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Symbolic Data Analysis to Defy Low Signal-to-NoiRatio in
Microarray Data for Breast Cancer Prognosis
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ABSRACT
Microarray profiling has brought recently the hdpeyain new insights into breast cancer

biology and thereby improve the performance of entrprognostic tools. However, it
also poses several serious challenges to clasttalanalysis techniques related to the
characteristics of resulted data, mainly high-disiemality and low signal-to-noise ratio.
Despite the tremendous research work performed nall@ahe first challenge in the
feature selection framework, very little attentio&s been directed to address the second
one. We propose in this paper to address bothsssinaultaneously based on symbolic
data analysis capabilities in order to derive maxurate genetic marker-based
prognostic models. In particular, interval dataresgntation is employed to model
various uncertainties in microarray measurementsecent feature selection algorithm
that handles symbolic interval data is used therdeédve a genetic signature. The
predictive value of the derived signature is thesseased by following a rigorous
experimental setup and compared to existing pragnapproaches in terms of predictive
performance and estimated survival probabilityislshown that the derived signature
(GenSym) performs significantly better than otheygmostic models, including the 70-

gene signature, St. Gallen and NIH criterions.
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1 INTRODUCTION
Breast cancer management has been for a long tunded) by the clinical and histo-
pathological knowledge gained from many decadesaoicer research. However, the high
mortality from breast cancer has pushed researdbesgek for accurate cancer prognosis
tools that help physicians to take the necessatrtrent decisions that spare patients from
side effects and thereby reduce its high medicakcas the past decade microarray analysis
has had a great interest in cancer managementasudtagnosis (Ramaswamy et al., 2001),
prognosis (Van't Veer et al., 2002), and treatmagrefit prediction (Straver et al., 2009).
However, the introduction of this technology hasught with it new serious challenges
related mainly to high dimensionality of microarmgta (or high feature-to-sample ratio) and
its low signal-to-noise-ratio.
It has been reported recently that the major difficin deciphering high throughput gene
expression experiments comes from the noisy natuttee data (Twet al., 2002). Indeed, data
issued from this technology are not only charazgeriby the dimensionality problem but
present also another challenging aspect relatélaeio low signal-to-noise ratio. The noise in
such type of data is multisource: biological andsyaneasurement, slide manufacturing
errors, hybridization errors, scanning errors dbridized slide (Twet al., 2002; Nykteet al.,
2006). Biological errors are typically due to imter stochastic noise of the cells and error
sources related to sample preparation (Blakel., 2003). This type of intrinsic noise is
present in all measurements, regardless of theureragnt technology. Measurement errors,
on the other hand, include error sources that &medaof extrinsic noise directly related to the
measurement technology and its limitation (e.gsldae to the used dyes) (Nykietr al.,
2006, Blakeet al., 2003). Slide manufacturing errors are eeldb microarray slide images.

These include variation in the spot position arzeé sin addition the marks done by a print tip



and deformations in the spot shape can be proditbdaidization errors include background

noise, spot bleeding, scratches, and air bubblgktéXet al., 2006).

Appropriate position for Figure 1

Another possible source of error is the digitizatiof hybridized slide by scanning. The
hybridized slide is read by scanning each dye cekparately, it might be possible that
channels do not align perfectly (Nyktetr al., 2006). Many studies were performed to study
the different effects of experimental, physiologji@nd sampling variability (Leet al., 2000;
Novaket al., 2002). An interesting study has been peréatin Tuet al. (2002) to analyze the
guantitative noise in gene expression microarrageaments. The authors have shown
through two illustrative concrete examples the edé#hce in gene expression due to
experimental noises. In the first example, a coispar between gene expression values
measured on the same sample has been performeude Higa) shows the overall difference
in two measured gene expression due to measureznemtalone as provided in Tet al.
(2002). The deviation of the scattered points fitin diagonal line represents the difference
between the two measured transcriptomes. In thendeexample two samples from different
cultures are compared as shown in Figure 1 (b)hsd the measured expression value
differences contain the combined effect of the gemgene expression differences caused by
measurement error.

Although Figures (a) and (b) appear similar, thesea of deviations in the expression
values from the diagonal line are completely ddfdr The first one is due only to gene
expression measurement error whereas the secahe ito the combined effect of the gene
expression differentiation and measurement errberdfore, it is crucial to characterize the
difference caused purely by experimental measurerinem the expression differentiation

due to the difference between the two cultures.

3



Most of breast cancer studies performed using icisslassification and feature selection
approaches for microarray data analysis assumeal#tatis perfect without wondering about
its reliability. One common practice to deal withst problem is to transform in a non-linear
way the gene-expression levels in a preprocessirapeplso that the variance across
experiments becomes comparable for each gene (Huikedr, 2002). A drawback with this
approach is that a global transformation does detjaately account for the fact that the same
gene may be measured with different precision ffeidint experiments. Another drawback
with this approach is that a complex non-lineangfarmation of the data complicates
measurement interpretation when compared to a bicbesformation.

We propose here to address this problem within madearning framework in the aim to
design more accurate breast cancer managementdoaédp the physicians in their decision
making process. An interesting approach would beige symbolic data analysis (SDA)
popularized by Bock and Diday (2000). Within thrarhework, interval data representation
can be used to take into account the uncertairdynarse inherent to measurements (Billard,
2008). Symbolic interval features are extensionpwe real data types, in the way that each
feature may take an interval of values instead sihgle value (Gowda and Diday, 1992). In

this framework, the value of a quantkye.g. gene expression value) is expressed asadlo

interval [K,x"] whenevelx is noised or uncertain; representing the infororathatx™ < x< X'

. The uncertainty can be related to the incapabibt obtain true values due to possible
variability under some changing and complex expental conditions. However, the
introduction of interval representation makes tla¢adprocessing task more complex than
when only a numerical value is considered, espgomhen high dimensionality problem is
faced jointly. Therefore, what is really neededais approach that enables to process

efficiently high dimensional interval datasets. \itke advantage here of our recently



proposed algorithm (Referred to here as InterSya) supports such requirements to derive a
gene signature for cancer prognosis from microadledgsets.

In the next section we describe how the unceresntan be integrated in microarray data
through the use of interval representation. We gnem in section 3 a brief description of the
interval feature selection algorithm used herertress the issued interval dataset in order to
derive a genetic signature. In section 4 we ingasti the proposed strategy on a popular
prognostic dataset. We show how the proposed gyratan be used to derive genetic
signatures by following a rigorous experimentaltpeol. The effectiveness of the derived
model has been compared with existing prognosticogabes based either on clinical or

genetic markers.

2 DATASET
2.1 Raw dataset

The study is performedsing the well-known van’'t Veer dataset (van't Vegral., 2002).
van't Veer and colleagues used a dataset conta@rgporadic lymph-node-negative patients
younger than 55 years of age and less than 5 ¢umiar size, to derive a prognostic signature
in their gene expression profiles. Forty-four patiseremained disease-free after their initial
diagnosis for an interval of at least 5 years (gpoognosis group), and 34 patients had
developed distant metastases within 5 years (pamnosis group). We use the same group
of patients in the aim to derive a gene prognasgoature. Patient with missing data (1 poor
prognosis patient) was excluded in our study. Wszdee hereafter how this data set is used
to generate an interval microarray dataset usingntieeval representation to model different

uncertainties.



2.2 Interval dataset generation

In order to take into account the uncertainty inggexpression measurements under the form
of symbolic intervals, an appropriate setup shdwgdfollowed. Let them gene expression
levels be initially represented in a matrix Ys§-...,\m] wheremis the number of genes. The
microarray interval dataset generation is perforiog@dding a white Gaussian noise with a
specific Signal-to-Noise Ratio (SNR=3). Let’s caiesi that the added white Gaussian noise
has an absolute vallg then the value of thid" interval features=[x", x"] corresponding to

thej™ genehaving an expression is obtained as follows:

It results that

%= %, %" 1=[yi—h, y + bj].

At the end of this step then gene expression levels are represented in a matrix
X=[x1,%....%n] Wherex; is an interval vector. Once the microarray intedataset is obtained,
a genetic signature can be derived using a featleztion algorithm handling interval data.
We use for that our feature selection algorithm psmgl recently in Hedjazi et al. (2011),
referred to as InterSym, to build a computationaldei that accurately predicts the risk of
distant recurrence after 5-years period of breaster diagnosis.

For a better conditioning of magnitudes and praogssme minimization, a simple linear

re-scaling of raw interval values within the intdrif@1] will also be usually performed:

P + -

- Xi ™ Ximin +
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Xi max ~ i min Xi max ~ Xj min (1)



3 INTERVAL FEATURE SELECTION

The emergence of microarray technology has madslgeghe simultaneous measurement of
the expression of thousands of genes. This tecgpdias carried with it the hope to gain new
insights into cancer biology and may improve curtenls for cancer management. However,
this technology has also brought serious challemgleged to intrinsic characteristics of the
resulting data. Mainly two challenges are faceduiameously: (1) high data dimensionality
(thousands of gene expressions for a small numbsaraples); and (2) the noisy nature of
measurements (or low signal-to-noise ratio). Sitreglitional statistical methods are ill-
conditioned to deal with such problems, machinenieg approaches have been picked up as
a good alternative to overcome these difficultidgibkains, 2009). The first challenge has
been already extensively addressed by using fealection algorithms. During the past
decades, feature selection has indeed played @alkmaote in problems involving a huge
number of features by selecting only the most alévieatures for the problem under
investigation. Here, we use the term feature terréd a gene marker. Existing feature
selection algorithms are traditionally charactetizs wrappers and filters according to the
criterion used to search for the relevant featuieshavi and John, 1997; Guyon and
Elisseeff, 2003). Wrapper algorithms optimize therfprmance of a specified machine-
learning algorithm to assess the usefulness ofstdected feature subset; whereas filter
algorithms use an independent evaluation functi@sed generally on a measure of
information content (entropy, t-test,...) (Kohavi alwhn, 1997; Guyon and Elisseeff, 2003).
Filter algorithms are computationally more effidiebut perform worse than wrapper
algorithms (Kohavi and John, 1997; Guyon and E&H#se2003). Thereby, with filter
algorithms the features are evaluated individuadithout taking into account the correlation
information and redundancy problems. Hence, this deteriorate drastically the classifier
performance (Kohavi and John, 1997). On the otlardhthe noisy nature of microarray

measurement poses a great challenge for the existathine-learning algorithms. However,
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unlike the high-dimensionality problem, a verylditattention has been devoted to address this
problem by the machine-learning community. Themefat is crucial to design efficient
feature selection algorithms able to address batbhl@ms jointly in order to improve cancer
management. One natural idea would be to take t@igaterval representation to model
measurement uncertainty in microarray data. Howetes will produce high-dimensional
interval datasets which makes the feature seleddsk even more challenging. Although
traditional feature selection algorithms are piefi¢ for processing high-dimensional
numerical data, they remain inappropriate for waérdata. In the particular case where
feature interval values are regdlaa common practice to apply such algorithms ifabel
interval values by integers, introducing a metricich is not necessarily the same as in the
original data. This can be a potential source stfadiion and information loss. In most real
applications a feature measurement presents ggnararge variation in term of uncertainty
and noises from one sample to another, and shalthérefore expressed by overlapped
intervals. The transformation interval-to-integethis case is no longer possible and classical
algorithms become inapplicable.

We have recently proposed a new interval featutecsen algorithm, referred to as
InterSym (Hedjazi et al., 2011), which alleviatd®e tpreviously mentioned problems.
InterSym enables to process the interval featureisdir original form without any restriction
on their relative positions (overlapped or regulag arbitrary mapping is therefore required.
To avoid the heuristic search during the featutecten procedure, InterSym optimizes an
objective function using classical optimization heitjues. The feature’s importance is
evaluated within a similarity margin framework. &nwe address a problem with only two
classes (i.e. metastasis or no metastasis), wetheidescription of InterSym in this paper for

binary class problems.

Ynterval features take their values from an actahie set of interval values.



LetD =[x,.C,] n0 X xC be the training dataset, wherg=p.’,x.2,.... %" is the n-th data

sample containingn features, ¢ its corresponding class label, and stands for the™
interval value included in its domald’. The first step of InterSym algorithm concerns the
parameterization of each class by an interval vdaaged on an appropriate learning process

through the following arithmetic means:

i1 Nk - it o1 N+
Py —N—kazlxlj ,andp, _Wj§1X|j (2)

The resulted class prototype for all the featusegiven by o, = [,oﬁ,pk2 ..... plg“]r where
ol =|oi".si*|. Then, a similarity measure has been defined idjaté et al. (2011) to estimate

the feature resemblance of iffeinterval feature valuet = lXir]_,Xir]+J of sample xto each class

represented by its interval prototy/ai{e= lp:(_,pli: :

S(Xir],p&)ZE[wx}ln p;(]+l—axi?”.0*i(]} (3)

Wherez|i] :‘I ot andal_x;],pli(]: max |_O,(max |_xin_,pli<' ]— min |_xin+ ,pli(+

U' states for the domain 8f interval feature values.

We assume that thé" data sample %[X.},x:2.... %" is labeled by class. Let C be the
alternative class. Based on the similarity meagBetwo similarity vectors can be associated

to each data sample as follows

oo =lsbt o) 2 )]
F@=’5(X%’p%)'9(xﬁ’p§) """ ar ’pg])r )

A similarity margin for samplexcan be defined as



Inc :qﬁ(rnc)_drrf) (5)

where e and I, are respectively the similarity vectors of samgjeo classest and C ,

oy) =1/m¥ imzl)’i is a function representing the global similarity tbe sample xto the

given class.
A weighted similarity margin can be defined throwgtveight assignment in the previously
defined similarity margin to express the importanoteach interval feature as follows
1 m . . . .
Incw) =l e /w)- (ﬂ(rnE /W) = E-,lel '(S(Xln ’ '0:3)_ S(Xln Og )) (6)
1=
Note that a samplexs considered correctly classified®hc ~0. A natural idea to estimate

the interval feature weight is to maximize the leame-out classification error as follows:

Mvexzr’;lzlﬂnc (w)= MﬁX%Zﬁz{g W .(S(X;],p(i;)— S(x;],pic. ))J

(7)

st. |w|® =1w=0

Wheredncis the margin of x computed with respect to the weight vector w. Tingt

constraint is the normalized bound for the modufisv so that the maximization ends up
with non infinite values, whereas the second guaemthe nonnegative property of the
obtained weight vector. A closed-form solution t@nobtained using the classical Lagrangian

optimization approach:

r= —Z n:l{rnc rnc} (8)

With 1= [max(,0), ..., maxtm0)]"
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InterSym is considered as one of the first feasalection algorithms that enable processing
interval feature-type data. Note that the objectiftection optimized by InterSym
approximates the leave-one-out cross validatioareand thus chooses only the features if
they contribute to the overall performance. Herm®h issues, correlation and redundancy,
are addressed by InterSym. Moreover, InterSym avibid heuristic combinatorial search by
using classical optimization approaches to achi@veanalytical solution. Furthermore, an
extension of InterSym has been also proposed fdtiatlmss problems (Hedjazi et al., 2011).
The effectiveness of InterSym in (Hedjazi et abD1®) has been shown through three real-
world applications on low-dimensional interval dats. However, it would be interesting to
assess its effectiveness also on high dimensior@blgms such as microarray interval
datasets. Subsquently, we apply InterSym algorithrderive a genetic signature for breast

cancer prognosis, by taking into account the mes

sent uncertainty through the use of
interval representation. As mentioned previouslytedSym will enable the selection of
relevant information in high-diemensional interdaltasets by avoiding any related numerical

and heuristic search complexities.

4 EXPERIMENTS AND RESULTS

4.1 Experimental setup

Data issued by microarray technology provides theasurement of thousands of gene
expressions for usually small number of patientsis Bituation can likely lead to serious
problem of overfitting of the computational model taining data, i.e. the model performs
very well on training data while achieve extremplyor results on unseen data. A special
experimental protocol therefore is generally addpie avoid this problem such as cross-
validation protocols. Due to the small sample gizeur case we performed a LOOCV (Leave
One-Out Cross Validation) to estimate the optimaksification parameters as proposed in
(Wessels et al., 2005). In each iteration of thiscpdure, one sample is held-out for testing
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and the remaining samples are used for trainin@ ff&ining data are used to estimate the
optimal parameters of the classifier and to perfdine feature selection task. The resulting
model is employed then to classify the held-out@amThis experiment is carried out on all

samples so that each of them has been used onestiog.

Very few classification methods are capable to aetll interval representation particularly
if intervals may overlap. Therefore, we choose se lhere LAMDA classifier (Learning
Algorithm for Multivariate Data Analysis) (Hedjaet al., 2012), able to handle efficiently
interval data as well as numerical and qualitatiat, to demonstrate the predictive values of
the derived prognostic signature by InterSym andparing its performance with those of
existing approaches such as clinical-based appred&tesallen, all clinical markers,...) and
genetic-based approaches (70-gene signature)hisoclassifier only one parameter needs to
be specified in the training phase (exigency index)

It is worthwhile to note here that in the studyfpemed by van't Veer and colleagues, a 70-
gene signature has been derived from the sameetlatsiag a feature selection method based
on correlation coefficient. The predictive value tbe 70-gene has been then assessed by

using a correlation based classifier (van’'t Veealgt2002).

4.2 Reaults

A genetic signature, referred to here as GenSynsg derived based on the InterSym
algorithm corresponding to the optimal classifioatiperformance using the LAMDA
classifier. We note that both of InterSym and LAM@BAable to handle appropriately interval
data for classification and feature selection respely (see previous sections for more
details). Table 1 shows the classification perfarogaobtained with LAMDA using GenSym
signature. For comparison, classification perforneansing 70-gene signature, clinical

markers, St-Gallen consensus and NIH criterioraése reported in Table 1. We observe that
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the GenSym signature significantly outperforms Ti@egene, clinical and classical clinical

criterions (St-Gellen, NIH).

Appropriate position for Table 1

GenSym achieves indeed a high accuracy (~90%) wigtaficantly improves specificity and
sensitivety of the 70-gene signature (by more &% and 10% respectively). It should be
noted also that in the study performed by van'tMaed colleagues the sensitivity level has
been set to 90% in order to ensure a high claasidic rate of poor prognosis patients, which
has led to a poor specificity level (72%). GenSyrawever, while providing a sensitivity
level close to the threshold imposed by van't Vaed colleagues, it ensures a similar high
level of specificity enabling therefore to sparbigq number of good prognosis patients from
receiving unnecessary toxic treatment.

Classification performance is not always a suffitieriterion for comparing predictive
values of different marker signatures. Performaneasurement can also depend strongly on
a decision threshold when only a limited numberpatients are available. Varying this
decision threshold enables to visualize the perfmee of a given classifier over all
sensitivity and specificity levels through a Reegi®perating Characteristic (ROC) curve.

For further comparisons of the different approachee plotted in Figure 2 the ROC curve
for GenSym, 70-genes and clinical-based approadies St-Gallen and NIH criteria are not
shown here since the good prognosis group convainsfew patients. It can be observed that
the GenSym signature significantly outperforms fi@egene signatures as well as clinical

markers over almost all sensitivity and specificapges.

Appropriate position for Figure 2
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We performed also survival data analysis of the Bmproaches, GenSym signature, 70-gene
signature, clinical markers and St-Gallen critertonfurther demonstrate the prognostic value
of the GenSym signature. The Kaplan-Meier curveth vi5% confidence intervals of
respectively the four approaches are shown in EiqurParticularly the GenSym signature
induces a significant difference in the probabilidy remaining metastases-free in patients
with a good signature and the patients with a gmognostic signature (P-value<0.001).
Hazard Ratio (HR) estimated by Mantel-Cox approafctlistant metastases within five years
for the GenSym signature is 8.20 (95% CI: 4.16- l&Aich is superior to either the 70-gene
signature, St Gallen consensus or clinical markigns.HR obtained for clinical and St Gallen
consensus (respectively 2.32 (95% CI: 1.36- 3.9% 4.17 (95% CI: 0.46- 2.92)) are
consistent with those reported in many similar sid{Wang et al., 2005; Soutiriou et al.,

2006), suggesting that clinical markers have badipting value.

Appropriate position for Figure 3

4.3 GenSym signature

The GenSym signature is composed from 23 genesngiv Table 2, among them 12 genes
are listed in the 70-gene signature. Although thleout testing sample is not involved in the
identification of a gene signature in each iteratib should be noted that we have find that
the identified signature stays relatively stableraleiterations. The functional annotation for
the genes should provide insight into the undegyilogical mechanism leading to rapid
metastases. According to the National Center footdg@hnology Information (NCBI)

databases, among the GenSym signature, genes eadvatv proliferation, invasion and

metastasis are significantly unregulated in theastasis group. For instance we find TSPYL5

which has been revealed to play important rolesmodulation of cell growth and cellular
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response probably via regulation of the akt sigiggpathway. It is reported that TSPYLS5 is a
poor prognosis marker and reduces the p53 prateeld and inhibits activation of p53-target
genes. It is worthwhile to note here that thishis top listed gene in the 70-gene signature.
MMP-9 is also related to tumor invasion and metastdy their capacity for tissue
remodeling via extracellular matrix as well as lmaset membrane degradation and induction
of angiogenesis. Evaluation of MMP-9 expressionmeed¢o add valuable information on

breast cancer prognosis.

Appropriate position for Table 2

GenSym signature holds also many new meaningflegé&uch as FBP1, IGFBP5, FGF18,
SSX1, NUSAP1, C1GALT1, BTG2, PEX12). The importamdéeboth (FBP1, IGFBP5) can
be highlighted by the actually suspected relati@wieen the insulin and tumor growth
(Becker et al., 2012). But neither FBP1 nor IGFBREve been evaluated independently in
human cancers. However, FBP1 has been also foundgst associated with disease
outcome among the 231 top ranked genes in (vandr\é& al., 2002). FGF18 has been
revealed clearly involved in the carcinogenesis-90% breast cancer. NUSAP1 has also
been found to be related to proliferation and cdilasion. SSX1 is involved in certain
sarcomas; it controls the cell cycle and is considleas an important transcription factor.
C1GALT1 is a protein that plays an important rote dell adhesion whereas BTG2 is

considered as a tumor suppressor.

5 CONCLUSION

In this paper, we addressed the problem of lowaditgmnoise ratio in microarray data faced
jointly with high data dimensionality problem. Thasic idea is to take advantage of symbolic

data analysis capabilities to alleviate this issugigesting the use of interval representation to
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model uncertainty in microarray measurements. Wiveld then based on our recently
proposed interval feature selection algorithm aetjensignature. The GenSym signature
holds some common genes with existing genetic tuges as well as new genes showing a
meaningful biological interpretation and high reles@ to the biology of breast cancer
disease. We have shown through a preliminary coatipn@l study that the use of such
strategy can improve and simplify significantly ttencer prognosis task by selecting a small
number of relevant genetic markers as comparedther cexisting signatures (only 23
markers). Its predictive value has been assessedtlalough this study and compared with
existing genetic signatures and clinical criterionAge believe that the proposed strategy will
open the door wide for the introduction of a newnegation of symbolic algorithms in
bioinformatics applications.

To further demonstrate the effectiveness of thepg@sed strategy, a larger-scale
experimental study is now underway in the framewofla research project using a large

number of patients issued from publicly availableadats.
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Table 1. Comparatives results between 23-gene signaturexisting approaches

Method TP  FP FN TN Sens.  Spec. Acc.

GenSym 29/33 4/44  4/33  40/44 87.88  90.91 89.61
70-gené 27/33 9/44 6/33 35/44 8182 7955 80.52
Clinical 26/33 14/44 7/33  30/44 78.79 68.18 72.73
St-Galler?? 33/33 39/44 0/33 5/44 100 6.49 50.65
NIH® 33/33 44/44 0/33 0/44 100 0 42.86
TP: True Positive FP: False PositiveFN: False NegativeT N: True NegativeSens.: Sensitivity Sens.: Sensitivity;Spec:

Specificity.

@: Mammaprint signature ©

®: st. Gallen - Chemio when one criteria is satifiER negative; Lymph node positive; T>2cm; Grader II; Age <35
years.

©: NIH: Chemio when Lymph Node positive or Tumouzesk 1cm
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Table 2. List of genes included in GenSym and their notetio

Rank GenelD 70-gene Notation
! Contig37063_RC . N/A
2 _ o N/A
Contig26388_RC
3 NM_003748 . ALDH4A1L
4 NM_006681 - NMU
5 o FBP1
NM_000507
6 AF055033 . IGFBP5
7 o PEX12
NM_000286
8 ALOBOOSO . TSPYL5
9 Contig33814_RC . N/A
10 o SEC14L2
NM_012429
11 NIML_ 00059 . IGFBP5
12 . FGF18
NM_003862
13 Contig63649_RC " N/A
14 NM_004994 - Ll
15 _ . N/A
Contig11065_RC
16 Contig32185_RC " A
17 . NUSAP1
NM_016359
18 Contig15954_RC . A
19 NM_005635 . SSX1
20 _ . N/A
Contig49388_RC
21 Contig52554_RC . N/A
22 o C1GALT1
NM_020156
23 NM_006763 ° BTG2

m: Listed in 70-gene signature, 0: Not listed in 70-gene signature, N/A: Not Available
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Fig. 1. The scatter plot of gne expression pairs (a) experiments pairie same sample (
experiment pair betwei two different samples. Figure taken fronu et al., 2002
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Fig. 3. Kaplan-Meier estimation of the probabilities of @mng metastases-free for the good and poor
prognosis groups. The p-value is computed by usiggank test.
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