented in Section 3, is related to Shervashidze et al.
(2009) and Mahé and Vert (2008) as it is based on an enumeration of sub-
trees within an acyclic labeled graph. The first contribution of this kernel is
an extension of Shervashidze et al. (2009) to larger and labeled subgraphs.
The second contribution is, unlike Mahé and Vert (2008) method, an explicit
enumeration of subtrees within a graph. This last point has important con-
sequences. Indeed, while the set of potential acyclic subgraphs is very large
and even infinite for infinite set of labels, our explicit enumeration of sub-
trees provides a finite set for each data set. This last point allows, using an
appropriate variable selection method, to select the substructures which are
pertinent for a given property. Such a selection step both provides useful in-
formation to interpret chemical mechanisms connected with a given property
and allows to improve prediction results.

Using our approach, each molecule is described by a vector encoding
the frequencies of its subtrees. From this point of view, our method may
be connected with graph embedding methods. However, our vectors are
embedded in a space of very large dimension. Indeed, considering a set of N
differents labels, the number of different labeled trees up to size 6 is equal to
Γ1
N +Γ2

N +Γ3
N +2Γ4

N +3Γ5
N +6Γ6

N , where Γ
k
N denotes the number of possible

subsets with repetitions of size k among N . Since the atoms can be labeled by
each of the 118 chemical elements, our feature space has a dimension higher
than Γ6

118 ≃ 4.25× 109. Nevertheless, for each dataset, we enumerate a finite
set of different treelets which defines the subspace on which we encode our
set of graphs. Therefore, unlike most of graph embedding methods, the final
dimension of the space describing our set of molecules is determined from the
data set and not a priori. The efficiency of these two approaches is finally
demonstrated in Section 4 through experiments.

4

2 Kernel from Edit Distance

2.1 Edit Distance

An edit path between two graphs G and G′ is defined as a sequence of oper-
ations transforming G into G′. Such a sequence may include vertex or edge
addition, removal and relabeling. Given a cost function c(.), associated to
each operation, the cost of an edit path is defined as the sum of its elementary
operation’s costs. The minimal cost among all edit paths transforming G into
G′ is defined as the edit distance between both graphs. A high edit distance
indicates a low similarity between two graphs while a small one indicates a
strong similarity.

According to Neuhaus and Bunke (2007), the computational cost of the
exact edit distance grows exponentially with the size of graphs. Such a
property limits the computation of exact edit distance to small graphs. To
overcome this problem, Fankhauser et al. (2011) defined a method to compute
an approximate edit distance in O(nd2) where n and d are respectively equal
to the number of nodes and to the maximal degree of both graphs.

2.2 Graph Laplacian Kernel

Unfortunately, edit distance doesn’t always define a metric and trivial ker-
nels based on edit distance may not be semi definite positive (Section 1).
Neuhaus and Bunke (2007) proposed several methods to overcome this im-
portant drawback. However, the proposed kernels are not explicitly based on
the minimization problem addressed by kernel methods. This minimization
problem may be stated as follows: Given a kernel k and a dataset of graphs
D = {G1, . . . , Gn}, the Gram matrix K associated to D is an n × n matrix
defined by Ki,j = k(Gi, Gj). Within the kernel framework, a classification
or regression problem based on K may be stated as the minimization of the
following formula on the set of real vectors of dimension n:

f ∗ = argminf∈RnCLoss(f, y,K) + f tK−1f (1)

where CLoss(., ., .) denotes a given loss function encoding the distance be-
tween vector f and the vector of known values y.

Each coordinate fi of such a vector corresponds to a value attached to
graph Gi. A vector f may thus be considered as a function mapping each
graph of the database {G1, . . . , Gn} to a real value. As denoted by Steinke

5

and Schölkopf (2008), the term f tK−1f in Equation 1 may be considered as
a regularization term which counter balances the fit to data term encoded by
function CLoss(., ., .). Therefore, the inverse of K (or its pseudo inverse if K
is not invertible) may be considered as a regularization operator on the set
of vectors of dimension n and hence on the set of real functions defined on
{G1, . . . , Gn}. Conversely, the inverse (or pseudo inverse) of any semi definite
positive regularization operator may be considered as a kernel. We thus
follow a kernel construction scheme recently introduced (Brun et al., 2010)
which first builds a semi definite positive regularization operator on the set
of functions mapping each graph {G1, . . . , Gn} to a real value. The inverse,
or pseudo inverse of this operator defines a kernel on the set {G1, . . . , Gn}.

In order to construct this regularization operator, let us define a n × n

adjacency matrix W by:

Wij = e−
d(Gi,Gj)

σ (2)

where d(., .) denotes the edit distance and σ is a tuning variable. The Lapla-
cian of W is defined as l = ∆ −W where ∆ is a diagonal matrix defined
by:

∆i,i =
n
∑

j=1

Wi,j (3)

Classical results from spectral graph theory (Chung, 1997) establish that l is
a symmetric semi definite positive matrix whose minimal eigenvalue is equal
to 0. Such a matrix is thus not invertible. To overcome this problem, Smola
and Kondor (2003) define the regularized Laplacian l̃ = I +λl of W where λ
is a regularization coefficient. The minimal eigenvalue of l̃ is equal to 1 and
this matrix is thus definite positive. Moreover, given any vector f , we have:

f tl̃f = ‖f‖2 + λ

n
∑

i,j=1

Wij(fi − fj)
2 (4)

Intuitively, minimising Equation 4 leads to build a vector f with a small
norm which maps graphs with a small edit distance (and thus a strong weight)
to close values. Such a constraint corresponds to the regularization term
required by Equation 1 in order to smoothly interpolate the test values y over
the set of graphs {G1, . . . , Gn}. Our unnormalized kernel, is thus defined as
Kun = l̃−1.

6

Note that a regularized normalized Laplacian kernel may alternatively be
considered by introducing the matrix:

L̃ = ∆− 1
2 l̃∆− 1

2 (5)

We have in this case, for any vector f :

f tL̃f =
n
∑

i=1

f 2
i

∆ii

+ λ

n
∑

j=1

Wij
√

∆ii∆jj

(fi − fj)
2

The matrix L̃ is definite positive and its associated kernel is defined as
Knorm = L̃−1. Note that, our regularized normalized Laplacian kernel is not
defined as the inverse of the regularized normalized Laplacian:

I + λ∆− 1
2 l∆− 1

2 (6)

This new formulation is however consistent with the regularization constraint
which should be added to Equation 1 and provides significant advantages in
the context of incoming data (Section 2.3).

Alternative regularization schemes (Smola and Kondor, 2003; Fouss et al.,
2006) may be applied to the Laplacian matrix. One of this regularization
scheme of particular interest is the Laplacian exponential diffusion matrix
d̃ = exp(λl) associated to the kernel K = exp(−λl). This last kernel may
be considered as a generalisation of the regularized Laplacian with further
constraints on the derivatives of function f . However, this kernel does not
allow to update efficiently kernel values in the context of incoming data
(Section 2.3).

2.3 Incoming Data

Let us first consider a kernel defined from the unnormalized Laplacian. Given
our learning set D = {G1, . . . , Gn}, the test of a new graph G within a regres-
sion or classification scheme requires to update the unnormalized Laplacian l
with this new graph and to compute the updated kernel defined as the inverse
of the regularized and unnormalized Laplacian K = (I + λl)−1. This direct
method has a complexity equal to O((n+ 1)3), where n is the size of our
data set. Such a method is thus computationally costly, especially for large
datasets. In this section, we propose a method to reduce the complexity of
this operation.

7

Given the regularized and unnormalized Laplacian l̃n = (In+λ(∆n−Wn))
defined on the dataset D, its updated version l̃n+1 defined on D ∪ {G} may
be expressed as follows:

l̃n+1 =

(

l̃n − δn B

Bt 1−
∑

iBi

)

where B = (−λexp(−d(G,Gi)
σ

))i={1,...,n} is deduced from the weights between
the new input graph G and each graph (Gi)i={1,...,n} of our dataset and δn is
a diagonal matrix with (δn)i,i = Bi.

The minimal eigenvalue of l̃n+1 is equal to 1 (Section 2). This matrix
is thus invertible, and its inverse may be expressed using a block inversion
scheme:

Kun = (l̃n+1)
−1 =

(

Γ Θ

Λ Φ

)

with

Γ = E−1 + ΦE−1BBtE−1

Θ = −E−1BΦ

Λ = −ΦBtE−1

Φ = (1−
∑

iBi − BtE−1B)−1

(7)
where E = l̃n − δn. Note that Φ corresponds to a scalar.
The computation of our new kernel, using equation 7, relies on the com-

putation of the inverse of the matrix E = l̃n + δn which may be efficiently
approximated using a development to order N of (I − l̃−1

n δn)
−1:

(l̃n − δn)
−1 = l̃−1

n (I − l̃−1
n δn)

−1 ≈

N
∑

k=0

l−k−1
n δkn (8)

Such a sum converges since ‖l̃−1
n δn‖2 < 1, for λ < 1. Indeed:

‖l̃−1
n δn‖2 ≤ ‖l̃−1

n ‖2‖δn‖2 ≤ ‖δn‖2 ≤ λmax
i=1,n

exp(
−d(G,Gi)

σ
)

The last term of this equation is strictly lower than one for any λ lower than
one. Moreover, basic matrix calculus show that the approximation error is
lower than ǫ for any N greater than:

log(2ǫ)

log(maxi=1,n exp(
−d(G,Gi)

σ
))
. (9)

8

Equation 8 allows to approximate the inverse of (l̃n − δn) by a sum of
pre computed matrices l−k−1

n multiplied by diagonal matrices. Using such
pre calculus, the inverse of (l̃n − δn) and hence the computation of our new
kernel is achieved in Nn2.

If we now consider the regularized normalized Laplacian (Section 2.2)

L̃ = ∆− 1
2 l̃∆− 1

2 , its inverse is defined as: L̃−1 = ∆
1
2 l̃−1∆

1
2 and we have:

Knorm = ∆
1
2Kun∆

1
2 (10)

The update of the regularized and normalized Laplacian kernel may thus be
deduced from the one of the regularized unnormalized Laplacian kernel.

3 Treelet Kernel

Kernels based on edit distance rely on a direct comparison of each pair of
graph. An alternative strategy consists to represent each graph by a bag
of patterns and to deduce the similarity between two graphs from the simi-
larity of their bags. This strategy may provide semi definite kernels hereby
avoiding the necessity to regularize the whole gram matrix for each incoming
data (Section 2.3). As mentioned in Section 1, most of kernels of this family
are based on linear patterns (bags of paths, trails or walks). Shervashidze
et al. (2009) describe a method to enumerate, for any unlabeled graph, all
its subgraphs (called graphlets) composed of up to 5 nodes. We propose here
to adapt this method to the enumeration of subtrees of labeled and unla-
beled acyclic graphs up to size 6. The resulting patterns are called treelets
(Figure 1). This bound on the treelet’s size corresponds to a compromise
between the expressiveness of our kernel and the time required to enumerate
all types of treelets. Indeed, as shown by Otter (1948) the number of different
unlabeled treelets grows exponentially with the number of atoms. Moreover,
according to Isaacs (1987), the influence of one atom on a chemical property
does not usually exceed 3 bonds. Hence, considering larger set of treelets
would forbid the design of specific procedures to retrieve each type of treelet
without a clear gain on the prediction of chemical properties.

9

G0 G1 G3

G12

G2

G5G4 G7

G8

G6

G9 G10 G11

G13

Figure 1: Acyclic and unlabeled graphlets whose maximal size is equal to 6.
Centers of 3-star and 4-star are surrounded

3.1 Computing Embedded Distribution

3.1.1 Structural Analysis

Each treelet corresponds to a subtree of some graph of our database. Such
a treelet may be denoted as t = (Vt, Et, µt, νt) where µt and νt denote vertex
and edge labeling functions. When dealing with unlabeled graphs, treelet
enumeration consists to classify treelets according to their graph structures
(Vt, Et). The cardinal of Vt being bounded, only a finite set of tree structures
called tree patterns may correspond to a treelet.

Following Shervashidze et al. (2009), the identification of tree patterns
is initiated by an enumeration of all paths whose length is lower than or
equal to 6. A recursive depth first search with a maximum depth equals
to 6 is thus performed from each node of the graph. Note that, using such
an enumeration, each path is retrieved from its two extremities and is thus
counted twice. In order to prevent this problem, each path composed of at
least two nodes is counted 1

2
times. This first step provides the distribution

of patterns G0, G1, G2, G3, G4 and G5 (Figure 1).
Our method to compute the distribution of remaining patterns is based

on the detection of nodes of degree 3, 4 and 5. These nodes, respectively
denoted R3−star, R4−star and R5−star, are the center of 3-star, 4-star and 5-

star patterns. Note that a 4-star pattern (G8) contains four 3-star patterns

10

(a) G7 (b) Four decompositions of G7 into G4

Figure 2: Tree pattern G7 contains 4 G4.

Pattern Source pattern Condition

G7 3-star |{v; v ∈ N(R3−star); d(v) ≥ 2}| ≥ 1

G9 3-star |{v; v ∈ N(R3−star); d(v) ≥ 2}| ≥ 2

G10 3-star
∃v0 ∈ N(R3−star); d(v0) ≥ 2 and

|{v; v ∈ N(v0)− {R3−star}; d(v) ≥ 2}| ≥ 1

G11 4-star |{v; v ∈ N(R4−star); d(v) ≥ 2}| ≥ 1

G12 3-star |{v; v ∈ N(R3−star); d(v) ≥ 3}| ≥ 1

Table 1: Conditions characterizing patterns derived from 3-star and 4-star.
N(v) and d(v) denote respectively the set of neighbours and the degree of
vertex v.

(Figure 2). This first enumeration of nodes of degrees 3, 4 and 5 provides the
distribution of patterns G6, G8 and G13. Patterns G7, G9, G10 and G12 are
enumerated from the neighbourhood of 3-star patterns. For example, the tree
pattern G7 matches the neighborhood of a 3-star node if at least one of the
neighbours of this 3-star has a degree greater than or equal to 2. Pattern G11

is the only subtree derived from a 4-star. Properties characterizing patterns
with a 3 or 4-star are summarized in Table 1. Note that pattern G12 is
symmetric since it contains two centers of 3-star. Such a treelet will thus be
counted twice (once from each of its 3-star) and must be counted for 1

2
.

One may easily check that no isomorphism exists between patterns de-
picted in Figure 1. Moreover, as shown by Cayley (1875), the number of
different acyclic and unlabeled graphs with up to 6 vertices and a maximum
degree of 4 is equal to 13. Therefore, tree patterns G0 to G12 (Figure 1) rep-
resent, up to isomorphisms, all unlabeled acyclic graphs whose size is lower

11

than or equal to 6 and whose vertex degree is bounded by 4. Adding G13 to
this set provides all unlabeled acyclic graphs with a size lower than or equal
to 6.

3.1.2 Labeling Information

Method described in Section 3.1.1 allows us to associate each treelet to a tree
pattern. Using databases of unlabeled graphs, this method can be used to
enumerate the number of treelets corresponding to each tree pattern. How-
ever, using databases of labeled graphs, treelets with different vertices and
edge labels may be associated to a same tree pattern. We propose in this
section to identify each treelet by a code composed of two parts: A struc-
tural part corresponding to the index of its tree pattern (Section 3.1.1) and
a canonical key defined as a sequence of vertices and edge labels. Such a
sequence is specific to each tree pattern and designed so as two treelets with
a same code must be isomorphic.

Such a key is trivial for linear patterns, i.e. paths. Each path may indeed
be associated to two sequences composed of alternated vertices and edge’s
labels encoding the two possible traversals of this path. By convention, the
canonical key of such linear tree patterns is defined as the sequence with the
lowest lexicographic order.

Morgan numbering Let us consider a non linear treelet t = (Vt, Et, µt, νt),
where µt and νt denote respectively vertex and edge labeling functions. Our
canonical key for non linear patterns is based on the extended connectivity
concept introduced by Morgan (1965). This concept is based on an addi-
tional vertex labeling function λ from V to N called extended labeling. This
function is defined by an iterative process which initialises each extended la-
bel λ(v) to the degree of v. This initial labeling is then extended by assigning
to each vertex the sum of extended labels of its neighbors. This summation
process is iterated while it increases the number of different labels. The re-
sulting set of extended labels is the same for two isomorphic graphs and is
unique for each tree pattern. Figure 3 shows the extended labels computed
on non linear patterns.

Since two adjacent vertices v and v′ of a treelet may be compared accord-
ing to λ(v) and λ(v′), our extended label defines a partial order relationship
between adjacent vertices of a treelet. Following Morgan (1965), we encode
this partial order relationships by a rooted tree. Treelets G6 to G11 have

12

v0
v1

v2

v3

v4

v5

G12

1

1

1

1
3 3

v0

v1

v2

v3

v4 v5

G11

4 2 1

1

1

1

v0
v1

v2

v3v4v5

G10

2 3 5 4
3

3

v0
v1

v2

v3

G6
31

1

1

v0

v1

v2
v3v4

G7

1 2 3

1

1

v0

v1

v2

v3

v4

G8

41

1

1

1

v0

v1

v3 v4v2 v5

G9

5 44

3

2 2

G13

v0

v1 v2

v3

v4

v5

1

1
1

1

1

5

Figure 3: Patterns with Morgan’s extended labeling. Possible permutations
are represented by square nodes. Different permutations within a same treelet
are encoded by different gray levels.

a unique local maximum of the extended labeling function. We thus root
these trees on this unique vertex. Treelet G12 has two local maxima located
on vertices v0 and v3 (cf. Figure 3). This treelet is thus associated to two
rooted trees respectively rooted on v0 and v3.

Key Construction Scheme Our construction scheme of the canonical
key of a treelet is based on a traversal of its rooted tree. The construction
of our key requires to sort the children of each internal vertex of the tree in
order to define a unique traversal and hence a unique key. This sorting step
is achieved through the following recursive construction of our canonical key:
The key of each leaf v, key(v), is defined as the null label. For each internal
node v of the tree, let us consider its set of children {v1, . . . , vn}. This set
is first sorted according to λ(vi) and then according to the chain defined as
the concatenation of µt(vi), νt(v, vi) and key(vi). Assuming such an order on
{v1, . . . , vn}, the key of vertex v is defined as:

key(v) =

(

n
⊙

i=1

µt(vi).νt(v, vi)

)

.

n
⊙

i=1

key(vi) (11)

where
⊙

denotes the concatenation operator.

13

Using such a construction scheme, the label of each vertex is encoded in
the key of its father. In order to integrate the label of the root node, we
define the key of a tree rooted on vertex r as µt(r).key(r).

Treelets G6 to G11 are encoded by a single rooted tree, and their canonical
code is defined as the index of their tree pattern concatenated with the key
of their rooted tree. On the other hand, treelet G12 is associated to two trees
rooted on its two local maxima. Its canonical code is defined as the index of
its tree pattern (12) concatenated with the lowest key of its two associated
rooted trees according to the lexicographic order.

Note that, unlike Morgan’s representation, our key does not encode the
structure of the graph which is explicitly encoded by the index of the tree
pattern.

3.1.3 Equal keys and graph isomorphism

Our canonical key is based on extended labels deduced from the structure of
the treelet and from vertex and edge labeling functions. Hence, two isomor-
phic treelets are associated to a same canonical key. Conversely, since one
may easily build a linear pattern from its canonical key, two linear patterns
(G0 to G5) with a same canonical key must be isomorphic.

Within our key construction scheme, the label of a vertex with an unique
extended label is located at a fixed position within the canonical key of
its treelet. The label of such a vertex may thus be retrieved without any
ambiguity from a canonical key. However, a set of children {v1, . . . , vn} of
a same parent node v with a same extended label will be sorted according
to the sequence of edge and vertex labels µt(vi)νt(v, vi)key(vi). This sorting
step provides a unique label for two isomorphic treelets but does not allow
us to distinguish between any permutations of vertices {v1, . . . , vn}. We have
thus to check, for each treelet, that all permutations of vertices allowed by
our code correspond to isomorphic treelets.

Vertices with a same extended label within tree patterns G6, G7, G8, G10,
G11 and G12 are represented by black squares () in Figure 3. For each tree
pattern, using our key construction scheme, these vertices of degree one are
the child of the unique vertex they are connected to. Therefore, our key
does not distinguish any permutation among these vertices. Note that, since
these vertices have a degree one and are connected to a same vertex, any
permutation swapping two of these vertices leads to an isomorphic treelet.

The rooted tree associated to treelet G9 does not allow us to distinguish

14

v0

v1
v3 v4v2 v5

54 42 2

3

(a) G9

v0

v1v4v2

v3 v5
(b) Rooted tree of
G9

1

1
3 3

1

1

v0
v1

v2

v3

v4

v5

(c) G12

v2

v5v4

v0

v1v3

(d) First rooted
tree of G12

v2

v5v4v0

v1

v3

(e) Second rooted
tree of G12

Figure 4: Rooted trees associated to treelets based on the extended labeling
function λ. Values of λ is indicated next to each vertex in (a) and (c).

between branches v2v3 and v4v5 (Figure 5(b)) since both v2 and v4 have an
extended label equal to 4. However, the simultaneous permutation of v2 with
v4 and v3 with v5 provides an isomorphic graph. In the same way, the canon-
ical key of G12 (Figure 5(c)) does not allow us to distinguish permutations
between v0 and v3 nor permutations between v1, v2 on one hand and v4, v5 on
the other hand. However, as illustrated in Figure 5(c), all these permutations
provide isomorphic treelets. Treelets G0 to G12 are thus uniquely identified
by their codes up to isomorphisms.

3.1.4 Complexity

Our treelet enumeration being restricted to tree patterns, its complexity for
the enumeration of treelets up to size 5 is bounded by the one of Shervashidze
et al. (2009) : O(nd4), where n is the number of nodes and d is the maximum
degree of the graph. Using a depth first search, unlabeled linear patterns can
be enumerated inO(ndk−1), the enumeration of paths of length 6 may thus be
achieved inO(nd5). The detection of p-stars requires to enumerate all subsets
of p neighbours of each node of the graph. This enumeration is achieved in
O(ndp) operations. The enumeration of G6, G8 and G13 is thus respectively
performed in O(nd3), O(nd4) and O(nd5) operations. The enumeration of

15

v4v2
v0

v1 v5v3

(a) G9

v0
v1

v2
v3 v4 v5

(b) G10

v3v0
v1

v2 v4

v5

(c) G12

v0

v1

v2

v3

v4

v5

(d) G11

Figure 5: Neighbourhood analysis required to enumerate treelets of size 6
based on 3 and 4-stars.

treelets deduced from 3-stars is performed by the following operations:

• G9: For each pair of extremities of a 3-star (e.g. v2 and v4 in Fig-
ure 5(a)), we must enumerate all pairs of vertices (e.g. v3 and v5 in
Figure 5(a)), where each vertex belongs to the neighbourhood of one
of the selected extremity.

• G10: For each extremity, we determine all paths of length 2 (e.g. v4v5
in Figure 5(b)) starting on the selected extremity.

• G12: For each extremity (e.g. v3 in G12, Figure 5(c)), we enumerate
all pairs of neighbours (e.g. v4 and v5 in Figure 5(c)) of the selected
extremity.

All these operations require at most O(d2) operations. Since the set of 3-stars
is enumerated in O(nd3), the complexity of the enumeration of G9, G10 and
G12 is performed in O(nd5) operations. Moreover, the enumeration of treelets
corresponding to G11 is performed from a 4-star by selecting one neighbour of
each extremity (Figure 5(d)). Since this last operation is performed in O(d)

16

and the enumeration of all 4-stars is performed in O(nd4), the enumeration
of all treelets corresponding to G11 is performed in O(nd5). Therefore, the
enumeration of all unlabeled treelets is performed in O(nd5). Since each
unlabeled treelet is finite, the complexity required to compute its key is
performed in O(1). Therefore, the overall complexity required to enumerate
labeled treelets from a graph remains equals toO(nd5). Note that considering
bounded degree graphs, the complexity required to enumerate treelets is
linear with the number of graph’s nodes.

3.2 Treelet Kernel Definition

Based on our treelet enumeration, we define a function f which associates to
each graph G a vector f(G) encoding the distribution of its treelets. Each
component of this vector, denoted the spectrum of G, is equal to the frequency
of a given treelet t in G:

f(G) = (ft(G))t∈T (G) with ft(G) = |(t ⊆ G)| (12)

where T (G) denotes the set of treelets of G.
Given the function f , the kernel between two graphs is defined as a sum

of kernels between the different number of treelets common to both graphs:

kTreelet(G,G
′)q =

∑

t∈T (G)∩T (G′)

K (ft(G), ft(G
′)) (13)

where T (G) ∩ T (G′) denotes the set of common treelets between G and G′.
The kernel K between ft(G) and ft(G

′) corresponds to a definite positive
kernel between real numbers. In our experiments (Section 4), the RBF,
scalar and polynomial kernels have been tested in order to select the best
one on each dataset.

3.3 Treelet Weighting

Among the set of treelets found within a dataset, some of them may be irrel-
evant to explain a given property. Such irrelevant treelets may induce useless
calculus and decrease performances of regression or classification algorithms.
A first trivial approach to this problem considers all possible permutations
over the set of treelets. This approach implies to test 2p different sets of

17

Algorithm 1 Forward Selection.

P = Treelets

S = ∅

nb treelets = |P |
for i = 0 → nb treelets do

t = argmintRSS(S ∪ t), t ∈ P

P = P − t

Si+1 = Si ∪ t
end for

return argminSi
RSS(Si), i ∈ [0, nb treelets]

Algorithm 2 Backward Elimination.

S = Treelets

nb treelets = |S|
for i = 0 → nb treelets do

t = argmintRSS(S − t), t ∈ S

Si+1 = Si − t

end for

return argminSi
RSS(Si), i ∈ [0, nb treelets]

18

treelets, where p is the number of different treelets of the dataset. Such a
brute force approach is intractable even for small values of p.

In order to define a set of relevant treelet in a less greedy way, we propose
two iterative approaches defined for regressions problems. The first one,
called forward selection, is an iterative method which starts with an empty
set and adds one treelet at each step. The chosen treelet is the one which
produces the best regression result (Alg. 1) on the training set using a leave
one out procedure. To evaluate the quality of the result, we use the Residual
Sum of Squares (RSS) defined as the sum of squared prediction error made
for each molecule. A similar approach consists to start from the whole set of
treelets and to remove one treelet at each iteration. This second approach is
called backward elimination (Alg. 2). Both methods imply to test p(p+1)

2
set of

treelets. The main difference between these two approaches concerns groups
of treelets which are strongly related to a given property when considered
simultaneously. For such groups, the removal of any treelet by backward
elimination induces a strong increase of the prediction error. These groups
are thus preserved by backward elimination algorithm. On the other hand,
such groups may not be created by forward selection since the addition of a
single treelet may not induce a significant decrease of the prediction error.

4 Experiments

4.1 Classification Problem

Our first experiment evaluates graph kernels defined in Section 2 and 3 on
a classification problem. This problem is defined on the monoamine oxidase
(MAO) dataset1 which is composed of 68 molecules divided into two classes:
38 molecules inhibit the monoamine oxidase (antidepressant drugs) and 30
do not. These molecules are composed of different chemical elements and
are thus encoded as labeled graphs. Classification accuracy is measured for
each method using a leave one out procedure with a two-class SVM. This
classification scheme is made for each of the 68 molecules of the dataset.

Table 2 shows results obtained by different methods. The first two lines
correspond to methods based on linear patterns. Suard et al. (2002) (Line 1)
computes the similarity between two graphs from the average similarity be-

1Except AIDS dataset, all databases in this section are available on the TC15 Web
page: http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry

19

Method Classification Accuracy

(1) Suard et al. (2002) 80% (55/68)

(2) Vishwanathan et al. (2010) 82% (56/68)

(3) Neuhaus and Bunke (2007) 90% (61/68)

(4) Riesen et al. (2007) 91% (62/68)

(5)
Normalized Standard

90% (61/68)
Graph Laplacian Kernel

(6)
Normalized Fast

90% (61/68)
Graph Laplacian Kernel

(7) Mahé and Vert (2008) 96% (65/68)

(8) Treelet Kernel 94% (64/68)

Table 2: Classification accuracy on the monoamine oxidase (MAO) dataset.

tween each pair of paths extracted from both graphs. Vishwanathan et al.
(2010) (Line 2) counts the number of identical random walks of two graphs.
Line 3 (Neuhaus and Bunke, 2007) corresponds to a Gaussian kernel on the
suboptimal edit distance and Line 4 (Riesen et al., 2007) corresponds to an
embedding of the graphs into a vector encoding the edit distance between the
graphs and a set of selected prototypes. Lines 5 and 6 correspond to graph
Laplacian kernel (Eq. 10) using a suboptimal graph edit distance (Fankhauser
et al., 2011) with node substitution and edge deletion costs set to 1 and edge
substitution cost set to the sum of incident node substitution costs. Then,
the last two lines correspond to methods based on non linear patterns. Mahé
and Vert (2008) (Line 7) deduce the similarity between two graphs from the
number of common tree-patterns and treelet kernel (Line 8) is defined in
Section 3. In this experiment, this last kernel is defined using a RBF kernel
between treelet’s frequencies (Equation 13).

Graph Laplacian kernel methods obtain a classification accuracy of 90%.
We can note that others prediction models based on edit distance obtains
similar results: (Riesen et al., 2007) obtains 91% and (Neuhaus and Bunke,
2007)’s obtains 90% of classification accuracy. This last kernel may however
be non semi definite positive. We may additionally notice that the use of
our fast inversion method (Table 2, Line 6) defined in Section 2.3 does not

20

Method Classification Accuracy

(1) Riesen and Bunke (2008) 97.3%

(2) Suard et al. (2002) 98.5%

(3) Vishwanathan et al. (2010) 98.5%

(4) Neuhaus and Bunke (2007) 99.7%

(5) Riesen et al. (2007) 98.2%

(6) Graph Laplacian Kernel 99.3%

(7) Treelet Kernel 99.1%

Table 3: Results on AIDS dataset.

modify graph Laplacian kernel’s classification accuracy (Table 2, Line 5). The
number of iterations required by this fast inversion method is determined by
Equation 9. Our experiments performed on the MAO database show that a
value of ǫ equals to 10−4 induces a maximum of 9 iterations hence allowing
to update the gram matrix in O(9n2) instead of O(n3) using a standard
matrix inversion method. The low value of n on this dataset (n = 68) does
not induce an important gain on execution time since the average time to
update a Gram matrix using method described in Section 2.3 is 0.273ms on
the MAO database while this time is equal to 0.498ms using a direct matrix
inversion. The ratio between both execution times is nevertheless about 1.8
hence showing a significant gain.

Thanks to the fact that they take into consideration more structural in-
formation than methods based on linear patterns, Mahé and Vert’s kernel
(Line 7) and our treelet kernel (Line 8) obtain the best results. Note that
our method enumerates 153 differents treelets. Mahé and Vert kernel’s best
results are obtained when considering large and complex trees, i.e. when
setting maximum depth and penalization parameters to high values.

Our second classification experiment has been performed on a graph
database provided by Riesen and Bunke (2008). This database defined from
the AIDS Antiviral Screen Database of Active Compounds is composed of
2000 chemical compounds some of them being disconnected. These chemical
compounds have been screened as active or inactive against HIV and they
are split into three different sets:

• A train set composed of 250 compounds used to train SVM.

21

• A validation set composed of 250 compounds used to find parameters
giving the best accuracy result.

• A test set composed of remaining 1500 compounds used to test the
classification model.

Table 3 shows results obtained by different methods on this dataset. Note
that results obtained by Mahé and Vert (2008) are not displayed for this
dataset since the source code provided by the authors is restricted to molecules
with a degree bounded by 4. The method presented by Riesen and Bunke
(Table 3, Line 1) uses the graph edit distance and k-Nearest Neighbour clas-
sifier. Others methods based on edit distance, Neuhaus and Bunke (2007)
(Table 3, Line 4), Riesen et al. (2007) (Table 3, Line 5) and graph Laplacian
kernel (Table 3, Line 6) improve accuracy of the prediction model and obtain
better results than simple graph edit distance. Gaussian kernel on edit dis-
tance (Table 3, Line 4) combined with SVM obtains the best results on this
dataset. Note that the regularization added to Gaussian edit distance kernel
affects prediction accuracy while keeping good results. However, fast Gram
matrix update hasn’t be tested in this dataset since best results are obtained
using a parameter λ > 1 (Section 2.3). Then, Treelet Kernel (Table 3, Line
7), based on non linear patterns and a scalar product kernel between fre-
quencies, outperforms methods based on linear patterns (Table 3, Lines 2
and 3) but without reaching the accuracy of methods based on edit distance.
Note however, that 4875 different treelets are enumerated from the train set.
A treelet selection procedure for classification applied on this dataset should
improve prediction accuracy.

4.2 Regression Problem

Our first regression experiment is based on a database of alkanes (Cherqaoui
and Villemin, 1994). An alkane is an acyclic molecule solely composed of
carbons and hydrogens. A common encoding consists to implicitly encode
hydrogen atoms using the valency of carbon atoms. Such an encoding scheme
allows to represent alkanes as acyclic unlabeled graphs. The alkane dataset
is composed of 150 molecules associated to their respective boiling points.
Using the same protocol than Cherqaoui and Villemin (1994), we evaluate
the boiling point of each alkane using several test sets composed of 10% of
the database, the remaining 90% being used as training set.

22

Method
Average Error RMSE

(◦C) (◦C)

(1) Cherqaoui and Villemin (1994) 3.11 3.70

(2) Neuhaus and Bunke (2007) 5.42 10.01

(3) Riesen et al. (2007) 5.27 7.10

(4) Suard et al. (2002) 4.66 6.21

(5) Vishwanathan et al. (2010) 10.61 16.28

(6) Graph Laplacian Kernel 10.79 16.45

(7) Mahé and Vert (2008) 2.41 3.48

(8) Treelet Kernel 1.41 1.92

Table 4: Boiling point prediction on alkane dataset. RMSE stands for Root
Mean Squared Error.

The first line of Table 4 shows results obtained by a method based on
neural networks. The other lines correspond to methods based on graph
kernels and boiling point prediction was performed using a kernel ridge re-
gression. Poor results obtained by methods based on edit distance, including
graph Laplacian kernel, can be explained by the lack of local information
when dealing with unlabeled graphs. Indeed, using such graphs, the heuris-
tic used to approximate graph edit distance (Fankhauser et al., 2011) maps
the set of vertices of both graphs using uniquely the degree of vertices. Such
a method thus considers several mappings as equivalent if several vertices
with a same degree exist in both graphs. In this case, the suboptimal graph
edit distance thus induces a poor graph discrimination. This lack of local
information within unlabeled graphs also explains the poor results obtained
by Suard et al. (2002) and Vishwanathan et al. (2010). Indeed, using un-
labeled graphs, these kernels are based on linear structures which are only
discriminated by their lengths. On the other hand, kernels based on non lin-
ear patterns, treelet kernel and Mahé and Vert (2008), outperform previous
results of Cherqaoui and Villemin (1994) based on neural networks combined
with chemical descriptors. Note that we didn’t select relevant patterns in this
experiment since our set of unlabeled treelet is composed of only 13 treelets.
In this experiment, the kernel between treelet’s frequencies, on which is based
our treelet kernel, is set to the RBF kernel.

23

Method Average Error (◦C) RMSE (◦C)

(1) Cherqaoui et al. (1994a) 3.01 5.102

(2) Neuhaus and Bunke (2007) 6.84 9.04

(3) Riesen et al. (2007) 7.39 9.94

(4) GLK (Diffusion Process) 7.27 9.84

(5) Suard et al. (2002) 7.28 12.37

(6) Vishwanathan et al. (2010) 14.64 18.95

(7) Mahé and Vert (2008) 5.53 9.50

(8) Treelet Kernel (TK) 4.90 7.80

(9) TK with Forward Selection 3.23 4.36

(10) TK with Backward Elimination 2.63 3.70

Table 5: Boiling point prediction on acyclic molecule dataset. TK stands for
treelet kernel; GLK for Graph Laplacian Kernel.

Method Average Error(◦C) RMSE(◦C)

(1) Neuhaus and Bunke (2007) 7.78 10.27

(2) Riesen et al. (2007) 7.66 10.19

(3) GLK (Diffusion Process) 8.58 11.99

(4) Suard et al. (2002) 7.22 12.24

(5) Vishwanathan et al. (2010) 14.57 18.72

(6) Mahé and Vert (2008) 6.42 11.02

(7) Treelet Kernel (TK) 5.27 8.10

(8) TK with Forward Selection 4.89 7.05

(9) TK with Backward Elimination 4.87 6.75

Table 6: Boiling point prediction on acyclic molecule dataset using 90% of
the dataset as train set and remaining 10% as test set. TK stands for treelet
kernel; GLK for Graph Laplacian Kernel.

24

Method Gram Matrix (s) Prediction (s)

(1) Neuhaus and Bunke (2007) 1.35 0.05

(2) Riesen et al. (2007) 2.74 0.01

(3) GLK (Diffusion Process) 2.86 2.72

(4) Suard et al. (2002) 7.83 0.18

(5) Vishwanathan et al. (2010) 19.10 0.57

(6) Mahé and Vert (2008) 4.98 0.03

(7) Treelet Kernel (TK) 0.07 0.01

(8) TK with Forward Selection 0.07 0.01

(9) TK with Backward Elimination 0.07 0.01

Table 7: Empirical execution times measured on the acyclic molecule regres-
sion problem.

The second regression problem is based on a dataset composed of 185
acyclic molecules (Cherqaoui et al., 1994a). This problem also consists in
predicting boiling point of molecules. In contrast with the previous dataset,
these molecules contain several hetero atoms and are thus represented as
acyclic labeled graphs. In order to compare our results, we first use a leave
one out method to predict boiling points, as described in Cherqaoui et al.
(1994a). Our variable selection step requires O(p2) regressions, where p de-
notes the number of different treelets enumerated on a dataset. This step
requires about 4 hours on this dataset using a standard desktop computer.
Note that this step is performed during the training set and does not influ-
ence the time required to predict the property of a molecule. However, due
to this important computational time, we performed in this experiment a
single variable selection step on the whole dataset of 185 molecules, instead
of considering all subsets of 184 molecules as required by the leave one out
protocol.

The first line of Table 5 shows results obtained using a neural network
based on the embedding frequencies of 20 substructures chosen by a chemi-
cal expert (Cherqaoui et al., 1994a). Then, the next three lines show results
obtained by methods based on the notion of edit distance. The Gram matrix
associated to the Gaussian kernel defined on suboptimal edit distance (Line 2)
obtains intermediate results. Line 3 shows results obtained by graph embed-

25

ding method using graph edit distance and prototype selection as defined
in Riesen et al. (2007). The graph Laplacian kernel (Line 4) with diffusion
process regularization (K = e−λl, Section 2.2) obtains similar results than
alternative methods based on edit distance. We should however note that
the regularization of the Laplacian induces a slight decrease of classification
results obtained by Neuhaus and Bunke (2007) on this dataset. The perfor-
mances of the regularized Laplacian (K = (I + λl)−1, Section 2.2) on this
dataset are below the one of the graph Laplacian kernel with diffusion pro-
cess regularization and are thus not displayed in Table 5. Methods based on
linear patterns (Suard et al., 2002; Vishwanathan et al., 2010) (Lines 5 and
6) suffer from the lack of expressiveness of linear patterns and obtain poor
results when predicting the boiling point of such molecules.

Conversely, methods based on non linear patterns, Mahé and Vert (2008)
(Line 7) and treelet kernel using a RBF kernel between treelet’s frequencies
(Line 8), outperform methods based on linear patterns but without reaching
the efficiency of Cherqaoui et al. (1994a). This lack of efficiency can be ex-
plained by the number of different treelets induced by this dataset. Indeed,
treelet kernel method enumerates 142 different treelets in this dataset and
some of them are not related with the property to predict. Therefore, infor-
mation brought by these treelets can be assimilated to noise which decreases
prediction results. These prediction results can be improved by applying
one of the two treelet selection methods described in Section 3.3. As shown
in Table 5, prediction errors made using these selection methods (Lines 9
and 10) outperform results obtained by alternative regression methods on
this dataset. Note that forward selection method reduces the set of features
to 26 treelets and backward elimination reduces it to 56 treelets. Back-
ward elimination obtains the best result by taking into account information
brought by combinations of treelets (Section 3.3). An important difference
between treelet kernel approach and Mahé and Vert (2008) is that treelet
kernel method computes explicitly the distribution of each treelet within a
molecule. This explicit enumeration allows us to weight each treelet sepa-
rately while Mahé and Vert (2008) only weight features according to their
depth or branching cardinality. This difference explains the better results
obtained by our treelet kernel combined with a backward selection.

Table 6 shows results obtained on the same dataset using 90% of the
dataset as train set and remaining 10% as test set. The method of Cherqaoui
et al. (1994a) is not displayed in this table since only results based on a leave
one out procedure are available. On this experiment, our treelet kernel is

26

based on a RBF kernel between treelet’s frequencies and our variable selection
step is performed only using the train set. With this restricted training set,
kernels based on non linear patterns still outperform kernel based on linear
ones and our treelet kernel combined with a backward selection step obtain
the lowest prediction error.

The first column of Table 7 shows computation times required to com-
pute the Gram matrices of the different kernels studied in this section on
our dataset of labeled acyclic molecules (see Tables 5 and 6 to evaluate the
performances of these kernels). The second column of Table 7 describes the
mean time required to predict the boiling point of each molecule on the same
data set using a leave one out procedure. Thanks to the low bounded degree
of molecular graphs, treelet enumeration can be performed efficiently (Ta-
ble 7, Line 7). In addition, treelet enumeration is performed once for each
graph and only a sum of RBF kernels between treelet’s frequencies is per-
formed for each pair of graphs. Conversely, using an implicit enumeration,
we have to perform two enumerations for each pair of graph. Note that the
mean prediction time required by Graph Laplacian Kernel is similar to the
one required to compute the whole Gram matrix since we have to inverse the
regularized Laplacian matrix to compute the updated kernel.

5 Conclusion

We have proposed two new graph kernels using different approaches. The first
one is based on the notion of edit distance and is adapted to cases where the
similarity between molecules must consider the global shape of the molecule.
Thanks to different regularization methods, we define a valid graph kernel
from a suboptimal edit distance and we propose a solution to improve the
computational complexity of this kernel in case of incoming data for one type
of regularisation. The results obtained by this kernel are equal or slightly
below the one obtained by alternative methods based on the edit distance
which do not perform a regularization step. This results confirms the fact
that a regularization step slightly transforms the problem to be minimized
by kernel methods. However, such a regularization step is the price to pay in
order to work in an Hilbert space and have a clear interpretation of all the
mathematical operations performed by kernel methods. Note, nevertheless
that some kernel methods have been specifically designed to work on Krein
space with a clear interpretation on their limited application domain.

27

Our second kernel is based on the decomposition of a graph into a set of
distinct substructures called treelets. Such a kernel is more specifically de-
signed to capture the similarity between molecules sharing many sub struc-
tures. In contrast with many existing graph kernel methods only based on
linear patterns, our method is based on linear and non linear patterns which
provide additional local information. Moreover, our explicit enumeration of
treelets allows both to define an efficient kernel since we avoid an explicit
comparison of all pairs of treelets of two graphs and it additionally allows
us to integrate within our kernel’s definition a treelet selection step which
improves the accuracy of our regression results. Our treelet kernel indeed
outperforms all other kernels on all our regression experiments. This treelet
selection step is however, not yet defined for classification methods and our
kernel obtains on these kind of experiments good results which are however
always outperformed by an alternative kernel. Designing a specific treelet
selection step for classification tasks is one of the priority of our future work.
Other perspectives include the extension of our treelet kernel in order to
encode ring information while keeping an efficient enumeration.

References

Berchenko, Y., Teicher, M., 2009. Graph embedding through random walk
for shortest paths problems. In: Proceedings of the 5th international con-
ference on Stochastic algorithms: foundations and applications. SAGA’09.
Springer-Verlag, Berlin, Heidelberg, pp. 127–140.

Brun, L., Conte, D., Foggia, P., Vento, M., Villemin, D., 2010. Symbolic
learning vs. graph kernels: An experimental comparison in a chemi-
cal application. In: Proceedings of the 14th Conference on Advances in
Databases and Information Systems (ADBIS 2010). pp. 31–40.

Caelli, T., Kosinov, S., 2004. An eigenspace projection clustering method
for inexact graph matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26, 515–519.

Cayley, A., 1875. On the analytic forms called trees, with applications to
the theory of chemical combinations. Reports British Assoc. Adv. Sci. 9,
427–460.

28

Cherqaoui, D., Villemin, D., 1994. Use of a neural network to determine the
boiling point of alkanes. J. Chem. Soc. Faraday Trans. 90, 97–102.

Cherqaoui, D., Villemin, D., Mesbah, A., Cense, J. M., Kvasnicka, V., 1994a.
Use of a Neural Network to Determine the Normal Boiling Points of Acyclic
Ethers, Peroxides, Acetals and their Sulfur Analogues. J. Chem. Soc. Fara-
day Trans. 90, 2015–2019.

Chung, F., 1997. Spectral graph theory. American Mathematical Society.

Elghawalby, H., Hancock, E. R., 2008. Graph characteristic from the gauss-
bonnet theorem. In: Proceedings of the 2008 Joint IAPR International
Workshop on Structural, Syntactic, and Statistical Pattern Recognition.
SSPR & SPR ’08. Springer-Verlag, Berlin, Heidelberg, pp. 207–216.

Elghawalby, H., Hancock, E. R., 2009. Geometric characterizations of graphs
using heat kernel embeddings. In: Hancock, E. R., Martin, R. R., Sabin,
M. A. (Eds.), IMA Conference on the Mathematics of Surfaces. Vol. 5654
of Lecture Notes in Computer Science. Springer, pp. 124–142.

Emms, D., Wilson, R. C., Hancock, E., 2007. Graph embedding using quan-
tum commute times. In: Escolano, F., Vento, M. (Eds.), 6th IAPR-TC15
International Workshop GbRPR 2007. IAPR TC15, Springer-Verlag, pp.
371–382.

Fankhauser, S., Riesen, K., Bunke, H., 2011. Speeding up graph edit dis-
tance computation through fast bipartite matching. In: Jiang, X., Ferrer,
M., Torsello, A. (Eds.), Graph-Based Representations in Pattern Recog-
nition. Vol. 6658 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 102–111.

Fouss, F., Yen, L., Pirotte, A., Saerens, M., 2006. An experimental investi-
gation of graph kernels on a collaborative recommendation task. In: Sixth
International Conference on Data Mining. pp. 863–868.

Isaacs, N., 1987. Physical Organic Chemistry. Longman Sc. Tech.

Kashima, H., Tsuda, K., Inokuchi, A., 2004. Kernels for graphs. MIT Press,
Ch. 7, pp. 155–170.

29

Luo, B., Wilson, R. C., Hancock, E. R., 2006. A spectral approach to learning
structural variations in graphs. Pattern Recognition 39 (6), 1188–1198.

Mahé, P., Vert, J.-P., Oct. 2008. Graph kernels based on tree patterns for
molecules. Machine Learning 75 (1), 3–35.

Morgan, H. L., 1965. The generation of a unique machine description for
chemical structures-a technique developed at chemical abstracts service.
J. of Chem. Doc. 5 (2), 107–113.

Neuhaus, M., Bunke, H., 2007. Bridging the gap between graph edit distance
and kernel machines. World Scientific Pub Co Inc.

Ong, C. S., Mary, X., Canu, S., Smola, A. J., 2004. Learning with non-
positive kernels. In: Proceedings of the twenty-first international confer-
ence on Machine learning. ICML ’04. ACM, New York, NY, USA, pp.
639–646.

Otter, R., July 1948. The number of trees. The Annals of Mathematics 49 (3),
583–599.

Poezevara, G., Cuissart, B., Crémilleux, B., 2009. Discovering emerging
graph patterns from chemicals. In: Proceedings of the 18th International
Symposium on Methodologies for Intelligent Systems (ISMIS 2009). LNCS,
Prague, pp. 45–55.

Ramon, J., Gärtner, T., 2003. Expressivity versus efficiency of graph kernels.
In: 1st Int. Workshop on Mining Graphs, Trees and Sequences. pp. 65–74.

Riesen, K., Bunke, H., 2008. Iam graph database repository for graph based
pattern recognition and machine learning. In: Proceedings of the 2008
Joint IAPR International Workshop on Structural, Syntactic, and Sta-
tistical Pattern Recognition. SSPR & SPR ’08. Springer-Verlag, Berlin,
Heidelberg, pp. 287–297.

Riesen, K., Neuhaus, M., Bunke, H., 2007. Graph embedding in vector spaces
by means of prototype selection. In: Escolano, F., Vento, M. (Eds.), 6th
IAPR-TC15 International Workshop GbRPR 2007. IAPR TC15, Springer-
Verlag, pp. 383–393.

30

Shervashidze, N., Vishwanathan, S. V., Petri, T. H., Mehlhorn, K., Borg-
wardt, K. M., 2009. Efficient graphlet kernels for large graph comparison.
In: 12th International Conference on Artificial Intelligence and Statistics
(AISTATS). pp. 488–495.

Smola, A., Kondor, R., 2003. Kernels and regularization on graphs. In:
Schlkopf, B., Warmuth, M. (Eds.), Learning Theory and Kernel Machines.
Vol. 2777 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, pp. 144–158.

Steinke, F., Schölkopf, B., November 2008. Kernels, regularization and dif-
ferential equations. Pattern Recognition 41, 3271–3286.

Suard, F., Rakotomamonjy, A., Bensrhair, A., 2002. Kernel on bag of paths
for measuring similarity of shapes. In: European Symposium on Artificial
Neural Networks. pp. 355–360.

Vishwanathan, S., Borgwardt, K. M., Kondor, I. R., Schraudolph, N. N.,
2010. Graph Kernels. Journal of Machine Learning Research 11, 1201–
1242.

31

