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Abstract

Classical plate buckling theory is obtained systematically as the small-thickness

limit of the three-dimensional linear theory of incremental elasticity with null incre-

mental data. Various a priori assumptions associated with classical treatments of

plate buckling, including the Kirchhoff–Love hypothesis, are here derived rather than

imposed, and the conditions under which they emerge are stated precisely.
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1 Introduction

In this work we study the relationship between classical plate-buckling theory and the linear
three-dimensional theory of incremental elasticity. We show that the former model, despite
the seemingly ad hoc assumptions underpinning its foundations [1, 2], emerges naturally as
the limit of the latter if the thickness is sufficiently small. Specifically, the classical theory
furnishes the leading order model in the small-thickness limit. The methods we employ,
while entirely elementary, deliver precisely the same results as would be obtained by using
the method of gamma convergence, which has become a popular framework for effecting
the so-called dimension reduction procedure in static elasticity theory.

In the engineering literature classical plate-buckling theory is derived on the basis of
the following ad hoc assumptions, adapted from pages 137 and 138 of [1]:

• The state of stress is approximately plane and parallel to the middle surface.

• Normals to the undeformed middle surface remain normal to the deformed middle
surface.

• The fundamental state is linear, i.e. the underlying deformation of the plate prior to
buckling may be described using linear elasticity theory.
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Our development parallels that of [2], which is based on the idea of minimizing the
second variation of the energy at equilibrium, yielding linear incremental elasticity with
null incremental data. The contribution of the present work is the relaxation of the a priori

assumptions and hence the strengthening of the theoretical underpinnings of the theory.
Here the classical assumptions are derived as consequences of the three-dimensional theory
in the small-thickness limit. The only important hypotheses we make concern the regularity
of solutions of the three-dimensional incremental elasticity problem in the presence of strong
ellipticity, together with the stipulation that the pre-stress vanishes with plate thickness.
Some discussion of the former is provided in Section 4; the latter is introduced there to
ensure that the considered model furnishes a meaningful minimization problem.

Prerequisite material on nonlinear elasticity theory is summarized in Section 2. This
includes a review of the connection between stability and uniqueness of equilibria in the
dead-load problem. The linear incremental theory, which provides the basis for the study
of bifurcation of equilibria, is outlined in Section 3, and the small-thickness limit of the
theory is developed in detail in Section 4, which constitutes the main part of the paper.

2 Background theory

The standard equilibrium boundary-value problem in the absence of body forces is given
by

DivP = 0 in κ with Pn = t on ∂κt and χ = φ on ∂κφ, (1)

where κ is a fixed reference configuration with piecewise smooth boundary ∂κ = ∂κt∪∂κφ,
n is the unit outward normal to the boundary, Div is the divergence operation based on
position x ∈ κ, χ(x) is the deformation function, yielding the position y = χ(x) of the
material point x after deformation, and t and φ are specified functions. Here we use the
convention that the divergence operates on the second index when applied to a second-
order tensor; for example, in Cartesian components (DivP)i = ∂Piα/∂xα. Also, P is the
first Piola–Kirchhoff stress tensor, which is given by

P = WF, (2)

where W(F) is the strain-energy function (per unit volume), F is the deformation gradient
tensor given by F = Dχ and D is the gradient operation based on x. We suppose the
reference configuration to be one that could in principle be occupied by the body and thus
impose det F > 0. Bold subscripts are used to denote the gradients of the strain energy
with respect to the indicated tensor, as in (2). Another example is the tensor of elastic
moduli, denoted M, defined as the second gradient of W, i.e.

M = WFF, (3)

which figures prominently in this work.
The second Piola–Kirchhoff stress, denoted S, is defined in terms of the first Piola–

Kirchhoff stress by
P = FS. (4)
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We satisfy the moment-of-momentum balance identically by taking the strain-energy func-
tion to be invariant under superposed rigid motions. This ensures the symmetry of S,
which is then given by

S = UE, (5)

where
U(E) = W(F) (6)

and E = 1
2
(FTF − I) is the Green–Lagrange strain tensor.

The considerations of this paper involve smooth deformations. In particular, we exclude
non-smooth deformations of shear-band type that entail discontinuities in the gradient of
F associated with loss of ellipticity [4]. Accordingly, we limit attention to deformations
which are such as to satisfy the strong-ellipticity condition

(a ⊗ b) · M(F)[a ⊗ b] > 0 for all a ⊗ b 6= 0. (7)

Here and elsewhere we use the notation L[A], where L and A are fourth- and second-
order tensors respectively, to represent the second-order tensor with Cartesian components
LijklAkl. The tensor L is said to possess major symmetry if L

T = L, where the transpose
L

T is defined by B · L
T[A] = A · L[B], and minor symmetry if A · L[B] = AT · L[B]

and A · L[B] = A · L[BT]. For example, M possesses major symmetry but not minor
symmetry. We also use the Euclidean inner product of second-order tensors; for example,
for second-order tensors A and B, this is defined by A · B = tr(ABT). The norm of
a second-order tensor A, denoted |A|, is

√
A · A. The dot notation is also used for the

conventional scalar product of two vectors.
The present boundary-value problem is of mixed type, involving position and traction

data on complementary parts of the boundary. The simplest among these, to which at-
tention is here confined, entails the assignment of dead, i.e. configuration-independent,
tractions. Thus, in (1) t and φ are to be regarded as assigned functions of x.

In these circumstances the potential energy of the body, consisting of the strain energy
and the load potential, is the functional of χ(x) given by

E [χ] =

∫

κ

W(F)dv −
∫

∂κt

t · χda. (8)

It is well known (see, for example, [4]) that deformations satisfying (1) render E stationary,
and conversely. This of course is the virtual-work principle, specialized to the present
position/dead-load problem. According to the energy criterion of elastic stability [5], the
deformation χ is stable if and only if it minimizes the energy relative to kinematically
admissible alternatives, that is if and only if

E [χ] < E [χ + ∆χ] (9)

for all ∆χ(x) vanishing on ∂κφ but not vanishing identically in κ. This implies that E [ · ] is
stationary at χ and hence that the latter is equilibrated, i.e. it solves the boundary-value
problem (1).
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As is well known, (9) also implies that solutions of (1) are unique. To prove this claim
we adapt an argument of Hill [6] and suppose that χ1(x) and χ2(x) are two solutions of
the boundary-value problem. If both are strict minimizers of the energy, then, by selecting
χ and ∆χ appropriately it follows that

∫

κ

[W(F2) −W(F1) − P1 · (F2 − F1)]dv > 0 (10)

and
∫

κ

[W(F1) −W(F2) − P2 · (F1 − F2)]dv > 0 (11)

provided that F2 6= F1, where Fi = Dχi, i = 1, 2, and Pi = WF(Fi) are the associated
stresses. These inequalities follow from the fact that χi, i = 1, 2, both satisfy (1). Adding
the two inequalities above furnishes

∫

κ

(P2 − P1) · (F2 − F1)dv > 0, F2 6= F1. (12)

However, Div(P2 −P1) = 0. Forming the inner product of this with χ2 − χ1, integrating
the resulting equation over κ and invoking the boundary conditions, we arrive at

∫

κ

(P2 − P1) · (F2 − F1)dv = 0, (13)

which is reconciled with (12) if and only if F2 = F1; integration then yields χ2 = χ1

apart from a rigid-body translation, which vanishes by virtue of the position data. This
proves the claim that stability, in the sense of the energy criterion, implies uniqueness
of solution of the mixed position/dead-load problem. Conversely, non-uniqueness implies
that equilibria are not stable in the sense of strict inequality in (9).

The deformation χ is said to be neutrally stable if the inequality in (9) is semi-strict,
with equality holding for some admissible ∆χ. This again implies that χ is equilibrated,
but in this case non-uniqueness is possible because strict inequality in (9) is sufficient for
uniqueness of solution of the present equilibrium boundary-value problem. Non-uniqueness
of solutions then implies that the strict inequality does not obtain. Accordingly, non-
uniqueness signals a failure of stability and thus a potential instability. This is Euler’s well-
known adjacent-equilibrium criterion of elastic stability, adapted to nonlinear elasticity.

We remark that the energy criterion of elastic stability as stated is heuristic in the
sense that no rigorous connection to stability in the dynamical sense is known in the case
of continuous systems [5]. Nevertheless, Koiter [7] has given convincing arguments in
support of this criterion, the absence of a rigorous foundation for it notwithstanding.

3 Three-dimensional incremental elasticity and the

Trefftz–Hill bifurcation criterion

In this section, for the sake of completeness, we summarize the basic theory of incremental
elasticity as it relates to bifurcation of equilibria. This theory, together with extensions to
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configuration-dependent loading, is discussed in detail in [4].
Let χ(x; ǫ) be a one-parameter family of kinematically possible deformations satisfying

fixed position data:
χ(x; ǫ) = φ(x) on ∂κφ. (14)

The potential energy, given by (8), may then be regarded as a function of ǫ, which we write
as

F (ǫ) = E [χ(x; ǫ)]. (15)

We assume the deformation corresponding to ǫ = 0 to be equilibrated, and expand F for
small ǫ, that is for small displacements from the equilibrium configuration, obtaining

F (ǫ) = F (0) + ǫ2G[χ, χ̇] + o(ǫ2), (16)

where

G[χ, χ̇] =
1

2
F̈ , (17)

in which the superposed dots stand for derivatives with respect to ǫ, evaluated at ǫ = 0,
and χ(x) = χ(x; 0) is the underlying finite equilibrium deformation. Thus G is the second
variation of the potential energy at the considered equilibrium state. The first variation
vanishes by the virtual-work principle, and this fact is reflected in (16).

To compute these variations we proceed from (8) and (15), obtaining

F ′(ǫ) =

∫

κ

WF · Dχ′dv −
∫

∂κ

t · χ′da, (18)

where, in this section, primes are used to denote derivatives at any value of ǫ and use has
been made of the fact that χ′ vanishes on ∂κφ to justify extension of the domain of the
integral from ∂κt to all of ∂κ. Using (2) we easily reduce this to

F ′(ǫ) =

∫

∂κt

(Pn− t) · χ′da −
∫

κ

χ′ · DivPdv, (19)

which vanishes at ǫ = 0, as claimed, by virtue of (1). Proceeding to the second derivative
we use (18) to derive

F ′′(ǫ) =

∫

κ

WF · Dχ′′dv −
∫

∂κ

t · χ′′da +

∫

κ

Dχ′ · M(F)[Dχ′]dv, (20)

in which the first two terms cancel at ǫ = 0 by virtue of the argument leading from (18)
to (19).

Evaluating at ǫ = 0 and comparing with (17) yields

G[χ, χ̇] =
1

2

∫

κ

Ḟ · M(F)[Ḟ]dv, (21)
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in which Ḟ = Dχ̇ is the incremental deformation gradient and F = Dχ is now the gradient
of the underlying finite equilibrium deformation. If the latter is stable, then from (9) it is
necessary that

0 < [F (ǫ) − F (0)]/ǫ2 = G[χ, χ̇] + o(ǫ2)/ǫ2, (22)

and passing to the limit yields
G[χ, χ̇] > 0. (23)

Later, we shall require an expression for the second variation based on the strain-energy
function U(E). This is most easily obtained from the incremental form of (4), namely

Ṗ = ḞS + FṠ, (24)

where
Ṡ = C(E)[Ė], C = UEE, (25)

and

Ė =
1

2
(ḞTF + FTḞ), (26)

the fourth-order tensor C possessing both major and minor symmetry. When combined
with (21), this furnishes an expression for the second variation that renders explicit the
role played by the pre-stress S(x) induced by χ(x). In particular, we find, using

Ṗ = M(F)[Ḟ], (27)

that

M(F)[A] = AS +
1

2
FC(E)[ATF + FTA] (28)

for any (second-order) tensor A.
In view of the argument following (13), stability is lost in the strict sense if χ is such

that
G[χ, χ̇] = 0 (29)

for some non-trivial admissible χ̇. To see how this relates to bifurcation of equilibrium,
suppose χ(x; µ) is a one-parameter family of equilibrium deformations, satisfying the
boundary-value problem (1) at all values of µ in some open interval containing zero, say.
The equations in (1) can then be differentiated with respect to µ. Evaluating the resulting
system at µ = 0 and identifying the associated value of the µ-derivative of χ(x; µ) with χ̇

above, we derive

DivṖ = 0 in κ, Ṗn = 0 on ∂κt and χ̇ = 0 on ∂κφ. (30)

This is a homogeneous linear boundary-value problem for the incremental bifurcation χ̇.
It is also the linearization of the equilibrium boundary-value problem for the deformation
χ + χ̇ in which χ is equilibrated.
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Consider now the variation of the functional G with respect to χ̇, i.e.

δG[χ, χ̇, δχ̇] =
1

2

∫

κ

{D(δχ̇) · Ṗ + Ḟ · M(F)[D(δχ̇)]}dv =

∫

κ

D(δχ̇) · Ṗdv, (31)

where use has been made of (21), (27) and the major symmetry of M. This may be
re-written as

δG[χ, χ̇, δχ̇] =

∫

∂κt

δχ̇ · Ṗnda −
∫

κ

δχ̇ · DivṖdv, (32)

which is seen to vanish for any admissible δχ̇ if and only the equations in (30) are satisfied.
Accordingly, a deformation χ(x) is stable only if the inequality

G[χ, χ̇] ≥ 0 (33)

is satisfied in the strict sense for all kinematically admissible χ̇, and potentially unstable
if the equality is satisfied for non-zero χ̇, that is if the linearized bifurcation problem (30)
has a non-trivial solution. The latter claim follows from the fact that such χ̇ annul G;
to see this we use (30) and (32) to obtain G[χ, χ̇] = 1

2
δG[χ, χ̇, χ̇], which vanishes for all

solutions χ̇ to the bifurcation problem. In the present setting this criterion is due to Hill
[6]. When this criterion is satisfied, the energy comparison is dominated by the higher-
order variations; for example, instability of the underlying finite equilibrium deformation
is assured if the third variation can be made non-zero. It is in this sense that a non-trivial
bifurcation signals a potential instability.

Following standard practice, we refer to such solutions as buckling modes or eigenmodes
[4, 6]. It is not possible to distinguish between neutral stability and instability of the equi-
librium deformation χ on the basis of linearized bifurcation theory; for this it is necessary
to consider nonlinear terms. These comprise the subject of post-bifurcation theory [2, 8],
which, however, falls outside the scope of the present work.

Henceforth we use the notation

ũ(x) = χ̇(x), H̃(x) = Ḟ(x) (34)

for the incremental displacement and displacement gradient fields, respectively; thus, H̃ =
Dũ.

4 Two-dimensional model for thin plates

4.1 Plates as thin prismatic bodies

It proves advantageous to parametrize the reference configuration κ in the form

x = r + ςk, (35)

where r ∈ ω (the plate midsurface), k is the fixed unit normal to the plate and ς ∈
[−h/2, h/2]; h is the plate thickness, assumed here to be uniform and small in the sense
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that h/l ≪ 1, where l is any other length scale in the problem such as a typical spanwise
dimension of ω. The latter is presumed to be simply connected, so that Green’s integral
theorem may be applied. It simplifies matters to adopt l as the unit of length, i.e. l =
1, h ≪ 1. In other words, we assume all length scales to be non-dimensionlized by l a

priori, and henceforth regard h as a small dimensionless parameter.
Let

û(r, ς) = ũ(r + ςk), Ĥ(r, ς) = H̃(r + ςk), (36)

and let ∇(·) and (·)′, respectively, stand for the (two-dimensional) gradient with respect
to r at fixed ς and the derivative ∂(·)/∂ς at fixed r. Further, let

1 = I − k ⊗ k, (37)

where I is the identity for three-space; this is the projection onto the translation (vector)
space ω′ of ω. Using it we derive (see [9])

H̃1 = ∇û, H̃k = û′, (38)

and the consequent orthogonal decomposition

Ĥ = ∇û + û′ ⊗ k. (39)

The subsequent development requires

H0 = ∇u + a⊗ k, H′
0 = ∇a + b ⊗ k, H′′

0 = ∇b + c ⊗ k, (40)

where the latter two are obtained by differentiating (39) with respect to ς, the zero subscript
indicates evaluation at ς = 0, and

u = û0, a = û′
0, b = û′′

0, c = û′′′
0 (41)

are the coefficient vectors in the thickness-wise power expansion

û = u + ςa +
1

2
ς2b +

1

6
ς3c + . . . (42)

of the three-dimensional incremental displacement field.

Remark: We have assumed more regularity than has been proved, particularly for the
underlying finite-deformation equilibrium problem. It is in this sense that our analysis is
formal. Thus we pause to discuss the degree of regularity required here and henceforth.
It is well known that in the presence of strong ellipticity, any piecewise C2 equilibrium
deformation, suffering a potential jump in the gradient of F across a regular surface in
κ, is in fact C2 everywhere in the interior of κ. By induction, it follows easily that it is
then Cn for arbitrary positive integral n. The analysis presented in this work requires only
n = 3. Although the premise of piecewise C2 regularity has not been proved for problems
of the kind considered, it is nevertheless an assumption that is consistent with the adopted
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condition of strong ellipticity. Regarding regularity, much sharper results, again relying
on strong ellipticity, are available in the classical linear theory [3], and it seems likely that
much of this can be extended to the incremental theory. However, these matters are better
left to experts in the theory of partial differential equations, and so we do not dwell on
them here. Because we are concerned with equilibria, we construct an expression for the
plate energy that presumes C3 continuity at the outset, this then forming the admissible
class of functions, subject to additional boundary conditions to be discussed.

Let c∗ be the line orthogonal to ω and intersecting ∂ω at a point with position r, and let
∂κc = ∂ω × c, where c is the collection of such lines, be the cylindrical generating surface
of the plate-like region κ obtained by translating the points of ∂ω along their associated
lines c∗. Let s measure arclength on the curve ∂ω with unit tangent τ and rightward unit
normal ν = τ × k.

We suppose that ∂κt consists of the major surfaces of the plate together with a part
∂ωt × c of ∂κc, where ∂ωt ⊂ ∂ω. The traction data (30)2 then furnish Ṗ1ν = 0 on ∂ωt × c.
In particular,

Ṗ01ν = 0 on ∂ωt, (43)

where Ṗ0 is the restriction of Ṗ to ω. Position is then assigned, and the incremental
displacement vanishes, on ∂ωφ × c, where ∂ωφ = ∂ω \ ∂ωt. Thus, û vanishes identically on
∂ωφ × c, implying that

u = a = b = · · · = 0 on ∂ωφ. (44)

4.2 Small-thickness expansion of the second variation

We seek the optimal expression for the functional G in the expansion

G = G + o(h3) (45)

of the second variation. To this end we write G as the iterated integral

G =
1

2

∫

ω

∫ h/2

−h/2

Ṗ · H̃dςda (46)

and use the Leibniz rule to generate the Taylor expansion

∫ h/2

−h/2

Ṗ · H̃dς = h(Ṗ · Ĥ)0 +
1

24
h3(Ṗ · Ĥ)′′0 + o(h3), (47)

where again a prime is used to identify a derivative with respect to ς and the subscript
zero signifies evaluation on the plane ω defined by ς = 0. We obtain

(Ṗ · Ĥ)0 = Ṗ0 ·H0, (Ṗ · Ĥ)′′0 = 4Ṗ′
0 ·H′

0 +2Ṗ0 ·H′′
0 +H0 ·M′′

0[H0]−2H′
0 ·M0[H

′
0], (48)

having used the intermediate result

Ṗ′
0 = M

′
0[H0] + M0[H

′
0], (49)
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which follows from (27). For uniform materials, the thickness-wise derivatives M
′ and M

′′

are induced by the through-thickness variation of the gradient F of the underlying finite
deformation χ. Their computation requires higher-order elastic moduli. For example,
M′

ijkl = AijklmnF
′
mn, where A is the tensor of second-order moduli [4]. In this way the

finite deformation may be used to generate a through-thickness functional gradient in the
incremental response.

The reason why the expansion is terminated at order h3 is discussed in Subsection 4.5
below. Briefly, this is the lowest order at which the derived two-dimensional model remains
well posed while accommodating buckling in the presence of compressive pre-stress.

To keep the treatment as simple as possible, and to make more direct contact with
classical plate buckling theory, we suppose the initial finite deformation to be such that F
does not vary through the thickness of the plate. In this case the higher-order moduli are
not needed. This yields a dramatic simplification of the model while making allowance for
in-plane functional gradients. Using (40) we then have

(Ṗ ·Ĥ)0 = Ṗ01 ·∇u+Ṗ0k ·a, (Ṗ ·Ĥ)′′0 = 2(Ṗ′
01 ·∇a+Ṗ′

0k ·b+Ṗ01 ·∇b+Ṗ0k ·c). (50)

4.3 Refinement of the model

If (49) and (50) are substituted into (47), the functional G in (45) is found to depend on
the vector fields u, a,b and c. At this level of the development these fields are independent
and each would generate an associated Euler equation and natural boundary condition.
The resulting system would then constitute the linearized bifurcation problem for the thin
plate. However, the functional G may be optimized vis à vis the three-dimensional theory
by imposing certain a priori constraints among the vector fields. The resulting expression,
derived below, involves the single field u and furnishes the optimal order-h3 approximation
to the second variation for a given mid-surface incremental displacement field, in the sense
that it automatically encodes restrictions arising in the three-dimensional parent theory.

Thus, for example, if the lateral surfaces of the plate are traction-free, then (30)2

requires that Ṗ±k = 0, where Ṗ± = Ṗ|ς=±h/2. Adding and subtracting the two Taylor

expansions (0 =) Ṗ±k = Ṗ0k±(h/2)Ṗ′
0k+(h2/8)Ṗ′′

0k+O(h3), we then derive the estimates

Ṗ0k = O(h2), Ṗ′
0k = O(h2), (51)

so that Ṗ0k and Ṗ′
0k may be suppressed in the coefficient of h3 in the order-h3 expansion

of the second variation with no adverse effect on accuracy. Accordingly, we impose

Ṗ0k = 0 = Ṗ′
0k (52)

in (50)2.
In fact, (52) may be solved explicitly for a and b. To prove this we use (40)1 to write

Ṗ0k = (M[∇u])k + A(k)a, (53)
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where the tensor A(k) (in other contexts referred to as the acoustic tensor) is defined by

A(k)v = (M[v ⊗ k])k (54)

for all 3-vectors v. That this is positive definite and hence invertible follows from the
strong-ellipticity inequality (7). Accordingly, (52)1 determines a uniquely in terms of ∇u,
i.e.

a = g(∇u), (55)

where g is a function determined by material properties and the underlying finite defor-
mation. Explicitly,

g(∇u) = −A−1
(k)(M[∇u])k. (56)

In the same way, (49) and (52)2 determine b. In the special case of no through-thickness
functional gradient, the relationship is

b = g(∇a). (57)

The latter is altered in the presence of a through-thickness functional gradient, but the
procedure delivers b explicitly in any case. Thus we replace (50)2 by

(Ṗ · Ĥ)′′0 = 2(Ṗ′
01 · ∇a + Ṗ01 · ∇b) + O(h2), (58)

in which a and b are subject to (55) and (57), respectively.
We are not justified in suppressing Ṗ0k in the order-h term, however, as (51)1 implies

that the former makes a net contribution at order h3 and is thus comparable to other terms
that have been retained. We return to this point below.

The model is further simplified by using

Ṗ01 · ∇b = div[(Ṗ01)Tb] − b · div(Ṗ01), (59)

where div is the (two-dimensional) divergence with respect to position r on the midplane
ω. To assess this we use the decomposition Ṗ = Ṗ1 + Ṗk ⊗ k of the incremental stress
and evaluate (30)1, expressed in the form div(Ṗ1) + Ṗ′k = 0, on ω, obtaining

div(Ṗ01) + Ṗ′
0k = 0. (60)

The estimate (51)2 then furnishes

Ṗ01 · ∇b = div[(Ṗ01)Tb] + O(h2). (61)

Using Green’s theorem together with the data (43) and (44), we conclude that the term
Ṗ01 · ∇b may be suppressed without adversely affecting the accuracy of the order-h3

expansion of the second variation. We are thus left with

G =

∫

ω

W̄da, (62)
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where

W̄ =
1

2
h(Ṗ01 · ∇u + Ṗ0k · a) +

1

24
h3Ṗ′

01 · ∇a (63)

in which (55) and (57) are imposed in the coefficient of h3.
If the present model is to apply on the closure of ω, then the values of a and b obtained

from (55) and (57) must be such that (44) is satisfied. This imposes a restriction on
admissible data. In particular, the decomposition [9]

∇u = us ⊗ τ + uν ⊗ ν, (64)

where us and uν are the tangential (arclength) and normal derivatives of u on ∂ω, together
with (55), implies that the condition a = 0 on ∂ωφ is satisfied provided that us and uν

vanish there. The data for u and a are thus tantamount to the clamping conditions

u = uν = 0 on ∂ωφ. (65)

However, the model to be derived is overspecified if (65) is imposed together with b = 0 on
∂ωφ. Accordingly, the condition on b must either be relaxed or the equations must be used
only in the interior of the plate, away from ∂ω, and their predictions then matched to those
of the three-dimensional theory in a region adjoining it. We pursue the first alternative in
this work.

The energy W̄ involves a only in the coefficient of h. It occurs algebraically, in the
combination

H(∇u, a) =
1

2
H0 · M[H0]. (66)

The variation of this term with respect to a is

δH = δa · (M[H0])k. (67)

The Euler equation for the functional G associated with the variable a is thus given by
(52)1, which is solved by (55). Strong ellipticity implies that the latter furnishes the
minimum of H with respect to a and hence also the pointwise minimum of W̄ with respect
to a. This claim is proved by adapting, essentially verbatim, an argument discussed in [10]
(eqs. (22)–(28) therein). Because we can do no better than minimize the energy function
G pointwise, the adoption of (55) in the coefficient of h yields the optimal criterion for
buckling. This follows since a field {u, a} that satisfies the bifurcation criterion in which
(55) is imposed will, in the alternative case, satisfy the semi-strict inequality (33). Said
differently, the adoption of (55) promotes bifurcation, whereas its onset is delayed in the
alternative case. This furnishes justification for the assumption of plane stress listed in the
Introduction on which classical treatments are based.

Altogether, the energy function is then given by (62) in which W̄ is replaced by

W (∇u,∇∇u) =
1

2
hṖ01 · ∇u +

1

24
h3Ṗ′

01 · ∇a, (68)

with (55) and (57) incorporated in all terms.
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The buckling equations are simply the Euler equations and natural boundary conditions
associated with the functional G. In Cartesian tensor notation, these are [9]

Tiα,α = 0 in ω (69)

and
Tiανα − (Miαβνατβ)s = 0, Miαβνανβ = 0 on ∂ωt, (70)

respectively, where

Tiα = Niα − Miβα,β , with Niα =
∂W

∂ui,α
and Miαβ =

∂W

∂ui,αβ
. (71)

Here ui = u · ei, with e3 = k, are the orthogonal components of u, the subscript s again
represents the arclength derivative along ∂ω (traversed counterclockwise), with unit tan-
gent τ = k×ν to ∂ω and rightward unit normal ν; Greek subscripts preceded by commas
are used to denote partial derivatives with respect to the in-plane Cartesian coordinates
rα = r · eα. The boundary conditions (70)1,2, respectively, are to be interpreted as the
vanishing of the incremental force and moment (per unit length) on ∂ωt.

4.4 Reflection symmetry and a restriction on the pre-stress

In view of the restrictions imposed in the classical theory [2], we limit attention to strain-
energy functions that exhibit reflection symmetry with respect to the midplane ω, i.e.
U(E) = U(QTEQ) with Q = I − 2k ⊗ k. This implies that the function U ′(Eij) =
U(Eklek ⊗ el) depends on E3α (= Eα3) through their squares and the product E31E32 (see
[11], section 5.4(a)). An example is furnished by any material that is isotropic relative
to κ. Following the classical theory, we further suppose the underlying finite deformation
to be such that the associated second Piola–Kirchhoff stress is a function only of the in-
plane coordinates and subject to null-traction conditions on the major surfaces; the latter
are equivalent to S±k = 0, where S± = S|ς=±h/2. These conditions yield the pointwise
restriction

Sk = 0 (72)

on the pre-stress throughout the plate, implying that the underlying finite deformation is
associated with a state of plane stress.

Let γα = Eα3 = E3α be the transverse shear strains associated with the finite pre-strain,
and let Γ(γα) be the function obtained by holding fixed all components of E other than
the γα in the strain-energy function. Then,

∂Γ

∂γα

= eα · (UE)k, (73)

and these vanish by virtue of (5) and (72). In a material that exhibits reflection symmetry,
these restrictions are automatically satisfied at γα = 0 because the strain energy is then
an even function of the transverse shears. The corresponding strain tensor is of the form

E = ǫ +
1

2
(λ2 − 1)k ⊗ k, (74)
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where ǫ = Eαβeα ⊗ eβ and λ is the transverse stretch. At any point (xα, ς), the corre-
sponding deformation gradient has the form

F = f + λn⊗ k, (75)

where n is a local unit normal to the material surface ς = constant after deformation; f
maps ω′ to the local tangent plane of this surface. Moreover, in the presence of strong
ellipticity (cf. (7)), this is the only mode of deformation that is consistent with (72) (for
proof, see page 288 of [12]). Therefore reflection symmetry and strong ellipticity, combined
with (72), yield deformations in which the transverse shear strain necessarily vanishes. We
also suppose the orientations of the planes ς = constant to remain unaltered by the finite
deformation, this being consistent with reflection symmetry and the restriction (72). This
amounts to putting n = k, in which case f is an invertible map from ω′ to itself.

The condition Ṗ0k = 0 implies, via (24) and (72), that Ṡ0k = 0, i.e. that

{C(E)[Ė0]}k = 0, (76)

wherein all orthogonal components of the tensor C of elastic moduli with an odd number
of subscripts equal to 3 vanish, by virtue of reflection symmetry [11], and

2Ė0 = fT(∇v) + (∇v)Tf + k ⊗ (fTα + λ∇w) + (fTα + λ∇w) ⊗ k + 2λak ⊗ k, (77)

where we have used the orthogonal decompositions

u = v + wk, a = α + ak, with v = 1u and α = 1a. (78)

In particular, the in-plane and transverse displacements of points on ω are v and w,
respectively, the latter being the variable of principal interest in plate-buckling theory.
Equation (76) is equivalent to (52)1 when (72) is satisfied. Its components are

Cα3β3Ė0β3 = 0, C33αβĖ0αβ + CĖ033 = 0, (79)

where C = C3333.
Under the stated restrictions on the material and the underlying finite deformation it

follows from (28) that the acoustic tensor defined by (54) reduces to

A(k) = Aαβeα ⊗ eβ + Ak ⊗ k, where Aαβ = fαλfβµCλ3µ3 and A = λ2C. (80)

The hypothesis of strong ellipticity implies that A > 0 and that (Aαβ) is positive definite.
Because det f > 0 (cf. (75)), the matrix (Cα3β3) is also positive definite and (79)1 then
furnishes Ė0α3 = 0, while (79)2 delivers Ė033 in terms of Ė0αβ . Thus,

fTα = −λ∇w and λa = −C−1C33αβĖ0αβ , (81)

in which
2Ė0αβ = fλαvλ,β + fλβvλ,α. (82)
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These combine with (78)2 to furnish the function g in (56).
Equations (81)1,2 comprise the classical Kirchhoff–Love hypothesis with thickness dis-

tension. These correspond to the kinematic assumption listed in the Introduction pertain-
ing to the preservation of the surface normal and adopted a priori in classical treatments.
Here, of course, these conditions are derived rather than postulated.

Further, from (57),

fTβ = −λ∇a and λb = −C−1C33αβĖ ′
0αβ , (83)

where
2Ė ′

0αβ = fλααλ,β + fλβαλ,α (84)

and
b = β + bk with β = 1b. (85)

The latter also follow directly by imposing Ṡ′
0k = 0, which is equivalent, granted (72), to

Ṗ′
0k = 0 (cf. (24)).

Using these results together with the symmetries of the inner product, we find that

Ṗ′
01 · ∇a = ∇a · S(∇a) + (∇α)S · ∇α + Ṡ′

0 · fT∇α, (86)

where
Ṡ ′

0αβ = DαβγδĖ
′
0γδ, (87)

and
Dαβγδ = Cαβγδ − C−1Cαβ33Cγδ33 (88)

are the plane-stress elastic moduli.
We have in mind the idea that a deformation satisfying the Euler equations (69)–(71)

should furnish a minimum of the quadratic functional G. However, for a minimum to
exist it is necessary that the operative Legendre–Hadamard condition be satisfied. In the
present context this is the requirement that the term in the integrand W in (68) involving
the highest-order derivative ui,αβ (the components of ∇∇u) be positive definite when ui,αβ

is replaced by yizαzβ for any three-vector y and any two-vector z [13]. The choice y3 = 0
is seen to reduce this requirement to the restriction

∇a · S(∇a) > 0 (89)

in which ∇a can be assigned arbitrary values by choice of yµzαzβ. The requirement thus
limits the present model to a positive-definite pre-stress. Ironically, this in turn precludes
its application to precisely the kinds of problems it is meant to address.

We note that the restriction arises from the coefficient of h3 in the energy function
for the plate. To remove it, and thus to restore the applicability of the theory to plate
buckling, we assume that

|S| = o(1) (90)

for small h, that is S tends to zero as h → 0. This is a restriction on solutions of the
underlying finite-deformation problem. If the restriction is satisfied, all terms involving S
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may be suppressed in the coefficient of h3 while preserving the accuracy of the order-h3

expansion of the energy. This furnishes the simplification

W (∇u,∇∇u) =
1

2
hṖ01 · ∇u +

1

24
h3Ṡ′

0 · fT∇α, (91)

of the order-h3 plate energy, where

Ṗ01 · ∇u = ∇w · S(∇w) + (∇v)S · ∇v + Ṡ0 · fT∇v, (92)

and
Ṡ0αβ = DαβγδĖ0γδ. (93)

Remark: The necessary condition (89), which does not apply in the three-dimensional
theory, arises from the fact that the order-h3 truncation of the energy does not account
fully for the energy of the Ansatz (42). This requires that the pre-stress be limited in
accordance with (90) if the order-h3 truncation is to furnish a well-posed minimization
problem. Alternatively, ill-posedness may be eliminated by retaining all terms in the
energy associated with a finite truncation of the power expansion (42). Such a procedure
would lead to a more complicated model, which in any case would be limited by the
approximations inherent in any such truncation. Later, we show that (90) is in fact not
restrictive as it is satisfied by the pre-stress associated with a non-trivial bifurcation mode.

From the structure of the foregoing it is clear that the energy decouples into the sum
of pure stretching and pure bending energies; thus, from (87) and (93),

W = Ws + Wb, (94)

where

Ws =
1

2
h{(∇v)S ·∇v+ f tT∇v ·D[fT∇v]}, Wb =

1

2
h∇w ·S(∇w)+

1

24
h3fT∇α ·D[fT∇α],

(95)
with α given by (81), and D is the fourth-order tensor defined by (88). In view of (90),
the leading-order (order-h) stretching energy is obtained by suppressing the term in (95)1

involving S explicitly, yielding

Ws =
1

2
hfT∇v · D[fT∇v]. (96)

4.5 Recovery of the classical model

The problem may be further simplified by exploiting the full implications of the restriction
(90) on the pre-stress. If the reference configuration κ is stress free, if h is sufficiently small
and if the strain energy U(E) is convex in a neighborhood of the origin in strain space, as is
typically assumed, then the initial strain is likewise small, vanishing in the zero-thickness
limit; thus |E| = o(1). The pre-strain may then be suppressed in the coefficient of h3 with
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no effect on the order-h3 accuracy of the strain-energy function. This permits D, which
in principle is evaluated at the underlying finite strain, to be replaced by

D
(κ) = D|E=0, (97)

the tensor of linear-elastic moduli relative to κ. Our restriction to uniform materials means
that D

(κ) is spatially uniform, yielding a substantial simplification of the model which is
fully consistent with order-h3 accuracy.

Beyond this, the same degree of accuracy is preserved by imposing F ∈ Orth+ in the
coefficient of h3, where Orth+ is the group of proper-orthogonal tensors, or rotations. To
see this we simply polar-decompose F as the product of a rotation R and the right stretch
tensor in which the latter is of order unity by virtue of the restriction on |E|. Thus,
F = R + o(1) with R ∈ Orth+. This in turn implies that order-h3 accuracy is preserved
by substituting RT∇α in place of fT∇α (= FT∇α) in the coefficient of h3, in which
fTα = −λ∇w (cf. (81))1) is replaced by RTα = −∇w.

An important further simplification follows from eqs. (8) and (9) of [14], which imply
that the gradient of R is small if the gradient of the strain is small. Thus, we confine

our further attention to the practically important case in which the gradient of E is of
order o(1). This in turn yields the conclusion that, to within an error of order o(1), R
is spatially uniform. The error contributes at order o(h3) and may be suppressed in the
present model with no adverse effect on accuracy. This yields the consistent-order estimate
fT∇α = −∇∇w, allowing the bending energy to be replaced by

Wb =
1

2
h∇w · S(∇w) +

1

24
h3∇∇w · D(κ)[∇∇w], (98)

with no effect on the accuracy of the truncation (95)2.

Remark: This expression furnishes the rationale for terminating the thickness-wise ex-
pansion of the energy at order h3. In particular, this is the lowest order at which the
bending energy remains well posed in the presence of a compressive pre-stress, and hence
the lowest order at which a two-dimensional model, derived from the three-dimensional
theory, can furnish a meaningful basis on which classical plate buckling may be analyzed.

The stress S associated with the underlying pre-buckling deformation satisfies (1)1

with (4). As before, the assumption (90), taken together with the stated restriction on the
gradient of the pre-strain and our constitutive hypotheses, imply that the leading order

restriction on this stress is obtained on replacing the factor F in (4) by a uniform rotation
R. This furnishes

DivS = 0 in κ, (99)

to leading order in thickness, where (cf. (74))

S = D
(κ)[ǫ] (100)

in which |ǫ| = o(1).
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Similarly, the leading order stretching energy may be replaced by

Ws =
1

2
h∇v̄ · D(κ)[∇v̄] (101)

with no effect on (order-h) accuracy, where v̄ = RTv is a rigidly-rotated displacement
field. Our assumptions imply that D

(κ) is positive definite and hence, as in the classical
theory of generalized plane stress, that v = 0 when ∂ωφ is non-empty.

We have thus justified the third main assumption of the classical treatments; namely,
that the underlying pre-buckling deformation associated with the order-h3 model may be
described using classical linear elasticity theory. This follows from the fact that the model
calls for the ground-state moduli D

(κ) while the pre-stress S satisfies the equilibrium and
constitutive equations of the linear theory.

Remark: In plate theory based a priori on conventional three-dimensional linear elasticity
theory with initial stress [15, 16], as distinct from the incremental theory in which pre-

stress is induced by the pre-buckling deformation, both the initial stress and the elastic
moduli are constrained by the nature of the material symmetry in the configuration κ.
Thus, for example, if the material is isotropic relative to κ, the initial stress is a uniform
pure pressure that vanishes by virtue of the traction data on the lateral surfaces of the
plate. Consequently, that theory does not yield a plate buckling model in the case of
isotropy. In contrast, here the pre-stress is induced by the underlying o(1) strain; the
symmetry of the material in κ manifests itself only through the moduli via (100), whereas
the pre-stress is delivered by the linearly elastic boundary-value problem. The importance
of the distinction between initial stress and pre-stress is discussed further in [17].

Classical plate-buckling theory [1, 2] is associated with the special case of (90) in which

S = h2S̄ + o(h2), with
∣

∣S̄
∣

∣ = O(1), (102)

yielding

Wb =
1

2
h3

{

∇w · S̄(∇w) +
1

12
∇∇w · D(κ)[∇∇w]

}

. (103)

The associated boundary-value problem, given by (69)–(71) with i = 3, consists of the
equations

1

12
D(κ)

αβλµw,αβλµ = S̄αβw,αβ in ω (104)

and boundary conditions

w = 0, ν · ∇w = 0 on ∂ωφ, (105)

with
(

S̄αβw,β − 1

12
D(κ)

αβλµw,βλµ

)

να−
1

12

(

D(κ)
αβλµw,λµνατβ

)

s
= 0, D(κ)

αβλµw,λµνανβ = 0 on ∂ωt.

(106)
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This is the classical plate-buckling problem for anisotropic materials, incorporating that
for isotropic materials found in numerous texts and monographs.

This problem contains no small parameters and thus does not exhibit localized boundary-
layer effects. Rather, the bifurcation modes are global, as is well known in the technical
literature [1, 2]. Further, in this case Wb furnishes the rigorous leading-order energy of the
thin plate. This follows on dividing the exact energy G (cf. (45)) by h3 and passing to the
limit.

The scaling (102) represents the smallest initial stress for which a non-trivial bifurcation
mode can exist in the order-h3 model because smaller initial stresses contribute at order
o(h3) and therefore play no role in the model, whereas the positivity of D

(κ) then allows
only the trivial solution w = 0 to the boundary-value problem. The relevance of the model
(104)–(106) is reflected by the large number of plate-buckling problems that have been
solved on the basis of the classical theory, all of which exhibit eigenvalues S̄ that satisfy
(102)2. These furnish post-facto justification for the imposition of the restriction (90) on
the pre-stress, which we earlier motivated merely by the desire to explore the applicability
of the order-h3 model to plate buckling.
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