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Abstract: Elastic surface waves propagating at the interface between an isotropic substrate and a

thin, transversely isotropic film are analyzed. The transverse isotropy is conferred by fibers lying parallel

to the interface. A rigorous leading-order model of the thin-film/substrate interface is derived from the

equations of three-dimensional elasticity for prestressed, transversely isotropic films having non-uniform

properties. This is used to study Love waves.

1. Introduction

In this work we derive a rigorous leading-order-in-thickness model for the dynamics of a thin, fiber-

reinforced elastic film bonded to an isotropic elastic substrate. The fibers are assumed to lie in the

plane of the film and equations of motion are derived for the displacement of the interface. Related

work based on a variational argument is given in [1], where references to the pertinent literature may be

found. Among these works we direct the reader’s particular attention to [2,3,4]. Related developments

are reported in [5,6].

2. Basic equations

Standard notation is used throughout. Thus, we use bold face for vectors and tensors and indices to

denote their components. Latin indices take values in {1 2 3}; Greek in {1 2}. The latter are associated
with surface coordinates and associated vector and tensor components. A dot between bold symbols

is used to denote the standard inner product. Thus, if A1 and A2 are second-order tensors, then

A1 ·A2 = (A1A

2) where (·) is the trace and the superscript  is used to denote the transpose. The

notation ⊗ identifies the standard tensor product of vectors. If C is a fourth-order tensor, then C[A]

is the second-order tensor with orthogonal components  Finally, we use symbols such as 

and  to denote the three-dimensional divergence and gradient operators, while  and ∇ are reserved
for their two-dimensional counterparts. Thus, for example, A =e and A = e, where

{e} is an orthonormal basis and subscripts preceded by commas are used to denote partial derivatives
with respect to Cartesian coordinates.

The three-dimensional equation of motion without body force is

P = ü (1)
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where

P = S+HS+C[H] (2)

is the linear approximation to the Piola stress, S is the (symmetric) residual stress, H =u is the

gradient of the displacement field u(x) ü is the acceleration, and C is the fourth-order tensor of

elastic moduli. The moduli possess the usual minor and major symmetries, the latter ensuring that

P = H (3)

where

(H;x) = S · H+ 1
2
(HS ·H+H · C[H]) (4)

is the quadratic-order approximation to the strain energy per unit volume of the material region  in

which explicit dependence on x ∈ is present if the material is non-uniform. Any such dependence

occurs through the residual stress and the moduli. Here we take these to be uniform and thus restrict

attention to unform materials.

We suppose that traction data

t = Pn (5)

are assigned on a part of the boundary  with exterior unit normal n.

We impose the strong-ellipticity condition

(w · Sw)v · v + v⊗w · C[v⊗w]  0 for all v ⊗w 6= 0 (6)

This is necessary for the undeformed body to be a minimizer of the total strain energy. It is also

necessary for minimizers of the potential energy in standard mixed traction/displacement boundary-

value problems [7].

3. Motion of the film/substrate interface

The undeformed film/substrate interface is a plane denoted by Ω Let k be the unit vector that

orients the interface, directed away from the substrate. The reference placement of the film is described

by

x = r+ k (7)

where r ∈ Ω, k is the fixed orientation of the film, and  ∈ [0 ] in the film, where  is the film

thickness. The origin of the position r is assumed to lie on Ω In the present work the film-substrate

combination is a half space that supports a propagating surface wave whose wavelength  (the reciprocal

of the wavenumber ) furnishes the only length scale to which  can be compared. Henceforth we regard

 as being small in the sense that ¿ 1. In the present section it simplifies matters to adopt  as the

unit of length (i.e.;  = 1 ¿ 1)

Let u(r ) be the function obtained by substituting (7) into u(x) and let ∇(·) and (·)0 respec-
tively, stand for the (two-dimensional) gradient with respect to r at fixed  and the derivative (·)
at fixed r. Further, let

1 = I− k⊗ k (8)
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where I is the identity for three-space; this is the projection onto the translation (vector) space Ω0 of Ω

In [1] it is used to derive

H1 = ∇u Hk = u0 (9)

and the consequent orthogonal decomposition

H =∇u + u0 ⊗ k (10)

Using (8) with P = PI, we also obtain

P = P1+Pk⊗ k (11)

and write (1) in the form

(P1) +P
0
k = ü (12)

where  is the two-dimensional divergence on Ω This holds at all points of the thin film, and in the

limit  & 0+ in particular, yielding the interfacial equation of motion

(P01) +P
0
0k = 0ü0 (13)

where, here and henceforth, the susbscript (·)0 is used to denote the values of functions on the interface
Ω defined by  = 0

If t+ is the traction exerted by the environment on the film, then t+ = P+k where P+ is the stress

at  =  A Taylor expansion furnishes

t+ = P0k+P00k+ () (14)

Accordingly, (13) and (14) combine to yield

(P01) + −1(t+ −P0k)+−1() = 0ü0 (15)

For this to furnish a well-defined problem in the limit of small thickness it is necessary that

t+ −P0k =() as → 0 (16)

This is the net traction acting on the lateral surfaces of the film.

Let σ be the stress in the substrate, assumed to occupy the half-space defined by   0 Let σ0 be

the limit of σ as  % 0− Then the traction exerted on the substrate by the film at the film-substrate

interface Ω is σ0k whereas that exerted by the substrate on the film is −P0k An elementary pillbox
argument yields the exact result

σ0k = P0k (17)

which is independent of  Combining this with (15) and passing to the limit in (15) and (16) yields the

leading-order model

(P01) + t+ − σ0k = 0ü0 and t+ −P0k = 0 (18)

These equations, together with interfacial continuity of displacements, couple the responses of the film

and substrate. In particular, if w(x) is the displacement field in the substrate, then

w0(r) = u0 (19)
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where w0 = w|Ω  We assume the substrate to be free of residual stress, so that

σ = E[w] (20)

where E is the associated tensor of elastic moduli, possessing the usual minor and major symmetries.

Thus, in contrast to the film stress P σ is symmetric. This satisfies the equation of motion

σ = ẅ (21)

where  is the mass density of the substrate.

The foregoing model agrees precisely with the leading-order system derived elsewhere [1] via a vari-

ational argument.

We demonstrate that (18)2 can be solved uniquely for the derivative u
0
0 To this end we fix u0 and

define

 (a) =(∇u0 + a⊗k)− a · t+ (22)

Let  be a parameter and consider the one-parameter family a() Let () = (a()) and let ()· = ()

Then (3) yields

̇ =a · ȧ and ̈ =a · ä+ ȧ · (aa)ȧ (23)

with

a = P0k− t+ and (aa)ȧ = (P0k)
·
 (24)

wherein P0 is given by (2) and (10), with a() substituted in place of u
0
0 From (18)2 we find that  is

stationary at a = u00 while (2) furnishes

ȧ · (P0k)· = (k · S0k)ȧ · ȧ + ȧ ⊗ k · C0[ȧ ⊗ k] (25)

This is strictly positive by virtue of (6), implying that aa is positive definite. In particular, ̈  0

on straight-line paths defined by a() = (1 − )a1 + a2 with a1a2 fixed and  ∈ [0 1] These paths
belong to the domain of  (·) the convex set generated by the linear space of 3-vectors. Integrating
with respect to  yields ̇()  ̇(0) and (1)− (0)  ̇(0), proving that  (a) is strictly convex; i.e.,

 (a2)− (a1)  a(a1) · (a2 − a1) (26)

for all unequal pairs a1a2 Because strictly convex functions have unique stationary points, it follows

that

u00 = ā(∇u0; t+) (27)

where ā is the value of a at which a vanishes.

In the present work we impose the condition t+ = 0 for all deformations. Equations (2) and (18)2,

specialized to the case of zero displacement, then require that

S0k = 0 (28)

which in turn may be used to simplify (28) for arbitrary displacements. This yields

u00 = −A−10 (C0[∇u0])k (29)
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where A0 is the value on Ω of the acoustic tensor of the film material, defined, for arbitrary v by

A0v =(C0[v⊗ k])k (30)

That this is positive definite and hence invertible follows from (6), with (29). Accordingly, (18)1 furnishes

a system for the interfacial displacement field u0(r)

Following Spencer [8] we model the film as a transversely isotropic solid. The axes of transverse

isotropy are coincident with the direction fields of the (straight) fiber trajectories. We drop the subscript

0 from all notation denoting interfacial values of variables. The components of C relative to the basis

{e} are [1]

 =  +  ( + ) + ( +)

+ ( −  )( + + +) +  (31)

where  is the Kronecker delta;     and  are material constants; and the unit vector m with

components  is the fiber axis, assumed here to be uniform and lying in the plane of the film. Spencer

[8] shows that  is the shear modulus for shearing in planes transverse to m, whereas  is the shear

modulus for shearing parallel to m The remaining material constants in (32) may be interpreted in

terms of extensional moduli and Poisson ratios [8].

The general form of the residual stress may be derived by enumerating the strain invariants for

transverse isotropy that are linear in the (infinitesimal) strain. These are [8] I ·H and m⊗m ·H

Comparison with the linear term in (4) then furnishes

S =  (I−m⊗m)+m⊗m (32)

where  is the constant residual stress in the isotropic plane and  is the constant residual uniaxial

stress along m

In this work we consider the film to be a prismatic body formed by the parallel translation of a

midplane Ω in the direction of its unit normal k(= e3) The fibers are assumed to lie parallel to Ω so

that 3 = 0 and m = e Equation (29) then yields

S0 = 0m⊗m (33)

where 0 is the residual interfacial stress.

The acoustic tensor defined by (31) is

A =k⊗ k+  (I+ k⊗ k) + ( −  )m⊗m (34)

with eigenvalues   and + 2 . Inequality (6), with (29), requires that these be strictly positive.

Equation (30) then yields

u00 = −(+ 2 )−1[(v) + m · (∇v)m]k−∇ (35)

where v =  m · (∇v)m =  and

v = 1u0 and  = k · u0 (36)
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are the in-plane and transverse interfacial displacements, respectively; i.e.,

u0 = v+k (37)

4. Example: Love waves

We are concerned with the acoustic interaction of the film and substrate, the former coinciding with

the 1 2− plane and the latter with the half-space defined by   0. Accordingly, we study harmonic

surface waves whose amplitudes decay with depth in the substrate. For the sake of simplicity we confine

attention to Love waves. For waves propagating along the 1− direction, these have the form

 = 2 (1  );  (1  ) = (1 ) exp() (38)

where  and  are positive constants, and

(1 ) =  exp[(1 − )] (39)

in which  is the wavespeed and  is a constant. The induced displacement of the film/substrate interface

is

 = 3 = 0  =  = 2(1 ) (40)

For uniform isotropic materials, the film-substrate interaction term is [1]

σk =(1 )e2 (41)

In the substrate, eq. (22) is satisfied provided that [2, 3]

 =
p
1− 2 (42)

where

 =   1 and  =
p
 (43)

is the transverse wavespeed in the substrate.

According to (40)2 we have v = 0 identically at the interface. Using (36) and eqs. (76) and (82)

of [9] we find, after much manipulation, omitted here for the sake of brevity, that (18)1 becomes

(∇∇v)m⊗m+∆v+∇[m · (∇v)m] +
{m · [(∇∇v)m⊗m]}+
 ( −  )[(m ·∆v)m + (∇∇v)m⊗m]−σk

= v (44)

where

 = −
+2

+ +  −    =  − 2

+2
 (45)

and where (∇∇v)m⊗m = e and ∆v = e  Substituting (38) reduces this to

 00{2
1e2 + 12e1 + 2

12m+ ( −  )(2m+2
1e2) + e2}−e2 = ̈e2 (46)
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wherein the primes and dots refer to derivatives of  with respect to 1 and  respectively. This is

equivalent to its projections onto e1 and e2 given respectively by

 0012( + 2
1 +  −  ) = 0 (47)

and

 00(2
1 + 2

1
2
2 + )−  = ̈  (48)

We note that in the course of obtaining these equations no use was made of the special form (39)

of the function  . In particular, (47) and (48) are satisfied by taking  to be a function linear in

1, with time-dependent coefficients. The associated interfacial strain vanishes. The solution with the

interfacial displacement bounded everywhere is a harmonic oscillation with frequency  =
p
.

The interface effectively vibrates as a rigid body, and the absence of a length scale associated with this

vibration means that  remains indeterminate. For wave-like solutions with  given by (39), eq. (47)

requires that the parenthesis vanishes or that 12 vanishes. For typical data on carbon-fiber/epoxy-

resin composites [8], we find that the first alternative has no solution for real-valued 1 The remaining

alternative yields the two possibilities m = ±e1 and m = ±e2 corresponding to waves propagating
parallel and transverse to the fibers, respectively. In the first case; i.e., for waves traveling along the

fibers, (48) reduces to

( + ) +  = 2 (49)

yielding

 = (2 − +


) (50)

where  =  and

 =   1 where  =
p
 (51)

is the transverse shear wave speed in the substrate. Eliminating  between (42) and (50) yields the

dispersion relation p
1− 2 = (2 − +


) (52)

where  =  The theory used here to obtain this relation purports to be valid only if  ¿ 1, so that

1− 2 = (2). Accordingly, we assume that 2 = 1− 22 + (2), solve for  and obtain

 ∼ 1− 1
2
2( − +


)2 (53)

to leading order. The case of waves traveling in the direction transverse to the fibers leads to the

same results, but with  set to zero. We observe that the relevant film stiffness in both cases is the

longitudinal modulus  This is to be expected because the transverse modulus  pertains to shearing

in the isotropic plane orthogonal to m whereas deformations of the type considered induce shearing in

a plane containingm It is easy to show, from (31), that such shear deformations generate a stress equal

to 2 times the strain, provided that m is oriented along either of the axes of shear; i.e., along ±e1 or
±e2 as in the foregoing solutions.
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