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Wall-crossing formulas in Hamiltonian
geometry

Paul-Emile PARADAN

Institut de Mathématiques et de Modeélisation de Montpellier (I3M)
CNRS : UMR5149, Université Montpellier II, France
paradan@math.univ-montp2.fr

Summary. In this article, we study the local invariants associated to the Hamilto-
nian action of a compact torus. Our main results are wall-crossing formulas between
invariants attached to adjacent connected components of regular values of the mo-
ment map.

Key words: moment map, equivariant cohomology, geometric quantization,
transversally elliptic.

1.1 Introduction

Let (M, {2) be a compact symplectic manifold with the Hamiltonian action
of a compact torus 7', and moment map @ : M — t*. Let us assume that the
action is effective. We are interested here in two global invariants:

1. the Duistermaat-Heckman measure DH(M) which is the pushforward by
@ of the Liouville volume form,

2. the Riemann-Roch characters RR(M, L®*) k > 1, which are virtual rep-
resentations of T'. Here the data (M, 2, ®) is prequantized by a Kostant-
Souriau line bundle L.

Let A* C t* be the weight lattice of T. For every couple (u, k) € A* x Z>°,
we denote by m(u, k) € Z the multiplicity of the weight p in RR(M, L®*).

One stricking property of the moment map is that its image (M) is
a convex polytope in t*. In fact, as noted for example in [17] or [20], each
component of the set of regular values of @ is either an open convex polytope
contained in (M), or the open subset cexy = t*\ P(M).

Let us fix a connected component ¢ of regular values of ®@. A celebrated
Theorem of Duistermaat and Heckman [15] tells us that the measure DH(M)
is equal to a polynomial DH, times a Lebesgue measure on the open subset c.
Note that DH,_, is the zero polynomial.

Cext



2 Paul-Emile PARADAN

The “quantization commutes with reduction” Theorem [28, 29] shows that
there exists a periodic polynomial m. : A* X Z — 7Z which coincides with the
multiplicity map m : A* x Z>° — Z on the cone of t* x R generated by ¢ x {1}.
The periodic polynomial m, is defined by a Kawasaki-Riemann-Roch formula
on a symplectic quotient M, = @~*(a)/T where a € c¢. As a corollary, we get
that DH, is the semi-classical limit of m.: one has

m(ku, k) 1

Jm = = e D) (L.1)

for every p € A*. Here d = %dim/\/la.

We have seen that the global invariants DH(M), RR(M, L®*), k > 1 gives
rises to a family of local invariants DH,, m., where ¢ runs over the connected
component of regular values of @.

This paper is concerned by the differences DH,, — DH._ and m, —m._
when ¢y are two adjacent connected components of regular values of ®. Let
A C t* be the hyperplane that separates ¢L. Some continuity properties are
known:

1. the polynomial DH., —DH,_ is divisible by a certain power of the equation
the hyperplane A (see [17] and [12]),
2. the periodic polynomial m., — m._ vanishes on

{(, k) € A* X Z|p € kA}. (1.2)
See [29].

In this paper, we compute explicitely the difference DH,, —DH,_, and we
show that m., —m,_ vanishes also on some translates of (1.2).

Let us introduce some notations. We denote by ThA C T the subtorus of
dimension 1 that has for Lie algebra the one dimensional subspace ta which
is orthogonal to the direction of A. Let 8 € ta be the primitive element of
the lattice ker(exp : t — T') which is pointing out of ¢_.

We make the choice of a decomposition T' = T/Ta x Ta, where T/Tx
denotes a subtorus de T. At the level of Lie algebras, we have then t =
(t/ta) @ ta and t* = (t/ta)* & t: hence & + (t/ta)* = A for any £ € A.
We denote S(t) the algebra of polynomials on the vector space t*. We will
consider the polynomial DH., —DH._ € S(t) relatively to the decomposition

S(t) = P S(t/ta).

jEN

Let us choose £ € A in the relative interior of ¢ Ne_ in A. We consider the
family F of connected components Z C M2 such that £ € #(Z) C A. It is
easy to see that F does not depend of the choice of £ : we have txNt— C $(Z2)
for all Z € F. For each Z € F, we denote
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By 7 — (t/ta)*

the restriction of the map @ — £ to the symplectic sub-manifold Z. The
map Pz is a moment map relative to the Hamiltonian action of T/TA on
Z. Let DH(Z) be Duistermaat-Heckman measure on (t/ta)* associated to
the moment map @z. Since 0 is a regular value of @z, we may consider the
Duistermaat-Heckman polynomial

DHy(Z) € S(t/ta)

such that DH(Z)(a') = DHy(Z)(a’)da’ for o’ in a neighborhood of 0 in (t/tA)*.
For Z € F, we consider the symplectic reduction

Ze =9,'(0)/(T/Ta),

and the normal bundle Nz of Z in M. Let 2dz be the dimension of Z; and
2rz be the (real) rank of Nz. We prove in Section 1.2 the following.

Theorem A. We have

(DH,, —DH,_)(a) = Y Dz(a—¢), act
ZeF

where each polynomial Dz € S(t) admits the following decomposition

ry—1 dz
DZ ﬁ < DHO(Z)' + ZﬂkQZ,k> .
k=1

dety/*(5) \ (2= 1)

Each polynomial Q. belongs to S(t/ta) and is of degree less than dz — k.
The term detlz/2(_2—€f) € Z is the Pfaffian of the infinitesimal action of g—f

on the fibers of the normal bundle N .

Theorem A generalizes previous results of Guillemin-Lerman-Sternberg
[17] and Brion-Procesi [12]. In Section 1.2.4 we give the precise definition of
the polynomials Q .

Suppose now that M is prequantized by a Kostant-Souriau line bundle L.
The hyperplane A is defined by the equation

(a,B)
2w

—ra=0, act, (1.3)

for some 7o € Z. The bundle Nz decomposes as the sum of two polarized
sub-bundles Néc"@. Let s+ € N be the absolute value of the trace of +Ls on

N Zi # Note that the integer s}, + s, is larger than half of the codimension of
Zin M.
We prove in Section 1.3.5 the following



4 Paul-Emile PARADAN

Theorem B Let s* := infzcr 5. We have me, (p, k) = mc_ (e, k) when

-5~ < ) kra < st (1.4)
2

Note that the symplectic orbifolds Z¢, Z € F are the connected component
of the symplectic reduction

Mg = (871 (&) N M) /(T/Ta).
We have the following refinement au Theorem B.

Theorem C If M? is connected, the inequalities (1.4) are optimal, i.e.
there exists (u, k) such that % —kra=+s* and mc, (p, k) # me_ (. k).

In Section 1.4 we apply Theorem B to the particular cases where M is a
integral coadjoint orbit of a compact Lie group G. In Section 1.4.4, we study
more precisely the case G = SU(n): here our result precises some of the results
of Billey-Guillemin-Rassart [10].

In Section 1.5, we obtain a strong version of Theorem B in the case of an
action of a torus T on a complex vector spaces C?. The quantization of this
action is in some sense the vector space Pol(C%) of complex polynomials on C¢.
The T-multiplicities of Pol(C%) are given by a partition function Ng : A* — N.
It was observed in [13, 35] that there exists a finite decomposition of the vector
space t* in conic chambers such that N is periodic polynomial on each piece.

Let ¢+ be two adjacents chambers, and let P.+ be the corresponding peri-
odic polynomials computing N on each chambers. The main result of Section
1.5 is the formula (1.109) which depicts the periodic polynomial P, — P,_ as
a convolution of distributions. Recently!, Boyal-Vergne [11] and De Concini-
Procesi-Vergne [14] proposed differents proofs of this formula.

Acknowledgments. I am grateful to Michele Vergne for bringing me the
reference [10] to my attention, and for explaining me her work with Andrds
Szenes [36].

Notations

Throughout the paper T will denote a compact, connected abelian Lie
group, and t its Lie algebra. The integral lattice A C t is defined as the
kernel of exp : t — T, and the real weight lattice A* C t* is defined by :
A* :=hom(A, 27Z). Every p € A* defines a 1-dimensional T-representation,
denoted by C,, where ¢t = exp X acts by t* := ¢! X) We denote by R(T)
the ring of characters of finite-dimensional T-representations. We denote by
R~°°(T') the set of generalized characters of T. An element x € R~°°(T) is of

! Our present paper is a revised version of the preprint math.SG /0411306
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the form y = >
growth.

The symplectic manifolds are oriented by their Liouville volume forms. If
(Z,0z) is an oriented submanifold of an oriented manifold (M, ops), we take
on the fibers of the normal bundle N of Z in M, the orientation oy satisfying

pen~ Qu C,, where p — a,, A* — Z has at most polynomial

Oopf = Oz - ON.

1.2 Duistermaat-Heckman measures

Let (M, £2) be a symplectic manifold of dimension 2n equipped with an Hamil-
tonian action of a torus T', with Lie algebra t. The moment map @ : M — t*
satisfies the relations (X, —) + d(®,X) = 0, X € t. We assume in this
section that & is proper, and that the generic stabiliser I’y of T on M is
finite.

The Duistermaat-Heckman measure DH(M) is defined as the pushforward
by @ of the Liouville volume form %L on M. For every f € C*®(t*) with

compact support one has [, DH(M)(a)f(a) = [}, f(@)% In other terms

n

act”.

DH()(0) = [ da— )
M n!

We can define DH(M) in terms of equivariant forms as follows. Let A(M) be

the space of differential forms on M with complex coefficients. We denote by

Ajemp(t; M) the space of tempered generalized functions over t with values

in A(M), and by M, (t*, M) the space of tempered distributions over t*

with values in A(M). Let F : A0 (t, M) — M, 0, (t", M) be the Fourier

transform normalized by the condition that F(X + €*¢%X)) is equal to the
Dirac distribution a +— d(a — £).

Let 2(X) = 2— (&, X) be the equivariant symplectic form. We have then
F(e ™) = e §(a — &) and so

DH(M) = (i)" /M F(e™t%), (1.5)

1.2.1 Equivariant cohomology and localization

We first recall the Cartan model of equivariant cohomology with polynomial
coefficients and the extension to generalized coefficients defined by Kumar
and Vergne [26]. We give after a brief account to the method of localization
developped in [30, 31],

Let M be a manifold provided with an action of a compact connected Lie
group K with Lie algebra €. Let d : A(M) — A(M) be the exterior differ-
entiation. Let A.(M) be the sub-algebra of compactly supported differential
forms. If V' is a vector field on M we denote by ¢(V) : A(M) — A(M) the
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contraction by V. The action of K on M gives a morphism X — X, from ¢
to the Lie algebra of vector fields on M.

We consider the space of K-equivariant maps ¢ — A(M), X — n(X),
equipped with the derivation (Dn)(X) := (d — ¢(Xa))(n(X)), X € . Since
D? =0, one can define the cohomology space ker D/ImD. The Cartan model
[7, 21] considers polynomial maps and the associated cohomology is denoted
Hi (M). Kumar and Vergne [26] studied the cohomology spaces HE> (M)
obtained by taking C*>° maps. Recall the construction H > (M).

The space C~*°(¢, A(M)) of generalized functions on £ with values in
the space A(M) is, by definition, the space Hom(m,(t), A(M)) of contin-
uous C-linear maps from the space m.(t) of smooth compactly supported
densities on ¢ to the space A(M), both endowed with the C*°-topologies.
We define AR (M) := C~>°(¢, A(M))X as the space of K-equivariant C~°°-
maps from ¢ to A(M). The differential D defined on C*(¢, A(M)) admits
a natural extension to C~>°(¢, A(M)) and D? = 0 on Ax™(M) [26]. The
cohomology associated to (A (M), D) is called the K-equivariant cohomol-
ogy with generalized coefficients and is denoted by H x> (M). The subspace
ARZI(M) := €~ (&, Ac(M))* is stable under the differential D, and we de-
note by Hy" (M) the associated cohomology. When M is oriented, the inte-

gration over M gives rise to a map [, : Hz% (M) — C—>(p)K.

Localization procedure. Let A be a K-invariant 1-form on M and let
Dy : M — €* (1.6)

be the K-equivariant map defined by (@) (m), X) = M Xas)m, : then DA(X) =
d\ — (®y, X). The localization procedure developped in [30, 31] is based on
the existence of an inverse [DA]~! of the K-equivariant form DA. It is an
equivariantly closed element of A>°(M — &5 '(0)) defined by the integral

(DAL (X) = i / It DA gy (1.7)
0

An open subset U C M is called adapted to X\ if U is K-invariant and if

(0U) N @1 (0) = 0. In [31], we associate to an open subset U adapted to ),

the following equivariantly closed form with generalized coefficients

PY = \Y + MDA . (1.8)

Here x¥ € C*°(M) is a K-invariant function supported in ¢ which is equal
to 1 in a neighborhood of U N 45;1(0). The cohomology class defined by sz
in H>°(M) does not depend of . In particular P = 0 in H>°(M) if
un 43;\1(0) =0.IfUnN 45;1(0) is compact, we take ¥ with compact support,
then PY defines a cohomology class in Hyo (M).
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1.2.2 Localization of DH(M)

We come back to the situation of a Hamiltonian action of a torus 7" on a
symplectic manifold (M,w). We need two auxilliary data : a T-invariant Rie-
mannian metric on M denoted (+,-),,, and a scalar product (-,-) on t* which
induces an identification t* ~ t.

Let H be the Hamiltonian vector field of the function Z||®[|> : M — R :
for m € M we have H,, = (@(m))asr|m. Then for every £ € t*, the Hamiltonian
vector field of Zt||®@—&||? is H—&ar, and we consider the following T-invariant
1-form

Ne = (M= €ar, ) (1.9)
with corresponding map @5, : M — t* (see (1.6)). Here @;51(0) coincides with
the subset Cr(]|® — £||?) C M of critical points of the function ||® — ¢||?, and
m € Cr(||® — £||?) if and only if (@(m) — &)as vanishes at m [30, 31].

Definition 1.2.1 Let P¢ € Hp 3 (M) be the cohomology class defined by
Pﬁ\’g,iuhere U is a T-invariant relatively compact neighborhood of ®~*(§) such
that U N Cr(]|@ — £||?) = d71(€).

The cohomology class Py will be used to localized the Duitermaat-
Heckman measure. For every £ € t*, we define the distribution DH¢ (M) by

DH¢(M) = (i)"F </M Pgem‘) : (1.10)

Here we can put the Fourier transform outside the integral because P¢ is
compactly supported on M. For any £ € t*, let r¢ > 0 be the smallest non-
zero critical value of the function [|@ —£||?. As a particular case of Proposition
3.8 in [31], we have

Proposition 1.2.2 Let £ be any point in t*. The following equality of distri-
butions on t*
DH(M) = DH¢(M)

holds in the open ball B(§,re) C t*.

We will now use the last Proposition, first to recover the classical result
of Duistermaat and Heckman [15] concerning the polynomial behaviour of
DH(M) on the open subset of regular values of @. After we determine the
difference taken by DH(M) between two adjacent regions of regular values.

1.2.3 Polynomial behaviour

We recall now the computation of the cohomology class P¢ when ¢ is a regular
value of @, that is given in [30][Section 6] for the torus case (see [31] [Section
3.1] for the case of Hamiltonian action of a compact Lie group). First recall
the following basic result which shows that ¢ — DH¢ (M) is locally constant
on the open subset of regular values of ®.
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Lemma 1.2.3 ([33]) If & and £ belong to the same connected component of
reqular values of @, we have Pg = Per in H 5 (M).

If we combine Lemma 1.2.3 with Proposition 1.2.2, we see that for any
connected component ¢ of regular values of @, we have

DH(M)(a) = DH(M)(a), a€c,

for any ¢ € ¢. We have to compute DH¢ (M) when £ a regular value of .

We consider the T-principal bundle #~1(¢) — M := ¢71(£)/T with cur-
vature form we € H%(M¢) @t. The orbifold M, carries a canonical symplectic
2-form (2¢. We denote

Kire : H5° (M) — H* (M)

the Kirwan morphism. For any ¢ € C*®(t) and n € H¥(M) we have
Kirg (ny) = Kirg(n)y(we), where the characteristic class ¢ (we) is the value of
the differential operator e<s(ax10) against 1. After [31][Prop. 3.11], we know
that the integral

/t /M Pe(X)n(X)y(X)dX

is equal to .
(—2im)4m Tyol (T, dX)

| ] Me

Kire (1)) () (L11)

for every equivariant class n € H3°(M). Here vol(T,dX) is the volume of T
for the Haar mesure compatible with dX, and |I'y| is the cardinal of I'y
(Note that the generic stabilizer of T on &~1(¢) is I'ys). In other words, for
every 1 € H$F (M) we have the following equality of generalized functions on
t* supported at 0

_9;, \dim T
/ Pg(X)n(X):(QL Kire (n)es(5x10)vol(T, —).  (1.12)
M e Me

For 1 = et we have Kirg(n) = e~"(?¢=(&we)) and a small computation
shows that

. d
F (ewd%\o)vol(T, 7)) (a) = e*l<a’wf>(2ﬂ%, aet. (1.13)
where da is the Lebesgue measure on t* normalized by the condition: vol(T, dX) =
1 for the Lebesgue measure dX on t which is dual to da.
Finally (1.10), (1.12) and (1.13) give

\d
Ly
I Ine| S e
_ d
_ 1 (e +(a—&we)” ) (1.14)

where 2d = dimM_.
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Definition 1.2.4 For any connected component ¢ of reqular values of @ we
d
denote DH, the polynomial function a — ﬁ st %, where £ is

any point of c.

With the help of Proposition 1.2.2 we recover the classical result of Duis-
termaat and Heckman [15] that says that the measure DH(M) is locally poly-
nomial? on the open subset of regular values of @, and it’s value at a regular
element £ is equal to the symplectic volume of the reduce space M, (times
|Ia| 1) . More precisely we have shown that for a connected component ¢ of
regular values of @ we have

DH(M)(a) = DH,(a)da,  a €. (1.15)

1.2.4 Wall-crossing formulas

Consider now two connected regions ¢t of regular values of ¢ separated by an
hyperplane A C t*. In this section we compute the polynomial DH., —DH,_.
It generalizes previous results of Guillemin-Lerman-Sternberg [17] and Brion-
Procesi [12].

Let 1, &_ be respectively two elements of ¢ and ¢_. We know from (1.2.2),
(1.14) and Definition (1.2.4) that

(DH., —DH,_)(a)da = (i)"F (/M(Pg+ - Pg)e_m‘> (a), act" (1.16)

We recall now the computation of the cohomology class Pe, — Pe_ €
Hy o (M) done in [33]. We use the notation defined in the introduction.

Definition 1.2.5 We denote M2 the union of the connected component Z
of the fized point set MT2 for which we have &(Z) C A. Let M2 be the
T-invariant open subset of M? where T /T acts locally freely.

For a connected component Z C M#, one has either t; Nt_ C #(Z) or
trNe—N&(Z) = 0. It is due to the fact that for any & in relative interior of
t Nt_in A, and any m € &~1(€) the stabilizer t,, C t is either equal to ta
or reduced to {0}.

The symplectic manifold M4 carries a Hamiltonian action of T/Tx with
moment map @|p;a : M2 — A equal to the restriction of & on M4,

Let £ be a point in the relative interior of ¢y Nc¢_ in A. From the previous
discussion, we knows that ¢ is a regular value of ®|ya, i.e. @71(£) N MTa
is a submanifold of M2. Following Definition 1.2.1 we associate to ¢ the
cohomology class

PE € My, J(M2).

2 It is a polynomial times a Lebesgue measure on t*.
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Let H*(MA)% be the sub-algebra of H*(MZ2) formed by the T-basic
elements. Since the Ta-action on M2 is trivial we have a canonical product
operation

Moy (M) X €72 (ba, HE (M%) Lo Hp 2 (M), (1.17)

Proposition 1.2.6 ([33]) There exists a generalized function supported at 0,
54 € C=(ta, H* (MA)%), such that

Per —Pee = (ia). (PEAGY)  in Mz (M)
Here (i)« : H;OCO(MOA) — My (M) is the direct image map relative to the
inclusion ia : M2 — M.

We will now give the precise definition of §2. The decomposition T' = T'a X
T /T and the trivial action of T4 on M2 determine a canonical isomorphism

ja: Hp(MZ) = S(th) ® Hpyp, (M),

where S(t%,) is the algebra of complex polynomial functions on ta. Since the
T /T a-action on M, OA is locally free, we have the Chern-Weil isomorphism

eva s Hiyr, (M3) = H* (M),

o

Let N be the T-equivariant normal bundle of M4 in M, and let
Eul(Na) € Hi(M2)

be the T-equivariant Euler class of Na. Now we consider the restriction of
Eul(NA) on the open subset M2 C M4, that we look through the isomor-
phism cv0j4 as an element of S(t% ) @H* (M2)** (for simplicity we keep the
same notations Eul(Na) for this element). Following [30], we define inverses
Eul;}(Na) € C=%(ta, H*(M£)*) by

_ . 1
Eulib(NA)(X) = SETOO Eul(NA)(X + Zsﬁ) (1'18)

Here 3 € ta is chosen so that (€t —£7,3) > 0.

Definition 1.2.7 The generalized function 62 € C~(ta, H*(MA)"*%) is de-
fined by
6% := Euly'(Na) — Eul_j(Na). (1.19)

Since the polynomial Eul(/N4) is invertible in a smooth manner on ta\ {0}
the generalized function §4 is supported at 0.

Let & be a point in the relative interior of ¢; Nc_ in A. We consider the
symplectic reduction
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M = (MA ﬂdi‘l(g))/(T/TA).

If we restrict 02 to the submanifold M4 N ®~1(&) we get the generalized
function

58 € CT®(ta, H* (ME)).
Now we are able to compute the right hand side of (1.16). Let wEA €
H2(M?)®t/fA be the curvature of the 7'/Ts-principal bundle M2N$~1 (&) —

M?. Let \SEA| be locally constant function on M4 N &~1(¢) which is equal
to the cardinal of the generic stabilizer of T//Ta. From (1.12) and Proposition
1.2.6 we have

/ (P, — Pe_)(X)e ")
M

— / PEA(X/)(SA(XI/)G_iQ‘(X/+XI/)
Mg

_9;\dim T—1 .
= (2’]2%' /MA € (3% 10)vol(T/T s, —)Kirg (e 7' (X")6£ (K20)
3 g

In the last equation the notations are the following :

1. X = X'+ X" with X’ € t/ta and X" € tx,

2. the Kirwan map Kir? THP (M) — COO(tA,H*(MEA)) is the composition
of the restriction H (M) — HFP(MA N &~1(¢)) with the Chern-Weil
isomorphism H5° (M4 N&~1(£)) == C(ta, H*(ME)).

A direct computation gives that Kir?(Qt)(X”) = QgA - <§,w§A + X"

where (2? is the induced symplectic form on the reduced space M?. If we
take the Fourier transform in (1.20) we get

(DH., — DH,_)(a)da
i n+1—dimT O el WA
= ()SA| </MA e (2 +(a"wg)) da/]:tA (6?)((1”)) (a _ 5),

n+1 —dim T

—Z —_— /e_i(Qsz‘*‘Wv“&Z))da’}'tA((igZ)(a”) (a — €£)1.21)
|S¢ 1 2

ZeF
where a = a/—f—a// with CL/ c (t/tA)* and a” S (tA)* In (121), we write fMA =
3
Sser 2z where the sum is taken over the set F of connected components Z
of M4 that intersects ®~ () : we take then

Ze = (20071(9) /(T/Ta).

The 2-forms QA wg , the generic stabiliser SA the vector bundle Na, the
generalized functlon 54 restrict to each component Z: we denote them re-
spectively “QE ,wg , S5 , Nz, 52
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We recall now the computation of the Fourier tranform of the inverses
Eulié( 7) = Euly} 5(Na)lz that is given in [30][Proposition 4.8.]. We con-
sider a T-invariant scalar product on the fibers of the bundle Na. Let R €
A2(MA,50(NA))* be the curvature of a T-invariant and T/Ta-horizontal
Euclidean connexion on Na: we denote by RZ € A?(Z,s0(Nz))"®* the restric-
tion of R to a component Z € F. The curvature commutes with the infinites-
imal action Lx of X € ta, and with the complex structure Jz = Eg(—ﬁ%)lﬂ
on N, defined by 3 € ta.

We denote by S°® the symmetric algebra of the complex vector bundle
(Na, J3). We keep the same notation for the restriction of S® on the sub-
manifolds Z, #~1(¢) N M4, and for the induced orbifold vector bundle on
the reduced spaces Z¢ and MEA. For each £ € N, we denote by Trg« the
trace operator defined on the complex endomorphisms of S*. For a complex
endomorphism A of Na, we denote by A®* the induced endomorphism on
Sk, For any X € ta, the complex endomorphism E;{lRZ is symmetric. Hence
the trace Trgx (L' R?)®F) is a basic real differential form of degree 2k on Z
which does not depend of the choice of complex structures (Jg or J_g).

Let g* € t%, the dual of 3 € ta.

Proposition 1.2.8 ([30]) For a smooth function f on t with compact sup-
port we have ft*A Fia (Eulgl(NZ))(a//)f(a//) = [ Py (1) f(t87)dt where P is
the polynomial on R defined by:

. dim(Z)/ 4k
(2mi)"2 trz—1 e PP
Py(t) = -+ ETeg (L5 RY)®F)——
(1.22)

Here detZ (Cg) is the Pfaffian of Lz on Nz, and rz = rke(Nz).

One checks then that

Foa (Bul™ L (N))(a") f(a") = / Pyt f(—tp)r

0
—/_ Py (t) f(t5*)dt.

Hence the distribution F, (§%) is equal to Pz(3)d3. From now one we fix
as the primitive element of to N A which point out ¢_. Then d and dg* are
then (dual) Lebesgue measure on t* and t : we have vol(Ta,dS*) = 1.

ta

Let Rgz be the restriction of the curvature RZ to the submanifold Z N
@1(¢). Since RZ is T/Ta-basic, Trsk((ﬁglRéz)@k) can be seen as a real
differential form of degree 2k on the orbifold Z¢ = (Z N &~ 1(€))/(T/Ta).

Each connected component Z of M4 is a T/T» Hamiltonian manifold:
we take for moment map @z : Z — (t/ta)* the restriction of & — £ to Z.
Hence 0 is a regular value of @z. Let DHy(Z) be the polynomial function on



1 Wall-crossing formulas in Hamiltonian geometry 13

(t/ta)* = {a € t*| (8,a) = 0} such that DH(Z)(a') = DHy(Z)(a’)da’ near 0.
Finally (1.21) together with the proposition 1.2.8 give the following

Theorem 1.2.9 We have (DH., —DH._)(a) = > ,.Dz(a —¢), a € t
where each polynomial Dy € S(t) admits the following decomposition

get (o &
D, — +3°8Q,, |. 1.23
V4 det}/2(%iﬁ) (TZ _ 1)! 1; Z,k ( )
The polynomials Q) € S(t/ta) are defined by
o (—1)* (92F + (', wf))?2* 1 pZ\@k

(1.24)
Here 2dz = dim Z¢ and 2rz = dim M — dim Z.

Remark 1.2.10 e The polynomial DH., — DH._ is divisible by the factor
a— {a—&B)" Y with r = infzerry. If ANP(M) is not a facet of the
polytope ®(M) we have rz > 2 for all connected component Z € F, hence
r—1>1.

o Suppose now that ¢_ is a connected component of reqular values of @
bording a facet ®(M) N A of the polytope &(M). Here Z = &~ 1(A) is a
connected component of the fixed point set MT2. In this situation we have
DH._ = —Dy where the polynomial Dz is defined by (1.23).

1.3 Quantum version of Duistermaat-Heckman measures

We suppose here that the Hamiltonian T-manifold (M,w, ®) is prequantized
by a T-equivariant Hermitian line bundle L over M, which is equipped with
an Hermitian connection V satisfying the Kostant formula

L(X)-Vx, =ild,X), Xet (1.25)

The former equation implies that the first Chern class of L is equal to % In
this section we suppose that M is compact and we still assume that the generic
stabiliser I'yy of T on M is finite. The quantization of (M, §2) is defined by
the Riemann-Roch character RR(M, L) € R(T) which is compute with a T-
equivariant almost complex stucture on M compatible with (2 [32]. For k > 1,
we consider the tensor product L®*. Tts Riemann-Roch character RR(M, L&)
decomposes as

RR(M,L%*) = Y~ m(p, k) C,. (1.26)

pneEA*
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Let us recall the well-known properties of the map m : A* x Z>% — Z.
When £ is a regular value of @, the ”Quantization commutes with Reduction
Theorem” [28, 29] tell us that

m(p, k) = RR(My, L") (1.27)

where LHF = (L®F o-1(2) ® C_,)/T is an orbifold line bundle over the sym-

plectic orbifold Mx = &~1(£)/T. In particular if £ does not belong to &(M)
we have m(u, k) = 0. When £ € #(M) is not necessarilly a regular value of
@, one procceed by shift desingularization. If £ € #(M) is a regular value of

@ close enough to £ then (1.27) becomes

m(, k) = RR(Me, L) (1.28)

where E’g’k = (L®|g-1(e) ® C_,,)/T (for a proof see [29, 32]).

Definition 1.3.1 A function f : = — Z defined over a lattice = ~ Z" is
called periodic polynomial if

where oy, -+ ,ap € 5%, N > 1, and the functions Py,--- , P, are polynomials
with complex coefficients.

Remark 1.3.2 Let C a cone with non-empty interior in the real vector space
Z®zR. Any periodic-polynomial function f : = — Z is completely determined
by its restriction on C N =.

Let ¢ C t* be a connected component of regular values of @. In [29] Mein-
renken an Sjamaar proved that there exits a periodic polynomial function
m, : A* x Z — 7Z such that m(u, k) = m(p, k) for every (u, k) in the cone

Cone(c) = {(&,5) e t* x R | £ € 5-c}. (1.29)

Consider now two adjacent connected regions ¢y of regular values of @
separated by an hyperplane A C t*. When A does not contain a facet of the
polytope &(M), Meinrenken an Sjamaar proved also that

Me, (M’ k) = m_ (N? k) = m(ﬂv k) (130)

for every (p, k) € Cone(cy) N Cone(c—) = Cone(cy Nt=) C Cone(A).

The main objective of this section is to prove that (1.30) extends to a
“strip” containing Cone(A).

Let B8 € A be the primitive orthogonal vector to the hyperplane A C t*
which is pointing out of ¢_. Then A = {£ € t*| % =ra} for some rp € Z,
Cone(A) = {(¢,5) € t* xR20 | @2’—?—87“4 =0}and c_ C {€ € t*| % <ra}.
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Let T'a be the subtorus of T" generated by 3. Let N be the normal vector
bundle of M7 in M. The almost complex structure on M induces a complex
structure J on the fibers of Nao. We have a decomposition Ny = ZS N3

where N§ = {v € Na|Lsv =sJv }. We write Na = NZ’B ® NZB where

Ni7 =" Ni. (1.31)
+s>0

Definition 1.3.3 For every connected component Z C M2 we define s% €

N respectively as the absolute value of the trace of iﬁﬁ on NZ:”B\Z.

Note that sJZr + s, is larger than half of the codimension of Z in M. We
prove in Section 1.3.5 the following

Theorem 1.3.4 We have m, (p, k) = mc_(u, k) for all (u, k) € A* X Z such
that

-5~ < B _ kra<s'. (1.32)
2m

The number s~,sT € N are defined as follows. We take s* = inf, s% where
the minimum is taken over the connected components Z of M™4 for which
TNt CP(Z).

Similar results were obtained by Billey-Guillemin-Rassart [10] in the case
where M is a coadjoint orbit of SU(n), and by Szenes-Vergne [36] in the
case where M is a complex vector space. See Sections 1.4.4 and 1.5 where
we study these two particular cases in details. In Proposition 1.3.25, we give
also a criterium which says when the inequalities in (1.32) are optimal. This
criterium is fullfilled when there is only one component Z of M”74 such that
- Nt— C &(Z). Then (1.32) is optimal and s™ + s~ is larger than half of the
codimension of Z in M.

The following easy Lemma (see Lemma 7.3. of [32]) gives some basic in-
formations about the integer s%

Lemma 1.3.5 Let (M, 2,®) be a compact Hamiltonian T-manifold equipped
with a T-invariant almost complex structure compatible with 2. Consider a
non-zero vector v € t and let Z be a connected component of the fized point
set M. Let N be the normal vector of Z in M and let N~ be the nega-
tive polarized normal bundle (see (1.31)). Then N—7 = 0 if and only if the
function (@,~) : M — R takes its mazimal value on Z.

This Lemma insures that s* > 1 in Theorem 1.3.4 when AN ®(M) is not
a facet of the polytope &(M).

Consider the situation where AN @(M) is a facet of the polytope ®(M)
so that ¢, N@(M) = (): hence m., = 0. If we apply Lemma 1.3.5 with v = 3,
one gets N™% = 0 and so s~ = 0. In this situation we get
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Corollary 1.3.6 Let c_ be a connected component of reqular values of @ bor-
ding a facet (M) N A of the polytope (M). Let € A be the primitive
orthogonal vector to the hyperplane A C t* which is pointing out of c_. Here
Z = &7 1(A) is a connected component of the fived point set MT2. We have
m. (p, k) =0 for all (u, k) € A* X Z such that

(1, )

2m
Here s}, € N is larger than half of the codimension of Z in M, and the
inequalities (1.33) are optimal.

0<

—kra < s}. (1.33)

The rest of this section is dedicated to the proof of Theorem 1.3.4. We
start by reviewing some of the results of [32].

1.3.1 Elliptic and transversally elliptic symbols

We work in the setting of a compact manifold M equipped with a smooth
action of a torus 7.

Let p : TM — M be the projection, and let (-, )ps be a T-invariant
Riemannian metric. If E°, E' are T-equivariant vector bundles over M, a T-
equivariant morphism o € I'(TM, hom(p*E°, p*E')) is called a symbol. The
subset of all (m,v) € TM where o(m,v) : ES, — E} is not invertible is called
the characteristic set of o, and is denoted by Char(o).

Let T M be the following subset of TM :

TrM = {(m,v) € TM, (v,Xp(m)),, =0 forall X €¢}.

A symbol o is elliptic if o is invertible outside a compact subset of T M
(Char(o) is compact), and is transversally elliptic if the restriction of o to
TrM is invertible outside a compact subset of TprM (Char(o) N TrM is
compact). An elliptic symbol o defines an element in the equivariant K-theory
of TM with compact support, which is denoted by K7 (TM), and the index
of o is a virtual finite dimensional representation of T' [3, 4, 5, 6].

A transversally elliptic symbol o defines an element of Ko (TrM), and
the index of ¢ is defined as a trace class virtual representation of T' (see [1]
for the analytic index and [8, 9] for the cohomological one). Remark that any
elliptic symbol of TM is transversally elliptic, hence we have a restriction
map K7 (TM) — Kp(TrM), and a commutative diagram

K (TM) — Ko (TrM) (1.34)
Indexf\}i llndexfi
R(T) R™(T) .

Using the excision property, one can easily show that the index map
Index}, : Kr(T7U) — R™°°(T) is still defined when U is a T-invariant rela-
tively compact open subset of a T-manifold (see [32][section 3.1]).
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1.3.2 Localization of the Riemann-Roch character

We suppose now that the compact T-manifold M is equipped with a T-
invariant almost complex structure J. Let us recall the definitions of the Thom
symbol Thom(M, J) and of the Riemann-Roch character [32].

Consider a T-invariant Riemannian metric ¢ on M such that J is orthog-
onal relatively to g, and let h be the Hermitian structure on TM defined by
s h(v,w) = q(v,w) —1g(Jv,w) for v,w € TM. The symbol

Thom(M, J) € I' (M, hom(p* (A& TM), p*(AZ*“TM)))
at (m,v) € TM is equal to the Clifford map
Cl,(v) @ A&, M — AT, M, (1.35)

where Cl,,,(v). w = v Aw — ¢p(v).w for w € ALT,M. Here ¢, (v) : A2 T,y M —
A*~IT,, M denotes the contraction map relative to h. Since the map Cl,, (v)
is invertible for all v # 0, the symbol Thom (M, J) is elliptic.

The Riemann-Roch character RR(M,—) : Ky (M) — R(T) is defined by
the following relation

RR(M, E) = Index}; (Thom(M, J) @ p*E) . (1.36)

The important point is that for any T-vector bundle E, Thom(M, J) ® p*E
corresponds to the principal symbol of the twisted Spin® Dirac operator Dg
[16], hence RR(M, E) € R(T) is also defined as the (analytical) index of the
elliptic operator Dg.

Consider now the case of a compact Hamiltonian T-manifold (M, w,®).
Here J is a T-invariant almost comlex structure compatible with §2: (v, w) —
2(v, Jw) defines a Riemannian metric on M. Like in Section 1.2.2, we make
the choice of a scalar product (-,-) on t* (which induces an identification
t* ~ t) and we consider for any £ € t* the function 5 || & — & | M — R
and its Hamiltonian vector field H — &y

Definition 1.3.7 For any £ € t* and any T-invariant open subset U C M
we define the symbol Thom¢(U) by the relation

Thome (U)(m, v) := Thom(M, J)(m,v — (H — &) (m))  (m,v) € TU

The characteristic set of Thome(U) corresponds to {(m,v) € TU, v =
(H — &wm)(m)}, the graph of the vector field H — &y over U. Since H — &y
belongs to the set of tangent vectors to the T-orbits, we have

Char (Thome(U)) N TrU = {(m,0) € TU | (H — Exr)(m) = 0}
={meu, d||®—-¢|7,=0}.

Therefore the symbol Thom, (i) is transversally elliptic if and only if
Cr(|@—¢ ) uau =0. (1.37)
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Definition 1.3.8 When (1.37) holds we say that the couple (U, &) is good.

Definition 1.3.9 Let (U, ) be a good couple. For any T-vector bundle E —
M, the tensor product Thome(U) ® p*E belongs to Kr(TrU) and we denote
by

RR,(M,E) € R—(T)

its index.

Proposition 1.3.10 Let (U, €) be a good couple.

o If U possess two T-invariant open subsets U',U? such that U NU2N
Cr(l| @ =€ [12) = 0 and (" UUZ) N Cr(]| & — € |[2) = U N Cr(|| & — € ||?), then
the couples (U, &) and (U?,€) are good and

RRS,(M, ) = RRS,, (M, —) + RR, (M, ).

In particular RRE,(M, -) = RRfﬂ(M, —) if U* is an open subset of U such
that U N Cr(|| @ =€ 1) =UNCr(|| 2 - 7).
o If &' € t* is close enough to &, then (U,&') is good and

RRS(M,—) = RRS (M, —).

Proof. The first point is a direct consequence of the excision property (see
Proposition 4.1. in [32]).
Let us prove the second point. Consider now the scalar product

¢(s) = (H =&, H = &m)m

where £5 = s&' + (1—s)&, s € [0,1] : #(s) is a smooth function on M. We have
B(s) = [|H — Em|)*> + s((€ — &) m, H — €ar) and then the following inequality
holds on M

os) = 1 — el (I = &nall = sliénr — €aell). (1.38)

Since OU is compact we have the following inequalities on it: ||H —&pr|| > ¢1 >
0 and || X || < e2]| X|| for any a € t. So (1.38) implies the following inequality
on OU:

¢(s) Z ci(er — s =&') for s €[0,1].

So if &’ is close enough to £, we have |[H—E5,]| > ¢3 > 0 on OU for any s € [0, 1].
We have first prove that the couple (U, £*) is good for any s € [0, 1]. We see
then that the familly of transversally elliptic symbols Thomes(U), s € [0, 1]
defines an homotopy between Thome (U) and Thom: (/). Hence Thom, (U) =
Thomg () in Kp(TrU). O

The first point of Proposition 1.3.10 shows that RRE,(M,f) depends

closely of the intersection & N Cr(|| @ — £ ||?). In particular RRg(M7 —-)=0
when U N Cr(|| @ — € ||?) = 0. Recall that
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Cr(le—¢ 1)) = |J M ne ' (y+¢) (1.39)
YEBe

where Be C t* is a finite set [24].
Definition 1.3.11 For any { € t* and v € Be, we denote simply by
RRS(M,—) : Kp(M) — R™>°(T)

the map RRE,(M, —), where U is a T-invariant open neighborhood of M™ N
D (y + &) such that Cr(|| @ — € |2)NU = MY NS~ L(y +€).

Proposition 1.3.10 insures that the maps RR,EY(M , —) are well defined, and
for any good couple (U, &) we have

RRy(M,—)= Y RRY(M,-). (1.40)
’YGB&OQS(L{)

If one takes U = M, we have RRli(M7 —)=RR(M,-)=>
(see [32][Section 4]).

"/635 RR%(Mv _)

1.3.3 Periodic polynomial behaviour of the multiplicities

We suppose here that the Hamiltonian T-manifold (M, 2, ®) is prequantized
by a T-complex line bundle L satisfying (1.25) for a suitable invariant connec-
tion. In this section we will characterize the periodic polynomial behaviour of
the multiplicities m(u, k) with the help of the localized Riemann-Roch char-
acter RRS(M, -).

Let us introduce some vocabulary. We say that two generalized characters
Xt = Epe/l* ai C, coincide on a region D C t*, if a;‘ = a, for every u €
DnA*. A generalized character y =Y o C,, is supported on a region D C t*
if ay =0 for pp ¢ D. A weight pp € A" occursin x =3 a, Cp if ay # 0.

For £ € t*, we define r¢ > 0 as the smallest non-zero critical value of the
function || @ — ¢ ||, and we denote by B(&,r¢) the open ball of center £ and
radius 7¢.

Theorem 1.3.12 ([32]) For any& € t*, the generalized character RRS(M, L®F)
coincides with RR(M, L®%) on the open ball k - B(&, 7).

The arguments of [32] for the proof of this Theorem will be needed another
time, so we recall them. Let £ € t*. We start with the decomposition

RR(M,L®*) = > RR§(M,L®"). (1.41)
YEBe

We recall now, for a non-zero y € Be, the localization of the map RR§ on the
fixed point set M" [32].
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Let N be the normal bundle of MY in M. The almost complex structure
on M induces an almost complex struture on M and a complex structure on
the bundles N and N¢ := N ® C. Following (1.31) we define the y-polarized
complex vector bundles N7 and (N¢)™7.

The manifold M” is a symplectic submanifold of M equipped with an
induced Hamiltonian action of T": its moment map is the restriction of ¢ on
M7, Following Definition 1.3.11, we have on M7 a localized Riemann-Roch
character RR,EY(M 7, —). On M7, the Hamiltonian vector fields of the functions
| ®—¢||? and || @ — (£ +7) ||? coincide, hence

RRS(M",—) = RRg"™ (M7, ). (1.42)
We prove in [32][Theorem 5.8.] that
RR§(M,E) =Y (~1)'RRS(M", E|y~ @ det(NT7) @ S¥(NE))  (1.43)
keN

for every T-vector bundle E. Here [ is the locally constant fonction on M?”
equal to the complex rank of N7,

Proposition 1.3.13 ([32], Section 5) Let N be the T-vector bundle N with
the opposite complex structure on the fibers. The sum (—1)' Y, det(N*T7)®
SE(NZ) is an inverse of A&N that we denote [A&N];l

If we use the notations of Proposition 1.3.13 and (1.42), the localization
(1.43) can be rewritten as

RRS(M, B) = RR§* (M7, Elas © [n2N] ). (1.44)

Let ¢ : T’y — T be the inclusion of the subtorus generated by v. Let F' be
a T-vector bundle on M".

Lemma 1.3.14 ([32], Lemma 9.4.) A weight i € A* occurs in RRS (M7, F)

only if i*(p) occurs as a weight for the T -action on the fibers of F® [A&N];l,
Since the T, weights on the bundles NE’W and N7 are polarized by 7,
the localization (1.43) gives the following

Corollary 1.3.15 For a non-zero~y € B, the generalized character RR§y (M, L®k)
is supported on the half space {a € t*|(y,a — k(£ +7)) > 0}.

Since the condition (y,a — k(€ ++)) > 0 implies that || a—EE ||> k|| v [|>
kre, the last proposition shows that every weights of the open ball k- B(&, r¢)
does not occurs in RR?Y(M, L®%). This last remark together with (1.41) prove
Theorem 1.3.12.

For the localized Riemann-Roch character RRS (M, —) we have the follow-
ing Lemma which is very similar to Lemma 1.2.3.
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Lemma 1.3.16 Let ¢ C t* be a connected component of regular values of ®.
For every £,&' € ¢, we have RRg(M, -) = RRS (M, —).

Proof. We have to show that the map & — RRS(M ,—) is locally constant
on ¢. Let ¢ € ¢ and take an open neigborhood U of @~1(£) small enough such
that the stabilizer T,,, = {t € T'|t - m = m} is finite for every m € U. We see
then that U N Cr(|| @ — ¢ ||?) =&~ 1(¢') and dU N Cr(]| @ — €' ||?) =D if £ is
close enough to &: hence RRSI(M7 —-) = RRE{/(M, —) for &' close enough to .
The second point of Proposition 1.3.10 finishes the proof. O

When ¢ is a regular value of &, the localized Riemann-Roch character
RRS(M,—) as been computed in [32] as follows. Let RR(Mg¢,—) be the
Riemann-Roch map defined on the orbifold Mg = &~1(£)/T by means of
an almost complex structure compatible with the induced symplectic struc-
ture. For every T-vector bundle E — M we define the following familly of
orbifold vector bundles over M.:

et i= (Bloi ®Cy) /T, pe A", (1.45)

For every T-vector bundle E on M, we proved in [32][Section 6.2.] the following
equality in R=°°(T")

RR§(M,E) =Y RR(M¢,E)C,. (1.46)
neA*

This decomposition was first obtained by Vergne [37] when T is the circle
group and when M is Spin. The number RR(ME,gg) € Z is then equal to

the T-invariant part of the index RRE(M yE)®C_,.

Remark 1.3.17 Let t — t* be a character of T. Suppose that a subgroup
H C T acts trivially on M and with the character t € H — t* on the the
fibers of the T-vector bundle E. Then H acts with the charactert € H — t)
on RRS(M, E)® C_,, and then RR(Mg,Eé‘) £ 0 only if t"* =1 for every
t € H. So the sum in (1.46) can be restricted to X\ + A}, where Aj; is the
sub-lattice of A* formed by the element o € A* satisfying t* =1, ¥Vt € H.

This remark applies also on the usual character RR(M, E) = Zue/l* m,C,,.
The multiplicity m,, € Z 1is equal to the (virtual) dimension of the T-invariant
part of RR(M,E) @ C_,,. With the same hypothesis than above we see that
my, # 0 only if p € X+ A3

Let I'y; be the generic stabilizer for the action of T on M. Consider a
weight «, such that I'y; acts on the fibers of L with the character t — t%.
We define the sublattice = (M, L) C A* x Z by

E(M,L) = {(n,k) € A" XZ | kay —pp € AL, }. (1.47)

We know then that m(u, k) =0 if (u, k) ¢ E(M, L).
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Proposition 1.3.18 Let ¢ be a connected component of regular values of @
and let Cone(c) be the corresponding cone in t* x R>C (see (1.29)). Let € € c.
For any (p, k) € Cone(c) N =Z(M, L) we have

m(, k) = RR(Me, L) (1.48)

where

L = (L®*|g-1e) ® C_,) /T (1.49)

Proof. Let (u,k) € Cone(c) and let £’ = £ € ¢. We known from The-
orem 1.3.12 that the generalized character RRSI(M7 L®%) coincides with
RR(M, L®*%) on the open ball k- B(¢',rer) = B(p, krer). So m(u, k) is equal
to the p-multiplicity in RRSI(M7 L®%). Take now any ¢ € ¢. We know af-
ter Lemma 1.3.16 that RRS(M, —) = RRSI(M, —) and (1.46) shows that the
p-multiplicity in RRG(M, L®¥) is equal to RR(M¢, ££). O

Definition 1.3.19 Take £ € ¢. The map m, : A* X Z — 7Z is defined by the
equation
me(p, k) = RR(Me, ££F), (1.50)

where Eg’k is the orbifold line bundle defined by (1.49).

In other words, the map m, is defined by the following equality in R~>°(T")

> me(u, k) C, = RR§(M, L®").
pneA*

for all ¥ € Z. After remark 1.3.17, we know that m. is supported on the
sub-lattice Z(M, L) defined in (1.47).

We will now exploit the Riemann-Roch for orbifold due to Kawasaki [23]
to show that the map m, is a periodic polynomial.

1.3.4 Riemann-Roch-Kawasaki theorem

First we recall how is defined the Riemann-Roch character RR(Mg, &) when
¢ is a regular value of @, and & = Ejg-1(¢)/T is the reduction of a complex
T-vector bundle E over M. The number RR(M;, &) € Z is defined has
the T-invariant part of the index of a transversally elliptic operator Dg on
@~1(&). Since the index of Dg depend only of the class of its symbol o(Dg) in
Kr(Tr®1(£)), it is enough to define the transversally elliptic symbol o(Dg).
Since the action of T on @~1(&) is locally free, V := Tr®~1(£) is a vector
bundle. It carries a canonical symplectic structure on the fibers and we choose
any compatible complex structure making V' into a Hermitian vector bundle.
At (m,v) € T®~1(), the map o(Dg)(m,v) is the Clifford action

Cly(v1) @ Idg,, : (AN"Vin) @ Epy — (A29V,,) @ B,
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where vy € V,, is the V-component of the vector v € T,,®1(£). We explain
now the formula of Kawasaki for RR(M¢, &) when ¢ € &(M) is a regular
value of & [23].

Let F be the collection of the finite subgroup of T" which are stabilizer of
points in M. Consider the orbit type stratification of #~1(£) and denote by
S¢ the set of its orbit type strata. Each statum S is a connected component
of the smooth submanifold

O HE) g = {m € (&) | Staby(m) = Hg}. (1.51)

for a unique Hg € . The orbifold M, decomposes as a disjoint union
UseseS/T of smooth components, and each quotient S/T is a suborbifold
of M¢. The generic stabilizer I'y; of T on M is also the generic stabilizer of T'
on the fiber® 71(¢), and is associated to an open and dense stratum S,,4z-

Suppose that E — M is an Hermitian T-vector bundle. On each suborb-
ifold S/T, we get the orbifold complex vector bundle

£s = E5/T. (1.52)
We define twisted characteristic classes Ch™ (€g) and D~ (Eg) by
Ch'(Es) := Tr (yfs .e#’“fs)) . ~ € Hs, (1.53)

and .
D7(Eg) = det (1 — (y%5)7L. eiiR(55)> , 7€ Hs. (1.54)

Here R(Es) € A%(S/T,End(Es)) is the curvature of an horizontal Hermitian
connection on E‘@ and v — ~%S is the linear action of Hg on the fibers of
Elg.

Let Ng be the normal bundle of S in #~1(¢). The symplectic struture on
M induces a symplectic form {25 on each suborbifold S/7T’, and a symplectic
structure on the fibers of the bundle Ng. Choose a compatible almost complex
structure on S/T', and a compatible complex structure on the fibers of Ng
making the tangent bundle of S/T and Ns := Ng/T into Hermitian vector
bundle. Consider a Hermitian connexion on T(S/T), with curvature R(S/T),

and let o \R(T/T
Todd(S/T) = det (1 (_Z/e _72/27(@3{ S/)T)> (1.55)

be the corresponding Todd forms. Like in (1.54), we associate to the complex
orbifold vector bundle Ng, the twisted form D~ (Ng) which is a map form Hg
to A°v¢"(S/T). The O-degree part of DY(Ns) is equal to det(1 — (4Vs)~1),
hence D7(N) is invertible in A°**"(S/T) when ~ belongs to

3 Since a neighborhood of #7*(¢) in M is T-equivariantly diffeomorphic to () x
th.
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HG = {7 € H | det(1— (¥)71) #0}. (1.56)

Note that Hg corresponds to the set of v € Hg for which S is a connected
component of (¢71(£))".

Theorem 1.3.20 (Kawasaki) The number RR(Mg¢, &) € Z is given by the
formula

RR(Me, &) = ) =~
526;5 | Hs| vezf;g S/T D7 (Ns)

. / Todd(S/T)Ch™(£s) (1.57)

We exploit now Theorem 1.3.20 to show that the map m, : A* X Z —
Z which is defined by (1.50) is periodic polynomial. We need the classical
computation of the first Chern class of the line bundle

Lyt = (L% o C_,)5/T. (1.58)

The curvature form we € H?(M¢)®t of the principal T-bundle &~ (£) — M.
restricts to a curvature form wg € H2(S/T) ® t on each strata.

Lemma 1.3.21 The first Chern class of the line bundle [f;’k is given by

1
C1(£g’k) = g(kﬂs — (k& — u, Ws>)-

For a strata .S, we consider ag € A* such that v € Hg +— %S corresponds
to the action of Hg on the fibers of L. Finally we have the decomposition

me(p k) = Y Ps(u, k), (1.59)
S€S§
where
_ i k:asfy,/ M %(kf)s—(k&—u,w_g))
PS(M?k) - |HS| Z Y §/T D’Y(NS) e . (160)

YEHS

When S is the principal open dense stratum S,,4; the map Pg is

> er 7kar# L (k2e—(k
Prax(p, k) = 7M—/ Todd(M)ezr F2e—ké—nwe)) (1 61)
|| Me '
ey, VTR .
The term WlﬂfﬂiMl is equal to 1 when (u,k) belongs to the lattice

Z(M,L) (see (1.47)), and is equal to 0 in the other cases. From (1.60) we
dim(S/T)

5 , and for

see that Pg is a periodic polynomial of degree less than
S = Siaz we have on Z(M, L)
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— — . we))d
Praa(p, k) = (27lr)d /ME (k2 <kfa o we)) +0(d—1) (1.62)

where d = % and O(d — 1) denotes a polynomial of degree less than
d — 1. If we use the polynomial DH, defined in Section 1.2 we can conclude
our computations with the following

P_rojaosition 1.3.22 The map m, is a periodic polynomial of degree d =
dlﬂng supported on Z(M,L). For (u, k) € Z(M, L) we have

k4 I
me(p, k) = |FM|(2T)<1DHC(E

where O(d — 1) means a periodic polynomial of degree less than d — 1.

) + O(d—1),

1.3.5 Wall-crossing formulas for the m,

Let ¢y and ¢_ be two adjacent connected component of regular values of &
separated by an hyperplane A. The aim of this section is to compute the
periodic polynomial m., —m._.

We consider two points £+ € ¢4 such that £ = %(§+ + &_) belongs to the
relative interior of ©y Nt_ in A. We suppose furthermore that ¢+ — £~ is
orthogonal to A. Using the identification t* ~ t given by the scalar product
the vector v = %(@r — &), seen as a vector of ta, belongs* to R>3. We
noticed in Section 1.2.4 that for all m € &~1(£) the stabilizer t,, is either
equal to ta or to {0}. Then there exists an open T-invariant neighborhood
U of @71(¢) in M such that for all m € U either t,, := {0}, or t,, = ty and
P(m) € A.

One see easily that the couple (U, &) is good and the second point of
Proposition 1.3.10 tells us that

RRj (M, ~) = RRy; (M, —) = RE;} (M, -) (1.63)
when &4 are close enough to &. Since U N Cr(]| @ — € ||?) = 7 1(€) we have
RRE{(]\J7 —) = RRS(M, —). If &1 are close enough to & we have

UNCr(| @ - &4 7)) =271 (E) [ JMT N a7 (6). (1.64)

The former decomposition is due to (1.39) and to the fact that the stabiliser
of t on U are either equal to ta or to {0}. Notice that £ +~v =&y +v =&
The decomposition (1.64) gives

RRf (M, ~) = RR§* (M, —) + RR (M, —), (1.65)

where RR,{[ (M, —) (resp. RRg_t/ (M, —)) is the Riemann-Roch character lo-
calized on M7 N®~1(&) by the vector field H — (- )as (resp. H— (€4 )ar). Now
(1.63) and (1.65) prove the following

4 3 is the primitive vector of ta N A pointing out of ¢_
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Proposition 1.3.23 If &1 are close enough to A, we have
RR§H(M,—) — RRg™ (M, —) = RR$- (M, —) — RR* (M, —).

We know from Proposition 1.3.18 that m, (s, k) is equal to the p-
multiplicity of T in RR5* (M, L®*). Hence me, (p, k) — me_(p, k) is equal
to the g-multiplicity of T in RRS™ (M, L®%) — RR* (M, L®%).

Let N be the normal bundle of MT2 in M, and let [/\('Cm ;; be the

polarized inverses of A& N (see Proposition 1.3.13). Since £ = {4 —y = - +7
and v € R”%4, the localization (1.44) gives

RRS (M, L) = 37 RR§ (2, L%% 7 @ [neNZ] '),

zZeF
RRE (M, L%%) = 3" RR§ (7 ( ,L®*|; @ [neNZ] :;) .
ZeF

Finally mc, (u, k) —mc_(p, k) = 3,7 Az(p, k) where Az(pu, k) is equal
to the p-multiplicity of T in

RR§ (Z, L%, ® [ASNZ] :;) — RR§ (Z, L% ® [A&TZ];l) (1.66)

Let 5 € t5, N A* which is defined by the relation (¢, 5) = 2, so that
Af, = Z3'. Concerning the Ta-weights we have

1. The Ta-weight on L®*|5 is equal to kra/3'.
2. The Ta-weight on det(NJr 0 is +s5£3" where s£ € N is the absolute
value of the trace of 5~Lz on N~ 7,

3. The Ta-weights on S>0(]\/'Z+ ) (resp. S>O(NZ+’7’8)) are of the form pg’
with p > 0 (resp. p < 0).

Now Lemma 1.3.14 shows that if a weight p occurs in RRE (Z, L®%|; ® [/\fCNZ ;1)

we have i*(u) = (kra + s} + p)3’ with p > 0, and then
(1, B)
2m

—kra > s}

Similarly, if a weight p occurs in RRS (Z, L%, ® [/\('C]\TZ] :;) we have

(. B)

—kra < —s,.
2T A= 4

Finally, Az(u, k) = 0 when —s, < % —kra < s%. We have proved the
following
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Theorem 1.3.24 Let st = infy s% where the infimum is taken over the
connected components Z of MT2 for which ¢y Nc_ C ®(Z). For every
(u, k) € A* X Z, we have m, (pu, k) = mc_(p, k) if

< Wb

< 7 —kra < st. (167)

Sometimes the inequalities (1.67) are optimal.

Proposition 1.3.25 e Consider the connected components Z € F for which
sJZr is minimal. Among them consider the subset F where dim(Z) is mazimal.
If the integers rkc(N;’ﬂ), Z € F4 have the same parity, then the condition
“% — kra < st 7 is optimal in (1.67).

o In the same way, consider the connected components Z € F for which s,
is minimal. Among them consider the subset F_ where dim(Z) is mazimal.
If the integers rkC(N;’ﬁ), Z € F4 have the same parity, then the condition

“—sT < % —kra” is optimal in (1.67).

Remark 1.3.26 The last Proposition applies when there is a unique con-
nected component Z of M4 for which ©y Nt_ C &(Z).

Proof. We consider only the first point since the other point works similarly.
We restrict our attention to the couples (u, k) such that <‘;—ﬂm —kra = st.
They are of the form

p=(kra+s7)8 + pe (1.68)
with ps € A7, . Let us denote D(u2,k) the restriction of mc, (p, k) —
m._(u, k) to the set of couples (i, k) parametrized by (1.68). We want to
prove that D(us, k) is not identically equal to zero.

From the previous discussion one knows that
D(:u'27k) = Z (_1)rkC(N-ZFﬁ)DZ(:U/2=k)7 (169)
Z, s"Z':s‘*'

where Dz (s, k) is the p-multiplicity of T in
RR§ (Z, L%, ® det(N;ﬁ)) .

Let us make few remarks concerning the maps RR5(Z,—) : Kp(Z) —
R~°°(T). Since Ta acts trivially on Z, the decomposition T' = T/Ta X Ta
induces a canonical isomorphism Kr(Z) ~ Kg/7,(Z) ® R(Ta): i.e. every
T-equivariant vector bundle F — Z decomposes as

E = Z EM ®C,,. (1.70)
1 €L’

Here each E# is a T'/Ta-equivariant vector bundle on Z and C,, denotes the
one dimensional T'a-representation associated to u; € A, .



28 Paul-Emile PARADAN

For every T-equivariant vector bundle E — Z, the character RRS(Z, E)
is equal to the T-equivariant index of the T-transversally elliptic symbol
Thome (V) ® p*(E), where V is a small neighborhood of @~(£) N Z in Z (see
Definition 1.3.9). Since the T'a action is trivial on Z the symbol Thom (V) is
also T'/T A transversally elliptic and the action of T is trivial on it. We have
then

RR§(Z,E)= Y RR{(Z,E")®C,,. (1.71)
1 €L’
where the character RRE(Z, Ert)y € R°(T/TA) is computed by Theorem

1.46 applied to the Hamiltonian T'/Ta-manifold Z. For every T-vector bundle

E — Z we define the familly &2, u1 € Zf', po € Afyy,, of orbifold vector

bundles over the reduced space Zg = ZN&~1(¢)/(T/Ta) by
551,;@ = (E“l X (C—M2) |¢*1(§)OZ/(T/TA)~ (1.72)

Finally (1.46) and (1.71) give the following

RR§(Z,E)= Y Y  RR(Z,&M) @ C, ® C,

" ~~
7B pa€A
LELP p2 €AY, CR(Ta) €R(T/Ta)

> RR(Z, €M) C, . (1.73)

pneA*

In (1.73) we write p € A* as a sum of puy € ZF with uy € A7), so that
C, € R(T) is equal to the tensor product C,, ® C,,.

When the vector bundle E — Z is the line bundle L := L&*| ;@ det(N, ")
we have L = L% @ C;p for j = kra + s*. Finally, we have

Dz (us, k) = RR(Z¢, L2+,
Now we use the results of Section 1.3.4 to study the map
Dy : Ay, x L — L. (1.74)

Let I'y; C T/Ta be the generic stabiliser of T/TA on a component Z. Let
az,0z € A7, such that the action of Iz on the fibers of Lz and det(N7)

are respectively t — t*Z and t — t%7. After Remark 1.3.17 we know that the
map (1.74) is supported on the subset

Eg = {(u2, k) € Afy, X Z| tF°7 07T — 1,V t € Iy}, (1.75)

The only difference with the computations done in Section 1.3.4 is the line
bundle det(N;”H ). But this do not change the global behaviour of the map
(1.74) on Zz: it is a periodic polynomial map of degree dz = dim(Z¢)/2 and
we have
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1 / (k“ozg - <k€ - ,L"Qawzg»dz
(27-‘-)(12 =z dz!

Dz(p2, k) = +0(dz —1) (1.76)
for all (ug, k) € Zz.

Suppose now that all the signs (—1) coincide when Z € F,. From
(1.69), we get that D(usa, k) does not vanish for large values of (usg, k). O

rke(N£7)

1.4 Multiplicities of group representations

Let K be a semi-simple compact Lie group with Lie algebra ¢, and let T be
a maximal torus in K with Lie algebra t. In this section we denote (—, —)
the scalar product on ¢ induced by the Killing form, and we keep the same
notation for the induced scalar products on t* and on t.

Let A* C t* be the weight lattice, and let S8 C A* be the set of roots
for the action of T" on ¢ ® C: we denote A} the sub-lattice of A* generated
by . We choose a system of positive roots R C 2R, and we denote t’ the
corresponding Weyl chamber.

The irreducible representations of K are parametrized by the set A% =
A*Nth. For A € A% we denote by V) the irreducible representation of K with
heighest weight . Here we are interested in the T-multiplicities in V}|r. Let
m: A* x A} — N be the map defined by

Valr =) m(u,\) Cy (1.77)

HEAN*
for every A € A%

Definition 1.4.1 For every A € A7, we denote m? : A* x 279 = N the map
defined by m*(u, k) = m(u, kX). So m*(u, k) is equal to the multiplicity of C,,
m Vk)\‘T-

1.4.1 Borel-Weil Theorem

First we recall the realization of the K-representation V) given by the Borel-
Weil Theorem. The coadjoint orbit K - is equipped with the Kirillov-Kostant-
Souriau symplectic form §2 which is defined by:

QXnr, Yar)m = (m, [X,Y]), for meK-A and X,Y et (L78)

The action of K on K - A is Hamiltonian with moment map K - A — £* equal
to the inclusion. The action of T on K - A is also Hamiltonian with moment
map @ : K-\ — t* equal to the composition of the inclusion K - A — £* with
the projection map #* — t*.

There exists a unique K-invariant complex structure on K - A compatible
with the symplectic form. In this situation the Kostant-Souriau prequantum
line bundle over K - \ is
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(C[)\] =K XK (CA.

Here we use the canonical identification K/Ky ~ K-\, [k] — k- X, where K
is the stabilizer of X\ in K. The line bundle Cy} over the complex manifold
K-\ carries a canonical holomorphic structure. If one work with the symplectic

form k{2, for an integer k > 1, the corresponding Kostant-Souriau prequantum

line bundle is C%\? =K XK (Ck)\ = (C[k)\].

Let HI(K - A, CE’\T ) be gth cohomology group of the sheaf of holomorphic
section of C%ﬁ“ over K - \. The Borel-Weil Theorem tells us that
HO(K - A\, CRp) = Vi (1.79)
and
HI(K -AC5)) =0 for ¢>1. (1.80)

If RRE(K -\, —) : Kg(K-)\) — R(K) is the K-equivariant Riemann-Roch
character defined by the compatible complex structure, (1.79) and (1.80) give

RRM(K -\ CF) = Vi in R(K). (1.81)

Now if we denote by RR(K -\, —) : Ky (K - \) — R(T) the T-equivariant
Riemann-Roch character, we have Vi\|r = RR(K - A, (C‘[g)’jC ). The multiplicity
fonction m* : A7 x N* — N is characterized by the relation

RR(K - A\, CR)) = > m*u,k) Cy, in R(T), (1.82)
peEAN*

for k> 1.
The sub-lattice A3, of A* generated by the roots is characterized by the
(finite) center Z(K) of K as follows. For o € A* we have

NeAy < th =1, Vtec Z(K), (1.83)

and for t € T we have t € Z(K) <= t* =1, VA € A};. The finite abelian
group A* /A%, is then naturally identified with the dual of Z(K'). We have the
following well-known fact.

Lemma 1.4.2 The mutiplicity map m> is supported on the sub-lattice = =
{(u, k) € A* X Z | — kX € AL}

Proof. The center Z(K) of K acts trivially on K -\ and with the character

t € Z(K) — t** on the fibers of the line bundle CE’\T. Since m* (i, k) is equal

to the dimension of the T-invariant subspace of RR(K - A, (C%T) ® C_,, we
have following Lemma 1.3.17 that m*(y, k) # 0 only if t*~** = 1, vVt € Z(K).
We conclude then with (1.83). O

In this section we study the periodic polynomials
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m}: A* x Z — 7. (1.84)

defined for every connected component ¢ C t* of regular values of the moment
map @ : K -\ — t*. We know that m} is also supported on the sub-lattice =
(see Section 1.3.3).

In order to apply Theorem 1.3.24 to the periodic polynomials m?, we have
to compute the critical values of the moment map @ : K - A — t*.

1.4.2 Critical points of & : K - A — t*

Let {a1, -, aqimT} be the simple roots of the set J3. of positive weights.
The fundamental weights wy,1 < k < dim T are defined by the conditions
2(7"3;) =5,; forall 1<i,j<dimT. (1.85)
Q;

Recall that the fundamental weights generate the lattice AZlg of algebraic
integral element of t*. We have A* C A}, , and equality holds only if K is
simply-connected.

Let W be the Weyl group of (K,T). We will look at

G={o-w|oceW, 1<i<dimT}. (1.86)

as a subset of t modulo the identification t ~ t* given by the scalar product.
The singular points of @ have the following nice description. This result first
appeared in Heckman’s Thesis [22].

Proposition 1.4.3 ([22, 17]) The critical points of & : K - X — t* is the
union of the fived points set (K - \)?, 3 € G. For each 3 € G we have

(K-N7 =) K%-0x,
ceW

where KP is the stabilizer subgroup of B in K.

The fixed points of the action of T on K - A\ characterize the image of @
completely: @(K - \) is the convex polytope

conv(W - X) := convex hull of W - \. (1.87)

This result was first proved by Kostant [25]. This is particular case of the
convexity theorem of Atiyah, Guillemin and Sternberg [2, 18]. From Proposi-
tion 1.4.3, we know that the singular values of @ : K - A — t* are the convex
polytopes

conv(W?-a)), BeEF, o€ WWP, (1.88)

where W# is the stabilizer® of 3 in W, i.e. W7 is the Weyl group of (K%, T).
Each convex polytope conv(W# - g)\) lies in the hyperplane

5 When 3 = w;, we denote W* the stabilizer of w; in W.
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Apo={ et [ (-0 B) =0} (1.89)

We will use the following

Lemma 1.4.4 ¢ K% .o\ = KB .¢')\ if and only if o\ € WBa'\,
e conv(WP - o)) Neconv(WP - o/ N) # 0 if and only if Ag, = Ag o

Proof. The first point follows from the fact that the intersection of a coadjoint
orbit K7 - p, p € t* with t* is equal to W7 - p.

It is sufficient to prove the second point for 8 = w;. The half-line R>%w;
is an edge of the Weyl chamber. It is well known that the following vector
subspaces coincides:

e the line Rw;,
e the vector sub-space of K®i-invariant element of £*,
e the vector sub-space of W'-invariant element of t*.

Each convex polytope conv(W?* - o \) contains the Wi-invariant element
1
_— T-0A
TeW?

which is equal to the intersection of the hyperplane Ag, with the line Reo;.
Hence, if Ag, = Ag,s, the intersection conv(W? - aA) N conv(W? - o'))
contains a W'-invariant element, and then is not empty.

Definition 1.4.5 An element A € A% is generic if for every fundamental root
w; and any 0,0’ € W, we have

Apo # Apo (1.90)

each times the submanifolds KP - oA and KP - o'\ are not equal.

This condition of genericity imposes that (o), ;) # (0'A\, @;) when o\ ¢
Wiag'\.

Example 1.4.6 Consider the case of SU(4). Take the coadjoint orbit trough
A= (2,1,-1,-2), and 0,0’ such that oA = (2,-2,1,—1) and o'\ =
(1,—1,2,—2). Take the fundamental weight toy = %(1, 1,—1,-1). In this case
X is not “generic” since oA ¢ Wic' X\ but (o), w2) = 0 = (o', w2).

1.4.3 Main theorems

Let ¢4 and ¢ be two adjacent connected components of regular values of @ :
K - A — t*. The intersection ¢; Nty is contained in an hyperplane orthogonal
to B e F.
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Definition 1.4.7 Let A(cy,c_) be the set of all [7] € W/WPF such that the
conver polytope conv(W5 - a\) contains ¢ Nty.

The following
U &%-ox
[U]EA(C+,C,)

is the union of the connected components of (K - A\)? that intersect ®1(¢&)
when £ € cx Ny

Remark 1.4.8 When \ is a regular element of t*, all polytopes conv(W?-a \)
are of codimension 1. When X is “generic” (see Def. 1.4.5), the set A(cq,c_)
is reduced to one element.

The multiplicity function m* : A* x Z>° — N is invariant under the
action of the Weyl group: m* (o, k) = m*(u, k) for every o € W. The set of
connected component of regular values of @ is also invariant under the action
of W.

So, for the rest of this section we restrict our attention to case where ¢
and ¢_ are separated by an hyperplane orthogonal to a fundamental weight
[ = w@;: the vector w; is pointing out of ¢_. We denote K’ the stabilizer of
w; in K.

Consider [o] € A(cy,c_) and let K- o\ be the corresponding connected
component of (K - \)?. The tangent space of K - A at o) is the following
K°*module

ToA(K- A= >t (1.91)

(a,cX)>0

where £, C £ ® C is the one-dimensional complex subspace associated to the
weight o € . In the same way, the tangent space of K’ - o) at o) is the
KN K°*-module defined by

ToA(K'-oX) = >t (1.92)
(a,0A)>0
(a,0;)=0

Finally the normal bundle of K- o\ ~ K'/(K'N K°*) in K - X is N, ; =
K' X gingor Noi where
Nei= Y (1.93)

(a,o0X)>0

(a)wi)7é0
For an element p € t*, we have y = E?;?T[u}k ay where

(g, 1)
g |?

eR.

e =2

Note that [u]r € Z when p belongs to the lattice Af;.
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Definition 1.4.9 For [o] € A(c4,c_) we define the positive integers

sii::t Z [a];.

(a,0A\)>0
+(a,w;)>0

Note that 5:1 + s, ; is larger than half of the codimension of Ki.-o)\in K-\

Theorem 1.4.10 Let ¢ and c_ be two adjacent connected component of reg-
ular values of @ : K - A — t* separated by an hyperplane orthogonal to a
fundamental weight wo;: we denote r; the commum value [€]; for all € in this
hyperplane. Let mi‘i : A* X Z — 7 be the corresponding periodic polynomials
which are supported on the sub-lattice =y := {(u, k) | € kA + AL}
For all (u, k) € =\, we have m;\+(u,k) = m) (u,k) when the integer
[u]i — kr; satisfies
—s; < [pli — kri < si (1.94)

(2

Here the positive integer sii are defined by

+ . +
= f . 1.95
BT leAles ) o (1.95)
When A(cy,c_) is reduced to one element o, for example zf/\ is “generic”,
the integer s; +s; is larger than half of the codimension of K'- o) in K - \.

Another way to express the result of Theorem 1.4.10 is to introduce like
in [36] the convex polytope

O(ey,co) = ﬂ Z 0,1[a | . (1.96)

oc€A(cq,c_) \(a,0X)>0

Let A be the hyperplane which separates ¢ and c¢_. Equation (1.94) is
equivalent to saying that

md, (1, k) = m) (k) i pekA+O(es,c). (1.97)

Corollary 1.4.11 Let ¢ be a connected component of reqular values of @
which is bording a facet of the polytope ®(K - A) orthogonal to the funda-
mental weight w;: the facet is conv(W?* - o) for a unique o € W/W't. We
suppose that w; is pointing out of c. We denote r; the commum value [£]; for
all & in the facet. For all (p, k) € Ex, we have m (i, k) = 0 when the integer
()i — kr; satisfies

—s,; < [uli —krs < s}, (1.98)

o,
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Proof. Theorem 1.4.10 is a direct consequence of Theorem 1.3.24. The
main difference between them is the decomposition of the lattice support-
ing the periodic polynomials. In the former we use the decomposition A* =
Af, @ A7), associated to the choice of a subtorus T/TA. Here we use the
decomposition Ay = Zoy; @ Y5y, Zoy,. Note first that for (u,k) € =y, we
have u — oA € A} and then [ — o\|; = [u]; — kr; is an integer.

We start like after Proposition 1.3.23: my, (i, k) — m¢ (p, k) is equal to

the p-mutiplicity in ZoeA( ) A; — A} where

+
AF = RR§ (K oA CRy @ (NN ;;i) (1.99)

Here £ belongs to the relative interior of ¢ N ¢y, the line bundle (C‘f%c

. ) -1 I
is equal to K* X gingor Crox and [/\E:Na,i]iw corresponds to (—1)ec®ai)

times

K' X gingar (det(N;,) ® S*((Ngi ® C)F))

with
New= D
(ct,o0X)>0
+(a,w3)>0
and
(Noi @C)* = > ta.
(a,0N)#0
+(o,4)>0

Now we can apply Remark 1.3.17 with the subgroup H C T equal to the
center Z(K') of K': an element v € A* belong to 3, ; Zay, if and only if
tV=1forall t € Z(K").

The group Z(K*) acts trivially on the manifolds K* - o)\, and with the
characters associated to the weights

kod+ > a+4d with (5,) >0

(a,0X)>0
(a,z0;)>0

on the bundle (C%f ® [/\&Ng7i];, and with the characters associated to the
weights
ko) + Z a+d with (6,w;) <0

(a,o0X)>0
(a,m0;)<0

on the bundle (C‘[X;f ® [/\E:J\/U,i] :; Now the p-multiplicity in AF is not equal
to 0 only if

kox+ Y. a+d-p€d Zop with £(d,w) >0 (1.100)

(c,0X)>0 k};él
+(a,3)>0
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Condition (1.100) implies that [u]; > k[oN]; + s

o,

or [u]; < koA — s,

Finally we have prove that mi‘+ (1, k) =m) (p, k) if ’
+

o,

—s_; < [uli —k[oA]; < s

0,1

for all 0 € A(cq,c_). O

1.4.4 The case of SU(n)

Let T be the maximal torus of SU(n) consisting of the diagonal matrices. The
dual t* can be identified with the subspace 1 + - - -+ x, = 0 of R™. The roots
are R = {e; —e; |1 <i# j <n} and we will choose the positives ones to be
Rt = {e; —¢; |1 <i < j<n}. The simple roots are then a; = e; — €;41, for
1 <i<n-—1, and for these simple roots, the fundamental weights are

1
szg(n_kan_ka"'an_ka_kv_kf"v_k)? I<k<n-1 (1101)

k times n—k times

Consider now the coadjoint orbit Oy for A € t*. Let & : O, — t* the
moment map associated to the Hamiltonian action of T on O). The center of
SU(n), that we denote Z,, corresponds to the set of matrices zI with 2™ = 1.
Recall the following well-known fact.

Lemma 1.4.12 Let £ be a regular value of ® : Oy — t*. Then for every
m € &71(€) the stabilizer subgroup Ty, := {t € T |t - m = m} is equal to Z,.

Proof. Since & is a regular value, we know that T, is finite for every
m € ®~1(¢). The dual of the Lie algebra su(n) decomposes as su(n)* = t* @
> aem+ su(n)k where su(n)f ~ C_, as T-module. For m € ¢~1(£), we have
m=mo -+ cmt Ma With mq € su(n)?, and then T, = Ny, 20 ker(t — t%).
So the lattice A%, generated by the set {a € BT |m, # 0} is a subgroup of

A%, with AF, /A%, finite. We have to show that A}, = Af,. For this purpose we
introduce the following equivalence relation on {1,...,n}:

i~j<=e —e; €A

Suppose that {1,...,n}/ ~ is not reduced to a point: let C; and C5 be two
distinct equivalent classes and let 8 = (01,.. ., §,) be the element of t* defined
by: 3; = ﬁ itieCy, B = IE—;I if i € Cs, and §; = 0 in the other cases. We
see then that (3, ) = 0 for all @ € A%, : it is in contradiction with the fact that
A% /A, is finite. We have proved that e; —e; € A%, forall4,5 € {1,...,n}. O

We are in the particularly nice situation where the symplectic reduction
(Ox)e = @7 1(€)/T is a smooth manifold for any regular value &.

Suppose now that A is a positive weight, and let ¢ a connected component
of regular values of @ : Oy — t*. We know that m? : A* xZ — Z is supported
on the sub-lattice =y := {(u, k) | p € kXA + AR}
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Corollary 1.4.13 The map m} : =\ — Z is a polynomial of degree
w — dy, where dy is the number of positive roots orthogonal to ..
Proof. Take £ € ¢. Following Proposition 1.3.18, the periodic-polynomial
m? is defined by m (i1, k) = RR((O,\)g,Egu) for all (1, k) € Zx. Here (Oy)e =
&~ 1(¢)/T is a smooth manifold, and the line bundle E’gw = (L% |g-1() ®
C_,)/T is also smooth since the center Z, acts trivially on L®*|g-1) ®

C_,.. Now the Atiyah-Singer integral formula for the Riemann-Roch number
dim(Ox)e _ dim Oy
2 =7 2

RR((Oy)e, Eé,u) shows that m? is a polynomial of degree
(1) = oD g

Now we rewrite Theorem 1.4.10 for the group SU(n). Let A = (A\; >
<+« > An) be a positive weight and let ¢y and ¢ be two adjacent connected
components of regular values of @ : O, — t* separated by an hyperplane
orthogonal to a fundamental weight w;: the vector w; is pointing out of ¢_,
and let (w;,&) — r; = 0 be the equation of this hyperplane. We consider the
linear map

Q(&,t) = (i, &) — tri.

The hyperplane {Q = 0} C t* x R separates Cone(cy) and Cone(c_).

The conditions (e — e;,0A) > 0 and (e — e, ;) > 0 are respectively
equivalent to A,(x) > A,y and k < i < [. For SU(n), the number [a]; is
equal to 0,1 or —1 for any roots a and any ¢ = 1,--- ;n — 1. Hence for every
o € A(cy,c_), the integers 5;,1"53_,1‘ > 0 introduced in Definition (1.4.9) are
equal to

st =rke(NS) =#{k <i<l suchthat A, > Ae}, (1.102)

$y; =Tke(N, ;) = #{k <i <l suchthat A, < Aoy}, (1.103)

and the sum 5:,1‘ + s, is equal to half of the codimension of Kt oXin K - ),
that is s}, + s, = i(n — i) — dim(K7* /K" N K7*)/2.
Now we precise the results of [10].

Theorem 1.4.14 e The polynomial m} — m} : =\ — Z is divible by the

linear factors c+

where sli = inf[g}eA(uﬂc_) sz
e The linear factors (Q — s; ) and (Q — s;) do not divide m} — m;\+.

Proof. The first part is the translation of Theorem 1.4.10. We have just to

prove that the linear factors (Q —s; ) and (Q — s;7) do not divide m? — m;\+.

This point is a direct application of Proposition 1.3.25. The only fact we use

here is that rk(c(Nf,i) = sfz So the number rkC(NUi,i) is constant for all

o € A(et, c_) for which Sai,i =5t O
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We rewrite now Theorem 1.4.14 in the particular case where A(cy,c_)
contains just one element: it happens when A is a “generic” positive weight
(see Definition 1.4.5), or when ¢4 does not intersect ¢(O,). Here a positive
weight A = (A > -+- > \,,) is “generic” if for every couple of permutations
0,0’ and any k=1,--- ,n — 1, we have

k k
Z Ao(i) 7 Z Ao (i)
=1 =1

when (Ag(1), s Aon)) & Gk X Gpnk(Aor(1), 5 Aor(n))-

Corollary 1.4.15 Let A\ be a regular weight. Let ¢y and c_ be two adjacent
connected components of regular values of ® : Oy — t* and suppose that
A(cy,c_) contains just one element o. Then the polynomial m} — m;\+ :

E\ — Z is dwible by the i(n — i) linear factors

where st = sii are defined by (1.102) and (1.103). Moreover the linear factors
(Q —s7) and (Q — ;) do not divide m? — mi‘+.

1.5 Vector partition functions

Let T be a torus with Lie algebra t and let A* C t* be the weight lattice. Let
R ={aq,...,aq} be a subset of not necessarily distinct elements of A* which
are in an open halfspace of t*. We associate with the collection R a function

NRIA*—>N

called the vector partition function associated to R. By definition, for a weight
i, the value Ng(p) is the number of solutions of the equation

d
S kjay=p, ki €Z7° j=1,....d (1.104)

j=1

Let C(R) C t* be the closed convex cone generated by the elements of
R, and denote by A}, C A* the sublattice generated by R. Obviously, Nr ()
vanishes if 11 does not belong to C'(R) N A%,.

Suppose now that R generates the vector space t*. Following [36], we will
call a vector singular with respect to R if it is in a cone C(v) generated
by a subset ¥ C R of cardinality strictly less than dim 7. The connected
components of t*\ {singular vectors} are called conic chambers. The periodic
polynomial behavior of Nr on closures of conic chambers of the cone C(R)
is proved in [35]. We have the following refinement due to Szenes and Vergne
[36]. Let us introduce the convex polytope
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d
O(R) = > [0, 1. (1.105)

j=1

We remark that ¢ — O(R) is a neighborhood of ¢ for any conic chamber ¢ of
the cone C'(R). We have the following qualitative result.

Theorem 1.5.1 ([36]) Let ¢ be a conic chamber of the cone C(R). There
exists a periodic polynomial P, on A* such that for each p € ¢ — O(R), we
have

Npg(p) = Pe(p)-

In Section 1.5.4 we will give another proof of Theorem 1.5.1.

Let ¢4+ C t* be two adjacent conic chambers separated by the hyperplane
A={fet"|(£B) =0} Here § € tischosensothat cx C {€ €t| £(£,6) >
0}. The aim of this Section is to give a wall-crossing formula for the periodic
polynomial P, — P._.

Note that the vector space A is generated by R N A. We polarize the
elements of R that are outside A. We define

R ={e;ja; | (aj,B) # 0 and €; = sign (o, 8)}, (1.106)
t= > a, (1.107)
+(a;,8)>0
and
= =4{j | +{a;,8) >0} (1.108)

We now look at the vector space A equipped with the subset RN A C
A* N A which lie enterely in an open halfspace: let Ngna : A* N A — N be
the corresponding vector partition function. It is easy to see that ¢ Nc_ is
contained in the closure of a conic chamber ¢/ C A relative to RNA. Following
Proposition 1.5.1 there exists a periodic polynomial P, on A* N A such that
for each p € ¢/ N A*, we have

Npna(y) = Po (7).

Let Nr : A* — N be the vector partition function associated to the
polarized set of weight R’ (see (1.106)). The main result of this Section is the
following

Theorem 1.5.2 The periodic polynomial P., — P._ : A* — 7 satisfies

P (u)=P_ ()= >, Dp—1Pe(y), ned, (1.109)
YEA*NA

where D : A* — 7 is defined by

D(u) = (1) Nr/(u+6") = (=1)" Ngo(—p—5%).
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The proof of Theorem 1.5.2 will be given in Section 1.5.5.

Corollary 1.5.3 P, (;) = P._(p) for all the weights p € A* satisfying the
condition

(67, 8) < (1, B) < —(67, ).
The former ineqalities are optimal since

(Pur - Pcf) (757 +7> = (71)7” Pc’(’Y)

and
n

(Pc+ - Pc_) (*6+ +’Y) = (71)1+T
for ally € A*N A.

P (7)

Proof. In (1.109), the term D(u — )P/ () does not vanish only if —~ €
0~ +C(R) or —(pt— ) € 67 + C(R’) for some v € C(RN A). These two
conditions impose respectively that (u,8) > —(67,8) and (i, 3) < —{(6T,8).
If one take y = —0~ + with vy € A*N A, (1.109) becomes (P, — P._)(—0~ +
Y) =2 eanaD(=0" +v—~")Pu(y) with

D(=6" +7 =)= (-1)" Np/(y—7) = (=17 Np(6~ = 8" —y+7).

Since the cone C(R’) intersects A only at {0}, Nr/(y — ') = 0if v # 4.
Since (6~ — 6, 8) < 0 we always have Ng/(6~ — " — v ++') = 0. We get
finally that (P, —P._)(—0~ +~) = (=1)" Pu(y). One can show in the same
way that (P, — P._)(—=0% +7) = —(=1)" Pu(y). O

1.5.1 Quantization of C?¢

We consider the complex vector space C? equipped with the canonical sym-
plectic form 2 = % Z?zl dz; N\ dzj. The standard complex struture J on c
is compatible with (2. Let 1" be a torus, let o; € t*, 5 = 1,...,d be weights of
T, and let T acts on C¢ as

t-(z1,..,20) = (%21, , 17 %2g). (1.110)

The action of T' preserve the symplectic form {2 and the moment map associ-

ated with this action is }

&(z) = §Z|zj\2aj. (1.111)

The pre-quantization data (L, (,),V) on the Hamiltonian T-manifold
(C4, 02, ®) is a trivial line bundle L with a trivial action of T equipped with
.
the Hermitian structure (s,s’), = e =55 and the Hermitian connexion
V =d—0 where § = 1 ¢ | z;dz;.
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The quantization of the Hamiltonian T-manifold (C¢, £2), that we denote

QT (C?), is the Bargman space of entire holomorphic functions on C¢ which
. . . —1=1%
are £2 integrable with respect to the Gaussian measure e~z — 2%

We suppose now that the set of weights R = {«1,...,aq} is polarized by
7 € t, which means that (a;,n) > 0 for all j. The T-representation QT (C?) is
then admissible and we have the following equality in R~°(T):

Q"(C") = Y Na(u)Cy, (1.112)

HEAN*

where Ng : A* — N is the vector partition function associated to R. In other
words, the generalized character of QT (CY%) coincides with the generalized
character of the symmetric algebra S®(C?), where C? means C? with the
opposite complex structure.

For the remaining part of Section 1.5, we assume that the set of weights
R = {a1,...,a4} is polarized, and generates the vector space t*. The first
assumption is equivalent to the fact that the moment map @ : C¢ — t* is
proper, and the second assumption is equivalent to the fact that the generic
stabiliser of 7" on C? is finite. Notice that the vectors of t* which are singular
with respect to R correspond to the singular values of ®.

In the next section we will show that Q7(C?), viewed as an element of
R~°°(T), can be realized as the index of transversally elliptic symbols on
C?. After we will apply the techniques developped in Section 1.3. The main
difference here is that we work with the non-compact manifold C?.

1.5.2 Transversally elliptic symbols on C¢
Let p : TC? — C% be the canonical projection. We consider the Thom symbol
Thom(C%) € I' (TC?, hom(p* (AZ"TC?), p* (A4 TCH)))

associated to the standard Hermitian structure on C%. Obviously the symbol
Thom(C?) is not elliptic since its characteristic set is equal to the zero section
in TC? (hence is not compact).

Now we deform the symbol Thom(C?) in order to obtain transversally
elliptic symbols. Since C? can be realized as an open subset of a compact
T-manifold we have a well defined index map

Indexty : K (TrC%) — R™°(T).
Definition 1.5.4 For any n € t, we define the symbol Thom" (C%) by
Thom"(C%)(z,v) = Thom(C?)(z,v — nca(2)), (z,v) € TCY,

where nea is the vector field on C* generated by 7.



42 Paul-Emile PARADAN

The symbols Thom”(C?%) were studied in [32]. It is easy to see that
Thom"(C?) is tranversally elliptic if and only if the vector subspace (C¢)"
is reduced to {0}, i.e. if (a;,m) # 0 for all j = 1,...,d. We prove in Proposi-
tion 5.4. of [32] that

Indexga (Thom”(C?)) = S*(C?) in R™°(T), (1.113)

when (a;,n) >0forall j=1,...,d.

In order to compute the multiplicities Nz(u) of QT (C?) we introduce the
following tranversally elliptic symbols. Take a scalar product b(-,-) on t*, and
denote by ¢ — £, t* ~ t the induced isomorphism. For each ¢ € t*, the
Hamiltonian vector field of the function '||® — £||7 is the vector field

2 (@) - ) _(2):

(Cd
that we denote H® — fé’:d.

Definition 1.5.5 For any £ € t*, and any scalar product b(-,-) on t*, we
define the symbol Thome ;,(C?) by

Thomg ;,(C%)(2,v) = Thom(C%)(z,v — (H® — €2.)(2)), (2,v) € TC™

Let Char(Thomg ;(C?)) € TC? be the characterictic set of Thomg ,(C?).
We know that Char(Thomg ;(C%)) N T7C? is equal to the critical set Cr(||® —
€||2) of the function ||@ — £||2 : C? — R (see Section 1.3.2). A straightforward
computation gives that z € Cr(||® — &||?) if and only if

b(P(z) — & )z, =0 forall j=1,...,d (1.114)

The former relations implies in particular that b(®(z)—&, d(z)) = 3 > b(P(2)—
&, ;) |zj|* = 0. Hence ||®(z2)||? = b(®(2), &) which implies

12(2) 1o < [1€]l5- (L.115)

Take now 7 € t such that (a;,m) > 0 for all j, and let 7, € t* such that
(nb)b = n. We have then

Collzl|* < ((2), 1) = b(P(2), 1) < [|D(2)llo |5 le (1.116)

where C,, = 1inf;(a;,n), and z — [|z||* is the usual hermitian form on C%.
With (1.114) and (1.116) we get the following

Lemma 1.5.6 The critical set Cr(||® — £||2) C C? is contained in the ball of
radius
€115 ll70 1
c,

where 1 € t is such that C,, = 5 inf; (o, n) > 0.
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We have then proved that the symbols Thomg ,(CY) are transversally el-
liptic.

Proposition 1.5.7 The class of the transversally elliptic symbol Thomg’b((Cd)
in K7 (TrC%) does not depend of the data €,b, and is equal to the class defined
by Thom"(C?) where n € t is chosen so that {a,n) >0 for all j.

Proof. After Lemma 1.5.6, we know that for any scalar product b(-,-) on
t*, the characteristic set of Thomg,(C?) intersects T7C? at {0}. If by and
by are two scalar products on t* we consider the family b, = tby + (1 —
t)by, 0 < t < 1, of scalar products on t*. Hence Thomg, (C%), t € [0,1],
defines an homotopy of transversally elliptic symbols. We have proved that
Thomyg p, (C¢) = Thomg p, (C?) in K7(T7C?) for any £ € t*.

Fix now the scalar product b and an element £ € t*. For any ¢ € [0, 1] the
characteristic set of Thorntgyb((Cd) intersects T7C? in the ball of radius

€115 ll7ol
c,

Hence Thomye ,(C%), t € [0,1], defines an homotopy of transversally elliptic
symbols: Thomg,b((Cd) = Thomg ;(C?%) in K7(T7C?). We have proved that
the class of the transversally elliptic symbol Thomg ;,(C?) in K7 (T7C?) does
not depend of the data &, b.

Since the weights «; lie enterely in an open halfspace of t*, there exists a
scalar product by (-,-) on t* for which we have

b+ (ai7 Oéj) >0
for all 4,5 = 1,...,d. Let H*+ be the Hamiltonian vector field of the function

_71||d5||§+, and let 7ca be the vector field on C? generated by 1 € t such that
(aj,m) > 0 for all j. A straightforward computation gives that

(H*(2),1ca(2)) > 0 (1.117)
for all non zero z € C%. Consider now the following familly of symbols on C?
ot(2,v) = Thom(C)(z,v — (tH* 4+ (1 — t)neca)(2)), (z,v) € TCL

so that o9 = Thom”(C?) and o1 = Thomg, (C?). The inequality (1.117)
shows that Char(o;)NT7C? = {0} for all t € [0, 1]. Hence o, t € [0, 1], defines
an homotopy of transversally elliptic symbols: Thom”(C¢) = Thomy, (C%)
in KT(TT(Cd). O

For the remaining part of this paper we fix a scalar product on t*, and
we consider the family of transversally elliptic symbols Thom¢(C?), £ € t* (to
simplify, we do not mention the scalar product in the notation). Proposition
1.5.7 and (1.113) imply the following

Proposition 1.5.8 For every ¢ € t*, QT (C?) is equal to the generalized char-
acter Indexta (Thome (CY)).
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Now we apply the techniques developped in Section 1.3 in order to compute
the multiplicities of Indexga (Thome (C?)).

1.5.3 Localization in a non-compact setting

Like in Section 1.3.2 we start with the

Definition 1.5.9 For any & € t* and any T-invariant relatively compact
open subset U C C% we define the symbol Thome (U) by the relation

Thomg (U)(2,v) := Thom(C?)(z,v — (H — &ca)(2))  (2,v) € TU.

The symbol Thomg (U) is transversally elliptic when Cr(|| #—¢ ||2)NoU = 0
(the couple (U, §) is called good) and we denote by

RRS,(C%) € R™>(T)

its index. Proposition 1.3.10 is still valid here. In particular, for a good couple
(U, §), we have RRZ (CY) = RRfl((Cd) if ¢ is close enough to &. Consider now
the decomposition

Cr(le—¢1) = |J @) ne (v +¢).

vEBe

Here B¢ C t* is finite set since C? has a finite number of stabilizer. Since
0 € (CYY and 2z — (®(z),~) is constant on (C%)?7, we have

(v+&7) =0 (1.118)
for all v € Be.

Definition 1.5.10 For any £ € t* and v € Be, we denote simply by
d —00
RRS(C%) € R™>(T)

the generalized character RRE,((Cd), where U is a T-invariant relatively com-
pact open neighborhood of (CH)Y N&~1(y 4 €) such that Cr(|| & — & ||2)NU =
(CH NSy +).

Since RRéd((Cd) is equal to QT(C?) (see Proposition 1.5.8), part a) of
Proposition 1.3.10 insures that we have the decomposition

Q"(C?) = > RR§(CY).
’)’GBg
Let ¢ C t* be a conic chamber of the cone C(R), and take £ in ¢. Then &

is a regular value of the moment map @ : C¢ — t* defined in (1.111). Let 2
be the symplectic structure on the orbifold (C%)¢ = &~1(¢)/T that is induced
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from 2. The orbifold (C%); is also equipped with a complez structure J¢ that
is induced from the standard complex structure on C?, in such a way that
the orbifold ((C%)¢, £2¢, J¢)) is a Kéhler orbifold. If € belongs to the lattice
A*, the reduced space ((Cd)g is the Kahler toric variety corresponding to the
polytope {s € (R=Z%)? | Y s;a; = &} of R For every pu € A we consider the
holomorphic orbifold line bundle

Ly = (@71(¢) x C_n)/T
on (C%)e.

Definition 1.5.11 The periodic polynomial P, : A* — 7Z associated to the
conic chamber ¢ is given by

Pe(p) = RR((Cd)fv E&M)? (1.119)

where the right hand side is the Riemann-Roch number associated to the holo-
morphic orbifold line bundle L ,,.

Another way to define the periodic polynomial P, is to consider the gen-
eralized character RR§(C?) for £ € c: here y = 0 parametrizes the component
D 1(¢) of Cr(|| & — £ ||?). Following (1.46) we have

RR§(CY) = Y P in  R™>°(T). (1.120)
peA*

After Lemma 1.3.16, we know that RRS/(Cd) = RRS(C%) when ¢,¢ are two
elements of ¢: hence the polynomial P, does not depend of the choice of £ in
c.

1.5.4 Proof of Theorem 1.5.1

Consider a weight p € (¢ — O(R)) N A* of the form p = & — >, t;a; with
& ecandt; €0,1]. We start with the decomposition

of(c?y= Y REY(CY).

7685/

Since Ng(u) and P.(u) are respectively the multiplicity of C, in Q7 (C?) and
in RRgl (C%), the proof will be complete if we show that the multiplicity of
C, in RRg/(Cd) is equal to zero when v # 0.

Consider a non-zero element v in Be. For the character RR?Y/ (C%) the
localization (1.44) gives

RRS/(C%) = RRS T ((C) [ACT (1.121)
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where N = E(ajﬁ#o C_q, corresponds to the normal bundle of (C%)” in C%.
The inverse [/\&m;1 is equal to (—1)'Cs(,) ® S*(NZ"7) where

S a

(aj,'\/)<0

Since 7 acts trivially on (C%)” all the weights u’ € A* that appear in
RRS 7 ((C4)7) satisfy (u/,~) = 0. Since the weights of NZ "7 are polarized by

v, we see from (1.121) that all the weights ' € A* that appear in RRs (C)
must satisfy

(1, 7) = (6(7),7)- (1.122)

Consider now the weight p = ¢ — . t;ja;. Since £ € c, the equality (1.118)
implies (¢/,7) < 0 and then

() =E N+ Y —tlap)— > tlap)<— D (a7).

<0 (ajv)>0 (aj,7)<0 (ej,7)<0

<0

So we have proved that (p,7) < (6(7),7), hence the multiplicity of C, in
RR%I (C9) is equal to zero. O

1.5.5 Proof of Theorem 1.5.2

Let ¢+ be two adjacent conic chambers separated by the hyperplane A = {¢ €
t* | (&, 8) = 0}. Here 3 is pointing out c_.

We consider two points {4+ € ¢4 such that £ = $(£7 +¢7) € A belongs to
the conic chanber ¢’. We suppose also that the orthogonal projection of £&4 on
A are equal to {. We know that P, (1) — P._(u) is equal to the g-mutiplicity

of RR5*(CY) — RRS™ (CY). Proposition 1.3.23 tells us that
RR§(C?) — RR§™(C?) = RRS-(C?) — RR* (CY),

where v € R>%3 is such that £_ + v = &, — v = £. The localization (1.44)
gives then

RRS-(C*) — RRE (C) = RR§((CH) ([ACT ; [A;CN[;). (1.123)

Let P, : A*N'A — Z be the periodic polynomial map which coincides
with the vector partition function Npna on ¢/ NA*. If we work with the vector
space (C%)” equipped with the hamiltonian action of T/Ta, (1.46) gives the
following equality in R~°°(T/Tx)

RR§((CH%) = Y P (1.124)

yeEA*NA
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A straightforward computation gives

(AN, = (-1 3 Ne(u+467)C, (1.125)
HEAN*
and ) N
[/\(EN] :g = (-1’ Z N—R'(M+5+)(CM7 (1.126)
pneA*

where r*, 6%, R" are defined in (1.106), (1.107) and (1.108). Since N_ /() =
Npr/(—p), the equations (1.124), (1.125) and (1.126) show that the right hand
side of (1.123) is equal to

Z Z D(p) Per (7)Cutry

peEA* yEATNA
with D(p) = (=1)" Ng/(u+67) — (=1)" Ng/(—p — 6T). Finally we have
proved that Pe, (1) — Pe_ (1) = >_ cpeqn D — ) Per(v). D
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