
HAL Id: hal-00773270
https://hal.science/hal-00773270

Submitted on 12 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanically equivalent elastic-plastic deformations and
the problem of plastic spin

David Steigmann, Anurag Gupta

To cite this version:
David Steigmann, Anurag Gupta. Mechanically equivalent elastic-plastic deformations and the prob-
lem of plastic spin. Theoretical and Applied Mechanics, 2011, 38 (4), pp.397-417. �hal-00773270�

https://hal.science/hal-00773270
https://hal.archives-ouvertes.fr


Mechanically equivalent elastic-plastic deformations and the problem of plastic spin∗

David J. Steigmann1∗∗ and Anurag Gupta2

1Department of Mechanical Engineering

University of California

Berkeley, CA. 94720

2Department of Mechanical Engineering

Indian Institute of Technology

Kanpur, UP, India 208016

∗dedicated to Marcelo Epstein, in gratitude for his fundamental contributions to theoretical mechanics

∗∗author to receive correspondence (steigman@me.berkeley.edu)

Abstract: The problem of plastic spin is phrased in terms of a notion of mechanical equivalence

among local relaxed configurations of an elastic/plastic crystalline solid. This idea is used to show that,

without further qualification, the plastic spin may be suppressed at the constitutive level. However,

the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the

freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic

spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification

among many. Restrictions on these are derived in the case of rate-independent response.

1. Introduction

The conventional theory of crystal plasticity rests on a purely kinematical interpretation of plastic

deformation according to which the rate of plastic deformation is presumed to be expressible in the form

ĠG
−1
=
X

s⊗n (1)

as a summation of simple shear rates, in which G is the plastic part of the deformation gradient, 

are the slips and the s and n are orthonormal vectors specifying the 
 slip system. The sum ranges

over the currently active slip systems. This decomposition, though virtually ubiquitous [1-4], has been

criticized on the grounds that for finite deformations it cannot be associated with a sequence of simple

shears unless these are restricted in a manner that is unlikely to be realized in applications [5]. In

particular, the order of the sequence generally affects the overall plastic deformation, a fact which is not

reflected in (1). In [6] conditions are given under which (1) yields an approximation to the deformation

associated with a sequence of slips. Again it is not known if such conditions are realized in practice.
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This state of affairs regarding theories based on (1) gives impetus to alternative models based purely

on the continuum mechanics of crystalline media, such as those advanced in [7-10]. Here our objective

is to characterize an aspect of such models - the plastic spin - which has thus far remained open to

question. In conventional crystal plasticity theory, based on (1), this issue does not arise. Instead, the

 are determined by suitable flow rules, arranged to ensure that the response is dissipative, and the

skew part of (1), in which the slip-system vectors are specified, furnishes the plastic spin.

In Section 2 we summarize the basic purely mechanical theory of elastic-plastic solids outlined in

[10] and [11]. In preparation for the discussion of mechanical equivalence in Section 4, in Section 3

we split the space of tensors into the direct sum of those that contribute to plastic dissipation and

nilpotent tensors that make no contribution. It is then shown in Section 4 that elements of the former

space are mechanically equivalent to elements of the full space. This leads to the conclusion that the

nilpotent plastic spin may be suppressed at the constitutive level without loss of generality. The same

conclusion has been reached elsewhere [2] for the theory of isotropic elastic/plastic solids. However,

implementation [3] of the theory of crystalline elastic/plastic solids relies on the a priori specification

either of an undistorted lattice or an associated set of slip-system vectors. We show in Section 5 that

when this is done the freedom to suppress the nilpotent part of the plastic evolution, afforded by the

concept of mechanical equivalence, is lost. Thus, as a practical matter, constitutive equations for the

plastic spin are required. These in turn depend intimately on the nature of the crystal. In Section 6

we derive restrictions on such dependence arising from ideas prevalent in the rate-independent theory

[12,13], narrowing substantially the scope of those obtained previously [14,15].

The finding that plastic spin is non-negligible in principle is far from a shortcoming of the continuum

theory. Rather, plastic spin affords additional freedom to fit predictions of the theory to actual data.

Indeed, such freedom substantially exceeds that afforded by conventional crystal plasticity theory in

which plastic spin is constrained by the structure of (1).

We use standard notation such as A A−1 A∗ A A A and  These are respectively

the transpose, the inverse, the cofactor, the symmetric part, the skew part, the trace and the determinant

of a tensor A regarded as a linear transformation from a three-dimensional vector space to itself,

the latter being identified with the translation space of the usual three-dimensional Euclidean point

space. We also use  to denote the linear space of second-order tensors, + the group of tensors

with positive determinant, + the group of rotation tensors,  and the linear subspaces of

symmetric and skew tensors and + the positive-definite symmetric tensors; the symbol ⊕ is used
to denote the direct sum of linear spaces. The tensor product of 3-vectors is indicated by interposing

the symbol ⊗ and the Euclidean inner product of tensors AB is denoted by A ·B = (AB); the

associated norm is |A| =
√
A ·A In terms of orthogonal components, A ·B =   wherein the

usual summation rule is implied. For a fourth-order tensor A, the notation A[B] stands for the second-
order tensor with orthogonal components A The transpose A is defined by B ·A[A] = A ·A[B]
and A is said to possess major symmetry if A = A IfA ·A[B] = A ·A[B] andA·A[B] = A·A[B

] then

A is said to possess minor symmetry. Finally, the notation A stands for the tensor-valued derivative

of a scalar-valued function  (A).
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2. Basic theory

In the purely mechanical theory, variables of interest include the motion χ(x) and the plastic

deformation tensor K(x), where x is the position of a material point in a fixed reference placement 

of the body. The values y = χ(x) are the positions of these points at time  and generate the current

placement  of the body as x ranges over  The deformation gradient, F =∇χ is assumed to be
invertible with   0 These variables are used to define the elastic deformation

H = FK (2)

We impose   0 and conclude that   0 The plastic deformation is related to the more commonly

used measure G by G =K−1

The elastic strain energy of the body is

 =

Z


(H) (3)

where  is the spatial strain-energy density. Attention is confined to materially uniform bodies, ex-

emplified by single crystals. These have the property that the strain-energy density does not depend

explicitly on x However, most of the following discussion, concerned with local aspects of the theory,

remains valid if this restriction is relaxed. We are concerned mainly with the constitutive structure of

the theory and therefore restrict attention to smooth processes.

The local equations of motion are

T+ b = ÿ T ∈  in  (4)

where T is the Cauchy stress,  is the mass density,  is the spatial divergence (i.e., the divergence

with respect to y) superposed dots are used to denote material derivatives ( at fixed x) and b is

the body force per unit mass.

The decomposition (2) is associated with a vector space  called the local intermediate configuration,

which is mapped to the translation spaces of  and  by K and H respectively. Our main objective

is to characterize intermediate configurations that are mechanically equivalent. To this end, several

preliminary concepts are needed.

The strain-energy function referred to  is

 (H) =(H) (5)

and generates the Cauchy stress via the formula [10]

TH∗ =H (6)

Necessary and sufficient for the symmetry of T (cf. (4)2) is that  depend on H through the elastic

Cauchy-Green deformation tensor [10]

C =HH (7)
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Thus,

 (H) = ̂ (C) (8)

Equation (6) then provides

T = HSH
 (9)

where S is the elastic 2nd Piola-Kirchhoff stress given by S = Ŝ(C) with

Ŝ(C) = 2̂C (10)

It is usual to stipulate that  is undistorted, or natural, in the sense that Ŝ(I) = 0. Then, the

strain-energy function  is subject to the restriction

 (H) = (HR) (11)

whereR ∈ + is an element of the symmetry group for the material (see [8,10] for further discussion).

Using (10), it is straightforward to demonstrate that

Ŝ(R

CR) = R


Ŝ(C)R (12)

To make use of restrictions arising from material symmetry in crystalline solids, it is necessary to specify

information about the undistorted lattice (Section 5). It is shown in [10] that undistorted  may be

attained by an equilibrium (i.e., inertia-less) deformation of an arbitrarily small unloaded sub-body,

granted the degree of smoothness required by the mean-stress theorem.

The sum of the kinetic and strain energies of an arbitrary part  ∈  of the body isZ


Φ ; Φ = Ψ+ 1
2
 |ẏ|2  (13)

where , with piecewise smooth boundary  is the region occupied by  in , and

Ψ(FK) = −1  (FK) (14)

is the referential strain-energy density.

The dissipation, D is the difference between the mechanical power  supplied to  and the rate of

change of the total energy in  Thus,

D =  − 


Z


Φ (15)

This is expressible in the form [11]

D =
Z


 (16)

where

 = E · K̇K−1 (17)

in which

E = ΨI−FP (18)

is Eshelby’s energy-momentum tensor, and

P = TF∗ (19)
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is the usual Piola stress. Thus the dissipation is non-negative for every sub-body if and only if  ≥ 0
We find it convenient to use (17) in the form

 = E 0 ·K−1K̇ (20)

where

E 0 = K
EK− (21)

is the Eshelby tensor, pushed forward to  This is purely elastic in origin. In particular [10],

E 0(C) = ̂ (C)I −CŜ(C) (22)

implying that

E 0(R
CR) = R

E 0(C)R (23)

if R ∈ + is a material symmetry transformation.

The equations of motion are augmented by a flow rule for the plastic deformation. Typically [10]

this specifies K−1K̇ in terms of a constitutive response function, which must be such as to satisfy

the material-symmetry transformation rule K−1K̇ → R(K−1K̇)R A framework for rate-independent

response is described in Section 6.

3. Nilpotent plastic flows

Consider the linear space  of tensors with representative element N defined by

N · E 0 = 0 (24)

By writing

E 0 = ZC−1 with Z(C) = ̂ (C)C−CŜ(C)C (25)

and invoking the symmetry of Ŝ we have Z(C) ∈  and therefore

 ⊇ = {M: MC−1 ∈ } (26)

in which C is associated with E 0 via (22).
 is the three-dimensional linear space spanned by {[(e ⊗ e)]C;  6= } where {e} is any

orthonormal basis for 3 Its orthogonal complement with respect to  is

⊥ = {L: LC ∈ } (27)

This is the six-dimensional linear space spanned by {[(e ⊗ e)]C−1} Thus every tensor has a
unique representation as the sum of elements of and⊥ To establish that  ⊆ , if true, and thus

that  =  we would need to show, given C ∈ + that N · E 0 = NC−1 · Z(C) vanishes only if
NC−1 ∈  However, the premise does not preclude the possibility that NC−1 ∈  because Z(C)

is fixed by C and thus not an arbitrary element of  If the elastic strain is small, as is often assumed

in practice, then C may be replaced by I with an error on the order of the small strain, so that  is

approximated by .
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It follows from the definitions that the projection of K−1K̇ onto  has no effect on dissipation.

This leads us to pose the question of whether or not this projection plays an essential role, or if it

can be suppressed without affecting the initial-boundary-value problem and hence without restricting

the mechanical phenomena that the theory can be used to describe. This is more widely known as

the problem of plastic spin, which has been a vexing issue in theories of plasticity that do not rely on

slip-system kinematics. In the affirmative case the freedom afforded by the choice of  may be used to

simplify the theory accordingly. That this is possible in the case of isotropy has been firmly established

in [2].

Indeed, if it is assumed that plastic flow is inherently dissipative [10]; i.e., that  ≥ 0 and that

 vanishes if and only if K̇ vanishes, then K−1K̇ ∈  implies that K̇ = 0 From this perspective

elements of do not qualify as bona fide plastic flows; we call them nilpotent flows. This is the content

of the principle of actual evolution elucidated in [8]. This is not to say that the part of the plastic flow

belonging to  must vanish, however. Here we study the role played by the projection of K−1K̇ onto

 . In particular, we study the question of whether or not the restriction K−1K̇ ∈⊥ may be imposed

without loss of generality. In the case of small elastic strain, this is equivalent to the question of whether

or not the plastic spin may be suppressed.

4. Mechanical equivalence

Consider two local intermediate configurations, 1 and 2  associated with a given reference place-

ment  We wish to characterize the relationship between these configurations arising from the re-

quirement that they be mechanically equivalent, in the sense that solutions to properly posed initial-

boundary-value problems are invariant under replacement of one by the other. We begin by setting

down some fairly obvious properties that one would expect of such a relationship.

(i) As a minimal requirement, we stipulate that mechanically-equivalent local intermediate configu-

rations should correspond to the same motion y = χ(x ). They are therefore associated with one and

the same deformation gradient F(x ) It follows from (2) that if H1 andH2 are the elastic deformations

from 1 and 2 to  and if K
−1
1 and K−12 are the plastic deformations from  to 1 and 2 , then

there is A ∈ + such that

H1 =H2A and K1 =K2A (28)

(ii) As further requirements, we impose the invariance of the Cauchy stress T(y ) and the strain

energy stored in an arbitrary part of the body. Let 1(H1) and 2(H2) be the strain-energy functions

associated with 1 and 2  Then, from (6),

TH∗1 = (1)H1
and TH∗2 = (2)H2

 (29)

Further, our assumptions imply that the referential strain energy density is invariant; eqs. (9), (14) then

combine to yield

1(H1) = 2(H2) and S2 = AS1A
 (30)

where S12 are the 2nd Piola-Kirchhoff stresses relative to 12  derived from1 and2 respectively by
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formulas like (10). These relations ensure the mechanical equivalence of any pair of local configurations

in the case of purely elastic response; i.e., in the absence of dissipation.

(iii) It is natural to impose the additional requirement that the dissipation be invariant for an

arbitrary part of the body. Using (20) and (28)2, the referential dissipation densities 12 associated

with 12 may be shown to satisfy

1 = 2 + −12
E 02 · ȦA

−1
 (31)

where E 02 is the push-forward of the Eshelby tensor to 2 , given by

E 02 = ̂2I−C2S2 (32)

in which C2 = H

2H2 and ̂2(C2) =2(H2) use having been made of the connection

E 01 = A
(E 02)A− (33)

which follows from (21) and (28)2.

The invariance of the dissipation; i.e., 1 = 2 is seen to follow if and only if

E 02 · ȦA
−1
= 0 (34)

This may be recast as

(H
2TH

∗
2 −2I) · ȦA

−1
= 0 (35)

which in turn is equivalent, by virtue of (28)1, to

TH∗1 · Ḣ1 = TH
∗
2 · Ḣ2 + ̇2 where ̇ = A

∗ · Ȧ (36)

Using (29) we find that this reduces to ̇1 = (2)
·, implying that1 is given, modulo an unimportant

constant, by (30). It follows that (34) is necessary and sufficient for mechanical equivalence as stated

thus far; namely, as the invariance of the deformation, the Cauchy stress, the energy (modulo a constant)

and the dissipation.

Thus, with reference to (24) and (26), a transformation A() ∈ + that satisfies the differential

equation

ȦA
−1 ∈2 (37)

where

 = {M: MC−1 ∈ };  = 1 2 (38)

maps 1 to a mechanically-equivalent 2 .

We note that (37) yields a constant value of  This follows easily from the vanishing of ̇ =

(ȦA
−1
) = (Ω2C2) for any Ω2 ∈  Therefore, solutions to (37) belong to + if and only if

A(0) ∈ + Given A(0) A() is uniquely determined by (37) for any - hence every - element of 2

Further, every element of 2 is expressible as ȦA
−1
with A() ∈ +

From (28)2 we have

K−11 K̇1 = A
−1(K−12 K̇2 + ȦA

−1
)A (39)
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We wish to know if it is possible to imposeK−11 K̇1 ∈⊥1 while preserving the mechanical equivalence of

1 and 2  Thus we impose (37). We require the following simple lemma: SupposeG1 ∈1 and define

G2 by A
−1G2A = G1 for A ∈ +. Then G2 = AΩ1C1A

−1 for some Ω1 ∈  and, from (28)1

it follows that G2 = AΩ1A
C2AA

−1 = Ω2C2 where Ω2 = AΩ1A ∈  Therefore G2 ∈ 2 We

have shown that2 = A1A
−1; equivalently, 1 = A

−12A Using this with (37), we conclude from

(39), in which K−11 K̇1 ∈⊥1 is imposed, that A−1(K−12 K̇2)A ∈1 ⊕⊥1 =  which is equivalent

to K−12 K̇2 ∈  Thus the restriction K−11 K̇1 ∈⊥1 does not impose any restriction on K−12 K̇2

In other words, given any plastic flow in  based on the use of 2  there exists a mechanically-

equivalent 1 such that K
−1
1 K̇1 ∈ ⊥1  This generalizes a result in [11] pertaining to small elastic

strains. Because  is nine-dimensional whereas⊥ is only six-dimensional, it would thus appear that

constitutive equations for plastic flow may be dramatically simplified without affecting the predictive

capability of the theory. This is the point of view advanced in [11] for the case of small elastic strain.

However, as argued in the next Section, this conclusion is premature.

5. Lattices

It is natural to appeal to concepts in crystal-elasticity theory in the course of contemplating further

conditions to be imposed in a reasonable definition of mechanical equivalence for crystalline solids.

Central to that theory is the idea that linearly independent lattice vectors l ( ∈ {1 2 3}) are mapped
to their images t in  in accordance with the Cauchy-Born hypothesis. To accommodate plasticity,

this hypothesis is assumed to apply to the elastic deformation. Thus, t = Hl where l are the lattice

vectors in  It is natural to view the lattice set {l} associated with  as an intrinsic property of the

material. Accordingly, it is uniform (i.e., independent of x) in a materially-uniform body.

The t are observable in principle. In practice they are computed from their measurable duals t

[16]. We therefore extend the definition of mechanical equivalence to include the requirement that {t}
be invariant. Further, (2) yields t = Fr where r = Kl are the lattice vectors in . Then, each

r(= F
−1t) is also invariant, and

l(2) = Al(1); A = l(2) ⊗ l(1) (40)

where l(), etc., are the lattice vectors in  ;  = 1 2 A transformation from one local intermediate

configuration to another mechanically equivalent one thus corresponds to a transformation of lattice

vectors. The evolutions of these lattices are related by

l̇(1) = A
−1[l̇(2) − ȦA

−1
l(2)] (41)

and they are mechanically equivalent if A() satisfies (37). Consequently the notion of mechanical

equivalence may be phrased in terms of relationships among lattices associated with intermediate con-

figurations. The plastic deformation is given by K = r ⊗ l, where the l are the duals of the l . The
elastic deformation is given by H = t ⊗ l; and the deformation gradient by F = t ⊗ r.
A trivial example of mechanical equivalence is furnished by the case C2 = I Then, (28) and (37)

result in A() ∈ + and C1 = I; the associated lattices are related by a rotation. If one is stress-
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free, then both are stress-free by virtue of (30)2. Therefore, undistorted lattices related by rotations

are mechanically equivalent. If the elastic strain is small, then, to leading order, {l(2)} is related
to a mechanically-equivalent {l(1)} by a rotation. In the case of finite elastic strain, the effect of a
mechanically equivalent transformation is to induce a distortion of one lattice relative to the other. In

this case a rotation generates a lattice that is not mechanically equivalent to the undistorted lattice.

When implementing the theory one encounters the need to specify the initial orientation of the lattice

{l}. This arises from the practical necessity to ensure that an initial value of the plastic deformation,

and hence that of the stress via (2) and (9), can be fixed unambiguously, so that the initial-boundary-

value problem consisting of the equation of motion and the flow rule for the plastic deformation can

be forward-integrated in time. In the simplest case, guided by the natural view that the undistorted

lattice is an intrinsic material property, the analyst would assume the l to be material vectors and thus

impose l̇ = 0 effectively fixing them once and for all. This is consistent with the notion that plasticity

is associated with flow of material relative to the actual lattice, and the consequent fact that actual

lattice vectors are not material vectors (ṙ 6= 0 if and only if K̇ 6= 0).
Having made this assumption, suppose the analyst uses 2 , with l̇(2) = 0 together with some flow

rule to compute a plastic flow K−12 K̇2. This flow may be used to construct A() in such a way as

to eliminate the projection of K−11 K̇1 given by (39), onto 1 Of course, the flow rule for K−11 K̇1

thus derived is automatically such that K−11 K̇1 ∈ ⊥1  and the associated lattice {l(1)}, which is
mechanically equivalent to {l(2)}, satisfies l̇(1) = −A−1Ȧl(1) Constitutive functions based on the use
of {l(2)} may be used with the transformations (30) and (33) to compute their counterparts based on
the evolving lattice {l(1)}; these include a flow rule that is seemingly simplified by the fact that its

projection onto 1 vanishes. However, the computation of the lattice {l(1)} relative to which these
apply requires the flow rule for 2  which may have a non-zero projection onto 2. Said differently, to

obtain the lattice relative to which plastic spin vanishes it is necessary to have knowledge of the plastic

spin computed on the basis of the given lattice! Because of this there is no convincing basis for the

belief, expressed by ourselves [10,11] and others, that plastic spin may be suppressed without loss of

generality in flow rules for plastic evolution. On the contrary, the freedom to add  to ⊥ in the

formulation of flow rules may well be required to advance the theory to the point of offering meaningful

agreement with empirical data. Nevertheless we show in the next Section that theory offers guidelines

for narrowing the possibilities.

6. Example: rate-independent theory

Following conventional ideas for the description of rate-independent response we assume plastic flow

to be possible only if the material is in a state of yield. We express this idea as the requirement that

the elastic deformation belong to a manifold that may be parametrized by other variables. For example,

motivated by G.I. Taylor’s formula giving the flow stress as a function of dislocation density, and using

the fact that the stress S may be expressed in terms of C via (10), we assume yield to be possible only
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if [10,13]

(Cα) =0 (42)

where  is a suitable yield function and

α = K
−1K−1 (43)

is the (geometrically necessary) dislocation density. Here  is the referential curl operation defined

in terms of the usual vector operation by

(A)c =(Ac) (44)

for any fixed vector c Relevant to our development is the current yield surface, defined, for fixed α by

(·α) = 0 For simplicity’s sake we assume  to be differentiable, so that the yield surface defines a

differentiable manifold in .

Plastic evolution; i.e., K̇ 6= 0 is deemed to be possible only when (42) is satisfied, and the variable
C is always constrained to belong to the current elastic range defined by (·α) ≤ 0 assumed to be a
connected set in  In view of our restriction to materially uniform bodies we require that the same

yield function pertain to all material points.

In [10] it is shown that (42) is invariant under superposed rigid-body motions and (global) changes

of reference placement and is thus intrinsic to the material, provided that the function  is likewise

invariant. Similar statements apply to the reduced strain-energy function (8) and to the associated

stress, given by (10). In particular, the stated invariance properties are possessed by the tensors C

and α [10,17]. Further, the yield function is subject to the same material-symmetry restriction as that

imposed on the strain-energy function; i.e. [10],

(Cα) =(RCRRαR) (45)

It is important to note that the dislocation density is well-defined under symmetry transformations

only if the symmetry group is discrete (see Theorem 8 of [7]). Accordingly, yield functions of the kind

considered are meaningful only for crystalline solids.

The body is dislocated if α does not vanish; in this case K−1 is not a gradient and from (2) it follows

that neither is H. In fact [17],

α = H
−1H−1 (46)

in which  is the spatial curl. Then,  has only local significance in the sense that it cannot be

identified with a global placement of the body in Euclidean space. That is, a differentiable position field

that identifies material points in  does not exist.

Most workers assume the plastic evolution K−1K̇ to be such as to maximize the dissipation under

the constraint that C belong to the current yield surface. This in turn is a provable consequence of the

widely adopted I’llyushin postulate [18]. In the present context this condition takes the form [11]

[E 0(C)− E 0(C∗)] ·K−1K̇ ≥ 0; (Cα) = 0 (47)
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where C∗ is a fixed elastic strain in the elastic range. This inequality is preserved under material

symmetry transformations. Thus the problem is to characterize the plastic flow such that the actual

dissipation (cf. (20)) is maximized relative to that associated with any admissible elastic strain; i.e.,

max(E 0 ·K−1K̇) subject to (Cα) ≤ 0 (48)

which is a standard optimization problem with an inequality constraint. The Kuhn-Tucker necessary

condition [19] immediately generates the flow rule

(E 0C)[K−1K̇] = C (49)

where  ∈ R+ is a Lagrange multiplier and (E 0C) the transpose of the derivative of E 0(C), is a linear
transformation from  to  If  = 0 then K−1K̇ belongs to the null space N of (E 0C) It follows
from the fact that the domain and range of (E 0C) are respectively nine- and six-dimensional that N is

necessarily three-dimensional.

Because of the role of the Eshelby tensor in inequality (47), and because the latter is so closely related

to the elastic range, it is natural to consider yield functions that depend on C implicitly through E 0
This specialization is allowed by the invariance of the elastic range and the dissipation under superposed

rigid-body motions and compatible changes of reference placement [10]. Thus we consider yield functions

of the form

(Cα) =  (E 0(C)α) (50)

The elastic range is then the set S defined by  (E 0(·)α) ≤ 0, and we assume  to be differentiable.

Further,  satisfies the material symmetry rule  (E 0α) =  (RE 0RRαR).

Of course E 0(C) ∈  for every C ∈ +, but in general not every element of  is expressible

in the form E 0(C); that is, there is not a unique element of + corresponding to a given element of

 This issue is central to the considerations of [14,15]. Following that work we define a second elastic

range K by the requirement  (·α) ≤ 0 in which the domain is now  It is then clear that S ⊂ K
We also have S ⊆ T ⊂ K where T = K ∩M and M is the subset of  defined by E 0C ∈ 

However, we cannot assert that S and T are equivalent unless we can show that the equation

E 0C = ̂ (C)C−CŜ(C)C (51)

has a unique solution C ∈ + for every E 0 ∈M That is, the restriction E 0C ∈  for E 0 ∈  and

C ∈ + does not in general yield a unique C such that E 0 = E 0(C) Having said this we note that if
the elastic strain is small, then (51) reduces to S = −E 0 to leading order, which has a unique solution
for the elastic strain E = 1

2
(C− I) under realistic hypotheses on the elastic constitutive response [10,11].

This yields a unique C ∈ + provided that |E 0| is not too large. Thus, as a practical matter, we
expect S and T to be equivalent in real metallic crystals in which the elastic strain is invariably small. In
connection with this point we remark that a counter-example has been exhibited in [14] showing that in

general no bijection exists between S and K. However, this demonstration makes use of extreme elastic
strains that undoubtedly lie well outside the elastic range of any real metallic crystal and, as such, are

physically inadmissible. This observation lends further support to the plausibility of our assumption

that S and T are equivalent in practical applications.
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The foregoing inclusions suggest that we replace (48) by the problem

max(E 0 ·K−1K̇) subject to  (E 0α) ≤ 0 and W = 0 (52)

where

W = (E 0C) (53)

The constraints are equivalent to the requirement E 0 ∈ T  whereas  (·α) is defined on  Thus we

regard  (·α) as a smooth extension of  (E 0(·)α) from T to  and satisfying the same material

symmetry rule. We now have an optimization problem with both inequality and equality constraints.

The relevant version of the Kuhn-Tucker necessary condition for this problem is [19]

K−1K̇ = ( +Ω ·W)E0  (54)

where  ∈ R+ and Ω ∈  are Lagrange multipliers and the derivative E0 , an element of  is

evaluated on T  It is straightforward to derive (Ω ·W)E0 = ΩC and thus to obtain the flow rule

K−1K̇ = E0 +ΩC (55)

We observe from (26) that the term ΩC belongs to the three-dimensional space  and is therefore

nilpotent. Therefore the dissipation is (cf. (20))

 = E 0 · E0  (56)

Because  ≥ 0 the dissipation is positive only if   0 and thus only if E 0 · E0  0 Further, material

symmetry transformations yield E0 → RE0R and (55) then requires that Ω→ RΩR

In [10] a constitutive hypothesis is made to the effect that contributions to the flow rule of the

form ΩC may be suppressed. While this is permissible from the viewpoint of mechanical equivalence

as defined in Section 4, it is restrictive from the viewpoint discussed in Section 5. Nevertheless it is

possible to derive certain restrictions that Ω must satisfy.

To this end we use the chain rule on S (assumed equivalent to T ), obtaining

C = (E 0C)[E0 ] (57)

Comparison of (49) and (55) shows that the combination ( − )E0 + ΩC belongs to the null space

N of (E 0C) However, this is possible only if  =  because E0 ∈  whereas N is three dimensional.

Indeed, at this stage  and  are arbitrary non-negative scalars and the imposition of  =  in (49) and

(55) entails no loss of generality. Consequently Ω is restricted by the requirement ΩC ∈ N ; i.e.,

(E 0C)[ΩC] = 0 (58)

This result is more stringent than that derived in [14,15]. In that work the extension of the Kuhn-

Tucker theorem to equality- and inequality-constrained problems is not used and attention is confined to

the case of plastic incompressibility. In terms of the present model it is shown there thatK−1K̇−E0 ∈
N  Here we have K−1K̇− E0 ∈ ∩N  which simplifies the problem of deriving restrictions on Ω
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To make the problem (58) explicit we need to characterize the null space N  Thus consider a one-

parameter family of elastic deformations C() ∈ + with  in some open interval. Differentiating

(22) with respect to  furnishes

E 0C[Ċ] = ̇ I− ĊS−CṠ (59)

Using (10) in the form ̇ = 1
2
Ŝ · Ċ and Ṡ = 2̂CC[Ċ] and noting that Ċ ∈  may be chosen

arbitrarily, we derive

E 0C[B] = 1
2
(Ŝ ·B)I−BŜ− 2C(̂CC[B]) for all B ∈  (60)

Thus for any A ∈ ,

B · (E 0C)[A] = A · E 0C[B] = 1
2
(Ŝ ·B)I ·A−A ·BŜ− 2A ·C(̂CC[B]) (61)

Using the properties of the inner product, the symmetry of Ŝ and the major symmetry of ̂CC, we

recast this as

B · (E 0C)[A] = 1
2
(I ·A)B · Ŝ−B · (AŜ)− 2B · ̂CC[A

C] (62)

Accordingly, because B is an arbitrary element of 

(E 0C)[A] = 1
2
(I ·A)Ŝ− (AŜ)− 2̂CC[A

C] for all A ∈  (63)

and N is the set of all tensors that annul the right-hand side. It is straightforward to show that the

material symmetry N → RNR is satisfied (see also [14]).

For A = ΩC with Ω ∈  we have I ·A = (ΩC) = Ω ·C which vanishes identically. Further,
AC =−CΩC ∈  and ̂CC[A

C] thus vanishes by the minor symmetry of ̂CC. Therefore (58)

reduces to

[ΩCŜ(C)] = 0 (64)

which is equivalent to

[ΩE 0(C)] = 0 (65)

by virtue of (22). These restrictions are preserved under material symmetry transformationsR ∈ +.

We emphasize the fact (64) is not a general requirement. It applies only in the case of yield functions

that depend on C via E 0(C) and even then only when the restrictions described in the paragraph
containing (51) are satisfied.

For small elastic strain CŜ(C) is of order |E| where E = 1
2
(C− I). This vanishes at leading order;

i.e., at order unity, reducing (64) to an identity. In this case there are no a priori restrictions on Ω

apart from the requirement that its constitutive specification satisfy material symmetry. In the general

case (64) (or (65)) connects Ω to the elastic deformation and to the crystal properties via the stress-

deformation relation. The characterization of solutions Ω thus requires detailed consideration of the

particular crystalline response at hand.

It is appropriate to regard (2) and the equations of motion (4), together with the elastic constitutive

equation (9), the yield function and the flow rule, as constituting an initial-boundary-value problem

for the deformation χ(x ) and plastic deformation K(x ) In particular, the flow rule requires the
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specification of an initial value K0(x) = K(x 0) Granted {l}, this is given via K0(x) = r(x0) ⊗ l

by the values of the referential lattice vectors r(x0) = F(x 0)
−1t(x 0) wherein t are computed

from their empirically determined duals t [16]. The latter are then predicted at any time 1  0 by the

coupled theory for the fields χ andK and constitutive equations for Ω, subject to (64), may be adjusted

as needed to enhance agreement with the measured field t(x 1) To be sure this is a formidable task,

but one which is ultimately necessary for the assessment of the predictive potential of any theory for

plastic flow in crystalline solids.
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