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Integral formulas for a Dirichlet series

We present an integral representation formula for a Dirichlet series whose coefficients are the values of the Liouville's arithmetic function.

Introduction

Let ∞ n=1 a(n) n s be a Dirichlet series such that : -its analytic continuation is a meromorphic function with only one pole at s = 1 -there is a functional equation looking like : 1-s This gives a sequence (b(n)) allowing us to write a pseudo-cotangent or a pseudo-tangent function similar to a cotangent or a tangent function :

∞ n=1 a(n) n s = ϕ(s) ∞ n=1 b(n) n
∞ n=0 b(n) z 2 + (2n + 1) 2 π 2
We prefer to choose a tangent function because the cotangent function has a singularity at the origin, hence some trouble to get a power series. It may be possible to deduce from the functional equation an integral formula for the starting Dirichlet series. Now we can hope to find a sequence (c(n)) allowing us to get an extension of this integral formula by a modification of the pseudo-tangent such as :

∞ n=1 c(n) 1 e z/n + 1
An easy example is the Riemann's ζ function itself, the three sequences are :

(a(n)) = (1, 1, 1, 1, ...) (b(n)) = (1, 1, 1, 1, ...) (c(n)) = (1, 0, 0, 0, ...) Another simple example is th Dirichlet series ∞ n=1 (-1) n-1 n s : (a(n)) = (1, -1, 1, -1, ...) (b(n)) = (1, 0, 1, 0, ...) (c(n)) = (1, 0, 0, 0, ...)
This is a general program. Here we take a particular case : a Dirichlet series equivalent to the Dirichlet series whose coefficients are the values of the Liouville arithmetic function. We obtain a representation integral formula.

2 Some functions associated with the Riemann's ζ function

2.1 The functions ζ, ζ a , ζ imp .
The following Dirichlet functions are well known :

ζ(s) = ∞ n=1 1 n s R(s) > 1 (1) ζ a (s) = ∞ n=1 (-1) n-1 n s R(s) > 1 (2) 
ζ imp (s) = ∞ m=0 1 (2m + 1) s R(s) > 1 (3) 
The links with the ζ function are easy :

ζ(s) = 1 1 -2 1-s ζ a (s) (4) ζ(s) = 1 1 -2 -s ζ imp (s) (5) 
Cf, for example [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF] . 

ζ λ (s) = ∞ n=1 λ(n) n s R(s) > 1 (6) 
ζ λ (s) = ζ(2s) ζ(s) (7) 
ζ λ is a meromorphic function on C . Let µ be the Möbius arithmetic fonction : 

ζ µ (s) = 1 ζ(s) = ∞ n=1 µ(n) n s R(s) > 1 (8) 
ζ α (s) = ζ a (2s) ζ a (s) (9) 
With (4) we get :

ζ λ (s) = 1 -2 1-s 1 -2 1-2s ζ α (s) (10) 
We do not need the arithmetic function α such that :

ζ α (s) = ∞ n=1 α(n) n s 2.3 The function ζ β .
Let ζ β be :

ζ β (s) = ζ imp (2s -1) ζ imp (s) (11) 
With [START_REF] Tenenbaum | Introduction à la théorie analytique et probabililiste des nombres[END_REF] we have :

ζ β (s) = (1 -2 1-2s )ζ(2s -1) (1 -2 -s )ζ(s) (12) 
ζ β is the generating function of an arithmetic function β :

ζ β (s) = ∞ n=1 β(n) n s R(s) > 1 (13)
According to a theorem of Newman, cf [START_REF] Newman | Simple analytic proof of the prime number theorem[END_REF], the following series is convergent and its value is :

∞ n=0 µ(2n + 1) 2n + 1 = 0 (14) 
Let (2n + 1) be an odd number. There is a unique decomposition in a factor without square and a square :

   2n + 1 = kh 2 β(2n + 1) = µ(k)h | β(2n + 1) |= h (15) 
We have the estimate :

-1 < β(2n + 1) √ 2n + 1 ≤ 1 ( 16 
)
The equality is true if and only if 2n + 1 is a square. The Dirichlet series :

ζ β (s + 1 2 ) = ∞ n=0 β(n) n s+ 1 2 = ∞ n=1 β(n) √ n 1 n s (17) is, following (13) convergent for R(s) > 1/2 .
The following inequality is useful :

∞ n=1 | β(n) | n 3/2 ≤ ∞ k=1 1 k 3/2 ∞ h=1 1 h 2 (18)
2. [START_REF] Riemann | Uber die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] The function ζ ν .

Let ζ ν be :

ζ ν (s) = 1 ζ imp (s + 1) ζ imp (2s + 2) ζ imp (s + 3/2) = ζ β (s + 3/2) ζ imp (s + 1) (19) 
It is the generating function of an arithmetic function ν :

ζ ν (s) = ∞ n=1 ν(n) n s R(s) > 0 (20)
Of course, ν is zero on even integers:

ν(2m) = 0 . l|(2n+1) lν(l) = β(2n + 1) √ 2n + 1 (21) 
the Möbius formula gives :

(2n + 1)ν(2n + 1) = kl=2n+1 µ(k) β(l) √ l (22) 
Let d be the arithmetic function d(n) = number of divisors of n. We have an estimate for all integers m :

| ν(m) |≤ d(m) m (23) 
Theorem 1. The series whose terms are ν(n) converge and the value is 0 .

∞ n=1 ν(n) = 0. (24) 
Proof. Use ( 22), ( 18) and ( 14). This result is very important for the present work .

3 Integral formula for the ζ a function 3.1 The kernel 1 e z +1 .

The kernel 1 e z +1 is better than 1 e z -1 because we do not have a singularity at the origin. We have some classical expansions :

1 e t + 1 = ∞ n=1 (-1) n-1 e -nt (t > 0) 1 e z + 1 = 1 2 -2z ∞ n=0 1 z 2 + (2n + 1) 2 π 2 (25) 
Now, we take | z |< π for convergence .

1 e z + 1 = 1 2 -2z ∞ n=0 1 (2n + 1) 2 π 2 ∞ k=0 (-1) k z 2k ((2n + 1)π) 2k (26 
)

1 e z + 1 = 1 2 -2 ∞ k=0 (-1) k z 2k+1 π 2k+2 ζ imp (2k + 2) (27)
3.2 Integral representation formula for ζ a .

It is well known that :

Γ(s)ζ a (s) = ∞ 0 1 e t + 1 t s-1 dt R(s) > 0 (28) 
The continuation of this integral representation is possible by taking :

1 e t + 1 - 1 2
4 Functional equations For ζ, the following functional equation of Riemann is well known cf [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF] :

ζ(s) = 2 s π s-1 sin π 2 s Γ(1 -s)ζ(1 -s) (29) 
thence a functional equation between ζ a and ζ imp :

ζ a (s) = -2π s-1 sin π 2 s Γ(1 -s)ζ imp (1 -s) (30) 

Functional equation between ζ α and ζ β .

From (30) : [START_REF] Magnus | Formulas and theorems for special functions of Mathematical Physics[END_REF] for the duplication formula) a first form for the functional equation between ζ α and ζ β :

ζ a (2s) ζ a (s) = -2π 2s-1 sin(πs)Γ(1 -2s)ζ imp (1 -2s) -2π s-1 sin( π 2 s)Γ(1 -s)ζ imp (1 -s) Hence (cf
ζ α (s) = 2 1-2s π s-1/2 cos π 2 s Γ 1 2 -s ζ β (1 -s) (31) 
And a second form, but only for R(s) < 0 :

ζ α (s) = 2 1-2s cos π 2 s Γ 1 2 -s ∞ m=0 β(2m + 1) √ 2m + 1 1 (π(2m + 1)) 1/2-s (32)
5 Integral formulas

5.1 Integral formula for ζ α in the domain -3/2 < R(s) < -1/2 .
The functional equation ( 32) gives an integral for ζ α in the domain -3/2 < R(s) < 0 :

ζ α (s) = 2 1-2s cos π 2 s Γ 1 2 -s 2 π cos π 2 s + π 4 ∞ m=0 β(2m + 1) √ 2m + 1 ∞ 0 x s+1/2 x 2 + π 2 (2m + 1) 2 )
dx Now, we want to permute the summation and the integral. To do this we have only to prove absolute integrability, but for -3/2 < R(s) < -1/2 . Let σ = R(s), take the inequality (16) :

∞ 0 2x N n=1 β(n) √ n(x 2 + π 2 n 2 ) | x s-1/2 | dx ≤ ∞ 0 1 2 - 1 e x + 1 x σ-1/2 dx -3/2 < R(s) < -1/2
We get an integral formula for ζ α in -3/2 < R(s) < -1/2 :

ζ α (s) = 2 1-2s π cos π 2 s cos π 2 s + π 4 Γ(1/2 -s) ∞ 0 2x ∞ m=0 β(2m + 1) √ 2m + 1(x 2 + π 2 (2m + 1) 2 x s-1/2 dx(33) Let : ϕ(s) = 2 1-2s π cos π 2 s cos π 2 s + π 4 Γ(1/2 -s) N (x) = 2x ∞ m=0 β(2m + 1) √ 2m + 1 (x 2 + π 2 (2m + 1) 2 )
Write (33) as :

ζ α (s) = ϕ(s) ∞ 0 N (x)x s-1/2 dx -3/2 < R(s) < -1/2 (34) 
Now, the aim is to prove this formula for a greater domain .

5.2

The meromorphic function N .

N (z) = 2z ∞ m=0 β(2m + 1) √ 2m + 1(z 2 + π 2 (2m + 1) 2 ) (35) 
is a meromorphic function in C . All the poles are simple at iπ(2m + 1) for m ∈ Z. The residu is :

β(2m + 1) √ 2m + 1
The expansion of N in a power series, in a neighborhood of zero is :

N (z) = 2 ∞ k=0 (-1) k z 2k+1 π 2k+2 ζ β (2k + 5/2) | z |< π (36)

Definition of the meromorphic function M .

Let M be the following meromorphic function in C .

M(z) = ∞ m=0 ν(2m + 1) 1 2 - 1 e z/(2m+1) + 1 (37) 
All the poles are simple at i(2l + 1)π for l ∈ Z. The residu of M is :

(2m+1)|(2l+1) (2m + 1)ν(2m + 1) = β(2l + 1) √ 2l + 1
because of (21). We obtain the same poles and the same residus. Of course, this does not give the equality betwwen N and M. Theorem 1, (24) and the previous definition (37) of M give us :

M(z) = - ∞ m=0 ν(2m + 1) 1 e z/(2m+1) + 1 (38)
5.4 Behavior of M at infinity. By Abel's summation by parts on (37), and theorem 1, (24), we get :

lim x→∞ M(x) = 0 (39) 
5.5 A bound for the derivative M ′ .

We can derive term by term the series of M(z) . From (38), we get :

M ′ (z) = ∞ m=0 ν(2m + 1) 2m + 1 e z/(2m+1) (e z/(2m+1) + 1) 2 (40) 
Now, take this for x real positive . There exists a constant C such that for all x ∈ [0, +∞[ :

| M ′ (x) |≤ C (41) 
5.6 A better bound for M at infinity ?

Is it true that there exits a constant C such that :

| M(x) | ≤ 1 x C ? (42) 
5.7 Identity between M and N .

The purpose is to prove that in a neighbohood of 0, we have :

M(z) = N (z)
Starting from (27) we get for | z |< π :

∞ n=0 ν(2n + 1) 1 2 - 1 e z/(2n+1) + 1 = 2 ∞ n=0 ν(2n + 1) ∞ k=0 (-1) k π 2k+2 ζ imp (2k + 2) z 2k+1 (2n + 1) 2k+1
We can switch the sommations because we have absolute convergence. Hence :

∞ n=0 ν(2n + 1) 1 2 - 1 e z/(2n+1) + 1 = 2 ∞ k=0 (-1) k z 2k+1 π 2k+2 ζ imp (2k + 2)ζ ν (2k + 1)
With (19), we get the power series of M at the origin :

M(z) = 2 ∞ k=0 (-1) k z 2k+1 π 2k+1 ζ β (2k + 5/2) | z |< π
This is exactly (36) and we get that M and N are two expressions of the same function . x s-1/2 dx (45)
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