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Summary. In this article, we study the local invariants associated to the Hamilto-
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invariants attached to adjacent connected components of regular values of the mo-
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1.1 Introduction

Let (M,Ω) be a compact symplectic manifold with the Hamiltonian action
of a compact torus T , and moment map Φ : M → t

∗. Let us assume that the
action is effective. We are interested here in two global invariants:

1. the Duistermaat-Heckman measure DH(M) which is the pushforward by
Φ of the Liouville volume form,

2. the Riemann-Roch characters RR(M,L⊗k), k ≥ 1, which are virtual rep-
resentations of T . Here the data (M,Ω,Φ) is prequantized by a Kostant-
Souriau line bundle L.

Let Λ∗ ⊂ t
∗ be the weight lattice of T . For every couple (µ, k) ∈ Λ∗×Z

>0,
we denote by m(µ, k) ∈ Z the multiplicity of the weight µ in RR(M,L⊗k).

One stricking property of the moment map is that its image Φ(M) is
a convex polytope in t

∗. In fact, as noted for example in [17] or [20], each
component of the set of regular values of Φ is either an open convex polytope
contained in Φ(M), or the open subset cext = t

∗ \ Φ(M).
Let us fix a connected component c of regular values of Φ. A celebrated

Theorem of Duistermaat and Heckman [15] tells us that the measure DH(M)
is equal to a polynomial DHc times a Lebesgue measure on the open subset c.
Note that DHcext is the zero polynomial.
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The “quantization commutes with reduction” Theorem [28, 29] shows that
there exists a periodic polynomial mc : Λ∗ × Z → Z which coincides with the
multiplicity map m : Λ∗×Z

>0 → Z on the cone of t
∗×R generated by c×{1}.

The periodic polynomial mc is defined by a Kawasaki-Riemann-Roch formula
on a symplectic quotient Ma = Φ−1(a)/T where a ∈ c. As a corollary, we get
that DHc is the semi-classical limit of mc: one has

lim
k→∞

mc(kµ, k)

kd
=

1

(2π)d
DHc(µ) (1.1)

for every µ ∈ Λ∗. Here d = 1
2 dimMa.

We have seen that the global invariants DH(M), RR(M,L⊗k), k ≥ 1 gives
rises to a family of local invariants DHc, mc, where c runs over the connected
component of regular values of Φ.

This paper is concerned by the differences DHc+ − DHc− and mc+ − mc−

when c± are two adjacent connected components of regular values of Φ. Let
∆ ⊂ t

∗ be the hyperplane that separates c±. Some continuity properties are
known:

1. the polynomial DHc+−DHc− is divisible by a certain power of the equation
the hyperplane ∆ (see [17] and [12]),

2. the periodic polynomial mc+ − mc− vanishes on

{(µ, k) ∈ Λ∗ × Z |µ ∈ k∆}. (1.2)

See [29].

In this paper, we compute explicitely the difference DHc+ −DHc− , and we
show that mc+ − mc− vanishes also on some translates of (1.2).

Let us introduce some notations. We denote by T∆ ⊂ T the subtorus of
dimension 1 that has for Lie algebra the one dimensional subspace t∆ which
is orthogonal to the direction of ∆. Let β ∈ t∆ be the primitive element of
the lattice ker(exp : t → T ) which is pointing out of c−.

We make the choice of a decomposition T = T/T∆ × T∆, where T/T∆

denotes a subtorus de T . At the level of Lie algebras, we have then t =
(t/t∆) ⊕ t∆ and t

∗ = (t/t∆)∗ ⊕ t
∗
∆: hence ξ + (t/t∆)∗ = ∆ for any ξ ∈ ∆.

We denote S(t) the algebra of polynomials on the vector space t
∗. We will

consider the polynomial DHc+ −DHc− ∈ S(t) relatively to the decomposition

S(t) =
⊕

j∈N

S(t/t∆)βj .

Let us choose ξ ∈ ∆ in the relative interior of c+∩c− in ∆. We consider the
family F of connected components Z ⊂ MT∆ such that ξ ∈ Φ(Z) ⊂ ∆. It is
easy to see that F does not depend of the choice of ξ : we have c+∩c− ⊂ Φ(Z)
for all Z ∈ F . For each Z ∈ F , we denote
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ΦZ : Z → (t/t∆)∗

the restriction of the map Φ − ξ to the symplectic sub-manifold Z. The
map ΦZ is a moment map relative to the Hamiltonian action of T/T∆ on
Z. Let DH(Z) be Duistermaat-Heckman measure on (t/t∆)∗ associated to
the moment map ΦZ . Since 0 is a regular value of ΦZ , we may consider the
Duistermaat-Heckman polynomial

DH0(Z) ∈ S(t/t∆)

such that DH(Z)(a′) = DH0(Z)(a′)da′ for a′ in a neighborhood of 0 in (t/t∆)∗.
For Z ∈ F , we consider the symplectic reduction

Zξ = Φ−1
Z (0)/(T/T∆),

and the normal bundle NZ of Z in M . Let 2dZ be the dimension of Zξ and
2rZ be the (real) rank of NZ . We prove in Section 1.2 the following.

Theorem A. We have

(DHc+ − DHc−)(a) =
∑

Z∈F

DZ(a− ξ), a ∈ t
∗

where each polynomial DZ ∈ S(t) admits the following decomposition

DZ =
βrZ−1

det
1/2
Z (

−Lβ

2π )

(

DH0(Z)

(rZ − 1)!
+

dZ∑

k=1

βkQZ,k

)

.

Each polynomial QZ,k belongs to S(t/t∆) and is of degree less than dZ − k.

The term det
1/2
Z (

−Lβ

2π ) ∈ Z is the Pfaffian of the infinitesimal action of −β
2π

on the fibers of the normal bundle NZ .

Theorem A generalizes previous results of Guillemin-Lerman-Sternberg
[17] and Brion-Procesi [12]. In Section 1.2.4 we give the precise definition of
the polynomials QZ,k.

Suppose now that M is prequantized by a Kostant-Souriau line bundle L.
The hyperplane ∆ is defined by the equation

〈a, β〉

2π
− r∆ = 0, a ∈ t

∗, (1.3)

for some r∆ ∈ Z. The bundle NZ decomposes as the sum of two polarized
sub-bundles N±,β

Z . Let s±Z ∈ N be the absolute value of the trace of 1
2πLβ on

N±,β
Z . Note that the integer s+Z + s−Z is larger than half of the codimension of

Z in M .
We prove in Section 1.3.5 the following
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Theorem B Let s± := infZ∈F s
±
Z . We have mc+(µ, k) = mc−(µ, k) when

−s− <
〈µ, β〉

2π
− kr∆ < s+. (1.4)

Note that the symplectic orbifolds Zξ, Z ∈ F are the connected component
of the symplectic reduction

M∆
ξ :=

(
Φ−1(ξ) ∩MT∆

)
/(T/T∆).

We have the following refinement au Theorem B.

Theorem C If M∆
ξ is connected, the inequalities (1.4) are optimal, i.e.

there exists (µ, k) such that 〈µ,β〉
2π − kr∆ = ±s± and mc+(µ, k) 6= mc−(µ, k).

In Section 1.4 we apply Theorem B to the particular cases where M is a
integral coadjoint orbit of a compact Lie group G. In Section 1.4.4, we study
more precisely the case G = SU(n): here our result precises some of the results
of Billey-Guillemin-Rassart [10].

In Section 1.5, we obtain a strong version of Theorem B in the case of an
action of a torus T on a complex vector spaces C

d. The quantization of this
action is in some sense the vector space Pol(Cd) of complex polynomials on C

d.
The T -multiplicities of Pol(Cd) are given by a partition functionNR : Λ∗ → N.
It was observed in [13, 35] that there exists a finite decomposition of the vector
space t

∗ in conic chambers such that NR is periodic polynomial on each piece.
Let c± be two adjacents chambers, and let Pc± be the corresponding peri-

odic polynomials computing NR on each chambers. The main result of Section
1.5 is the formula (1.109) which depicts the periodic polynomial Pc+ −Pc− as
a convolution of distributions. Recently1, Boyal-Vergne [11] and De Concini-
Procesi-Vergne [14] proposed differents proofs of this formula.

Acknowledgments. I am grateful to Michèle Vergne for bringing me the
reference [10] to my attention, and for explaining me her work with András
Szenes [36].

Notations

Throughout the paper T will denote a compact, connected abelian Lie
group, and t its Lie algebra. The integral lattice Λ ⊂ t is defined as the
kernel of exp : t → T , and the real weight lattice Λ∗ ⊂ t

∗ is defined by :
Λ∗ := hom(Λ, 2πZ). Every µ ∈ Λ∗ defines a 1-dimensional T -representation,
denoted by Cµ, where t = expX acts by tµ := ei〈µ,X〉. We denote by R(T )
the ring of characters of finite-dimensional T -representations. We denote by
R−∞(T ) the set of generalized characters of T . An element χ ∈ R−∞(T ) is of

1 Our present paper is a revised version of the preprint math.SG/0411306



1 Wall-crossing formulas in Hamiltonian geometry 5

the form χ =
∑

µ∈Λ∗ aµ Cµ, where µ 7→ aµ, Λ
∗ → Z has at most polynomial

growth.
The symplectic manifolds are oriented by their Liouville volume forms. If

(Z, oZ) is an oriented submanifold of an oriented manifold (M, oM ), we take
on the fibers of the normal bundle N of Z in M , the orientation oN satisfying
oM = oZ · oN .

1.2 Duistermaat-Heckman measures

Let (M,Ω) be a symplectic manifold of dimension 2n equipped with an Hamil-
tonian action of a torus T , with Lie algebra t. The moment map Φ : M → t

∗

satisfies the relations Ω(XM ,−) + d〈Φ,X〉 = 0, X ∈ t. We assume in this
section that Φ is proper, and that the generic stabiliser ΓM of T on M is
finite.

The Duistermaat-Heckman measure DH(M) is defined as the pushforward
by Φ of the Liouville volume form Ωn

n! on M . For every f ∈ C∞(t∗) with

compact support one has
∫

t∗
DH(M)(a)f(a) =

∫

M
f(Φ)Ωn

n! . In other terms

DH(M)(a) =

∫

M

δ(a− Φ)
Ωn

n!
, a ∈ t

∗.

We can define DH(M) in terms of equivariant forms as follows. Let A(M) be
the space of differential forms on M with complex coefficients. We denote by
A−∞

temp(t,M) the space of tempered generalized functions over t with values

in A(M), and by M−∞
temp(t

∗,M) the space of tempered distributions over t
∗

with values in A(M). Let F : A−∞
temp(t,M) → M−∞

temp(t
∗,M) be the Fourier

transform normalized by the condition that F(X 7→ ei〈ξ,X〉) is equal to the
Dirac distribution a 7→ δ(a− ξ).

Let Ωt(X) = Ω−〈Φ,X〉 be the equivariant symplectic form. We have then
F(e−iΩt) = e−iΩδ(a− Φ) and so

DH(M) = (i)n

∫

M

F(e−iΩt). (1.5)

1.2.1 Equivariant cohomology and localization

We first recall the Cartan model of equivariant cohomology with polynomial
coefficients and the extension to generalized coefficients defined by Kumar
and Vergne [26]. We give after a brief account to the method of localization
developped in [30, 31],

Let M be a manifold provided with an action of a compact connected Lie
group K with Lie algebra k. Let d : A(M) → A(M) be the exterior differ-
entiation. Let Ac(M) be the sub-algebra of compactly supported differential
forms. If V is a vector field on M we denote by c(V ) : A(M) → A(M) the
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contraction by V . The action of K on M gives a morphism X → XM from k

to the Lie algebra of vector fields on M .
We consider the space of K-equivariant maps k → A(M), X 7→ η(X),

equipped with the derivation (Dη)(X) := (d − c(XM ))(η(X)), X ∈ k. Since
D2 = 0, one can define the cohomology space kerD/ImD. The Cartan model
[7, 21] considers polynomial maps and the associated cohomology is denoted
H∗

K(M). Kumar and Vergne [26] studied the cohomology spaces H±∞
K (M)

obtained by taking C±∞ maps. Recall the construction H−∞
K (M).

The space C−∞(k,A(M)) of generalized functions on k with values in
the space A(M) is, by definition, the space Hom(mc(k),A(M)) of contin-
uous C-linear maps from the space mc(k) of smooth compactly supported
densities on k to the space A(M), both endowed with the C∞-topologies.
We define A−∞

K (M) := C−∞(k,A(M))K as the space of K-equivariant C−∞-
maps from k to A(M). The differential D defined on C∞(k,A(M)) admits
a natural extension to C−∞(k,A(M)) and D2 = 0 on A−∞

K (M) [26]. The
cohomology associated to (A−∞

K (M), D) is called the K-equivariant cohomol-
ogy with generalized coefficients and is denoted by H−∞

K (M). The subspace
A−∞

K,c (M) := C−∞(k,Ac(M))K is stable under the differential D, and we de-

note by H−∞
K,c (M) the associated cohomology. When M is oriented, the inte-

gration over M gives rise to a map
∫

M
: H−∞

K,c (M) → C−∞(k)K .

Localization procedure. Let λ be a K-invariant 1-form on M and let

Φλ : M → k
∗ (1.6)

be the K-equivariant map defined by 〈Φλ(m), X〉 = λ(XM )m : then Dλ(X) =
dλ − 〈Φλ, X〉. The localization procedure developped in [30, 31] is based on
the existence of an inverse [Dλ]−1 of the K-equivariant form Dλ. It is an
equivariantly closed element of A−∞

K (M − Φ−1
λ (0)) defined by the integral

[Dλ]−1(X) = i

∫ ∞

0

e−i t Dλ(X)dt. (1.7)

An open subset U ⊂ M is called adapted to λ if U is K-invariant and if
(∂U) ∩ Φ−1

λ (0) = ∅. In [31], we associate to an open subset U adapted to λ,
the following equivariantly closed form with generalized coefficients

PU
λ = χU + dχU [Dλ]−1λ . (1.8)

Here χU ∈ C∞(M) is a K-invariant function supported in U which is equal
to 1 in a neighborhood of U ∩ Φ−1

λ (0). The cohomology class defined by PU
λ

in H−∞
K (M) does not depend of χU . In particular PU

λ = 0 in H−∞
K (M) if

U ∩Φ−1
λ (0) = ∅. If U ∩Φ−1

λ (0) is compact, we take χU with compact support,

then PU
λ defines a cohomology class in H−∞

K,c (M).
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1.2.2 Localization of DH(M)

We come back to the situation of a Hamiltonian action of a torus T on a
symplectic manifold (M,ω). We need two auxilliary data : a T -invariant Rie-
mannian metric on M denoted (·, ·)

M
, and a scalar product (·, ·) on t

∗ which
induces an identification t

∗ ≃ t.
Let H be the Hamiltonian vector field of the function −1

2 ‖Φ‖2 : M → R :
for m ∈M we have Hm = (Φ(m))M |m. Then for every ξ ∈ t

∗, the Hamiltonian
vector field of −1

2 ‖Φ−ξ‖2 is H−ξM , and we consider the following T -invariant
1-form

λξ = (H− ξM , ·)M (1.9)

with corresponding map Φλξ
: M → t

∗ (see (1.6)). Here Φ−1
λξ

(0) coincides with

the subset Cr(‖Φ− ξ‖2) ⊂M of critical points of the function ‖Φ− ξ‖2, and
m ∈ Cr(‖Φ− ξ‖2) if and only if (Φ(m) − ξ)M vanishes at m [30, 31].

Definition 1.2.1 Let Pξ ∈ H−∞
T,c (M) be the cohomology class defined by

PU
λξ

, where U is a T -invariant relatively compact neighborhood of Φ−1(ξ) such

that U ∩ Cr(‖Φ− ξ‖2) = Φ−1(ξ).

The cohomology class Pξ will be used to localized the Duitermaat-
Heckman measure. For every ξ ∈ t

∗, we define the distribution DHξ(M) by

DHξ(M) = (i)nF

(∫

M

Pξe
−iΩt

)

. (1.10)

Here we can put the Fourier transform outside the integral because Pξ is
compactly supported on M . For any ξ ∈ t

∗, let rξ > 0 be the smallest non-
zero critical value of the function ‖Φ−ξ‖2. As a particular case of Proposition
3.8 in [31], we have

Proposition 1.2.2 Let ξ be any point in t
∗. The following equality of distri-

butions on t
∗

DH(M) = DHξ(M)

holds in the open ball B(ξ, rξ) ⊂ t
∗.

We will now use the last Proposition, first to recover the classical result
of Duistermaat and Heckman [15] concerning the polynomial behaviour of
DH(M) on the open subset of regular values of Φ. After we determine the
difference taken by DH(M) between two adjacent regions of regular values.

1.2.3 Polynomial behaviour

We recall now the computation of the cohomology class Pξ when ξ is a regular
value of Φ, that is given in [30][Section 6] for the torus case (see [31] [Section
3.1] for the case of Hamiltonian action of a compact Lie group). First recall
the following basic result which shows that ξ 7→ DHξ(M) is locally constant
on the open subset of regular values of Φ.
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Lemma 1.2.3 ([33]) If ξ and ξ′ belong to the same connected component of
regular values of Φ, we have Pξ = Pξ′ in H−∞

T,c (M).

If we combine Lemma 1.2.3 with Proposition 1.2.2, we see that for any
connected component c of regular values of Φ, we have

DH(M)(a) = DHξ(M)(a), a ∈ c,

for any ξ ∈ c. We have to compute DHξ(M) when ξ a regular value of Φ.
We consider the T -principal bundle Φ−1(ξ) → Mξ := Φ−1(ξ)/T with cur-

vature form ωξ ∈ H2(Mξ)⊗ t. The orbifold Mξ carries a canonical symplectic
2-form Ωξ. We denote

Kirξ : H∞
T (M) → H∗(Mξ)

the Kirwan morphism. For any ψ ∈ C∞(t) and η ∈ H∞
T (M) we have

Kirξ(ηψ) = Kirξ(η)ψ(ωξ), where the characteristic class ψ(ωξ) is the value of

the differential operator eωξ( ∂
∂X |0) against ψ. After [31][Prop. 3.11], we know

that the integral ∫

t

∫

M

Pξ(X)η(X)ψ(X)dX

is equal to
(−2iπ)dim T vol(T, dX)

|ΓM |

∫

Mξ

Kirξ(η)ψ(ωξ) (1.11)

for every equivariant class η ∈ H∞
T (M). Here vol(T, dX) is the volume of T

for the Haar mesure compatible with dX, and |ΓM | is the cardinal of ΓM

(Note that the generic stabilizer of T on Φ−1(ξ) is ΓM ). In other words, for
every η ∈ H∞

T (M) we have the following equality of generalized functions on
t
∗ supported at 0

∫

M

Pξ(X)η(X) =
(−2iπ)dim T

|ΓM |

∫

Mξ

Kirξ(η)e
ωξ( ∂

∂X |0)vol(T,−). (1.12)

For η = e−iΩt we have Kirξ(η) = e−i(Ωξ−〈ξ,ωξ〉), and a small computation
shows that

F
(

eωξ( ∂
∂X |0)vol(T,−)

)

(a) = e−i〈a,ωξ〉
da

(2π)dim T
, a ∈ t

∗. (1.13)

where da is the Lebesgue measure on t
∗ normalized by the condition: vol(T, dX) =

1 for the Lebesgue measure dX on t which is dual to da.
Finally (1.10), (1.12) and (1.13) give

DHξ(M)(a) =
(i)d

|ΓM |

∫

Mξ

e−i(Ωξ+〈a−ξ,ωξ〉) da

=
1

|ΓM |

∫

Mξ

(Ωξ + 〈a− ξ, ωξ〉)
d

d!
da, (1.14)

where 2d = dimMξ.
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Definition 1.2.4 For any connected component c of regular values of Φ we

denote DHc the polynomial function a 7→ 1
|ΓM |

∫

Mξ

(Ωξ+〈a−ξ,ωξ〉)
d

d! , where ξ is

any point of c.

With the help of Proposition 1.2.2 we recover the classical result of Duis-
termaat and Heckman [15] that says that the measure DH(M) is locally poly-
nomial2 on the open subset of regular values of Φ, and it’s value at a regular
element ξ is equal to the symplectic volume of the reduce space Mξ (times
|ΓM |−1) . More precisely we have shown that for a connected component c of
regular values of Φ we have

DH(M)(a) = DHc(a)da, a ∈ c. (1.15)

1.2.4 Wall-crossing formulas

Consider now two connected regions c± of regular values of Φ separated by an
hyperplane ∆ ⊂ t

∗. In this section we compute the polynomial DHc+ −DHc− .
It generalizes previous results of Guillemin-Lerman-Sternberg [17] and Brion-
Procesi [12].

Let ξ+, ξ− be respectively two elements of c+ and c−. We know from (1.2.2),
(1.14) and Definition (1.2.4) that

(DHc+ − DHc−)(a)da = (i)nF

(∫

M

(Pξ+
− Pξ−)e−iΩt

)

(a), a ∈ t
∗. (1.16)

We recall now the computation of the cohomology class Pξ+
− Pξ− ∈

H−∞
T,c (M) done in [33]. We use the notation defined in the introduction.

Definition 1.2.5 We denote M∆ the union of the connected component Z
of the fixed point set MT∆ for which we have Φ(Z) ⊂ ∆. Let M∆

o be the
T -invariant open subset of M∆ where T/T∆ acts locally freely.

For a connected component Z ⊂ M∆, one has either c+ ∩ c− ⊂ Φ(Z) or
c+ ∩ c− ∩ Φ(Z) = ∅. It is due to the fact that for any ξ in relative interior of
c+ ∩ c− in ∆, and any m ∈ Φ−1(ξ) the stabilizer tm ⊂ t is either equal to t∆

or reduced to {0}.
The symplectic manifold M∆ carries a Hamiltonian action of T/T∆ with

moment map Φ|M∆ : M∆ → ∆ equal to the restriction of Φ on M∆.
Let ξ be a point in the relative interior of c+ ∩ c− in ∆. From the previous

discussion, we knows that ξ is a regular value of Φ|M∆ , i.e. Φ−1(ξ) ∩MT∆

is a submanifold of M∆
o . Following Definition 1.2.1 we associate to ξ the

cohomology class
P∆

ξ ∈ H−∞
T/T∆,c(M

∆
o ).

2 It is a polynomial times a Lebesgue measure on t
∗.
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Let H∗(M∆
o )bas be the sub-algebra of H∗(M∆

o ) formed by the T -basic
elements. Since the T∆-action on M∆

o is trivial we have a canonical product
operation

H−∞
T/T∆,c(M

∆
o ) × C−∞(t∆,H

∗(M∆
o )bas)

∧
−→ H−∞

T,c (M∆
o ). (1.17)

Proposition 1.2.6 ([33]) There exists a generalized function supported at 0,
δ∆ ∈ C−∞(t∆,H

∗(M∆
o )bas), such that

Pξ+ − Pξ− = (i∆)∗
(
P∆

ξ ∧ δ∆
)

in H−∞
T,c (M).

Here (i∆)∗ : H−∞
T,c (M∆

o ) → H−∞
T,c (M) is the direct image map relative to the

inclusion i∆ : M∆
o →֒M .

We will now give the precise definition of δ∆. The decomposition T = T∆×
T/T∆ and the trivial action of T∆ on M∆

o determine a canonical isomorphism

j∆ : H∗
T (M∆

o )
∼
−→ S(t∗∆) ⊗H∗

T/T∆
(M∆

o ),

where S(t∗∆) is the algebra of complex polynomial functions on t∆. Since the
T/T∆-action on M∆

o is locally free, we have the Chern-Weil isomorphism

cv∆ : H∗
T/T∆

(M∆
o )

∼
−→ H∗(M∆

o )bas.

Let N∆ be the T -equivariant normal bundle of M∆ in M , and let

Eul(N∆) ∈ H∗
T (M∆)

be the T -equivariant Euler class of N∆. Now we consider the restriction of
Eul(N∆) on the open subset M∆

o ⊂ M∆, that we look through the isomor-
phism cv∆◦j∆ as an element of S(t∗∆)⊗H∗(M∆

o )bas (for simplicity we keep the
same notations Eul(N∆) for this element). Following [30], we define inverses
Eul−1

±β(N∆) ∈ C−∞(t∆,H
∗(M∆

o )bas) by

Eul−1
±β(N∆)(X) = lim

s→+∞

1

Eul(N∆)(X ± isβ)
. (1.18)

Here β ∈ t∆ is chosen so that 〈ξ+ − ξ−, β〉 > 0.

Definition 1.2.7 The generalized function δ∆ ∈ C−∞(t∆,H
∗(M∆

o )bas) is de-
fined by

δ∆ := Eul−1
β (N∆) − Eul−1

−β(N∆). (1.19)

Since the polynomial Eul(N∆) is invertible in a smooth manner on t∆\{0}
the generalized function δ∆ is supported at 0.

Let ξ be a point in the relative interior of c+ ∩ c− in ∆. We consider the
symplectic reduction
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M∆
ξ :=

(

M∆ ∩ Φ−1(ξ)
)

/(T/T∆).

If we restrict δ∆ to the submanifold M∆ ∩ Φ−1(ξ) we get the generalized
function

δ∆
ξ ∈ C−∞(t∆,H

∗(M∆
ξ )).

Now we are able to compute the right hand side of (1.16). Let ω∆
ξ ∈

H2(M∆
ξ )⊗t/t∆ be the curvature of the T/T∆-principal bundleM∆∩Φ−1(ξ) →

M∆
ξ . Let |S∆

ξ | be locally constant function on M∆ ∩ Φ−1(ξ) which is equal
to the cardinal of the generic stabilizer of T/T∆. From (1.12) and Proposition
1.2.6 we have
∫

M

(Pξ+
− Pξ−)(X)e−iΩt(X)

=

∫

M∆
o

P∆
ξ (X ′)δ∆(X ′′)e−iΩt(X

′+X′′)

=
(−2iπ)dim T−1

|S∆
ξ |

∫

M∆
ξ

eω∆
ξ ( ∂

∂X′ |0)vol(T/T∆,−)Kir∆
ξ (e−iΩt)(X ′′)δ∆

ξ (X ′′)(1.20)

In the last equation the notations are the following :

1. X = X ′ +X ′′ with X ′ ∈ t/t∆ and X ′′ ∈ t∆,
2. the Kirwan map Kir∆

ξ : H∞
T (M) → C∞(t∆,H

∗(M∆
ξ )) is the composition

of the restriction H∞
T (M) → H∞

T (M∆ ∩ Φ−1(ξ)) with the Chern-Weil

isomorphism H∞
T (M∆ ∩ Φ−1(ξ))

∼
−→ C∞(t∆,H

∗(M∆
ξ )).

A direct computation gives that Kir∆
ξ (Ωt)(X

′′) = Ω∆
ξ − 〈ξ, ω∆

ξ + X ′′〉

where Ω∆
ξ is the induced symplectic form on the reduced space M∆

ξ . If we
take the Fourier transform in (1.20) we get

(DHc+ − DHc−)(a)da

=
(i)n+1−dim T

|S∆
ξ |

(
∫

M∆
ξ

e−i(Ω∆
ξ +〈a′,ω∆

ξ 〉) da′ Ft∆
(δ∆

ξ )(a′′)

)

(a− ξ),

=
∑

Z∈F

(i)n+1−dim T

|SZ
ξ |

(
∫

Zξ

e−i(ΩZ
ξ +〈a′,ωZ

ξ 〉) da′ Ft∆
(δZ

ξ )(a′′)

)

(a− ξ)(1.21)

where a = a′+a′′ with a′ ∈ (t/t∆)∗ and a′′ ∈ (t∆)∗. In (1.21), we write
∫

M∆
ξ

=
∑

Z∈F

∫

Zξ
where the sum is taken over the set F of connected components Z

of M∆ that intersects Φ−1(ξ) : we take then

Zξ =
(

Z ∩ Φ−1(ξ)
)

/(T/T∆).

The 2-forms Ω∆
ξ , ω

∆
ξ , the generic stabiliser S∆

ξ , the vector bundle N∆, the

generalized function δ∆
ξ restrict to each component Z: we denote them re-

spectively ΩZ
ξ , ω

Z
ξ , SZ

ξ , NZ , δZ
ξ .
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We recall now the computation of the Fourier tranform of the inverses
Eul−1

±β(NZ) := Eul−1
±β(N∆)|Z that is given in [30][Proposition 4.8.]. We con-

sider a T -invariant scalar product on the fibers of the bundle N∆. Let R ∈
A2(M∆

o , so(N∆))bas be the curvature of a T -invariant and T/T∆-horizontal
Euclidean connexion on N∆: we denote by RZ ∈ A2(Z, so(NZ))bas the restric-
tion of R to a component Z ∈ F . The curvature commutes with the infinites-
imal action LX of X ∈ t∆, and with the complex structure Jβ = Lβ(−L2

β)1/2

on N∆ defined by β ∈ t∆.
We denote by S• the symmetric algebra of the complex vector bundle

(N∆, Jβ). We keep the same notation for the restriction of S• on the sub-
manifolds Z, Φ−1(ξ) ∩ M∆, and for the induced orbifold vector bundle on
the reduced spaces Zξ and M∆

ξ . For each k ∈ N, we denote by TrSk the

trace operator defined on the complex endomorphisms of Sk. For a complex
endomorphism A of N∆, we denote by A⊗k the induced endomorphism on
Sk. For any X ∈ t∆, the complex endomorphism L−1

X RZ is symmetric. Hence
the trace TrSk((L−1

X RZ)⊗k) is a basic real differential form of degree 2k on Z
which does not depend of the choice of complex structures (Jβ or J−β).

Let β∗ ∈ t
∗
∆ the dual of β ∈ t∆.

Proposition 1.2.8 ([30]) For a smooth function f on t
∗
∆ with compact sup-

port we have
∫

t∗∆
Ft∆

(Eul−1
β (NZ))(a′′)f(a′′) =

∫∞

0
PZ(t)f(tβ∗)dt where PZ is

the polynomial on R defined by:

PZ(t) =
(2πi)rZ

det
1/2
Z (Lβ)




trZ−1

(rZ − 1)!
+

dim(Z)/2
∑

k=1

(i)k TrSk((L−1
β RZ)⊗k)

trZ−1+k

(rZ − 1 + k)!



 .

(1.22)

Here det
1/2
Z (Lβ) is the Pfaffian of Lβ on NZ , and rZ = rkC(NZ).

One checks then that
∫

t∗∆

Ft∆
(Eul−1

−β(NZ))(a′′)f(a′′) =

∫ ∞

0

−PZ(−t)f(−tβ∗)dt

= −

∫ 0

−∞

PZ(t)f(tβ∗)dt.

Hence the distribution Ft∆
(δZ) is equal to PZ(β)dβ. From now one we fix β

as the primitive element of t∆ ∩ Λ which point out c−. Then dβ and dβ∗ are
then (dual) Lebesgue measure on t

∗ and t : we have vol(T∆, dβ
∗) = 1.

Let RZ
ξ be the restriction of the curvature RZ to the submanifold Z ∩

Φ−1(ξ). Since RZ is T/T∆-basic, TrSk((L−1
β RZ

ξ )⊗k) can be seen as a real

differential form of degree 2k on the orbifold Zξ = (Z ∩ Φ−1(ξ))/(T/T∆).
Each connected component Z of M∆ is a T/T∆ Hamiltonian manifold:

we take for moment map ΦZ : Z → (t/t∆)∗ the restriction of Φ − ξ to Z.
Hence 0 is a regular value of ΦZ . Let DH0(Z) be the polynomial function on
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(t/t∆)∗ = {a ∈ t
∗ | 〈β, a〉 = 0} such that DH(Z)(a′) = DH0(Z)(a′)da′ near 0.

Finally (1.21) together with the proposition 1.2.8 give the following

Theorem 1.2.9 We have (DHc+ − DHc−)(a) =
∑

Z∈F DZ(a − ξ), a ∈ t
∗

where each polynomial DZ ∈ S(t) admits the following decomposition

DZ =
βrZ−1

det
1/2
Z (

−Lβ

2π )

(

DH0(Z)

(rZ − 1)!
+

dZ∑

k=1

βkQZ,k

)

. (1.23)

The polynomials QZ,k ∈ S(t/t∆) are defined by

QZ,k(a′) =
(−1)k

(rZ − 1 + k)!|SZ
ξ |

∫

Zξ

(ΩZ
ξ + 〈a′, ωZ

ξ 〉)
dZ−k

(dZ − k)!
TrSk((L−1

β RZ
ξ )⊗k).

(1.24)
Here 2dZ = dimZξ and 2rZ = dimM − dimZ.

Remark 1.2.10 • The polynomial DHc+ − DHc− is divisible by the factor
a 7→ 〈a − ξ, β〉r−1 with r = infZ∈F rZ . If ∆ ∩ Φ(M) is not a facet of the
polytope Φ(M) we have rZ ≥ 2 for all connected component Z ∈ F , hence
r − 1 ≥ 1.

• Suppose now that c− is a connected component of regular values of Φ
bording a facet Φ(M) ∩ ∆ of the polytope Φ(M). Here Z = Φ−1(∆) is a
connected component of the fixed point set MT∆ . In this situation we have
DHc− = −DZ where the polynomial DZ is defined by (1.23).

1.3 Quantum version of Duistermaat-Heckman measures

We suppose here that the Hamiltonian T -manifold (M,ω,Φ) is prequantized
by a T -equivariant Hermitian line bundle L over M , which is equipped with
an Hermitian connection ∇ satisfying the Kostant formula

L(X) −∇XM
= i〈Φ,X〉, X ∈ t. (1.25)

The former equation implies that the first Chern class of L is equal to Ω
2π . In

this section we suppose that M is compact and we still assume that the generic
stabiliser ΓM of T on M is finite. The quantization of (M,Ω) is defined by
the Riemann-Roch character RR(M,L) ∈ R(T ) which is compute with a T -
equivariant almost complex stucture on M compatible with Ω [32]. For k ≥ 1,
we consider the tensor product L⊗k. Its Riemann-Roch character RR(M,L⊗k)
decomposes as

RR(M,L⊗k) =
∑

µ∈Λ∗

m(µ, k) Cµ. (1.26)
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Let us recall the well-known properties of the map m : Λ∗ × Z
>0 → Z.

When µ
k is a regular value of Φ, the ”Quantization commutes with Reduction

Theorem” [28, 29] tell us that

m(µ, k) = RR(Mµ
k
,Lµ,k) (1.27)

where Lµ,k = (L⊗k|Φ−1( µ
k ) ⊗ C−µ)/T is an orbifold line bundle over the sym-

plectic orbifold Mµ
k

= Φ−1(µ
k )/T . In particular if µ

k does not belong to Φ(M)
we have m(µ, k) = 0. When µ

k ∈ Φ(M) is not necessarilly a regular value of
Φ, one procceed by shift desingularization. If ξ ∈ Φ(M) is a regular value of
Φ close enough to µ

k then (1.27) becomes

m(µ, k) = RR(Mξ,L
µ,k
ξ ) (1.28)

where Lµ,k
ξ = (L⊗k|Φ−1(ξ) ⊗ C−µ)/T (for a proof see [29, 32]).

Definition 1.3.1 A function f : Ξ → Z defined over a lattice Ξ ≃ Z
r is

called periodic polynomial if

f(x) =

p
∑

i=1

ei
〈αj,x〉

N Pj(x), x ∈ Ξ,

where α1, · · · , αp ∈ Ξ∗, N ≥ 1, and the functions P1, · · · , Pp are polynomials
with complex coefficients.

Remark 1.3.2 Let C a cone with non-empty interior in the real vector space
Ξ⊗ZR. Any periodic-polynomial function f : Ξ → Z is completely determined
by its restriction on C ∩Ξ.

Let c ⊂ t
∗ be a connected component of regular values of Φ. In [29] Mein-

renken an Sjamaar proved that there exits a periodic polynomial function
mc : Λ∗ × Z → Z such that mc(µ, k) = m(µ, k) for every (µ, k) in the cone

Cone(c) = {(ξ, s) ∈ t
∗ × R

>0 | ξ ∈ s · c}. (1.29)

Consider now two adjacent connected regions c± of regular values of Φ
separated by an hyperplane ∆ ⊂ t

∗. When ∆ does not contain a facet of the
polytope Φ(M), Meinrenken an Sjamaar proved also that

mc+(µ, k) = mc−(µ, k) = m(µ, k) (1.30)

for every (µ, k) ∈ Cone(c+) ∩ Cone(c−) = Cone(c+ ∩ c−) ⊂ Cone(∆).

The main objective of this section is to prove that (1.30) extends to a
“strip” containing Cone(∆).

Let β ∈ Λ be the primitive orthogonal vector to the hyperplane ∆ ⊂ t
∗

which is pointing out of c−. Then ∆ = {ξ ∈ t
∗ | 〈ξ,β〉

2π = r∆} for some r∆ ∈ Z,

Cone(∆) = {(ξ, s) ∈ t
∗×R

≥0 | 〈ξ,β〉
2π −sr∆ = 0} and c− ⊂ {ξ ∈ t

∗ | 〈ξ,β〉
2π < r∆}.
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Let T∆ be the subtorus of T generated by β. Let N∆ be the normal vector
bundle of MT∆ in M . The almost complex structure on M induces a complex
structure J on the fibers of N∆. We have a decomposition N∆ =

∑

sN
s
∆

where Ns
∆ = {v ∈ N∆ | Lβv = s Jv }. We write N∆ = N+,β

∆ ⊕N−,β
∆ where

N±,β
∆ =

∑

±s>0

Ns
∆. (1.31)

Definition 1.3.3 For every connected component Z ⊂ MT∆ we define s±Z ∈

N respectively as the absolute value of the trace of 1
2πLβ on N±,β

∆ |Z .

Note that s+Z + s−Z is larger than half of the codimension of Z in M . We
prove in Section 1.3.5 the following

Theorem 1.3.4 We have mc+(µ, k) = mc−(µ, k) for all (µ, k) ∈ Λ∗ ×Z such
that

−s− <
〈µ, β〉

2π
− k r∆ < s+ . (1.32)

The number s−, s+ ∈ N are defined as follows. We take s± = infZ s
±
Z where

the minimum is taken over the connected components Z of MT∆ for which
c+ ∩ c− ⊂ Φ(Z).

Similar results were obtained by Billey-Guillemin-Rassart [10] in the case
where M is a coadjoint orbit of SU(n), and by Szenes-Vergne [36] in the
case where M is a complex vector space. See Sections 1.4.4 and 1.5 where
we study these two particular cases in details. In Proposition 1.3.25, we give
also a criterium which says when the inequalities in (1.32) are optimal. This
criterium is fullfilled when there is only one component Z of MT∆ such that
c+ ∩ c− ⊂ Φ(Z). Then (1.32) is optimal and s+ + s− is larger than half of the
codimension of Z in M .

The following easy Lemma (see Lemma 7.3. of [32]) gives some basic in-
formations about the integer s±Z .

Lemma 1.3.5 Let (M,Ω,Φ) be a compact Hamiltonian T -manifold equipped
with a T -invariant almost complex structure compatible with Ω. Consider a
non-zero vector γ ∈ t and let Z be a connected component of the fixed point
set Mγ . Let N be the normal vector of Z in M and let N−,γ be the nega-
tive polarized normal bundle (see (1.31)). Then N−,γ = 0 if and only if the
function 〈Φ, γ〉 : M → R takes its maximal value on Z.

This Lemma insures that s± ≥ 1 in Theorem 1.3.4 when ∆∩Φ(M) is not
a facet of the polytope Φ(M).

Consider the situation where ∆ ∩ Φ(M) is a facet of the polytope Φ(M)
so that c+ ∩Φ(M) = ∅: hence mc+ = 0. If we apply Lemma 1.3.5 with γ = β,
one gets N−,β = 0 and so s− = 0. In this situation we get
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Corollary 1.3.6 Let c− be a connected component of regular values of Φ bor-
ding a facet Φ(M) ∩ ∆ of the polytope Φ(M). Let β ∈ Λ be the primitive
orthogonal vector to the hyperplane ∆ ⊂ t

∗ which is pointing out of c−. Here
Z = Φ−1(∆) is a connected component of the fixed point set MT∆ . We have
mc−(µ, k) = 0 for all (µ, k) ∈ Λ∗ × Z such that

0 <
〈µ, β〉

2π
− kr∆ < s+Z . (1.33)

Here s+Z ∈ N is larger than half of the codimension of Z in M , and the
inequalities (1.33) are optimal.

The rest of this section is dedicated to the proof of Theorem 1.3.4. We
start by reviewing some of the results of [32].

1.3.1 Elliptic and transversally elliptic symbols

We work in the setting of a compact manifold M equipped with a smooth
action of a torus T .

Let p : TM → M be the projection, and let (·, ·)M be a T -invariant
Riemannian metric. If E0, E1 are T -equivariant vector bundles over M , a T -
equivariant morphism σ ∈ Γ (TM, hom(p∗E0, p∗E1)) is called a symbol. The
subset of all (m, v) ∈ TM where σ(m, v) : E0

m → E1
m is not invertible is called

the characteristic set of σ, and is denoted by Char(σ).
Let TTM be the following subset of TM :

TTM = {(m, v) ∈ TM, (v,XM (m))
M

= 0 for all X ∈ k} .

A symbol σ is elliptic if σ is invertible outside a compact subset of TM
(Char(σ) is compact), and is transversally elliptic if the restriction of σ to
TTM is invertible outside a compact subset of TTM (Char(σ) ∩ TTM is
compact). An elliptic symbol σ defines an element in the equivariant K-theory
of TM with compact support, which is denoted by KT (TM), and the index
of σ is a virtual finite dimensional representation of T [3, 4, 5, 6].

A transversally elliptic symbol σ defines an element of KT (TTM), and
the index of σ is defined as a trace class virtual representation of T (see [1]
for the analytic index and [8, 9] for the cohomological one). Remark that any
elliptic symbol of TM is transversally elliptic, hence we have a restriction
map KT (TM) → KT (TTM), and a commutative diagram

KT (TM) //

IndexT

M

��

KT (TTM)

IndexT

M

��

R(T ) // R−∞(T ) .

(1.34)

Using the excision property, one can easily show that the index map
IndexT

U : KT (TTU) → R−∞(T ) is still defined when U is a T -invariant rela-
tively compact open subset of a T -manifold (see [32][section 3.1]).
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1.3.2 Localization of the Riemann-Roch character

We suppose now that the compact T -manifold M is equipped with a T -
invariant almost complex structure J . Let us recall the definitions of the Thom
symbol Thom(M,J) and of the Riemann-Roch character [32].

Consider a T -invariant Riemannian metric q on M such that J is orthog-
onal relatively to q, and let h be the Hermitian structure on TM defined by
: h(v, w) = q(v, w) − ıq(Jv,w) for v, w ∈ TM . The symbol

Thom(M,J) ∈ Γ
(
M,hom(p∗(∧even

C TM), p∗(∧odd
C TM))

)

at (m, v) ∈ TM is equal to the Clifford map

Clm(v) : ∧even
C TmM −→ ∧odd

C TmM, (1.35)

where Clm(v).w = v ∧w− ch(v).w for w ∈ ∧•
C
TxM . Here ch(v) : ∧•

C
TmM →

∧•−1TmM denotes the contraction map relative to h. Since the map Clm(v)
is invertible for all v 6= 0, the symbol Thom(M,J) is elliptic.

The Riemann-Roch character RR(M,−) : KT (M) → R(T ) is defined by
the following relation

RR(M,E) = IndexT
M (Thom(M,J) ⊗ p∗E) . (1.36)

The important point is that for any T -vector bundle E, Thom(M,J) ⊗ p∗E
corresponds to the principal symbol of the twisted Spinc Dirac operator DE

[16], hence RR(M,E) ∈ R(T ) is also defined as the (analytical) index of the
elliptic operator DE .

Consider now the case of a compact Hamiltonian T -manifold (M,ω,Φ).
Here J is a T -invariant almost comlex structure compatible with Ω: (v, w) 7→
Ω(v, Jw) defines a Riemannian metric on M . Like in Section 1.2.2, we make
the choice of a scalar product (·, ·) on t

∗ (which induces an identification
t
∗ ≃ t) and we consider for any ξ ∈ t

∗ the function −1
2 ‖ Φ − ξ ‖2: M → R

and its Hamiltonian vector field H− ξM .

Definition 1.3.7 For any ξ ∈ t
∗ and any T -invariant open subset U ⊂ M

we define the symbol Thomξ(U) by the relation

Thomξ(U)(m, v) := Thom(M,J)(m, v − (H− ξM )(m)) (m, v) ∈ TU

The characteristic set of Thomξ(U) corresponds to {(m, v) ∈ TU , v =
(H − ξM )(m)}, the graph of the vector field H − ξM over U . Since H − ξM
belongs to the set of tangent vectors to the T -orbits, we have

Char (Thomξ(U)) ∩ TTU = {(m, 0) ∈ TU | (H− ξM )(m) = 0}
∼= {m ∈ U , d ‖ Φ− ξ ‖2

m= 0} .

Therefore the symbol Thomξ(U) is transversally elliptic if and only if

Cr(‖ Φ− ξ ‖2) ∪ ∂U = ∅. (1.37)
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Definition 1.3.8 When (1.37) holds we say that the couple (U , ξ) is good.

Definition 1.3.9 Let (U , ξ) be a good couple. For any T -vector bundle E →
M , the tensor product Thomξ(U) ⊗ p∗E belongs to KT (TTU) and we denote
by

RRξ
U (M,E) ∈ R−∞(T )

its index.

Proposition 1.3.10 Let (U , ξ) be a good couple.
• If U possess two T -invariant open subsets U1,U2 such that U1 ∩ U2∩

Cr(‖ Φ− ξ ‖2) = ∅ and (U1 ∪U2)∩Cr(‖ Φ− ξ ‖2) = U ∩Cr(‖ Φ− ξ ‖2), then
the couples (U1, ξ) and (U2, ξ) are good and

RRξ
U (M,−) = RRξ

U1(M,−) +RRξ
U2(M,−).

In particular RRξ
U (M,−) = RRξ

U1(M,−) if U1 is an open subset of U such
that U1 ∩ Cr(‖ Φ− ξ ‖2) = U ∩ Cr(‖ Φ− ξ ‖2).

• If ξ′ ∈ t
∗ is close enough to ξ, then (U , ξ′) is good and

RRξ
U (M,−) = RRξ′

U (M,−).

Proof. The first point is a direct consequence of the excision property (see
Proposition 4.1. in [32]).

Let us prove the second point. Consider now the scalar product

φ(s) := (H− ξs
M ,H− ξM )M

where ξs = sξ′+(1−s)ξ, s ∈ [0, 1] : φ(s) is a smooth function on M . We have
φ(s) = ‖H − ξM‖2 + s((ξ − ξ′)M ,H − ξM ) and then the following inequality
holds on M

φ(s) ≥ ‖H − ξM‖2
(

‖H − ξM‖ − s‖ξM − ξ′M‖
)

. (1.38)

Since ∂U is compact we have the following inequalities on it: ‖H−ξM‖ ≥ c1 >
0 and ‖XM‖ ≤ c2‖X‖ for any a ∈ t. So (1.38) implies the following inequality
on ∂U :

φ(s) ≥ c1(c1 − s‖ξ − ξ′‖) for s ∈ [0, 1].

So if ξ′ is close enough to ξ, we have ‖H−ξs
M‖ ≥ c3 > 0 on ∂U for any s ∈ [0, 1].

We have first prove that the couple (U , ξs) is good for any s ∈ [0, 1]. We see
then that the familly of transversally elliptic symbols Thomξs(U), s ∈ [0, 1]
defines an homotopy between Thomξ(U) and Thomξ′(U). Hence Thomξ(U) =
Thomξ′(U) in KT (TTU). ⊓⊔

The first point of Proposition 1.3.10 shows that RRξ
U (M,−) depends

closely of the intersection U ∩ Cr(‖ Φ − ξ ‖2). In particular RRξ
U (M,−) = 0

when U ∩ Cr(‖ Φ− ξ ‖2) = ∅. Recall that



1 Wall-crossing formulas in Hamiltonian geometry 19

Cr(‖ Φ− ξ ‖2) =
⋃

γ∈Bξ

Mγ ∩ Φ−1(γ + ξ) (1.39)

where Bξ ⊂ t
∗ is a finite set [24].

Definition 1.3.11 For any ξ ∈ t
∗ and γ ∈ Bξ, we denote simply by

RRξ
γ(M,−) : KT (M) → R−∞(T )

the map RRξ
U (M,−), where U is a T -invariant open neighborhood of Mγ ∩

Φ−1(γ + ξ) such that Cr(‖ Φ− ξ ‖2) ∩ U = Mγ ∩ Φ−1(γ + ξ).

Proposition 1.3.10 insures that the maps RRξ
γ(M,−) are well defined, and

for any good couple (U , ξ) we have

RRξ
U (M,−) =

∑

γ∈Bξ∩Φ(U)

RRξ
γ(M,−). (1.40)

If one takes U = M , we have RRξ
U (M,−) = RR(M,−) =

∑

γ∈Bξ
RRξ

γ(M,−)

(see [32][Section 4]).

1.3.3 Periodic polynomial behaviour of the multiplicities

We suppose here that the Hamiltonian T -manifold (M,Ω,Φ) is prequantized
by a T -complex line bundle L satisfying (1.25) for a suitable invariant connec-
tion. In this section we will characterize the periodic polynomial behaviour of
the multiplicities m(µ, k) with the help of the localized Riemann-Roch char-

acter RRξ
0(M,−).

Let us introduce some vocabulary. We say that two generalized characters
χ± =

∑

µ∈Λ∗ a±µ Cµ coincide on a region D ⊂ t
∗, if a+

µ = a−µ for every µ ∈
D∩Λ∗. A generalized character χ =

∑

µ aµ Cµ is supported on a region D ⊂ t
∗

if aµ = 0 for µ /∈ D. A weight µ ∈ Λ∗ occurs in χ =
∑

µ aµ Cµ if aµ 6= 0.
For ξ ∈ t

∗, we define rξ > 0 as the smallest non-zero critical value of the
function ‖ Φ − ξ ‖, and we denote by B(ξ, rξ) the open ball of center ξ and
radius rξ.

Theorem 1.3.12 ([32]) For any ξ ∈ t
∗, the generalized character RRξ

0(M,L⊗k)
coincides with RR(M,L⊗k) on the open ball k ·B(ξ, rξ).

The arguments of [32] for the proof of this Theorem will be needed another
time, so we recall them. Let ξ ∈ t

∗. We start with the decomposition

RR(M,L⊗k) =
∑

γ∈Bξ

RRξ
γ(M,L⊗k). (1.41)

We recall now, for a non-zero γ ∈ Bξ, the localization of the map RRξ
γ on the

fixed point set Mγ [32].
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Let N be the normal bundle of Mγ in M . The almost complex structure
on M induces an almost complex struture on Mγ and a complex structure on
the bundles N and NC := N ⊗ C. Following (1.31) we define the γ-polarized
complex vector bundles N+,γ and (NC)+,γ .

The manifold Mγ is a symplectic submanifold of M equipped with an
induced Hamiltonian action of T : its moment map is the restriction of Φ on
Mγ . Following Definition 1.3.11, we have on Mγ a localized Riemann-Roch
character RRξ

γ(Mγ ,−). On Mγ , the Hamiltonian vector fields of the functions
‖ Φ− ξ ‖2 and ‖ Φ− (ξ + γ) ‖2 coincide, hence

RRξ
γ(Mγ ,−) = RRξ+γ

0 (Mγ ,−). (1.42)

We prove in [32][Theorem 5.8.] that

RRξ
γ(M,E) =

∑

k∈N

(−1)lRRξ
γ(Mγ , E|Mγ ⊗ det(N+,γ) ⊗ Sk(N+,γ

C
)) (1.43)

for every T -vector bundle E. Here l is the locally constant fonction on Mγ

equal to the complex rank of N+,γ .

Proposition 1.3.13 ([32], Section 5) Let N be the T -vector bundle N with
the opposite complex structure on the fibers. The sum (−1)l

∑

k∈N
det(N+,γ)⊗

Sk(N+,γ
C

) is an inverse of ∧•
C
N that we denote

[
∧•

C
N
]−1

γ
.

If we use the notations of Proposition 1.3.13 and (1.42), the localization
(1.43) can be rewritten as

RRξ
γ(M,E) = RRξ+γ

0

(

Mγ , E|Mγ ⊗
[
∧•

CN
]−1

γ

)

. (1.44)

Let i : Tγ →֒ T be the inclusion of the subtorus generated by γ. Let F be
a T -vector bundle on Mγ .

Lemma 1.3.14 ([32], Lemma 9.4.) A weight µ ∈ Λ∗ occurs in RRξ
γ(Mγ , F )

only if i∗(µ) occurs as a weight for the Tγ-action on the fibers of F⊗
[
∧•

C
N
]−1

γ
.

Since the Tγ weights on the bundles N+,γ
C

and N+,γ are polarized by γ,
the localization (1.43) gives the following

Corollary 1.3.15 For a non-zero γ ∈ Bξ, the generalized character RRξ
γ(M,L⊗k)

is supported on the half space {a ∈ t
∗ | (γ, a− k(ξ + γ)) ≥ 0}.

Since the condition (γ, a−k(ξ+γ)) ≥ 0 implies that ‖ a−kξ ‖≥ k ‖ γ ‖≥
krξ, the last proposition shows that every weights of the open ball k ·B(ξ, rξ)
does not occurs in RRξ

γ(M,L⊗k). This last remark together with (1.41) prove
Theorem 1.3.12.

For the localized Riemann-Roch character RRξ
0(M,−) we have the follow-

ing Lemma which is very similar to Lemma 1.2.3.
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Lemma 1.3.16 Let c ⊂ t
∗ be a connected component of regular values of Φ.

For every ξ, ξ′ ∈ c, we have RRξ
0(M,−) = RRξ′

0 (M,−).

Proof. We have to show that the map ξ 7→ RRξ
0(M,−) is locally constant

on c. Let ξ ∈ c and take an open neigborhood U of Φ−1(ξ) small enough such
that the stabilizer Tm = {t ∈ T | t ·m = m} is finite for every m ∈ U . We see
then that U ∩ Cr(‖ Φ− ξ′ ‖2) = Φ−1(ξ′) and ∂U ∩ Cr(‖ Φ− ξ′ ‖2) = ∅ if ξ′ is

close enough to ξ: hence RRξ′

0 (M,−) = RRξ′

U (M,−) for ξ′ close enough to ξ.
The second point of Proposition 1.3.10 finishes the proof. ⊓⊔

When ξ is a regular value of Φ, the localized Riemann-Roch character
RRξ

0(M,−) as been computed in [32] as follows. Let RR(Mξ,−) be the
Riemann-Roch map defined on the orbifold Mξ = Φ−1(ξ)/T by means of
an almost complex structure compatible with the induced symplectic struc-
ture. For every T -vector bundle E → M we define the following familly of
orbifold vector bundles over Mξ:

Eµ
ξ :=

(

E|Φ−1(ξ) ⊗ C−µ

)

/T, µ ∈ Λ∗. (1.45)

For every T -vector bundle E onM , we proved in [32][Section 6.2.] the following
equality in R−∞(T )

RRξ
0(M,E) =

∑

µ∈Λ∗

RR(Mξ, E
µ
ξ ) Cµ. (1.46)

This decomposition was first obtained by Vergne [37] when T is the circle
group and when M is Spin. The number RR(Mξ, E

µ
ξ ) ∈ Z is then equal to

the T -invariant part of the index RRξ
0(M,E) ⊗ C−µ.

Remark 1.3.17 Let t → tλ be a character of T . Suppose that a subgroup
H ⊂ T acts trivially on M and with the character t ∈ H → tλ on the the
fibers of the T -vector bundle E. Then H acts with the character t ∈ H → tλ−µ

on RRξ
0(M,E) ⊗ C−µ, and then RR(Mξ, E

µ
ξ ) 6= 0 only if tλ−µ = 1 for every

t ∈ H. So the sum in (1.46) can be restricted to λ + Λ∗
H , where Λ∗

H is the
sub-lattice of Λ∗ formed by the element α ∈ Λ∗ satisfying tα = 1, ∀ t ∈ H.

This remark applies also on the usual character RR(M,E) =
∑

µ∈Λ∗ mµCµ.
The multiplicity mµ ∈ Z is equal to the (virtual) dimension of the T -invariant
part of RR(M,E) ⊗ C−µ. With the same hypothesis than above we see that
mµ 6= 0 only if µ ∈ λ+ Λ∗

H .

Let ΓM be the generic stabilizer for the action of T on M . Consider a
weight αo such that ΓM acts on the fibers of L with the character t 7→ tαo .
We define the sublattice Ξ(M,L) ⊂ Λ∗ × Z by

Ξ(M,L) := {(µ, k) ∈ Λ∗ × Z | kαo − µ ∈ Λ∗
ΓM

}. (1.47)

We know then that m(µ, k) = 0 if (µ, k) /∈ Ξ(M,L).
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Proposition 1.3.18 Let c be a connected component of regular values of Φ
and let Cone(c) be the corresponding cone in t

∗ ×R
>0 (see (1.29)). Let ξ ∈ c.

For any (µ, k) ∈ Cone(c) ∩Ξ(M,L) we have

m(µ, k) = RR(Mξ,L
µ,k
ξ ) (1.48)

where
Lµ,k

ξ = (L⊗k|Φ−1(ξ) ⊗ C−µ)/T. (1.49)

Proof. Let (µ, k) ∈ Cone(c) and let ξ′ = µ
k ∈ c. We known from The-

orem 1.3.12 that the generalized character RRξ′

0 (M,L⊗k) coincides with
RR(M,L⊗k) on the open ball k · B(ξ′, rξ′) = B(µ, krξ′). So m(µ, k) is equal

to the µ-multiplicity in RRξ′

0 (M,L⊗k). Take now any ξ ∈ c. We know af-

ter Lemma 1.3.16 that RRξ
0(M,−) = RRξ′

0 (M,−) and (1.46) shows that the

µ-multiplicity in RRξ
0(M,L⊗k) is equal to RR(Mξ,L

µ,k
ξ ). ⊓⊔

Definition 1.3.19 Take ξ ∈ c. The map mc : Λ∗ × Z → Z is defined by the
equation

mc(µ, k) = RR(Mξ,L
µ,k
ξ ), (1.50)

where Lµ,k
ξ is the orbifold line bundle defined by (1.49).

In other words, the map mc is defined by the following equality in R−∞(T )

∑

µ∈Λ∗

mc(µ, k) Cµ = RRξ
0(M,L⊗k).

for all k ∈ Z. After remark 1.3.17, we know that mc is supported on the
sub-lattice Ξ(M,L) defined in (1.47).

We will now exploit the Riemann-Roch for orbifold due to Kawasaki [23]
to show that the map mc is a periodic polynomial.

1.3.4 Riemann-Roch-Kawasaki theorem

First we recall how is defined the Riemann-Roch character RR(Mξ, Eξ) when
ξ is a regular value of Φ, and Eξ = E|Φ−1(ξ)/T is the reduction of a complex
T -vector bundle E over M . The number RR(Mξ, Eξ) ∈ Z is defined has
the T -invariant part of the index of a transversally elliptic operator DE on
Φ−1(ξ). Since the index of DE depend only of the class of its symbol σ(DE) in
KT (TTΦ

−1(ξ)), it is enough to define the transversally elliptic symbol σ(DE).
Since the action of T on Φ−1(ξ) is locally free, V := TTΦ

−1(ξ) is a vector
bundle. It carries a canonical symplectic structure on the fibers and we choose
any compatible complex structure making V into a Hermitian vector bundle.
At (m, v) ∈ TΦ−1(ξ), the map σ(DE)(m, v) is the Clifford action

Clm(v1) ⊗ IdEm
: (∧even

C Vm) ⊗ Em −→ (∧odd
C Vm) ⊗ Em.
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where v1 ∈ Vm is the V -component of the vector v ∈ TmΦ
−1(ξ). We explain

now the formula of Kawasaki for RR(Mξ, Eξ) when ξ ∈ Φ(M) is a regular
value of Φ [23].

Let F be the collection of the finite subgroup of T which are stabilizer of
points in M . Consider the orbit type stratification of Φ−1(ξ) and denote by
Sξ the set of its orbit type strata. Each statum S is a connected component
of the smooth submanifold

Φ−1(ξ)HS
:= {m ∈ Φ−1(ξ) |StabT (m) = HS}. (1.51)

for a unique HS ∈ F. The orbifold Mξ decomposes as a disjoint union
∪S∈Sξ

S/T of smooth components, and each quotient S/T is a suborbifold
of Mξ. The generic stabilizer ΓM of T on M is also the generic stabilizer of T
on the fiber3 Φ−1(ξ), and is associated to an open and dense stratum Smax.

Suppose that E → M is an Hermitian T -vector bundle. On each suborb-
ifold S/T , we get the orbifold complex vector bundle

ES := E|S/T. (1.52)

We define twisted characteristic classes Ch−(ES) and D−(ES) by

Chγ(ES) := Tr
(

γES · e
i

2π R(ES)
)

, γ ∈ HS , (1.53)

and
Dγ(ES) := det

(

1 − (γES )−1 · e−
i

2π R(ES)
)

, γ ∈ HS . (1.54)

Here R(ES) ∈ A2(S/T,End(ES)) is the curvature of an horizontal Hermitian
connection on E|S , and γ 7→ γES is the linear action of HS on the fibers of
E|S .

Let NS be the normal bundle of S in Φ−1(ξ). The symplectic struture on
M induces a symplectic form ΩS on each suborbifold S/T , and a symplectic
structure on the fibers of the bundle NS . Choose a compatible almost complex
structure on S/T , and a compatible complex structure on the fibers of NS

making the tangent bundle of S/T and NS := NS/T into Hermitian vector
bundle. Consider a Hermitian connexion on T(S/T ), with curvature R(S/T ),
and let

Todd(S/T ) = det

(
(i/2π)R(S/T )

1 − e−(i/2π)R(S/T )

)

(1.55)

be the corresponding Todd forms. Like in (1.54), we associate to the complex
orbifold vector bundle NS , the twisted form D−(NS) which is a map form HS

to Aeven(S/T ). The 0-degree part of Dγ(NS) is equal to det(1 − (γNS )−1),
hence Dγ(NS) is invertible in Aeven(S/T ) when γ belongs to

3 Since a neighborhood of Φ−1(ξ) in M is T -equivariantly diffeomorphic to Φ−1(ξ)×
t
∗.
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Ho
S = {γ ∈ HS | det(1 − (γNS )−1) 6= 0}. (1.56)

Note that Ho
S corresponds to the set of γ ∈ HS for which S is a connected

component of (Φ−1(ξ))γ .

Theorem 1.3.20 (Kawasaki) The number RR(Mξ, Eξ) ∈ Z is given by the
formula

RR(Mξ, Eξ) =
∑

S∈Sξ

1

|HS |

∑

γ∈Ho
S

∫

S/T

Todd(S/T )Chγ(ES)

Dγ(NS)
. (1.57)

We exploit now Theorem 1.3.20 to show that the map mc : Λ∗ × Z →
Z which is defined by (1.50) is periodic polynomial. We need the classical
computation of the first Chern class of the line bundle

Lµ,k
S = (L⊗k ⊗ C−µ)|S/T. (1.58)

The curvature form ωξ ∈ H2(Mξ)⊗t of the principal T -bundle Φ−1(ξ) → Mξ

restricts to a curvature form ωS ∈ H2(S/T ) ⊗ t on each strata.

Lemma 1.3.21 The first Chern class of the line bundle Lµ,k
S is given by

c1(L
µ,k
S ) =

1

2π

(

kΩS − 〈kξ − µ, ωS〉
)

.

For a strata S, we consider αS ∈ Λ∗ such that γ ∈ HS 7→ γαS corresponds
to the action of HS on the fibers of L|S . Finally we have the decomposition

mc(µ, k) =
∑

S∈Sξ

PS(µ, k), (1.59)

where

PS(µ, k) =
1

|HS |

∑

γ∈Ho
S

γkαS−µ

∫

S/T

Todd(S/T )

Dγ(NS)
e

1
2π

(

kΩS−〈kξ−µ,ωS〉

)

. (1.60)

When S is the principal open dense stratum Smax the map PS is

Pmax(µ, k) =

∑

γ∈ΓM
γkαo−µ

|ΓM |

∫

Mξ

Todd(Mξ)e
1
2π (kΩξ−〈kξ−µ,ωξ〉). (1.61)

The term
P

γ∈ΓM
γkαo−µ

|ΓM | is equal to 1 when (µ, k) belongs to the lattice

Ξ(M,L) (see (1.47)), and is equal to 0 in the other cases. From (1.60) we

see that PS is a periodic polynomial of degree less than dim(S/T )
2 , and for

S = Smax we have on Ξ(M,L)
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Pmax(µ, k) =
1

(2π)d

∫

Mξ

(kΩξ − 〈kξ − µ, ωξ〉)
d

d!
+O(d− 1) (1.62)

where d =
dimMξ

2 and O(d − 1) denotes a polynomial of degree less than
d − 1. If we use the polynomial DHc defined in Section 1.2 we can conclude
our computations with the following

Proposition 1.3.22 The map mc is a periodic polynomial of degree d =
dimMξ

2 supported on Ξ(M,L). For (µ, k) ∈ Ξ(M,L) we have

mc(µ, k) = |ΓM |
kd

(2π)d
DHc(

µ

k
) + O(d− 1),

where O(d− 1) means a periodic polynomial of degree less than d− 1.

1.3.5 Wall-crossing formulas for the mc

Let c+ and c− be two adjacent connected component of regular values of Φ
separated by an hyperplane ∆. The aim of this section is to compute the
periodic polynomial mc+ − mc− .

We consider two points ξ± ∈ c± such that ξ = 1
2 (ξ+ + ξ−) belongs to the

relative interior of c+ ∩ c− in ∆. We suppose furthermore that ξ+ − ξ− is
orthogonal to ∆. Using the identification t

∗ ≃ t given by the scalar product
the vector γ = 1

2 (ξ+ − ξ−), seen as a vector of t∆, belongs4 to R
>0β. We

noticed in Section 1.2.4 that for all m ∈ Φ−1(ξ) the stabilizer tm is either
equal to t∆ or to {0}. Then there exists an open T -invariant neighborhood
U of Φ−1(ξ) in M such that for all m ∈ U either tm := {0}, or tm = t∆ and
Φ(m) ∈ ∆.

One see easily that the couple (U , ξ) is good and the second point of
Proposition 1.3.10 tells us that

RRξ
U (M,−) = RR

ξ−
U (M,−) = RR

ξ+

U (M,−) (1.63)

when ξ± are close enough to ξ. Since U ∩ Cr(‖ Φ − ξ ‖2) = Φ−1(ξ) we have

RRξ
U (M,−) = RRξ

0(M,−). If ξ± are close enough to ξ we have

U ∩ Cr(‖ Φ− ξ± ‖2) = Φ−1(ξ±)
⋃

Mγ ∩ Φ−1(ξ). (1.64)

The former decomposition is due to (1.39) and to the fact that the stabiliser
of t on U are either equal to t∆ or to {0}. Notice that ξ− + γ = ξ+ + γ = ξ.
The decomposition (1.64) gives

RR
ξ±
U (M,−) = RR

ξ±
0 (M,−) +RR

ξ±
∓γ(M,−), (1.65)

where RR
ξ−
γ (M,−) (resp. RR

ξ+

−γ(M,−)) is the Riemann-Roch character lo-
calized on Mγ ∩Φ−1(ξ) by the vector field H− (ξ−)M (resp. H− (ξ+)M ). Now
(1.63) and (1.65) prove the following

4 β is the primitive vector of t∆ ∩ Λ pointing out of c−
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Proposition 1.3.23 If ξ± are close enough to ∆, we have

RR
ξ+

0 (M,−) −RR
ξ−
0 (M,−) = RRξ−

γ (M,−) −RR
ξ+

−γ(M,−).

We know from Proposition 1.3.18 that mc±(µ, k) is equal to the µ-

multiplicity of T in RR
ξ±
0 (M,L⊗k). Hence mc+(µ, k) − mc−(µ, k) is equal

to the µ-multiplicity of T in RR
ξ−
γ (M,L⊗k) −RR

ξ+

−γ(M,L⊗k).

Let N∆ be the normal bundle of MT∆ in M , and let
[
∧•

C
N∆

]−1

±β
be the

polarized inverses of ∧•
C
N∆ (see Proposition 1.3.13). Since ξ = ξ+−γ = ξ−+γ

and γ ∈ R
>0β, the localization (1.44) gives

RRξ−
γ (M,L⊗k) =

∑

Z∈F

RRξ
0

(

Z,L⊗k|Z ⊗
[
∧•

CNZ

]−1

β

)

,

RR
ξ+

−γ(M,L⊗k) =
∑

Z∈F

RRξ
0

(

Z,L⊗k|Z ⊗
[
∧•

CNZ

]−1

−β

)

.

Finally mc+(µ, k) − mc−(µ, k) =
∑

Z∈F AZ(µ, k) where AZ(µ, k) is equal
to the µ-multiplicity of T in

RRξ
0

(

Z,L⊗k|Z ⊗
[
∧•

CNZ

]−1

−β

)

−RRξ
0

(

Z,L⊗k|Z ⊗
[
∧•

CNZ

]−1

β

)

(1.66)

Let β′ ∈ t
∗
∆ ∩ Λ∗ which is defined by the relation 〈β′, β〉 = 2π, so that

Λ∗
t∆

= Zβ′. Concerning the T∆-weights we have

1. The T∆-weight on L⊗k|Z is equal to kr∆β
′.

2. The T∆-weight on det(N+,±β
Z ) is ±s±Zβ

′ where s±Z ∈ N is the absolute

value of the trace of 1
2πLβ on N+,±γ

Z .

3. The T∆-weights on S>0(N+,β
Z ) (resp. S>0(N+,−β

Z )) are of the form pβ′

with p > 0 (resp. p < 0).

Now Lemma 1.3.14 shows that if a weight µ occurs inRRξ
0

(

Z,L⊗k|Z ⊗
[
∧•

C
NZ

]−1

β

)

we have i∗(µ) = (kr∆ + s+Z + p)β′ with p ≥ 0, and then

〈µ, β〉

2π
− kr∆ ≥ s+Z .

Similarly, if a weight µ occurs in RRξ
0

(

Z,L⊗k|Z ⊗
[
∧•

C
NZ

]−1

−β

)

we have

〈µ, β〉

2π
− kr∆ ≤ −s−Z .

Finally, AZ(µ, k) = 0 when −s−Z < 〈µ,β〉
2π − kr∆ < s+Z . We have proved the

following
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Theorem 1.3.24 Let s± = infZ s
±
Z where the infimum is taken over the

connected components Z of MT∆ for which c+ ∩ c− ⊂ Φ(Z). For every
(µ, k) ∈ Λ∗ × Z, we have mc+(µ, k) = mc−(µ, k) if

−s− <
〈µ, β〉

2π
− kr∆ < s+. (1.67)

Sometimes the inequalities (1.67) are optimal.

Proposition 1.3.25 • Consider the connected components Z ∈ F for which
s+Z is minimal. Among them consider the subset F+ where dim(Z) is maximal.

If the integers rkC(N+,β
Z ), Z ∈ F+ have the same parity, then the condition

“ 〈µ,β〉
2π − kr∆ < s+” is optimal in (1.67).

• In the same way, consider the connected components Z ∈ F for which s−Z
is minimal. Among them consider the subset F− where dim(Z) is maximal.

If the integers rkC(N+,β
Z ), Z ∈ F+ have the same parity, then the condition

“−s− < 〈µ,β〉
2π − kr∆” is optimal in (1.67).

Remark 1.3.26 The last Proposition applies when there is a unique con-
nected component Z of MT∆ for which c+ ∩ c− ⊂ Φ(Z).

Proof. We consider only the first point since the other point works similarly.

We restrict our attention to the couples (µ, k) such that 〈µ,β〉
2π − kr∆ = s+.

They are of the form
µ = (kr∆ + s+)β′ + µ2 (1.68)

with µ2 ∈ Λ∗
t/t∆

. Let us denote D(µ2, k) the restriction of mc+(µ, k) −

mc−(µ, k) to the set of couples (µ, k) parametrized by (1.68). We want to
prove that D(µ2, k) is not identically equal to zero.

From the previous discussion one knows that

D(µ2, k) =
∑

Z , s+
Z=s+

(−1)rkC(N+,β
Z )DZ(µ2, k), (1.69)

where DZ(µ2, k) is the µ-multiplicity of T in

RRξ
0

(

Z,L⊗k|Z ⊗ det(N+,β
Z )

)

.

Let us make few remarks concerning the maps RRξ
0(Z,−) : KT (Z) →

R−∞(T ). Since T∆ acts trivially on Z, the decomposition T = T/T∆ × T∆

induces a canonical isomorphism KT (Z) ≃ KT/T∆
(Z) ⊗ R(T∆): i.e. every

T -equivariant vector bundle E → Z decomposes as

E =
∑

µ1∈Zβ′

Eµ1 ⊗ Cµ1
. (1.70)

Here each Eµ1 is a T/T∆-equivariant vector bundle on Z and Cµ1 denotes the
one dimensional T∆-representation associated to µ1 ∈ Λ∗

t∆
.
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For every T -equivariant vector bundle E → Z, the character RRξ
0(Z,E)

is equal to the T -equivariant index of the T -transversally elliptic symbol
Thomξ(V)⊗ p∗(E), where V is a small neighborhood of Φ−1(ξ)∩Z in Z (see
Definition 1.3.9). Since the T∆ action is trivial on Z the symbol Thomξ(V) is
also T/T∆ transversally elliptic and the action of T∆ is trivial on it. We have
then

RRξ
0(Z,E) =

∑

µ1∈Zβ′

RRξ
0(Z,E

µ1) ⊗ Cµ1
. (1.71)

where the character RRξ
0(Z,E

µ1) ∈ R−∞(T/T∆) is computed by Theorem
1.46 applied to the Hamiltonian T/T∆-manifold Z. For every T -vector bundle
E → Z we define the familly Eµ1,µ2

ξ , µ1 ∈ Zβ′, µ2 ∈ Λ∗
t/t∆

of orbifold vector

bundles over the reduced space Zξ = Z ∩ Φ−1(ξ)/(T/T∆) by

Eµ1,µ2

ξ := (Eµ1 ⊗ C−µ2) |Φ−1(ξ)∩Z/(T/T∆). (1.72)

Finally (1.46) and (1.71) give the following

RRξ
0(Z,E) =

∑

µ1∈Zβ′

∑

µ2∈Λ∗
t/t∆

RR(Zξ, E
µ1,µ2

ξ ) ⊗ Cµ1
︸︷︷︸

∈R(T∆)

⊗ Cµ2
︸︷︷︸

∈R(T/T∆)

=
∑

µ∈Λ∗

RR(Zξ, E
µ1,µ2

ξ ) Cµ . (1.73)

In (1.73) we write µ ∈ Λ∗ as a sum of µ1 ∈ Zβ′ with µ2 ∈ Λ∗
t/t∆

so that

Cµ ∈ R(T ) is equal to the tensor product Cµ1
⊗ Cµ1

.

When the vector bundle E → Z is the line bundle L := L⊗k|Z ⊗det(N+,β
Z )

we have L = L
jβ′

⊗ Cjβ′ for j = kr∆ + s+. Finally, we have

DZ(µ2, k) = RR(Zξ,L
(kr∆+s+)β′,µ2

ξ ).

Now we use the results of Section 1.3.4 to study the map

DZ : Λ∗
t/t∆

× Z −→ Z. (1.74)

Let ΓZ ⊂ T/T∆ be the generic stabiliser of T/T∆ on a component Z. Let

αZ , δZ ∈ Λ∗
t/t∆

such that the action of ΓZ on the fibers of L|Z and det(N+,β
Z )

are respectively t→ tαZ and t→ tδZ . After Remark 1.3.17 we know that the
map (1.74) is supported on the subset

ΞZ := {(µ2, k) ∈ Λ∗
t/t∆

× Z | tkαZ+δZ+µ2 = 1, ∀ t ∈ ΓZ}. (1.75)

The only difference with the computations done in Section 1.3.4 is the line
bundle det(N+,β

Z ). But this do not change the global behaviour of the map
(1.74) on ΞZ : it is a periodic polynomial map of degree dZ = dim(Zξ)/2 and
we have
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DZ(µ2, k) =
1

(2π)dZ

∫

Zξ

(kΩZξ
− 〈kξ − µ2, ωZξ

〉)dZ

dZ !
+O(dZ − 1) (1.76)

for all (µ2, k) ∈ ΞZ .

Suppose now that all the signs (−1)rkC(N+,β
Z ) coincide when Z ∈ F+. From

(1.69), we get that D(µ2, k) does not vanish for large values of (µ2, k). ⊓⊔

1.4 Multiplicities of group representations

Let K be a semi-simple compact Lie group with Lie algebra k, and let T be
a maximal torus in K with Lie algebra t. In this section we denote (−,−)
the scalar product on k induced by the Killing form, and we keep the same
notation for the induced scalar products on t

∗ and on t.
Let Λ∗ ⊂ t

∗ be the weight lattice, and let R ⊂ Λ∗ be the set of roots
for the action of T on k ⊗ C: we denote Λ∗

R
the sub-lattice of Λ∗ generated

by R. We choose a system of positive roots R
+ ⊂ R, and we denote t

∗
+ the

corresponding Weyl chamber.
The irreducible representations of K are parametrized by the set Λ∗

+ =
Λ∗∩ t

∗
+. For λ ∈ Λ∗

+ we denote by Vλ the irreducible representation of K with
heighest weight λ. Here we are interested in the T -multiplicities in Vλ|T . Let
m : Λ∗ × Λ∗

+ → N be the map defined by

Vλ|T =
∑

µ∈Λ∗

m(µ, λ) Cµ (1.77)

for every λ ∈ Λ∗
+.

Definition 1.4.1 For every λ ∈ Λ∗
+, we denote mλ : Λ∗ × Z

>0 → N the map
defined by mλ(µ, k) = m(µ, kλ). So mλ(µ, k) is equal to the multiplicity of Cµ

in Vkλ|T .

1.4.1 Borel-Weil Theorem

First we recall the realization of the K-representation Vλ given by the Borel-
Weil Theorem. The coadjoint orbitK ·λ is equipped with the Kirillov-Kostant-
Souriau symplectic form Ω which is defined by:

Ω(XM , YM )m = 〈m, [X,Y ]〉, for m ∈ K · λ and X,Y ∈ k. (1.78)

The action of K on K · λ is Hamiltonian with moment map K · λ →֒ k
∗ equal

to the inclusion. The action of T on K · λ is also Hamiltonian with moment
map Φ : K · λ→ t

∗ equal to the composition of the inclusion K · λ →֒ k
∗ with

the projection map k
∗ → t

∗.
There exists a unique K-invariant complex structure on K · λ compatible

with the symplectic form. In this situation the Kostant-Souriau prequantum
line bundle over K · λ is
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C[λ] = K ×Kλ
Cλ.

Here we use the canonical identification K/Kλ ≃ K ·λ, [k] 7→ k ·λ, where Kλ

is the stabilizer of λ in K. The line bundle C[λ] over the complex manifold
K ·λ carries a canonical holomorphic structure. If one work with the symplectic
form kΩ, for an integer k ≥ 1, the corresponding Kostant-Souriau prequantum
line bundle is C

⊗k
[λ] = K ×Kλ

Ckλ = C[kλ].

Let Hq(K · λ,C⊗k
[λ] ) be qth cohomology group of the sheaf of holomorphic

section of C
⊗k
[λ] over K · λ. The Borel-Weil Theorem tells us that

H0(K · λ,C⊗k
[λ] ) = Vkλ (1.79)

and
Hq(K · λ,C⊗k

[λ] ) = 0 for q ≥ 1. (1.80)

If RRK(K ·λ,−) : KK(K ·λ) → R(K) is the K-equivariant Riemann-Roch
character defined by the compatible complex structure, (1.79) and (1.80) give

RRK(K · λ,C⊗k
[λ] ) = Vkλ in R(K). (1.81)

Now if we denote by RR(K · λ,−) : KT (K · λ) → R(T ) the T -equivariant
Riemann-Roch character, we have Vkλ|T = RR(K · λ,C⊗k

[λ] ). The multiplicity

fonction mλ : Λ∗
+ × N

∗ → N is characterized by the relation

RR(K · λ,C⊗k
[λ] ) =

∑

µ∈Λ∗

mλ(µ, k) Cµ, in R(T ), (1.82)

for k ≥ 1.
The sub-lattice Λ∗

R
of Λ∗ generated by the roots is characterized by the

(finite) center Z(K) of K as follows. For α ∈ Λ∗ we have

λ ∈ Λ∗
R ⇐⇒ tλ = 1, ∀t ∈ Z(K), (1.83)

and for t ∈ T we have t ∈ Z(K) ⇐⇒ tλ = 1, ∀λ ∈ Λ∗
R

. The finite abelian
group Λ∗/Λ∗

R
is then naturally identified with the dual of Z(K). We have the

following well-known fact.

Lemma 1.4.2 The mutiplicity map mλ is supported on the sub-lattice Ξλ =
{(µ, k) ∈ Λ∗ × Z |µ− kλ ∈ Λ∗

R
}.

Proof. The center Z(K) of K acts trivially on K ·λ and with the character
t ∈ Z(K) 7→ tkλ on the fibers of the line bundle C

⊗k
[λ] . Since mλ(µ, k) is equal

to the dimension of the T -invariant subspace of RR(K · λ,C⊗k
[λ] ) ⊗ C−µ, we

have following Lemma 1.3.17 that mλ(µ, k) 6= 0 only if tµ−kλ = 1, ∀t ∈ Z(K).
We conclude then with (1.83). ⊓⊔

In this section we study the periodic polynomials
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mλ
c : Λ∗ × Z −→ Z. (1.84)

defined for every connected component c ⊂ t
∗ of regular values of the moment

map Φ : K ·λ→ t
∗. We know that mλ

c is also supported on the sub-lattice Ξλ

(see Section 1.3.3).
In order to apply Theorem 1.3.24 to the periodic polynomials mλ

c , we have
to compute the critical values of the moment map Φ : K · λ→ t

∗.

1.4.2 Critical points of Φ : K · λ → t
∗

Let {α1, · · · , αdim T } be the simple roots of the set R+ of positive weights.
The fundamental weights ̟k, 1 ≤ k ≤ dimT are defined by the conditions

2
(̟i, αj)

|αj |2
= δi,j for all 1 ≤ i, j ≤ dimT. (1.85)

Recall that the fundamental weights generate the lattice Λ∗
alg of algebraic

integral element of t
∗. We have Λ∗ ⊂ Λ∗

alg and equality holds only if K is
simply-connected.

Let W be the Weyl group of (K,T ). We will look at

G = {σ ·̟i | σ ∈W, 1 ≤ i ≤ dimT}. (1.86)

as a subset of t modulo the identification t ≃ t
∗ given by the scalar product.

The singular points of Φ have the following nice description. This result first
appeared in Heckman’s Thesis [22].

Proposition 1.4.3 ([22, 17]) The critical points of Φ : K · λ → t
∗ is the

union of the fixed points set (K · λ)β , β ∈ G. For each β ∈ G we have

(K · λ)β =
⋃

σ∈W

Kβ · σλ,

where Kβ is the stabilizer subgroup of β in K.

The fixed points of the action of T on K · λ characterize the image of Φ
completely: Φ(K · λ) is the convex polytope

conv(W · λ) := convex hull of W · λ. (1.87)

This result was first proved by Kostant [25]. This is particular case of the
convexity theorem of Atiyah, Guillemin and Sternberg [2, 18]. From Proposi-
tion 1.4.3, we know that the singular values of Φ : K · λ → t

∗ are the convex
polytopes

conv(W β · σλ), β ∈ F , σ ∈W/W β , (1.88)

where W β is the stabilizer5 of β in W , i.e. W β is the Weyl group of (Kβ , T ).
Each convex polytope conv(W β · σλ) lies in the hyperplane

5 When β = ̟i, we denote W i the stabilizer of ̟i in W .
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∆β,σ = {ξ ∈ t
∗ | (ξ − σλ, β) = 0}. (1.89)

We will use the following

Lemma 1.4.4 • Kβ · σλ = Kβ · σ′λ if and only if σλ ∈W βσ′λ,
• conv(W β · σλ) ∩ conv(W β · σ′λ) 6= ∅ if and only if ∆β,σ = ∆β,σ′ .

Proof. The first point follows from the fact that the intersection of a coadjoint
orbit Kβ · µ, µ ∈ t

∗ with t
∗ is equal to W β · µ.

It is sufficient to prove the second point for β = ̟i. The half-line R
>0̟i

is an edge of the Weyl chamber. It is well known that the following vector
subspaces coincides:

• the line R̟i,
• the vector sub-space of K̟i-invariant element of k

∗,
• the vector sub-space of W i-invariant element of t

∗.

Each convex polytope conv(W i · σλ) contains the W i-invariant element

1

|W i|

∑

τ∈W i

τ · σλ

which is equal to the intersection of the hyperplane ∆β,σ with the line R̟i.
Hence, if ∆β,σ = ∆β,σ′ , the intersection conv(W β · σλ) ∩ conv(W β · σ′λ)
contains a W i-invariant element, and then is not empty.

Definition 1.4.5 An element λ ∈ Λ∗
+ is generic if for every fundamental root

̟i and any σ, σ′ ∈W , we have

∆β,σ 6= ∆β,σ (1.90)

each times the submanifolds Kβ · σλ and Kβ · σ′λ are not equal.

This condition of genericity imposes that (σλ,̟i) 6= (σ′λ,̟i) when σλ /∈
W iσ′λ.

Example 1.4.6 Consider the case of SU(4). Take the coadjoint orbit trough
λ = (2, 1,−1,−2), and σ, σ′ such that σλ = (2,−2, 1,−1) and σ′λ =
(1,−1, 2,−2). Take the fundamental weight ̟2 = 1

2 (1, 1,−1,−1). In this case
λ is not “generic” since σλ /∈W iσ′λ but (σλ,̟2) = 0 = (σ′λ,̟2).

1.4.3 Main theorems

Let c+ and c− be two adjacent connected components of regular values of Φ :
K ·λ→ t

∗. The intersection c+ ∩ c+ is contained in an hyperplane orthogonal
to β ∈ F .
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Definition 1.4.7 Let A(c+, c−) be the set of all [σ] ∈ W/W β such that the
convex polytope conv(W β · σλ) contains c+ ∩ c+.

The following
⋃

[σ]∈A(c+,c−)

Kβ · σλ

is the union of the connected components of (K · λ)β that intersect Φ−1(ξ)
when ξ ∈ c+ ∩ c+.

Remark 1.4.8 When λ is a regular element of t
∗, all polytopes conv(W β ·σλ)

are of codimension 1. When λ is “generic” (see Def. 1.4.5), the set A(c+, c−)
is reduced to one element.

The multiplicity function mλ : Λ∗ × Z
>0 → N is invariant under the

action of the Weyl group: mλ(σµ, k) = mλ(µ, k) for every σ ∈ W . The set of
connected component of regular values of Φ is also invariant under the action
of W .

So, for the rest of this section we restrict our attention to case where c+

and c− are separated by an hyperplane orthogonal to a fundamental weight
β = ̟i: the vector ̟i is pointing out of c−. We denote Ki the stabilizer of
̟i in K.

Consider [σ] ∈ A(c+, c−) and let Ki · σλ be the corresponding connected
component of (K · λ)β . The tangent space of K · λ at σλ is the following
Kσλ-module

Tσλ(K · λ) =
∑

(α,σλ)>0

kα (1.91)

where kα ⊂ k ⊗ C is the one-dimensional complex subspace associated to the
weight α ∈ R. In the same way, the tangent space of Ki · σλ at σλ is the
Ki ∩Kσλ-module defined by

Tσλ(Ki · σλ) =
∑

(α,σλ)>0

(α,̟i)=0

kα (1.92)

Finally the normal bundle of Ki · σλ ≃ Ki/(Ki ∩ Kσλ) in K · λ is Nσ,i =
Ki ×Ki∩Kσλ Nσ,i where

Nσ,i =
∑

(α,σλ)>0

(α,̟i) 6=0

kα (1.93)

For an element µ ∈ t
∗, we have µ =

∑dim T
i=1 [µ]k αk where

[µ]k = 2
(̟k, µ)

|αk|2
∈ R.

Note that [µ]k ∈ Z when µ belongs to the lattice Λ∗
R

.
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Definition 1.4.9 For [σ] ∈ A(c+, c−) we define the positive integers

s±σ,i = ±
∑

(α,σλ)>0

±(α,̟i)>0

[α]i.

Note that s+σ,i + s−σ,i is larger than half of the codimension of Ki · σλ in K · λ.

Theorem 1.4.10 Let c+ and c− be two adjacent connected component of reg-
ular values of Φ : K · λ → t

∗ separated by an hyperplane orthogonal to a
fundamental weight ̟i: we denote ri the commum value [ξ]i for all ξ in this
hyperplane. Let mλ

c±
: Λ∗×Z −→ Z be the corresponding periodic polynomials

which are supported on the sub-lattice Ξλ := {(µ, k) |µ ∈ kλ+ Λ∗
R
}.

For all (µ, k) ∈ Ξλ, we have mλ
c+

(µ, k) = mλ
c−

(µ, k) when the integer
[µ]i − kri satisfies

−s−i < [µ]i − kri < s+i . (1.94)

Here the positive integer s±i are defined by

s±i = inf
[σ]∈A(c+,c−)

s±σ,i. (1.95)

When A(c+, c−) is reduced to one element σ, for example if λ is “generic”,
the integer s+i + s−i is larger than half of the codimension of Ki · σλ in K · λ.

Another way to express the result of Theorem 1.4.10 is to introduce like
in [36] the convex polytope

�(c+, c−) =
⋂

σ∈A(c+,c−)




∑

(α,σλ)>0

[0, 1[α



 . (1.96)

Let ∆ be the hyperplane which separates c+ and c−. Equation (1.94) is
equivalent to saying that

mλ
c+

(µ, k) = mλ
c−

(µ, k) if µ ∈ k∆+ �(c+, c−). (1.97)

Corollary 1.4.11 Let c be a connected component of regular values of Φ
which is bording a facet of the polytope Φ(K · λ) orthogonal to the funda-
mental weight ̟i: the facet is conv(W i · σλ) for a unique σ ∈ W/W i. We
suppose that ̟i is pointing out of c. We denote ri the commum value [ξ]i for
all ξ in the facet. For all (µ, k) ∈ Ξλ, we have mλ

c (µ, k) = 0 when the integer
[µ]i − kri satisfies

−s−σ,i < [µ]i − kri < s+σ,i. (1.98)
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Proof. Theorem 1.4.10 is a direct consequence of Theorem 1.3.24. The
main difference between them is the decomposition of the lattice support-
ing the periodic polynomials. In the former we use the decomposition Λ∗ =
Λ∗

t∆
⊕ Λ∗

t/t∆
associated to the choice of a subtorus T/T∆. Here we use the

decomposition Λ∗
R

= Zαi ⊕
∑

k 6=i Zαk. Note first that for (µ, k) ∈ Ξλ, we
have µ− σλ ∈ Λ∗

R
and then [µ− σλ]i = [µ]i − kri is an integer.

We start like after Proposition 1.3.23: mλ
c+

(µ, k) − mλ
c−

(µ, k) is equal to

the µ-mutiplicity in
∑

σ∈A(c+,c−)A
−
σ −A+

σ where

A±
σ = RRξ

0

(

Ki · σλ,C⊗k
[λ] ⊗

[
∧•

CNσ,i

]−1

∓̟i

)

(1.99)

Here ξ belongs to the relative interior of c+ ∩ c+, the line bundle C
⊗k
[λ]

is equal to Ki ×Ki∩Kσλ Ckσλ and
[
∧•

C
Nσ,i

]−1

±̟i
corresponds to (−1)rkC(N±

σ,i)

times
Ki ×Ki∩Kσλ

(
det(N±

σ,i) ⊗ S•((Nσ,i ⊗ C)±)
)
,

with
N±

σ,i =
∑

(α,σλ)>0

±(α,̟i)>0

kα ,

and
(Nσ,i ⊗ C)± =

∑

(α,σλ)6=0

±(α,̟i)>0

kα.

Now we can apply Remark 1.3.17 with the subgroup H ⊂ T equal to the
center Z(Ki) of Ki: an element γ ∈ Λ∗ belong to

∑

k 6=i Zαk if and only if

tγ = 1 for all t ∈ Z(Ki).
The group Z(Ki) acts trivially on the manifolds Ki · σλ, and with the

characters associated to the weights

kσλ+
∑

(α,σλ)>0

(α,̟i)>0

α+ δ with (δ,̟i) ≥ 0

on the bundle C
⊗k
[λ] ⊗

[
∧•

C
Nσ,i

]−1

̟i
, and with the characters associated to the

weights

kσλ+
∑

(α,σλ)>0

(α,̟i)<0

α+ δ with (δ,̟i) ≤ 0

on the bundle C
⊗k
[λ] ⊗

[
∧•

C
Nσ,i

]−1

−̟i
. Now the µ-multiplicity in A±

σ is not equal

to 0 only if

kσλ+
∑

(α,σλ)>0

±(α,̟i)>0

α+ δ − µ ∈
∑

k 6=i

Zαk with ± (δ,̟i) ≥ 0. (1.100)
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Condition (1.100) implies that [µ]i ≥ k[σλ]i + s+σ,i or [µ]i ≤ k[σλ]i − s−σ,i.

Finally we have prove that mλ
c+

(µ, k) = mλ
c−

(µ, k) if

−s−σ,i < [µ]i − k[σλ]i < s+σ,i

for all σ ∈ A(c+, c−). ⊓⊔

1.4.4 The case of SU(n)

Let T be the maximal torus of SU(n) consisting of the diagonal matrices. The
dual t

∗ can be identified with the subspace x1 + · · ·+xn = 0 of R
n. The roots

are R = {ei − ej |1 ≤ i 6= j ≤ n} and we will choose the positives ones to be
R

+ = {ei − ej | 1 ≤ i < j ≤ n}. The simple roots are then αi = ei − ei+1, for
1 ≤ i ≤ n− 1, and for these simple roots, the fundamental weights are

̟k =
1

n
(n− k, n− k, · · · , n− k
︸ ︷︷ ︸

k times

,−k,−k, · · · ,−k
︸ ︷︷ ︸

n−k times

), 1 ≤ k ≤ n− 1. (1.101)

Consider now the coadjoint orbit Oλ for λ ∈ t
∗. Let Φ : Oλ → t

∗ the
moment map associated to the Hamiltonian action of T on Oλ. The center of
SU(n), that we denote Zn corresponds to the set of matrices zI with zn = 1.
Recall the following well-known fact.

Lemma 1.4.12 Let ξ be a regular value of Φ : Oλ → t
∗. Then for every

m ∈ Φ−1(ξ) the stabilizer subgroup Tm := {t ∈ T | t ·m = m} is equal to Zn.

Proof. Since ξ is a regular value, we know that Tm is finite for every
m ∈ Φ−1(ξ). The dual of the Lie algebra su(n) decomposes as su(n)∗ = t

∗ ⊕
∑

α∈R+ su(n)∗α where su(n)∗α ≃ C−α as T -module. For m ∈ Φ−1(ξ), we have
m = m0 +

∑

α∈R+ mα with mα ∈ su(n)∗α, and then Tm = ∩mα 6=0 ker(t 7→ tα).
So the lattice Λ∗

m generated by the set {α ∈ R
+ |mα 6= 0} is a subgroup of

Λ∗
R

with Λ∗
R
/Λ∗

m finite. We have to show that Λ∗
m = Λ∗

R
. For this purpose we

introduce the following equivalence relation on {1, . . . , n}:

i ∼ j ⇐⇒ ei − ej ∈ Λ∗
m.

Suppose that {1, . . . , n}/ ∼ is not reduced to a point: let C1 and C2 be two
distinct equivalent classes and let β = (β1, . . . , βn) be the element of t

∗ defined
by: βi = 1

|C1|
if i ∈ C1, βi = −1

|C2|
if i ∈ C2, and βi = 0 in the other cases. We

see then that (β, α) = 0 for all α ∈ Λ∗
m: it is in contradiction with the fact that

Λ∗
R
/Λ∗

m is finite. We have proved that ei − ej ∈ Λ∗
m for all i, j ∈ {1, . . . , n}. ⊓⊔

We are in the particularly nice situation where the symplectic reduction
(Oλ)ξ = Φ−1(ξ)/T is a smooth manifold for any regular value ξ.

Suppose now that λ is a positive weight, and let c a connected component
of regular values of Φ : Oλ → t

∗. We know that mλ
c : Λ∗×Z −→ Z is supported

on the sub-lattice Ξλ := {(µ, k) |µ ∈ kλ+ Λ∗
R
}.
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Corollary 1.4.13 The map mλ
c : Ξλ −→ Z is a polynomial of degree

(n−1)(n−2)
2 − dλ, where dλ is the number of positive roots orthogonal to λ..

Proof. Take ξ ∈ c. Following Proposition 1.3.18, the periodic-polynomial
mλ

c is defined by mλ
c (µ, k) = RR((Oλ)ξ,L

k
ξ,µ) for all (µ, k) ∈ Ξλ. Here (Oλ)ξ =

Φ−1(ξ)/T is a smooth manifold, and the line bundle Lk
ξ,µ = (L⊗k|Φ−1(ξ) ⊗

C−µ)/T is also smooth since the center Zn acts trivially on L⊗k|Φ−1(ξ) ⊗
C−µ. Now the Atiyah-Singer integral formula for the Riemann-Roch number

RR((Oλ)ξ,L
k
ξ,µ) shows that mλ

c is a polynomial of degree
dim(Oλ)ξ

2 = dim Oλ

2 −

(n− 1) = (n−1)(n−2)
2 − dλ. ⊓⊔

Now we rewrite Theorem 1.4.10 for the group SU(n). Let λ = (λ1 ≥
· · · ≥ λn) be a positive weight and let c+ and c− be two adjacent connected
components of regular values of Φ : Oλ → t

∗ separated by an hyperplane
orthogonal to a fundamental weight ̟i: the vector ̟i is pointing out of c−,
and let (̟i, ξ) − ri = 0 be the equation of this hyperplane. We consider the
linear map

Q(ξ, t) := (̟i, ξ) − tri.

The hyperplane {Q = 0} ⊂ t
∗ × R separates Cone(c+) and Cone(c−).

The conditions (ek − el, σλ) > 0 and (ek − el, ̟i) > 0 are respectively
equivalent to λσ(k) > λσ(l) and k ≤ i < l. For SU(n), the number [α]i is
equal to 0, 1 or −1 for any roots α and any i = 1, · · · , n− 1. Hence for every
σ ∈ A(c+, c−), the integers s−σ,i, s

+
σ,i ≥ 0 introduced in Definition (1.4.9) are

equal to

s+σ,i = rkC(N+
σ,i) = ♯{k ≤ i < l such that λσ(k) > λσ(l)}, (1.102)

s−σ,i = rkC(N−
σ,i) = ♯{k ≤ i < l such that λσ(k) < λσ(l)}, (1.103)

and the sum s+σ,i + s−σ,i is equal to half of the codimension of Ki · σλ in K · λ,

that is s+σ,i + s−σ,i = i(n− i) − dim(Kσλ/Ki ∩Kσλ)/2.
Now we precise the results of [10].

Theorem 1.4.14 • The polynomial mλ
c−

− mλ
c+

: Ξλ → Z is divible by the
linear factors

(Q− s−i + 1), (Q− s−i + 2), . . . , Q, . . . , (Q+ s+i − 2), (Q+ s+i − 1),

where s±i = inf [σ]∈A(c+,c−) s
±
σ,i.

• The linear factors (Q− s−i ) and (Q− s+i ) do not divide mλ
c−

− mλ
c+

.

Proof. The first part is the translation of Theorem 1.4.10. We have just to
prove that the linear factors (Q− s−i ) and (Q− s+i ) do not divide mλ

c−
−mλ

c+
.

This point is a direct application of Proposition 1.3.25. The only fact we use
here is that rkC(N±

σ,i) = s±σ,i. So the number rkC(N±
σ,i) is constant for all

σ ∈ A(c+, c−) for which s±σ,i = s±i . ⊓⊔
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We rewrite now Theorem 1.4.14 in the particular case where A(c+, c−)
contains just one element: it happens when λ is a “generic” positive weight
(see Definition 1.4.5), or when c+ does not intersect Φ(Oλ). Here a positive
weight λ = (λ1 ≥ · · · ≥ λn) is “generic” if for every couple of permutations
σ, σ′ and any k = 1, · · · , n− 1, we have

k∑

i=1

λσ(i) 6=
k∑

i=1

λσ′(i)

when (λσ(1), · · · , λσ(n)) /∈ Sk × Sn−k(λσ′(1), · · · , λσ′(n)).

Corollary 1.4.15 Let λ be a regular weight. Let c+ and c− be two adjacent
connected components of regular values of Φ : Oλ → t

∗ and suppose that
A(c+, c−) contains just one element σ. Then the polynomial mλ

c−
− mλ

c+
:

Ξλ → Z is divible by the i(n− i) linear factors

(Q− s−i + 1), (Q− s−i + 2), . . . , q, . . . , (Q+ s+i − 2), (Q+ s+i − 1),

where s±i = s±σ,i are defined by (1.102) and (1.103). Moreover the linear factors

(Q− s−i ) and (Q− s+i ) do not divide mλ
c−

− mλ
c+

.

1.5 Vector partition functions

Let T be a torus with Lie algebra t and let Λ∗ ⊂ t
∗ be the weight lattice. Let

R = {α1, . . . , αd} be a subset of not necessarily distinct elements of Λ∗ which
are in an open halfspace of t

∗. We associate with the collection R a function

NR : Λ∗ −→ N

called the vector partition function associated to R. By definition, for a weight
µ, the value NR(µ) is the number of solutions of the equation

d∑

j=1

kjαj = µ, kj ∈ Z
≥0, j = 1, . . . , d. (1.104)

Let C(R) ⊂ t
∗ be the closed convex cone generated by the elements of

R, and denote by Λ∗
R ⊂ Λ∗ the sublattice generated by R. Obviously, NR(µ)

vanishes if µ does not belong to C(R) ∩ Λ∗
R.

Suppose now that R generates the vector space t
∗. Following [36], we will

call a vector singular with respect to R if it is in a cone C(ν) generated
by a subset ν ⊂ R of cardinality strictly less than dimT . The connected
components of t

∗ \{singular vectors} are called conic chambers. The periodic
polynomial behavior of NR on closures of conic chambers of the cone C(R)
is proved in [35]. We have the following refinement due to Szenes and Vergne
[36]. Let us introduce the convex polytope
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�(R) =

d∑

j=1

[0, 1]αj . (1.105)

We remark that c − �(R) is a neighborhood of c for any conic chamber c of
the cone C(R). We have the following qualitative result.

Theorem 1.5.1 ([36]) Let c be a conic chamber of the cone C(R). There
exists a periodic polynomial Pc on Λ∗ such that for each µ ∈ c − �(R), we
have

NR(µ) = Pc(µ).

In Section 1.5.4 we will give another proof of Theorem 1.5.1.
Let c± ⊂ t

∗ be two adjacent conic chambers separated by the hyperplane
∆ = {ξ ∈ t

∗ | 〈ξ, β〉 = 0}. Here β ∈ t is chosen so that c± ⊂ {ξ ∈ t
∗ | ±〈ξ, β〉 >

0}. The aim of this Section is to give a wall-crossing formula for the periodic
polynomial Pc+ − Pc− .

Note that the vector space ∆ is generated by R ∩ ∆. We polarize the
elements of R that are outside ∆. We define

R′ = {ǫjαj | 〈αj , β〉 6= 0 and ǫj = sign 〈αj , β〉}, (1.106)

δ± =
∑

±〈αj ,β〉>0

αj , (1.107)

and
r± = ♯{j | ± 〈αj , β〉 > 0}. (1.108)

We now look at the vector space ∆ equipped with the subset R ∩ ∆ ⊂
Λ∗ ∩ ∆ which lie enterely in an open halfspace: let NR∩∆ : Λ∗ ∩ ∆ → N be
the corresponding vector partition function. It is easy to see that c+ ∩ c− is
contained in the closure of a conic chamber c

′ ⊂ ∆ relative to R∩∆. Following
Proposition 1.5.1 there exists a periodic polynomial Pc′ on Λ∗ ∩∆ such that
for each µ ∈ c′ ∩ Λ∗, we have

NR∩∆(γ) = Pc′(γ).

Let NR′ : Λ∗ → N be the vector partition function associated to the
polarized set of weight R′ (see (1.106)). The main result of this Section is the
following

Theorem 1.5.2 The periodic polynomial Pc+ − Pc− : Λ∗ → Z satisfies

Pc+(µ) − Pc−(µ) =
∑

γ∈Λ∗∩∆

D(µ− γ)Pc′(γ), µ ∈ Λ∗, (1.109)

where D : Λ∗ → Z is defined by

D(µ) = (−1)r−

NR′(µ+ δ−) − (−1)r+

NR′(−µ− δ+).
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The proof of Theorem 1.5.2 will be given in Section 1.5.5.

Corollary 1.5.3 Pc+(µ) = Pc−(µ) for all the weights µ ∈ Λ∗ satisfying the
condition

−〈δ+, β〉 < 〈µ, β〉 < −〈δ−, β〉.

The former ineqalities are optimal since

(
Pc+ − Pc−

)
(−δ− + γ) = (−1)r−

Pc′(γ)

and
(
Pc+ − Pc−

)
(−δ+ + γ) = (−1)1+r+

Pc′(γ)

for all γ ∈ Λ∗ ∩∆.

Proof. In (1.109), the term D(µ− γ)Pc′(γ) does not vanish only if µ− γ ∈
−δ− + C(R′) or −(µ − γ) ∈ δ+ + C(R′) for some γ ∈ C(R ∩∆). These two
conditions impose respectively that 〈µ, β〉 ≥ −〈δ−, β〉 and 〈µ, β〉 ≤ −〈δ+, β〉.
If one take µ = −δ− +γ with γ ∈ Λ∗∩∆, (1.109) becomes (Pc+ −Pc−)(−δ− +
γ) =

∑

γ′∈Λ∗∩∆D(−δ− + γ − γ′)Pc′(γ
′) with

D(−δ− + γ − γ′) = (−1)r−

NR′(γ − γ′) − (−1)r+

NR′(δ− − δ+ − γ + γ′).

Since the cone C(R′) intersects ∆ only at {0}, NR′(γ − γ′) = 0 if γ 6= γ′.
Since 〈δ− − δ+, β〉 < 0 we always have NR′(δ− − δ+ − γ + γ′) = 0. We get

finally that (Pc+ −Pc−)(−δ− + γ) = (−1)r−

Pc′(γ). One can show in the same

way that (Pc+ − Pc−)(−δ+ + γ) = −(−1)r+

Pc′(γ). ⊓⊔

1.5.1 Quantization of C
d

We consider the complex vector space C
d equipped with the canonical sym-

plectic form Ω = i
2

∑d
i=1 dzj ∧ dzj . The standard complex struture J on C

d

is compatible with Ω. Let T be a torus, let αj ∈ t
∗, j = 1, . . . , d be weights of

T , and let T acts on C
d as

t · (z1, . . . , zd) = (t−α1z1, . . . , t
−αdzd). (1.110)

The action of T preserve the symplectic form Ω and the moment map associ-
ated with this action is

Φ(z) =
1

2

d∑

i=1

|zj |
2αj . (1.111)

The pre-quantization data (L, 〈, 〉,∇) on the Hamiltonian T -manifold
(Cd, Ω, Φ) is a trivial line bundle L with a trivial action of T equipped with

the Hermitian structure 〈s, s′〉z = e
−|z|2

2 ss′ and the Hermitian connexion

∇ = d− θ where θ = 1
2

∑d
i=1 zjdzj .
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The quantization of the Hamiltonian T -manifold (Cd, Ω), that we denote
QT (Cd), is the Bargman space of entire holomorphic functions on C

d which

are L2 integrable with respect to the Gaussian measure e
−|z|2

2 Ωd.
We suppose now that the set of weights R = {α1, . . . , αd} is polarized by

η ∈ t, which means that 〈αj , η〉 > 0 for all j. The T -representation QT (Cd) is
then admissible and we have the following equality in R−∞(T ):

QT (Cd) =
∑

µ∈Λ∗

NR(µ) Cµ, (1.112)

where NR : Λ∗ → N is the vector partition function associated to R. In other
words, the generalized character of QT (Cd) coincides with the generalized

character of the symmetric algebra S•(Cd), where Cd means C
d with the

opposite complex structure.

For the remaining part of Section 1.5, we assume that the set of weights
R = {α1, . . . , αd} is polarized, and generates the vector space t

∗. The first
assumption is equivalent to the fact that the moment map Φ : C

d → t
∗ is

proper, and the second assumption is equivalent to the fact that the generic
stabiliser of T on C

d is finite. Notice that the vectors of t
∗ which are singular

with respect to R correspond to the singular values of Φ.
In the next section we will show that QT (Cd), viewed as an element of

R−∞(T ), can be realized as the index of transversally elliptic symbols on
C

d. After we will apply the techniques developped in Section 1.3. The main
difference here is that we work with the non-compact manifold C

d.

1.5.2 Transversally elliptic symbols on C
d

Let p : TC
d → C

d be the canonical projection. We consider the Thom symbol

Thom(Cd) ∈ Γ
(
TC

d,hom(p∗(∧even
C TC

d), p∗(∧odd
C TC

d))
)

associated to the standard Hermitian structure on C
d. Obviously the symbol

Thom(Cd) is not elliptic since its characteristic set is equal to the zero section
in TC

d (hence is not compact).
Now we deform the symbol Thom(Cd) in order to obtain transversally

elliptic symbols. Since C
d can be realized as an open subset of a compact

T -manifold we have a well defined index map

IndexT
Cd : KT (TT C

d) −→ R−∞(T ).

Definition 1.5.4 For any η ∈ t, we define the symbol Thomη(Cd) by

Thomη(Cd)(z, v) = Thom(Cd)(z, v − ηCd(z)), (z, v) ∈ TC
d,

where ηCd is the vector field on C
d generated by η.
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The symbols Thomη(Cd) were studied in [32]. It is easy to see that
Thomη(Cd) is tranversally elliptic if and only if the vector subspace (Cd)η

is reduced to {0}, i.e. if 〈αj , η〉 6= 0 for all j = 1, . . . , d. We prove in Proposi-
tion 5.4. of [32] that

IndexT
Cd

(
Thomη(Cd)

)
= S•(Cd) in R−∞(T ), (1.113)

when 〈αj , η〉 > 0 for all j = 1, . . . , d.
In order to compute the multiplicities NR(µ) of QT (Cd) we introduce the

following tranversally elliptic symbols. Take a scalar product b(·, ·) on t
∗, and

denote by ξ 7→ ξb, t∗ ≃ t the induced isomorphism. For each ξ ∈ t
∗, the

Hamiltonian vector field of the function −1
2 ‖Φ− ξ‖2

b is the vector field

z 7→
(

(Φ(z) − ξ)b
)

Cd
(z).

that we denote Hb − ξb
Cd .

Definition 1.5.5 For any ξ ∈ t
∗, and any scalar product b(·, ·) on t

∗, we
define the symbol Thomξ,b(C

d) by

Thomξ,b(C
d)(z, v) = Thom(Cd)(z, v − (Hb − ξb

Cd)(z)), (z, v) ∈ TC
d.

Let Char(Thomξ,b(C
d)) ⊂ TC

d be the characterictic set of Thomξ,b(C
d).

We know that Char(Thomξ,b(C
d))∩TT C

d is equal to the critical set Cr(‖Φ−
ξ‖2

b) of the function ‖Φ− ξ‖2
b : C

d → R (see Section 1.3.2). A straightforward
computation gives that z ∈ Cr(‖Φ− ξ‖2

b) if and only if

b(Φ(z) − ξ, αj) zj = 0 for all j = 1, . . . , d. (1.114)

The former relations implies in particular that b(Φ(z)−ξ, Φ(z)) = 1
2

∑

j b(Φ(z)−

ξ, αj) |zj |
2 = 0. Hence ‖Φ(z)‖2

b = b(Φ(z), ξ) which implies

‖Φ(z)‖b ≤ ‖ξ‖b. (1.115)

Take now η ∈ t such that 〈αj , η〉 > 0 for all j, and let ηb ∈ t
∗ such that

(ηb)
b = η. We have then

Cη‖z‖
2 ≤ 〈Φ(z), η〉 = b(Φ(z), ηb) ≤ ‖Φ(z)‖b‖ηb‖b (1.116)

where Cη = 1
2 infj〈αj , η〉, and z 7→ ‖z‖2 is the usual hermitian form on C

d.
With (1.114) and (1.116) we get the following

Lemma 1.5.6 The critical set Cr(‖Φ− ξ‖2
b) ⊂ C

d is contained in the ball of
radius

‖ξ‖b ‖ηb‖b

Cη
,

where η ∈ t is such that Cη = 1
2 infj〈αj , η〉 > 0.
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We have then proved that the symbols Thomξ,b(C
d) are transversally el-

liptic.

Proposition 1.5.7 The class of the transversally elliptic symbol Thomξ,b(C
d)

in KT (TT C
d) does not depend of the data ξ, b, and is equal to the class defined

by Thomη(Cd) where η ∈ t is chosen so that 〈αj , η〉 > 0 for all j.

Proof. After Lemma 1.5.6, we know that for any scalar product b(·, ·) on
t
∗, the characteristic set of Thom0,b(C

d) intersects TT C
d at {0}. If b0 and

b1 are two scalar products on t
∗ we consider the family bt = tb1 + (1 −

t)b0, 0 ≤ t ≤ 1, of scalar products on t
∗. Hence Thom0,bt

(Cd), t ∈ [0, 1],
defines an homotopy of transversally elliptic symbols. We have proved that
Thom0,b0(C

d) = Thom0,b1(C
d) in KT (TT C

d) for any ξ ∈ t
∗.

Fix now the scalar product b and an element ξ ∈ t
∗. For any t ∈ [0, 1] the

characteristic set of Thomtξ,b(C
d) intersects TT C

d in the ball of radius

‖ξ‖b ‖ηb‖b

Cη
.

Hence Thomtξ,b(C
d), t ∈ [0, 1], defines an homotopy of transversally elliptic

symbols: Thomξ,b(C
d) = Thom0,b(C

d) in KT (TT C
d). We have proved that

the class of the transversally elliptic symbol Thomξ,b(C
d) in KT (TT C

d) does
not depend of the data ξ, b.

Since the weights αj lie enterely in an open halfspace of t
∗, there exists a

scalar product b+(·, ·) on t
∗ for which we have

b+(αi, αj) > 0

for all i, j = 1, . . . , d. Let Hb+ be the Hamiltonian vector field of the function
−1
2 ‖Φ‖2

b+
, and let ηCd be the vector field on C

d generated by η ∈ t such that

〈αj , η〉 > 0 for all j. A straightforward computation gives that

(Hb+(z), ηCd(z)) > 0 (1.117)

for all non zero z ∈ C
d. Consider now the following familly of symbols on C

d

σt(z, v) = Thom(Cd)(z, v − (tHb+ + (1 − t)ηCd)(z)), (z, v) ∈ TC
d.

so that σ0 = Thomη(Cd) and σ1 = Thom0,b+(Cd). The inequality (1.117)
shows that Char(σt)∩TT C

d = {0} for all t ∈ [0, 1]. Hence σt, t ∈ [0, 1], defines
an homotopy of transversally elliptic symbols: Thomη(Cd) = Thom0,b+(Cd)
in KT (TT C

d). ⊓⊔
For the remaining part of this paper we fix a scalar product on t

∗, and
we consider the family of transversally elliptic symbols Thomξ(C

d), ξ ∈ t
∗ (to

simplify, we do not mention the scalar product in the notation). Proposition
1.5.7 and (1.113) imply the following

Proposition 1.5.8 For every ξ ∈ t
∗, QT (Cd) is equal to the generalized char-

acter IndexT
Cd

(
Thomξ(C

d)
)
.
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Now we apply the techniques developped in Section 1.3 in order to compute
the multiplicities of IndexT

Cd

(
Thomξ(C

d)
)
.

1.5.3 Localization in a non-compact setting

Like in Section 1.3.2 we start with the

Definition 1.5.9 For any ξ ∈ t
∗ and any T -invariant relatively compact

open subset U ⊂ C
d we define the symbol Thomξ(U) by the relation

Thomξ(U)(z, v) := Thom(Cd)(z, v − (H− ξCd)(z)) (z, v) ∈ TU .

The symbol Thomξ(U) is transversally elliptic when Cr(‖ Φ−ξ ‖2)∩∂U = ∅
(the couple (U , ξ) is called good) and we denote by

RRξ
U (Cd) ∈ R−∞(T )

its index. Proposition 1.3.10 is still valid here. In particular, for a good couple

(U , ξ), we have RRξ′

U (Cd) = RRξ
U (Cd) if ξ′ is close enough to ξ. Consider now

the decomposition

Cr(‖ Φ− ξ ‖2) =
⋃

γ∈Bξ

(Cd)γ ∩ Φ−1(γ + ξ).

Here Bξ ⊂ t
∗ is finite set since C

d has a finite number of stabilizer. Since
0 ∈ (Cd)γ and z 7→ 〈Φ(z), γ〉 is constant on (Cd)γ , we have

(γ + ξ, γ) = 0 (1.118)

for all γ ∈ Bξ.

Definition 1.5.10 For any ξ ∈ t
∗ and γ ∈ Bξ, we denote simply by

RRξ
γ(Cd) ∈ R−∞(T )

the generalized character RRξ
U (Cd), where U is a T -invariant relatively com-

pact open neighborhood of (Cd)γ ∩ Φ−1(γ + ξ) such that Cr(‖ Φ− ξ ‖2) ∩ U =
(Cd)γ ∩ Φ−1(γ + ξ).

Since RRξ
Cd(Cd) is equal to QT (Cd) (see Proposition 1.5.8), part a) of

Proposition 1.3.10 insures that we have the decomposition

QT (Cd) =
∑

γ∈Bξ

RRξ
γ(Cd).

Let c ⊂ t
∗ be a conic chamber of the cone C(R), and take ξ in c. Then ξ

is a regular value of the moment map Φ : C
d → t

∗ defined in (1.111). Let Ωξ

be the symplectic structure on the orbifold (Cd)ξ = Φ−1(ξ)/T that is induced
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from Ω. The orbifold (Cd)ξ is also equipped with a complex structure Jξ that
is induced from the standard complex structure on C

d, in such a way that
the orbifold ((Cd)ξ, Ωξ, Jξ)) is a Kähler orbifold. If ξ belongs to the lattice
Λ∗, the reduced space (Cd)ξ is the Kähler toric variety corresponding to the
polytope {s ∈ (R≥0)d |

∑
sjαj = ξ} of R

d. For every µ ∈ Λ we consider the
holomorphic orbifold line bundle

Lξ,µ = (Φ−1(ξ) × C−µ)/T

on (Cd)ξ.

Definition 1.5.11 The periodic polynomial Pc : Λ∗ → Z associated to the
conic chamber c is given by

Pc(µ) = RR((Cd)ξ,Lξ,µ), (1.119)

where the right hand side is the Riemann-Roch number associated to the holo-
morphic orbifold line bundle Lξ,µ.

Another way to define the periodic polynomial Pc is to consider the gen-
eralized character RRξ

0(C
d) for ξ ∈ c: here γ = 0 parametrizes the component

Φ−1(ξ) of Cr(‖ Φ− ξ ‖2). Following (1.46) we have

RRξ
0(C

d) =
∑

µ∈Λ∗

Pc(µ) Cµ in R−∞(T ). (1.120)

After Lemma 1.3.16, we know that RRξ′

0 (Cd) = RRξ
0(C

d) when ξ, ξ′ are two
elements of c: hence the polynomial Pc does not depend of the choice of ξ in
c.

1.5.4 Proof of Theorem 1.5.1

Consider a weight µ ∈ (c − �(R)) ∩ Λ∗ of the form µ = ξ′ −
∑

j tjαj with
ξ′ ∈ c and tj ∈ [0, 1]. We start with the decomposition

QT (Cd) =
∑

γ∈Bξ′

RRξ′

γ (Cd).

Since NR(µ) and Pc(µ) are respectively the multiplicity of Cµ in QT (Cd) and

in RRξ′

0 (Cd), the proof will be complete if we show that the multiplicity of

Cµ in RRξ′

γ (Cd) is equal to zero when γ 6= 0.

Consider a non-zero element γ in Bξ′ . For the character RRξ′

γ (Cd) the
localization (1.44) gives

RRξ′

γ (Cd) = RRξ′+γ
0 ((Cd)γ) ⊗

[
∧•

CN
]−1

γ
, (1.121)
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where N =
∑

(αj ,γ) 6=0 C−αj
corresponds to the normal bundle of (Cd)γ in C

d.

The inverse
[
∧•

C
N
]−1

γ
is equal to (−1)l

Cδ(γ) ⊗ S•(N+,γ
C

) where

δ(γ) = −
∑

(αj ,γ)<0

αj .

Since γ acts trivially on (Cd)γ all the weights µ′ ∈ Λ∗ that appear in

RRξ′+γ
0 ((Cd)γ) satisfy (µ′, γ) = 0. Since the weights of N+,γ

C
are polarized by

γ, we see from (1.121) that all the weights µ′ ∈ Λ∗ that appear in RRξ′

γ (Cd)
must satisfy

(µ′, γ) ≥ (δ(γ), γ). (1.122)

Consider now the weight µ = ξ′ −
∑

j tjαj . Since ξ′ ∈ c, the equality (1.118)
implies (ξ′, γ) < 0 and then

(µ, γ) = (ξ′, γ)
︸ ︷︷ ︸

<0

+
∑

(αj ,γ)>0

−tj(αj , γ)

︸ ︷︷ ︸

≤0

−
∑

(αj ,γ)<0

tj(αj , γ) < −
∑

(αj ,γ)<0

(αj , γ).

So we have proved that (µ, γ) < (δ(γ), γ), hence the multiplicity of Cµ in

RRξ′

γ (Cd) is equal to zero. ⊓⊔

1.5.5 Proof of Theorem 1.5.2

Let c± be two adjacent conic chambers separated by the hyperplane ∆ = {ξ ∈
t
∗ | 〈ξ, β〉 = 0}. Here β is pointing out c−.

We consider two points ξ± ∈ c± such that ξ = 1
2 (ξ+ + ξ−) ∈ ∆ belongs to

the conic chanber c
′. We suppose also that the orthogonal projection of ξ± on

∆ are equal to ξ. We know that Pc+(µ)−Pc−(µ) is equal to the µ-mutiplicity

of RR
ξ+

0 (Cd) −RR
ξ−
0 (Cd). Proposition 1.3.23 tells us that

RR
ξ+

0 (Cd) −RR
ξ−
0 (Cd) = RRξ−

γ (Cd) −RR
ξ+

−γ(Cd),

where γ ∈ R
>0β is such that ξ− + γ = ξ+ − γ = ξ. The localization (1.44)

gives then

RRξ−
γ (Cd) −RR

ξ+

−γ(Cd) = RRξ
0((C

d)β) ⊗
([

∧•
CN
]−1

β
−
[
∧•

CN
]−1

−β

)

. (1.123)

Let Pc′ : Λ∗ ∩ ∆ → Z be the periodic polynomial map which coincides
with the vector partition function NR∩∆ on c′∩Λ∗. If we work with the vector
space (Cd)β equipped with the hamiltonian action of T/T∆, (1.46) gives the
following equality in R−∞(T/T∆)

RRξ
0((C

d)β) =
∑

γ∈Λ∗∩∆

Pc′(γ)Cγ . (1.124)
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A straightforward computation gives

[
∧•

CN
]−1

β
= (−1)r− ∑

µ∈Λ∗

NR′(µ+ δ−)Cµ (1.125)

and
[
∧•

CN
]−1

−β
= (−1)r+ ∑

µ∈Λ∗

N−R′(µ+ δ+)Cµ, (1.126)

where r±, δ±, R′ are defined in (1.106), (1.107) and (1.108). Since N−R′(µ) =
NR′(−µ), the equations (1.124), (1.125) and (1.126) show that the right hand
side of (1.123) is equal to

∑

µ∈Λ∗

∑

γ∈Λ∗∩∆

D(µ)Pc′(γ)Cµ+γ

with D(µ) = (−1)r−

NR′(µ + δ−) − (−1)r+

NR′(−µ − δ+). Finally we have
proved that Pc+(µ) − Pc−(µ) =

∑

γ∈Λ∗∩∆D(µ− γ)Pc′(γ). ⊓⊔
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Bourbaki 888, 2001.


