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ABSRACT 

Microarray profiling has brought recently the hope to gain new insights into breast cancer 

biology and thereby improve the performance of current prognostic tools. However, it 

also poses several serious challenges to classical data analysis techniques related to the 

characteristics of resulted data, mainly high-dimensionality and low signal-to-noise ratio. 

Despite the tremendous research work performed to handle the first challenge in the 

feature selection framework, very little attention has been directed to address the second 

one. We propose in this paper to address both issues simultaneously based on symbolic 

data analysis capabilities in order to derive more accurate genetic marker-based 

prognostic models. In particular, interval data representation is employed to model 

various uncertainties in microarray measurements. A recent feature selection algorithm 

that handles symbolic interval data is used then to derive a genetic signature. The 

predictive value of the derived signature is then assessed by following a rigorous 

experimental setup and compared to existing prognostic approaches in terms of predictive 

performance and estimated survival probability. It is shown that the derived signature 

(GenSym) performs significantly better than other prognostic models, including the 70-

gene signature, St. Gallen and NIH criterions.  
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1 INTRODUCTION 

Breast cancer management has been for a long time guided by the clinical and histo-

pathological knowledge gained from many decades of cancer research. However, the high 

mortality from breast cancer has pushed researchers to seek for accurate cancer prognosis 

tools that help physicians to take the necessary treatment decisions that spare patients from 

side effects and thereby reduce its high medical costs. In the past decade microarray analysis 

has had a great interest in cancer management such as diagnosis (Ramaswamy et al., 2001), 

prognosis (Van’t Veer et al., 2002), and treatment benefit prediction (Straver et al., 2009). 

However, the introduction of this technology has brought with it new serious challenges 

related mainly to high dimensionality of microarray data (or high feature-to-sample ratio) and 

its low signal-to-noise-ratio.  

It has been reported recently that the major difficulty in deciphering high throughput gene 

expression experiments comes from the noisy nature of the data (Tu et al., 2002). Indeed, data 

issued from this technology are not only characterized by the dimensionality problem but 

present also another challenging aspect related to their low signal-to-noise ratio. The noise in 

such type of data is multisource: biological and noisy measurement, slide manufacturing 

errors, hybridization errors, scanning errors of hybridized slide (Tu et al., 2002; Nykter et al., 

2006). Biological errors are typically due to internal stochastic noise of the cells and error 

sources related to sample preparation (Blake et al., 2003). This type of intrinsic noise is 

present in all measurements, regardless of the measurement technology. Measurement errors, 

on the other hand, include error sources that are a kind of extrinsic noise directly related to the 

measurement technology and its limitation (e.g. bias due to the used dyes) (Nykter et al., 

2006, Blake et al., 2003). Slide manufacturing errors are related to microarray slide images. 

These include variation in the spot position and size. In addition the marks done by a print tip 
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and deformations in the spot shape can be produced. Hybridization errors include background 

noise, spot bleeding, scratches, and air bubbles (Nykter et al., 2006).  

 

Appropriate position for Figure 1 

 

Another possible source of error is the digitization of hybridized slide by scanning. The 

hybridized slide is read by scanning each dye color separately, it might be possible that 

channels do not align perfectly (Nykter et al., 2006). Many studies were performed to study 

the different effects of experimental, physiological, and sampling variability (Lee et al., 2000; 

Novak et al., 2002). An interesting study has been performed in Tu et al. (2002) to analyze the 

quantitative noise in gene expression microarray experiments. The authors have shown 

through two illustrative concrete examples the difference in gene expression due to 

experimental noises. In the first example, a comparison between gene expression values 

measured on the same sample has been performed. Figure 1 (a) shows the overall difference 

in two measured gene expression due to measurement error alone as provided in Tu et al. 

(2002). The deviation of the scattered points from the diagonal line represents the difference 

between the two measured transcriptomes. In the second example two samples from different 

cultures are compared as shown in Figure 1 (b) so that the measured expression value 

differences contain the combined effect of the genuine gene expression differences caused by 

measurement error.  

Although Figures (a) and (b) appear similar, the causes of deviations in the expression 

values from the diagonal line are completely different. The first one is due only to gene 

expression measurement error whereas the second is due to the combined effect of the gene 

expression differentiation and measurement error. Therefore, it is crucial to characterize the 

difference caused purely by experimental measurement from the expression differentiation 

due to the difference between the two cultures.  
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Most of breast cancer studies performed using classical classification and feature selection 

approaches for microarray data analysis assume that data is perfect without wondering about 

its reliability. One common practice to deal with this problem is to transform in a non-linear 

way the gene-expression levels in a preprocessing phase so that the variance across 

experiments becomes comparable for each gene (Huber et al., 2002). A drawback with this 

approach is that a global transformation does not adequately account for the fact that the same 

gene may be measured with different precision in different experiments. Another drawback 

with this approach is that a complex non-linear transformation of the data complicates 

measurement interpretation when compared to a global transformation.  

We propose here to address this problem within machine learning framework in the aim to 

design more accurate breast cancer management tools to help the physicians in their decision 

making process. An interesting approach would be to use symbolic data analysis (SDA) 

popularized by Bock and Diday (2000). Within this framework, interval data representation 

can be used to take into account the uncertainty and noise inherent to measurements (Billard, 

2008). Symbolic interval features are extensions of pure real data types, in the way that each 

feature may take an interval of values instead of a single value (Gowda and Diday, 1992). In 

this framework, the value of a quantity x (e.g. gene expression value) is expressed as a closed 

interval [x-,x+] whenever x is noised or uncertain; representing the information that +≤≤−
xxx

. The uncertainty can be related to the incapability to obtain true values due to possible 

variability under some changing and complex experimental conditions. However, the 

introduction of interval representation makes the data processing task more complex than 

when only a numerical value is considered, especially when high dimensionality problem is 

faced jointly. Therefore, what is really needed is an approach that enables to process 

efficiently high dimensional interval datasets. We take advantage here of our recently 
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proposed algorithm (Referred to here as InterSym) that supports such requirements to derive a 

gene signature for cancer prognosis from microarray datasets. 

In the next section we describe how the uncertainties can be integrated in microarray data 

through the use of interval representation. We give then in section 3 a brief description of the 

interval feature selection algorithm used here to process the issued interval dataset in order to 

derive a genetic signature. In section 4 we investigate the proposed strategy on a popular 

prognostic dataset. We show how the proposed strategy can be used to derive genetic 

signatures by following a rigorous experimental protocol. The effectiveness of the derived 

model has been compared with existing prognostic approaches based either on clinical or 

genetic markers.  

2 DATASET 

2.1 Raw dataset 

The study is performed using the well-known van’t Veer dataset (van’t Veer et al., 2002). 

van’t Veer and colleagues used a dataset containing 78 sporadic lymph-node-negative patients 

younger than 55 years of age and less than 5 cm in tumor size, to derive a prognostic signature 

in their gene expression profiles. Forty-four patients remained disease-free after their initial 

diagnosis for an interval of at least 5 years (good prognosis group), and 34 patients had 

developed distant metastases within 5 years (poor prognosis group). We use the same group 

of patients in the aim to derive a gene prognostic signature. Patient with missing data (1 poor 

prognosis patient) was excluded in our study. We describe hereafter how this data set is used 

to generate an interval microarray dataset using the interval representation to model different 

uncertainties.  
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2.2 Interval dataset generation 

In order to take into account the uncertainty in gene expression measurements under the form 

of symbolic intervals, an appropriate setup should be followed. Let the m gene expression 

levels be initially represented in a matrix Y=[y1,y2,...,ym] where m is the number of genes. The 

microarray interval dataset generation is performed by adding a white Gaussian noise with a 

specific Signal-to-Noise Ratio (SNR=3). Let’s consider that the added white Gaussian noise 

has an absolute value bj, then the value of the j th interval feature xj=[xj
-, xj

+] corresponding to 

the j th gene having an expression yj is obtained as follows:   

                                                           xj
-=  yj – bj 

                                                           xj
+=  yj + bj 

It results that  

                                                     xj= [xj
-, xj

+]= [ yj – bj, yj + bj]. 

At the end of this step the m gene expression levels are represented in a matrix 

X=[x1,x2,...,xm] where xj is an interval vector. Once the microarray interval dataset is obtained, 

a genetic signature can be derived using a feature selection algorithm handling interval data. 

We use for that our feature selection algorithm proposed recently in Hedjazi et al. (2011), 

referred to as InterSym, to build a computational model that accurately predicts the risk of 

distant recurrence after 5-years period of breast cancer diagnosis. 

For a better conditioning of magnitudes and processing time minimization, a simple linear 

re-scaling of raw interval values within the interval [0,1] will also be usually performed: 
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3 INTERVAL FEATURE SELECTION 

The emergence of microarray technology has made possible the simultaneous measurement of 

the expression of thousands of genes. This technology has carried with it the hope to gain new 

insights into cancer biology and may improve current tools for cancer management. However, 

this technology has also brought serious challenges related to intrinsic characteristics of the 

resulting data. Mainly two challenges are faced simultaneously: (1) high data dimensionality 

(thousands of gene expressions for a small number of samples); and (2) the noisy nature of 

measurements (or low signal-to-noise ratio). Since traditional statistical methods are ill-

conditioned to deal with such problems, machine learning approaches have been picked up as 

a good alternative to overcome these difficulties (Haibkains, 2009). The first challenge has 

been already extensively addressed by using feature selection algorithms. During the past 

decades, feature selection has indeed played a crucial role in problems involving a huge 

number of features by selecting only the most relevant features for the problem under 

investigation. Here, we use the term feature to refer to a gene marker. Existing feature 

selection algorithms are traditionally characterized as wrappers and filters according to the 

criterion used to search for the relevant features (Kohavi and John, 1997; Guyon and 

Elisseeff, 2003). Wrapper algorithms optimize the performance of a specified machine-

learning algorithm to assess the usefulness of the selected feature subset; whereas filter 

algorithms use an independent evaluation function based generally on a measure of 

information content (entropy, t-test,…) (Kohavi and John, 1997; Guyon and Elisseeff, 2003). 

Filter algorithms are computationally more efficient but perform worse than wrapper 

algorithms (Kohavi and John, 1997; Guyon and Elisseeff, 2003). Thereby, with filter 

algorithms the features are evaluated individually without taking into account the correlation 

information and redundancy problems. Hence, this can deteriorate drastically the classifier 

performance (Kohavi and John, 1997). On the other hand, the noisy nature of microarray 

measurement poses a great challenge for the existing machine-learning algorithms. However, 
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unlike the high-dimensionality problem, a very little attention has been devoted to address this 

problem by the machine-learning community. Therefore, it is crucial to design efficient 

feature selection algorithms able to address both problems jointly in order to improve cancer 

management. One natural idea would be to take use of interval representation to model 

measurement uncertainty in microarray data. However, this will produce high-dimensional 

interval datasets which makes the feature selection task even more challenging. Although 

traditional feature selection algorithms are proficient for processing high-dimensional 

numerical data, they remain inappropriate for interval data. In the particular case where 

feature interval values are regular1, a common practice to apply such algorithms is to label 

interval values by integers, introducing a metric which is not necessarily the same as in the 

original data. This can be a potential source of distortion and information loss. In most real 

applications a feature measurement presents generally a large variation in term of uncertainty 

and noises from one sample to another, and should be therefore expressed by overlapped 

intervals. The transformation interval-to-integer in this case is no longer possible and classical 

algorithms become inapplicable. 

We have recently proposed a new interval feature selection algorithm, referred to as 

InterSym (Hedjazi et al., 2011), which alleviates the previously mentioned problems. 

InterSym enables to process the interval features in their original form without any restriction 

on their relative positions (overlapped or regular); no arbitrary mapping is therefore required. 

To avoid the heuristic search during the feature selection procedure, InterSym optimizes an 

objective function using classical optimization techniques. The feature’s importance is 

evaluated within a similarity margin framework. Since we address a problem with only two 

classes (i.e. metastasis or no metastasis), we limit the description of InterSym in this paper for 

binary class problems. 

���������������������������������������� �������������������
1 Interval features take their values from an accountable set of interval values. 
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Let CCk ×Χ∈=
N

1nn  ],[x =D  be the training dataset, where xn=[xn
1,xn

2,...,xn
m] is the n-th data 

sample containing m features, Ck its corresponding class label, and i
nx stands for the i th 

interval value included in its domain Ui. The first step of InterSym algorithm concerns the 

parameterization of each class by an interval vector based on an appropriate learning process 

through the following arithmetic means: 
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Ui states for the domain of i th interval feature values. 

We assume that the nth data sample xn=[xn
1,xn

2,...,xn
m] is labeled by classc . Let c~ be the 

alternative class. Based on the similarity measure (3), two similarity vectors can be associated 

to each data sample as follows 

         
( ) ( ) ( )[ ]Tm

c
m
nxScnxScnxSnc ρρρ ,,...,2,2,1,1=Γ

 

( ) ( ) ( )[ ]Tm
c

m
nxScnxScnxScn ~,,...,2~,2,1~,1~ ρρρ=Γ                                       (4) 

A similarity margin for sample xn can be defined as 
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( ) ( )cnncnc ~Γ−Γ= φφϑ       (5) 

where ncΓ  and cn~Γ  are respectively the similarity vectors of sample xn to classes c and c~ , 

� == m
i ymy i11)(φ is a function representing the global similarity of the sample xn to the 

given class. 

A weighted similarity margin can be defined through a weight assignment in the previously 

defined similarity margin to express the importance of each interval feature as follows 
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Note that a sample xn is considered correctly classified if 0�ncϑ . A natural idea to estimate 

the interval feature weight is to maximize the leave-one-out classification error as follows:   
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Where ncϑ is the margin of xn computed with respect to the weight vector w. The first 

constraint is the normalized bound for the modulus of w so that the maximization ends up 

with non infinite values, whereas the second guarantees the nonnegative property of the 

obtained weight vector. A closed-form solution can be obtained using the classical Lagrangian 

optimization approach: 
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With    r+= [max(r1,0), …, max(rm,0)]T 



���

�

InterSym is considered as one of the first feature selection algorithms that enable processing 

interval feature-type data. Note that the objective function optimized by InterSym 

approximates the leave-one-out cross validation error and thus chooses only the features if 

they contribute to the overall performance. Hence, both issues, correlation and redundancy, 

are addressed by InterSym. Moreover, InterSym avoids the heuristic combinatorial search by 

using classical optimization approaches to achieve an analytical solution. Furthermore, an 

extension of InterSym has been also proposed for multiclass problems (Hedjazi et al., 2011). 

The effectiveness of InterSym in (Hedjazi et al., 2011) has been shown through three real-

world applications on low-dimensional interval datasets. However, it would be interesting to 

assess its effectiveness also on high dimensional problems such as microarray interval 

datasets. Subsquently, we apply InterSym algorithm to derive a genetic signature for breast 

cancer prognosis, by taking into account the measurement uncertainty through the use of 

interval representation. As mentioned previously, InterSym will enable the selection of 

relevant information in high-diemensional interval datasets by avoiding any related numerical 

and heuristic search complexities. 

4 EXPERIMENTS AND RESULTS 

4.1 Experimental setup 

Data issued by microarray technology provides the measurement of thousands of gene 

expressions for usually small number of patients. This situation can likely lead to serious 

problem of overfitting of the computational model on training data, i.e. the model performs 

very well on training data while achieve extremely poor results on unseen data. A special 

experimental protocol therefore is generally adopted to avoid this problem such as cross-

validation protocols. Due to the small sample size in our case we performed a LOOCV (Leave 

One-Out Cross Validation) to estimate the optimal classification parameters as proposed in 

(Wessels et al., 2005). In each iteration of this procedure, one sample is held-out for testing 
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and the remaining samples are used for training. The training data are used to estimate the 

optimal parameters of the classifier and to perform the feature selection task. The resulting 

model is employed then to classify the held-out sample. This experiment is carried out on all 

samples so that each of them has been used once for testing.  

Very few classification methods are capable to deal with interval representation particularly 

if intervals may overlap. Therefore, we choose to use here LAMDA classifier (Learning 

Algorithm for Multivariate Data Analysis) (Hedjazi et al., 2012), able to handle efficiently 

interval data as well as numerical and qualitative data, to demonstrate the predictive values of 

the derived prognostic signature by InterSym and comparing its performance with those of 

existing approaches such as clinical-based approaches (St-Gallen, all clinical markers,…) and 

genetic-based approaches (70-gene signature). For this classifier only one parameter needs to 

be specified in the training phase (exigency index).  

It is worthwhile to note here that in the study performed by van’t Veer and colleagues, a 70-

gene signature has been derived from the same dataset using a feature selection method based 

on correlation coefficient. The predictive value of the 70-gene has been then assessed by 

using a correlation based classifier (van’t Veer et al., 2002).  

4.2 Results 

A genetic signature, referred to here as GenSym, was derived based on the InterSym 

algorithm corresponding to the optimal classification performance using the LAMDA 

classifier. We note that both of InterSym and LAMDA enable to handle appropriately interval 

data for classification and feature selection respectively (see previous sections for more 

details). Table 1 shows the classification performance obtained with LAMDA using GenSym 

signature. For comparison, classification performance using 70-gene signature, clinical 

markers, St-Gallen consensus and NIH criterion are also reported in Table 1. We observe that 
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the GenSym signature significantly outperforms the 70-gene, clinical and classical clinical 

criterions (St-Gellen, NIH).  

 

Appropriate position for Table 1 

 

GenSym achieves indeed a high accuracy (~90%) while significantly improves specificity and 

sensitivety of the 70-gene signature (by more than 6 % and 10% respectively). It should be 

noted also that in the study performed by van’t Veer and colleagues the sensitivity level has 

been set to 90% in order to ensure a high classification rate of poor prognosis patients, which 

has led to a poor specificity level (72%). GenSym, however, while providing a sensitivity 

level close to the threshold imposed by van’t Veer and colleagues, it ensures a similar high 

level of specificity enabling therefore to spare a big number of good prognosis patients from 

receiving unnecessary toxic treatment.  

Classification performance is not always a sufficient criterion for comparing predictive 

values of different marker signatures. Performance measurement can also depend strongly on 

a decision threshold when only a limited number of patients are available. Varying this 

decision threshold enables to visualize the performance of a given classifier over all 

sensitivity and specificity levels through a Receiver Operating Characteristic (ROC) curve. 

 For further comparisons of the different approaches, we plotted in Figure 2 the ROC curve 

for GenSym, 70-genes and clinical-based approaches. The St-Gallen and NIH criteria are not 

shown here since the good prognosis group contains very few patients. It can be observed that 

the GenSym signature significantly outperforms the 70-gene signatures as well as clinical 

markers over almost all sensitivity and specificity ranges. 

 

Appropriate position for Figure 2 
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We performed also survival data analysis of the four approaches, GenSym signature, 70-gene 

signature, clinical markers and St-Gallen criterion, to further demonstrate the prognostic value 

of the GenSym signature. The Kaplan-Meier curves with 95% confidence intervals of 

respectively the four approaches are shown in Figure 3. Particularly the GenSym signature 

induces a significant difference in the probability of remaining metastases-free in patients 

with a good signature and the patients with a poor prognostic signature (P-value<0.001). 

Hazard Ratio (HR) estimated by Mantel-Cox approach of distant metastases within five years 

for the GenSym signature is 8.20 (95% CI: 4.16- 16.2), which is superior to either the 70-gene 

signature, St Gallen consensus or clinical markers. The HR obtained for clinical and St Gallen 

consensus (respectively 2.32 (95% CI: 1.36- 3.95) and 1.17 (95% CI: 0.46- 2.92)) are 

consistent with those reported in many similar studies (Wang et al., 2005; Soutiriou et al., 

2006), suggesting that clinical markers have bad predicting value. 

 

Appropriate position for Figure 3 

 

4.3 GenSym signature 

The GenSym signature is composed from 23 genes, given in Table 2, among them 12 genes 

are listed in the 70-gene signature. Although the held-out testing sample is not involved in the 

identification of a gene signature in each iteration, it should be noted that we have find that 

the identified signature stays relatively stable over all iterations. The functional annotation for 

the genes should provide insight into the underlying biological mechanism leading to rapid 

metastases. According to the National Center for Biotechnology Information (NCBI) 

databases, among the GenSym signature, genes involved in proliferation, invasion and 

metastasis are significantly unregulated in the metastasis group. For instance we find TSPYL5 

which has been revealed to play important roles in modulation of cell growth and cellular 
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response probably via regulation of the akt signaling pathway. It is reported that TSPYL5 is a 

poor prognosis marker and reduces the p53 protein levels and inhibits activation of p53-target 

genes. It is worthwhile to note here that this is the top listed gene in the 70-gene signature. 

MMP-9 is also related to tumor invasion and metastasis by their capacity for tissue 

remodeling via extracellular matrix as well as basement membrane degradation and induction 

of angiogenesis. Evaluation of MMP-9 expression seems to add valuable information on 

breast cancer prognosis. 

 

Appropriate position for Table 2 

  

GenSym signature holds also many new meaningful genes (such as FBP1, IGFBP5, FGF18, 

SSX1, NUSAP1, C1GALT1, BTG2, PEX12). The importance of both (FBP1, IGFBP5) can 

be highlighted by the actually suspected relation between the insulin and tumor growth 

(Becker et al., 2012). But neither FBP1 nor IGFBP5 have been evaluated independently in 

human cancers. However, FBP1 has been also found strongly associated with disease 

outcome among the 231 top ranked genes in (van’t Veer et al., 2002). FGF18 has been 

revealed clearly involved in the carcinogenesis of ~10% breast cancer. NUSAP1 has also 

been found to be related to proliferation and cells division. SSX1 is involved in certain 

sarcomas; it controls the cell cycle and is considered as an important transcription factor. 

C1GALT1 is a protein that plays an important role in cell adhesion whereas BTG2 is 

considered as a tumor suppressor.  

5 CONCLUSION 

In this paper, we addressed the problem of low signal-to-noise ratio in microarray data faced 

jointly with high data dimensionality problem. The basic idea is to take advantage of symbolic 

data analysis capabilities to alleviate this issue, suggesting the use of interval representation to 
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model uncertainty in microarray measurements. We derived then based on our recently 

proposed interval feature selection algorithm a genetic signature. The GenSym signature 

holds some common genes with existing genetic signatures as well as new genes showing a 

meaningful biological interpretation and high relevance to the biology of breast cancer 

disease. We have shown through a preliminary computational study that the use of such 

strategy can improve and simplify significantly the cancer prognosis task by selecting a small 

number of relevant genetic markers as compared to other existing signatures (only 23 

markers). Its predictive value has been assessed also through this study and compared with 

existing genetic signatures and clinical criterions. We believe that the proposed strategy will 

open the door wide for the introduction of a new generation of symbolic algorithms in 

bioinformatics applications.  

To further demonstrate the effectiveness of the proposed strategy, a larger-scale 

experimental study is now underway in the framework of a research project using a large 

number of patients issued from publicly available datasets.  
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Table 1. Comparatives results between 23-gene signature and existing approaches 

Method TP FP FN TN Sens. Spec. Acc. 

GenSym 29/33 4/44 4/33 40/44 87.88 90.91 89.61 

70-gene(a) 27/33 9/44 6/33 35/44 81.82 79.55 80.52 

Clinical 26/33 14/44 7/33 30/44 78.79 68.18 72.73 

St-Gallen(b) 33/33 39/44 0/33 5/44 100 6.49 50.65 

NIH(c) 33/33 44/44 0/33 0/44 100 0 42.86 

TP: True Positive; FP: False Positive; FN: False Negative; TN: True Negative; Sens.: Sensitivity; Sens.: Sensitivity; Spec: 
Specificity. 
(a) :  Mammaprint signature ©  
(b): St. Gallen - Chemio when one criteria is satisfied: ER negative; Lymph node positive; T>2cm; Grade III or II; Age <35 
years. 
(c): NIH: Chemio when Lymph Node positive or Tumour size > 1cm 
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Table 2. List of genes included in GenSym and their notations 

Rank Gene ID 70-gene Notation 

1 
Contig37063_RC 

� N/A 

2 
Contig26388_RC 

� N/A 

3 
NM_003748 

� ALDH4A1 

4 
NM_006681 

� NMU 

5 
NM_000507 

� FBP1 

6 
AF055033 

� IGFBP5 

7 
NM_000286 

� PEX12 

8 
AL080059 

� TSPYL5 

9 
Contig33814_RC 

� N/A 

10 
NM_012429 

� SEC14L2 

11 
NM_000599 

� IGFBP5 

12 
NM_003862 

� FGF18 

13 
Contig63649_RC 

� N/A 

14 
NM_004994 

� MMP9 

15 
Contig11065_RC 

� N/A 

16 
Contig32185_RC 

� N/A 

17 
NM_016359 

� NUSAP1 

18 
Contig15954_RC 

� N/A 

19 
NM_005635 

� SSX1 

20 
Contig49388_RC 

� N/A 

21 
Contig52554_RC 

� N/A 

22 
NM_020156 

� C1GALT1 

23 
NM_006763 

� BTG2 

�C�DEF����E���B������FE����������C������EF����E���B������FE������������C��������E�� �� 
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Fig. 2. ROC curve of GenSym, 70-gene and clinical approaches 
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Fig. 3. Kaplan-Meier estimation of the probabilities of remaining metastases-free for the good and poor 
prognosis groups. The p-value is computed by using log-rank test. 

 


