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Abstract

Let M be a closed coadjoint orbit of a real connected semi-simple
Lie group G, and let FM ∈ C−∞(g)G be it’s Fourier transform. In this
paper we compute the restriction of FM to the Lie algebra k of a maximal
compact subgroup K of G. Using a technique of localization in equivariant
cohomology developed in [16, 17], we extend previous results by M. Duflo,
G. Heckman, M. Vergne and I. Sengupta.
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1 Coadjoint orbits of semi-simple Lie groups

Let G be a connected, real, semi-simple Lie group with finite center. Let g be
its Lie algebra, and let g = k ⊕ p be a Cartan decomposition of g. We denote
by K (resp. θ) the compact connected subgroup of G with Lie algebra k (resp.
Cartan involution).

Let M be an orbit of the coadjoint representation. It is a regularly em-
bedded submanifold of g∗ which carries a canonical symplectic 2-form Ω; in
particular the manifold M is of even dimension 2d. We denote by dL := Ωd

(2π)dd!

∗Research supported by the Dutch Science Organization (NWO).
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the corresponding Liouville volume form on M . The action of G on M is Hamil-
tonian and the corresponding moment map µ

G
: M →֒ g∗ is the inclusion. Note

that
µ

G
is proper ⇐⇒ M is closed in g∗. (1.1)

The induced action of K on M is Hamiltonian, and the moment map µK :
M → k∗ is by definition the composition of µG with the projection g∗ → k∗.
For X ∈ g, we write X = X1 + X2 with X1 ∈ k and X2 ∈ p. The Killing form
B defines K-invariant Euclidean structures on k and p such that

B(X,X) = −‖X1‖2 + ‖X2‖2, X ∈ g , (1.2)

is a G-invariant quadratic form on g. Let ‖.‖ be the K-invariant Euclidean
norm on g defined by the equation ‖X‖2 := −B(X, θX) = ‖X1‖2 + ‖X2‖2.

Remark 1.1 The Killing form B provides a G-equivariant identification g ∼=
g∗, and also the following K-invariant identification k ∼= k∗, p ∼= p∗. Then we
will only deal with adjoint orbits M of G. In this case the symplectic structure
on M is defined by the equation Ωm(XM , YM ) = −B(m, [X,Y ]) for m ∈ M
and X,Y ∈ g, and the moment map µ

K
: M → k is the restriction to M of the

orthogonal projection g → k, X 7→ X1.

Let a ∈ R be the value of X 7→ B(X,X) on M . From the decomposition
‖X1‖2 = 1

2(‖X1‖2 + ‖X2‖2) + 1
2(‖X1‖2 − ‖X2‖2) and using (1.2) we see that

‖µ
K
‖2 = 1

2‖µG
‖2 − 1

2a holds on M . Hence the relation (1.1) becomes

µ
K

is proper ⇐⇒ M is closed in g. (1.3)

(We just use the fact that: µ
K

is proper ⇐⇒ ‖µ
K
‖2 is proper, and the same

is true for µ
G
.)

We denote respectively by C∞
rd(g) and C∞

cpt(g), the Schwartz space of smooth
rapidly decreasing functions on g, and the space of smooth functions with com-
pact support in g.

Assumption 1.2 We suppose for the rest of this paper that M is a closed
adjoint orbit in g.

In this case the Liouville volume form dL defines a tempered positive mea-
sure on g: for every function f ∈ C∞

rd(g), the integral
∫
M f(m)dL(m) converges.

Then we can define the Fourier transform of this measure

FM (X) = (ı)d

∫

M
e−ıB(m,X)dL(m), X ∈ g,

which is the generalized, tempered, and G-invariant function F
M

∈ C−∞
temp(g)G

defined by the equation < F
M

(X), f(X)dX >g:= (ı)d
∫
M

(∫
g
e−ıB(m,X)f(X)dX

)
dL(m),

for every f ∈ C∞
rd(g) (where dX is a Lebesgue measure on g).

The generalized function FM ∈ C−∞
temp(g)G admits a restriction FM |k to k

(see section 1 of [8] for the notion of restriction). Moreover the generalized
function F

M
|k ∈ C−∞

temp(k)
K is determined by the equation X ∈ k, F

M
|k(X) =

2



(ı)d
∫
M eı(µ

K
(m),X)dL(m), where (·, ·) is the K-invariant scalar product on k

coming from the Killing form (see Proposition 5 of [8]). Using the K-equivariant
symplectic 2-form Ωk(X) := Ω+(µ

K
,X), X ∈ k, the function F

M
|k ∈ C−∞

temp(k)
K

can be rewritten in the following way

F
M
|k(X) =

∫

M
eıΩk(X), X ∈ k

In this paper we shall compute the generalized functions FM |k ∈ C−∞
temp(k)

K

for every closed orbits M ⊂ g.

This computation has been already carried out in the regular case by J.
Sengupta [20] (modulo a constant) and in the elliptic case by Duflo-Heckman-
Vergne [7, 8]. Our method, which is closed to those of M. Duflo and M. Vergne
in [8], uses the techniques of localization in equivariant cohomology developed
in [16, 17].

Recall now the Rossmann formula. Suppose that G and K have the same
rank, and let T ⊂ K be a Cartan subgroup of K. We denote by W the
associated Weyl group. Let t be the Lie algebra of T and tr be the open subset
of regular point: X ∈ tr iff the stabilizer of X in K is equal to the torus T .

Definition 1.3 Let V be an oriented Euclidean space provided with an action
ρ : H → SO(V ) of a compact Lie group H that preserves the orientation o of
V . Let h be the Lie algebra of H and we still denote by ρ : h → so(V ) the

morphism of Lie algebras. We denote by ΠV (X) = det
1/2
V,o (X), X ∈ h the K-

invariant polynomial square root of the polynomial function X 7→ detV (ρ(X))
on h.

Let H be a compact Lie group with Lie algebra h. For any Lebesgue measure
dX on h, we denote by vol(H, dX) the volume of H computed with the Haar
measure compatible with dX.

For β ∈ k we denote by gβ (resp. kβ and pβ) the subspace of g (resp.
k and p) fixed by the adjoint action of β. Let Kβ be the stabilizer of β in
K : it is a connected subgroup with Lie algebra kβ. The vector spaces g/gβ

and k/kβ , considered as the tangent space at β of the orbits G.β and K.β,
are oriented by the respective symplectic structures. Using the decomposition
g/gβ = k/kβ ⊕p/pβ , the space p/pβ has an induced orientation. The space g/gβ

(resp. k/kβ and p/pβ) carries a natural Euclidean structure and a Kβ-action,
coming from its identification with the orthogonal complement of gβ (resp. kβ

and pβ) in g (resp. k and p). Following the Definition 1.3, this data define the
Kβ-invariant polynomial functions Πg/gβ

Πk/kβ
, and Πp/pβ

on kβ.

When β belongs to tr the following proposition is due to Rossmann [18].

Proposition 1.4 Let β ∈ t and let M = G.β be the associated (closed) adjoint
orbit. The function F

M
is analytic on G.tr (hence F

M
|k is analytic on K.tr),

and for every X ∈ tr we have

FM (X) = (−2π)dβ
∑

W/Wβ

eı(β,w.X)

Πg/gβ
(w.X)

,
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where Πg/gβ
is the Kβ-invariant polynomial defined at the Definition 1.3, dβ =

1
2 dim(M), and Wβ is the subgroup of W that stabilizes β.

Apart from the proof of Rossmann [18], we can find another proofs of this
Proposition in [4, 7, 22].

Notations : Let F ∈ C−∞(V ) be a generalized function on a vector space
V . For every test density f(v)dv over V , we denote by < F (v), f(v)dv >V ∈ C

the image (or the integral) of f(v)dv by F .

Let’s now give a global expression of F
M
|k. For a function f ∈ C∞

rd(k)K

supported in K.tr we get from Proposition 1.4

< F
M
|k(X), f(X)dX >k = cte <

1

Πg/gβ
(Y )

, eı(β,Y )f |t(Y )Π2
k/t(Y )dY >t [1]

= cte <
1

Πp/pβ
(Y )

, eı(β,Y )f |t(Y )Πk/kβ
(Y )Π2

kβ/t(Y )dY >t [2]

= cte’ <
1

Πp/pβ
(Z)

, eı(β,Z)f |kβ
(Z)Πk/kβ

(Z)dZ >kβ
, [3]

where cte = vol(K,dX)

vol(T,dY )

(−2π)
dβ

|Wβ |
, and cte’ = (−2π)dβ vol(K,dX)

vol(Kβ ,dZ)
. In the equality

[1] we use the Weyl integration formula for (k, t) and the fact that f |t is W -
invariant. The equality [2] comes from the equalities Πg/gβ

= Πk/kβ
Πp/pβ

and
Πk/t = Πk/kβ

Πkβ/t. In the last equality [3] we use the Weyl integration formula

for (kβ , t). Note that Z → eı(β,Z)f |kβ
(Z)Πk/kβ

(Z) and Z → Πp/pβ
(Z) are Kβ-

invariant functions on kβ.

The Kβ-equivariant Euler form of the oriented Kβ vector bundle p/pβ → {0}
is equal to Z → Πp/pβ

( 1
−2πZ). This equivariant polynomial has a tempered

generalized inverse Eul−1
β (p/pβ) defined by

Eul−1
β (p/pβ)(Z) = lim

s→0+

1

Πp/pβ
( 1
−2π (Z + ısβ))

, Z ∈ kβ .

For these notions see section 4 of [16].
Finally we can state the global version of the ‘Rossmann formula’ that is

obtained by Duflo-Vergne in [8] (with a different expression). For every function
f ∈ C∞

rd(k)K , we have

< F
M
|k(X), f(X)dX >k= cte < Eul−1

β (p/pβ)(Z), eı(β,Z)f |kβ
(Z)Πk/kβ

(Z)dZ >kβ
,

(1.4)

with cte = (−2π)dim(K/Kβ)/2 vol(K,dX)

vol(Kβ ,dZ)
.

The central result of this paper is the following global expression of F
M
|k

for the case of general closed orbits. We come back in the general case of
a real semisimple connected Lie group G with finite center, and we make no
assumption related to the ranks of G and K. Let T be a Cartan subgroup of
K with Lie algebra t, and let t+ be a Weyl chamber of t.
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Theorem 5.4 Let M be a closed orbit in g. There exists a unique (β0, β1) ∈
t+ × p with [β0, β1] = 0 such that M = G.(β0 + β1). Let Kβ be the stabilizer
of β := β0 + β1 in K, and let kβ be its Lie algebra. The generalized function
Eul−1

β0
(p/pβ0

) ∈ C−∞(kβ0
)Kβ0 admits a restriction to kβ , and for every function

f ∈ C∞
rd(k)K we have

< F
M
|k(X), f(X)dX >k= cte < Eul−1

β0
(p/pβ0

)(Z), eı(β0,Z)f |kβ
(Z)Πk/kβ0

(Z)dZ >kβ
,

with cte = (−2π)dim(K/Kβ0
)/2(2πı)dim(Kβ0

/Kβ) vol(K,dX)

vol(Kβ ,dZ)
.

Remark 1.5 The result of Theorem 5.4 can be extended in the following way.
Let α(X) be a closed K-equivariant form on M depending polynomially of X ∈ g

(see sub-section 2.1 for the definitions). If α(X) is régulière on M (for the
notion of being régulière see pages 20-21 of [8]), then the integral

∫

M
α(X)eıΩk (X), X ∈ k,

defines a tempered measure on k, and we have

<
(∫

M
αeıΩk

)
(X), f(X)dX >k= cte < Eul−1

β0
(p/pβ0

)(Z), eı(β0,Z)rβ(α)(Z)f |kβ
(Z)Πk/kβ0

(Z)dZ >kβ

for every f ∈ C∞
rd(k)K . In this equality rβ : A∞

K (M) → A∞
Kβ

({β}) = C∞(kβ)Kβ

is the restriction map to the point {β} ⊂ M .

Acknowledgement. I am grateful to Michel Brion for bringing me the
reference [21] to my attention.

2 Localization of the Fourier transform

We take the same notations as before. Let M be a closed adjoint orbit of G in
g, and consider the Hamiltonian action of the compact subgroup K on M . We
know from (1.3) that the associated moment map µ

K
: M → k is proper (we

make the identification k ∼= k∗ via the Killing form, see Remark 1.1).
Consider the equivariant symplectic form Ωk(X) := Ω + (µk,X), X ∈ k

defined on M . By definition of the moment map, the equivariant form Ωk is
closed: D(Ωk)(X) = d(µk,X)− c(XM )Ω = 0, X ∈ k (see sub-section 2.1 for the
notations). And we know from the introduction that the generalized function
FM |k is given by the integral of the closed equivariant form eıΩk ∈ A∞

K (M) on
M . Consider the function ‖µ

K
‖2 : M → R. In this section we show that the

integral of eıΩk can be localized on the set Cr(‖µ
K
‖2) of critical points of the

function ‖µ
K
‖2.

First, we recall the definition and notations we use in the rest of this paper.
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2.1 Equivariant cohomology-Definitions

Let M be a manifold provided with an action of a compact connected Lie group
K with Lie algebra k. We denote by A∗(M) the algebra of differential forms
on M (over C), and by d the exterior differentiation. Let A∗

cpt(M) be the sub-
algebra of compactly supported differential forms. If ξ is a vector field on M
we denote by c(ξ) : A∗(M) → A∗−1(M) the contraction by ξ. The action of K
on M gives a morphism X → XM from k to the Lie algebra of vector fields on
M .

We now recall the different de Rham complexes of K-equivariant forms on
M . For more details see [2, 3, 8, 12].

Let C∞(k,A∗(M)) be the algebra of forms α(X) on M depending smoothly
of X ∈ k. We note A∞

K (M) the sub-algebra of C∞(k,A∗(M)) consisting of the
K-invariant elements: these elements are called the equivariant forms with C∞-
coefficients. Let A∗

K(M) ⊂ A∞
K (M) be the sub-algebra of equivariant forms

α(X) depending polynomially of X ∈ k. The differential D on A∞
K (M) is given

by the equation

∀α ∈ A∞
K (M), (Dα)(X) := (d − c(XM ))(α(X)), X ∈ k.

We see that A∗
K(M) is stable under D, and that D2 = 0 on A∞

K (M). The coho-
mologies associated to (A∗

K(M),D) and (A∞
K (M),D) are denoted respectively

H∗
K(M) and H∞

K (M).
The algebra A∞

K (M) has a sub-algebra A∞
K,cpt(M) := C∞(k,A∗

cpt(M))K ,
stable under the differential D. The cohomology associated to (A∞

K,cpt(M),D)
is called the K-equivariant cohomology with compact support and is denoted
by H∞

K,cpt(M).

For our purpose we need equivariant forms with generalized coefficients. For
a more precise description see [12].

The space C−∞(k,A∗(M)) of generalized functions on k with values in the
space A∗(M) is, by definition, the space Hom(mc(k),A∗(M)) of continuous C-
linear maps from the space mc(k) of smooth compactly supported densities on
k to the space A∗(M), both endowed with the C∞-topologies. We define

A−∞
K (M) := C−∞(k,A∗(M))K

as the space of K-equivariant C−∞-maps from k to A∗(M). An element of the
space A−∞

K (M) is called an equivariant form with generalized coefficients. The
image of φ ∈ mc(k) under α ∈ C−∞(k,A∗(M)) is a differential form on M
denoted by < α,φ >k.

We see that A∞
K (M) ⊂ A−∞

K (M) and we can also extend the differential D
to A−∞

K (M) [12]. Take a basis {E1, · · · , Ep} of k, with associated dual basis
{E1, · · · , Ep}. Let {X1, · · · ,Xp} be the corresponding coordinate functions on
k. For every γ ∈ A−∞

K (M),

< D(γ), φ >k:= d < γ, φ >k −
p∑

k=1

c(Ek
M ) < γ,Xkφ >k for every φ ∈ mc(k).

(2.5)
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Using the K-equivariance condition, we verify that D2 = 0 on A−∞
K (M). The

cohomology associated to (A−∞
K (M),D) is called the K-equivariant cohomol-

ogy with generalized coefficients and is denoted by H−∞
K (M). The sub-space

A−∞
K,cpt(M) := C−∞(k,A∗

cpt(M))K is stable under the differential D, and we

denote by H−∞
K,cpt(M) the associated cohomology.

Let H be a compact Lie group with Lie algebra h. For every f ∈ C∞(h), we

denote by f
H

the H-invariant function on h defined by the equation

f
H

(X) :=

∫

K
f(h.X)dh, X ∈ h,

where dh is the normalized Haar measure on H (
∫
H dh = 1). It defines the

projection f 7→ f
H

, C∞(h) → C∞(h)H , and the same holds for the subspace
C∞

cpt(h) and C∞
rd(h). Recall that every H-invariant generalized function φ ∈

C−∞(h) is completely determined by its values on the H-invariant densities of
h, and moreover, for every f ∈ C∞

cpt(h) we have

< φ(X), f(X)dX >h=< φ(X), f
H

(X)dX >h .

2.2 Critical points of ‖µ
K
‖2

In this sub-section we prove that the set Cr(‖µ
K
‖2) of critical points of the

function ‖µ
K
‖2 is a K-orbit in M .

For a point m ∈ M we decompose m = xm + ym with xm = µ
K

(m) ∈ k and
ym ∈ p. By definition of the moment map we have 1

2d‖µ
K
‖2

m = (dµ
K

(m), µ
K

(m)) =
Ω((xm)M |m, ·), m ∈ M . Then d‖µK‖2

m = 0 iff (xm)M |m = 0 or equivalently
[xm,m] = [xm, ym] = 0. We have shown the following

Cr(‖µ
K
‖2) = {m ∈ M | [xm, ym] = 0}. (2.6)

Proposition 2.1 The critical points of ‖µ
K
‖2 form a K-orbit in M . In par-

ticular the points of Cr(‖µ
K
‖2) are the points where ‖µ

K
‖2 is minimum.

To prove this proposition we consider the length function Ψ : M → R,
Ψ(m) = ‖m‖2. We have already seen that ‖µK‖2 = 1

2Ψ − a
2 for some a ∈ R.

Then we can work with Ψ instead of ‖µK‖2.
Proposition (2.1) is a consequence of the next Lemma which is due to P.

Slodowy [21].

Lemma 2.2 Let m ∈ M be a critical point of Ψ, and m′ ∈ M . Then either
Ψ(m′) > Ψ(m) or m′ ∈ K.m.

Proof : Let g ∈ G such that m′ = g.m. Using the Cartan decomposition
G = K exp(p) we know that

m′ = k exp(X).m, with k ∈ K and X ∈ p.

7



We are now going to prove that Ψ(m′) > Ψ(m) or exp(X).m = m. Consider the
following function κ(t) = Ψ(exp(tX).m), t ∈ R. The element X belongs to p,
then the endomorphism ad(X) : g → g, Z → [X,Z] is auto-adjoint relatively to
the scalar product, hence diagonalizable. Let g =

∑
a ga be the decomposition

into orthogonal subspaces of k where for a ∈ R,

ga = {Y ∈ g| [X,Y ] = aY }.

If we write m =
∑

a ma with ma ∈ ga, we have κ(t) = ‖∑
a eatma‖2 =∑

a e2at‖ma‖2. This shows that κ′′(t) = 4
∑

a6=0 a2e2at‖ma‖2 is a positive func-
tion on R, and we have also κ′(0) = 0 (because m is a critical point of Ψ). The
function κ is convex and the equality κ′(0) = 0 implies that either κ(1) > κ(0) or
κ is constant on the interval [0, 1]. In the first case we get that Ψ(m′) > Ψ(m).
The second point imposes that κ′′(t) = 4

∑
a6=0 a2e2at‖ma‖2 = 0 for every

0 < t < 1. This means that ma = 0 for every a 6= 0 or equivalently [X,m] = 0
(hence exp(X).m = m). �

This Lemma implies that every critical point of Ψ reaches the minimum of
Ψ, and that two critical points of Ψ are in the same K-orbit. The properness of
Ψ implies that Ψ(M) is closed in R, in particular the minimum of Ψ is reached
and so Cr(‖µK‖2) = Cr(Ψ) 6= ∅. The proof of Proposition 2.1 is then completed.

Remark 2.3 One could consider this length function Ψ in the case of a general
orbit M . But from the results of P. Slodowy in [21], we know that Cr(Ψ) = ∅
when M is not closed.

2.3 Localization on Cr(‖µ
K
‖2)

The K-invariant scalar product on g defines a K-invariant Riemannian metric
(·, ·)

M
on the adjoint orbit M . Let λ

K
:= (H, .)

M
be the K-invariant one

form on M , where H is the Hamiltonian vector field associated to the function
1
2‖µK

‖2. More precisely, if we note m = xm + ym with xm ∈ k and ym ∈ p, we
have Hm = −[xm, ym] ∈ TmM for every m ∈ M , and

λK |m = −
(
[xm, ym], ·

)
M

, m ∈ M . (2.7)

This 1-form was introduced by Witten in [24] to describe a Non-Abelian local-
ization in equivariant cohomology. Now, this idea has been developed by the
author in [16, 17]. In the case of an elliptic orbit M = G.β, with β ∈ k, Duflo
and Vergne already used the 1-form λ

K
in [8] (it was denoted by θ, see Proposi-

tion 35) to localize the integral defining F
M
|k to the submanifold K.β ⊂ M . We

are going to extend this localization for all closed orbits, using the technique of
partition of unity in equivariant cohomology introduced in [16].

We note Φλ
K

: M → k the K-equivariant map defined by (Φλ(m),X) :=
λ(XM )(m), m ∈ M, X ∈ k. By definition XM (m) = −[X,m] for every
X ∈ k and (Φλ(m),X) = ([xm, ym], [X,m])M = −B([xm, ym], θ[X,m]). When
X ∈ k, the p-part of θ[X,m] is −[X, ym] and hence −B([xm, ym], θ[X,m]) =
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B([xm, ym], [X, ym]) = −B([[xm, ym], ym],X). Finally we see that ΦλK
: M → k

is defined by

Φλ
K

(m) = [[xm, ym], ym] ∈ k for every m ∈ M.

The equality (Φλ(m), µ
K

)(m) = ‖[xm, ym]‖2 shows that {Φλ
K

= 0} = {m ∈
M | [xm, ym] = 0} = Cr(‖µ

K
‖2), and we know from the last sub-section that the

set Cr(‖µ
K
‖2) is a K-orbit.

We work now with the following data. Take a point β ∈ Cr(‖µK‖2). Then
the manifold M is of the form M = G.β with β = β0 + β1, β0 ∈ k, β1 ∈
p, [β0, β1] = 0, and {Φλ

K
= 0} = K.β. If we make the choice of a Weyl

chamber t+ in t, we can take β0 ∈ t+.

Lemma 3.1 of [16] tells us that the equivariant form Dλ
K

(X) = dλ
K

−
(Φλ

K
,X) is invertible outside the submanifold K.β in the space of general-

ized equivariant forms. For each K-invariant differential form χext on M ,
equal to zero in a neighbourhood of K.β, we can define χext

(∫ ∞
0 ıe−ıtDλ

K dt
)
∈

A−∞
K (M), and this form satisfies the equality

χext

(∫ ∞

0
ıe−ıtDλ

K dt

)
Dλ

K
= χext

in A−∞
K (M).

Let χ ∈ C∞(M)K be a function with compact support on M , and equal to
1 in a neighbourhood of K.β. Then the differential form dχ is equal to 0 in a
neighbourhood of K.β, and we can define the equivariant form with compact
support on M

P
K

= χ + dχ

(∫ ∞

0
ıe−ıtDλ

K dt

)
λ

K
∈ A−∞

K,cpt(M). (2.8)

Recall Propositions 3.3 and 3.11 of [16].

Proposition 2.4 The equivariant form P
K

is closed, and we have the identity

1M = P
K

+ D(δ) , (2.9)

where 1M is the constant function equal to 1 on M , and δ = (1−χ)
(∫ ∞

0 ıe−ıtDλ
K dt

)
λ

K

is a generalized K-equivariant form. Moreover the cohomology class of P
K

in
H−∞

K,cpt(M) does not depend neither of the choice of the function χ nor of the
choice of the Riemannian metric near K.β.

We use the phrase “partition of unity” to refer to the equality (2.9), and
we will use it to decompose every closed form η ∈ A∞

K (M) in the following way

η = ηP
K

+ D(ηδ); a sum of an equivariant form ηP
K

supported near K.β and
an exact equivariant form D(ηδ).

9



With the compactly supported equivariant form P
K

we are going to localize
the Fourier transform of M . The generalized equivariant form eıΩkP

K
is tem-

pered. For every f ∈ C∞
dr (k), the differential form < eıΩk(X)P

K
(X), f(X)dX >k

is well defined, with compact support (included in the support of χ), and is
given

< eıΩk(X)P
K

(X), f(X)dX >k |m = χ(m)eıΩm f̂(−µ
K

(m)) +

dχ(m)eıΩm

(∫ ∞

0
ıe−ıt dλ

K
|m f̂(−tΦλ

K
(m) − µ

K
(m)) dt

)
λ

K
|m ,(2.10)

where f̂ is the Fourier transform of f relatively to dX. Note that the map
m →

∫ ∞
0 ıe−ıt dλ

K
|m f̂(−tΦλ

K
(m) − µ

K
(m))dt is a well defined differential form

on M \ {K.β}.
The integral of eıΩkP

K
on M defines a K-invariant tempered measure on k

by the equation

<

(∫

M
eıΩkP

K

)
(X), f(X)dX >k:=

∫

M
< eıΩk(X)P

K
(X), f(X)dX >k, f ∈ C∞

rd(k).

Theorem 2.5 We have the following equality of tempered measure on k

∫

M
eıΩk =

∫

M
eıΩk P

K
.

Proof : For every tempered measure D on k we have the following property: if
for every function f ∈ C∞

cpt(k) with compact support we have < D(X), f̂(X)dX >k=

0 (where f̂ is the Fourier transform of f relatively to dX), then the measure D

is identically equal to zero.
Here we take D :=

∫
M eıΩk −

∫
M eıΩkP

K
. Using now the partition of unity

(2.9), we see that < D(X), f̂(X)dX >k=
∫
M Af with Af =< D(eıΩk δ)(X), f̂ (X)dX >k∈

A∗(M). The theorem will be proved after showing that, for every function
f ∈ C∞

cpt(k), there exists a compactly supported differential form Bf on M such

that Af − d(Bf ) ∈ A<dimM (M): the usual ‘Stokes’ argument implies that∫
M Af =

∫
M d(Bf ) = 0

By definition of the differential D, we have Af =< D(eıΩk δ)(X), f̂ (X)dX >k=

d(< eıΩk(X)δ(X), f̂ (X)dX >k) −
∑p

k=1 c(Ek
M ) < eıΩk(X)δ(X),Xk f̂(X)dX >k,

and we take Bf :=< eıΩk(X)δ(X), f̂ (X)dX >k. For every m ∈ M we have

Bf |m = (2π)dim K(1−χ(m))eıΩm

(∫ ∞

0
ıe−ıt dλ

K
|m f(tΦλ

K
(m) + µ

K
(m)) dt

)
λ

K
|m,

(2.11)

since
̂̂
f(−X) = (2π)dim Kf(X), X ∈ k. From (2.11), we see that Bf |m = 0 if

tΦλ
K

(m) + µ
K

(m) is not in the support of f for every t > 0. But

‖tΦλ
K

+ µ
K
‖2 = ‖µ

K
‖2 + t2‖Φλ

K
‖2 + 2t(Φλ

K
, µ

K
) ≥ ‖µ

K
‖2
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because (ΦλK
, µK ) = ‖H‖2

M ≥ 0 on M . Let r > 0 such that the function f is
supported in the ball B(O, r) of radius r. Using the precedent inequalities we
see finally that the differential form Bf is supported in µ−1

K
(B(O, r)), hence is

with compact support (µ
K

being proper). �

3 First reduction: Symplectic induction

In this subsection, we prove an induction formula for the equivariant form P
K

similar to the induction we obtain in section 3 of [17]. For this purpose we use
the cross section Theorem of Guillemin-Sternberg [10] (see Theorem 6.7), and
also a Proposition of Duflo-Vergne [8] about generalized equivariant forms that
admit a restriction.

Let T be a maximal torus of K with Lie algebra t, and let W := W (K,T )
be the Weyl group associated. We make the choice of a Weyl chamber t+ in
t. Recall that a closed adjoint orbit M in g is of the form M = G.β with
β = β0 + β1, β0 ∈ t+, β1 ∈ p and [β0, β1] = 0, and that the cohomology class

of P
K

does not depend on the choice of the K-invariant Riemannian metric in
a neighbourhood of K.β.

Symplectic cross-section

Let σ be the unique open face of t+which contains β0. The stabilizer sub-
group Kξ ⊂ K that does not depend on the choice of ξ ∈ σ is denoted Kσ, and
we denote by kσ its Lie algebra (sometimes we use the different notations Kβ0

,
kβ0

).
Let Uσ be the Kσ-invariant open subset of kσ defined by

Uσ := Kσ.{y ∈ t+ | Ky ⊂ Kσ} = Kσ.
⋃

σ⊂τ̄

τ , (3.12)

where {σ ⊂ τ̄} is the set of all faces τ of t+ which contain σ in their closure. By
construction, Uσ is a slice for the adjoint action at any ξ ∈ σ (see Definition 3.1
of [13]). This means that the map K × Uσ → k, (g, ξ) → g.ξ, factors through
an inclusion K ×Kσ Uσ →֒ k.

The symplectic cross-section theorem [10] asserts that the pre-image Yσ =
µ−1

K
(Uσ) is a symplectic submanifold provided with an Hamiltonian action of

the group Kσ. The restriction µ
K
|Yσ is a moment map for the action of Kσ on

Yσ that we denote by µσ . In our case we just need the fact that kσ⊕p intersects
transversally M in a neighbourhood of Kσ.β ⊂ Yσ ⊂ M ∩ (kσ ⊕ p).

Moreover, the set K.Yσ is a K-invariant open neighbourhood of K.β in M
diffeomorphic to K×Kσ Yσ. Then, we can compute the equivariant form P

K
on

the manifold Mσ := K×KσYσ. We will denote by Ωσ(Y ) := Ω|Yσ+(µσ, Y ), Y ∈
kσ, the corresponding Kσ-equivariant symplectic form on Yσ.

Induced metric on Mσ

The quotient k/kσ is identified with the orthogonal complement k⊥σ of kσ in
k. We denote respectively by prk/kσ

and prkσ the orthogonal projections k → k⊥σ
and k → kσ. From now on we fix a Kσ-invariant metric (·, ·)Yσ on Yσ and we

11



associate to this metric a natural K-invariant Riemannian metric (·, ·)Mσ on
Mσ := K ×Kσ Yσ which is defined by

‖XMσ +vm‖2
Mσ

[k,m] := ‖prk/kσ
(k−1X)‖2

k + ‖prkσ(k−1X)Yσ |m+vm‖2
Yσ

, (3.13)

for X ∈ k and vm ∈ TmM . Here we use the identification between T[k,m]Mσ

and (TgK × TmYσ)
/

∼, (∼ is the relation of equivalence coming from the

Kσ-orbits in K × Yσ).

Let λσ := (Hσ, ·)Yσ be the Kσ-invariant 1-form on Yσ, where Hσ is the
Hamiltonian vector field of 1

2‖µσ‖2. A straightforward computation shows that

Cr(‖µσ‖2) = Cr(‖µK‖2) ∩ Yσ = Kσ.β. Let λ̃K := (H, ·)Mσ be the K-invariant
1-form on Mσ defined with the induced metric (·, ·)Mσ , where H is still the
Hamiltonian vector field of 1

2‖µK
‖2.

Using the definition of the induced metric (·, ·)Mσ we see that i∗σ(λ̃K ) = λσ,
where iσ : Yσ →֒ Mσ denotes the Kσ-equivariant inclusion, and we also remark
that

(
Φλ̃

K
([k,m]),X

)
k
=

(
ΦλKσ

(m), prkσ(k−1X)
)

k
, X ∈ k, [k,m] ∈ Mσ ,

(3.14)
where prkσ : k → kσ is the orthogonal projection. We will use these facts at
Proposition 3.4.

Definition 3.1 Let χ ∈ C∞
cpt(Mσ)K be the function coming from a Kσ-invariant

function χσ on Yσ, where χσ is equal to 1 in a neighbourhood of Cr(‖µσ‖2) =
Kσ.β. Then the function χ, that is equal to 1 in a neighbourhood of Cr(‖µK‖2) =
K ×Kσ (Kσ .β), defines the K-equivariant form

P̃K = χ + dχ

(∫ ∞

0
ıe−ıtDλ̃

K dt

)
λ̃

K
∈ A−∞

K,cpt(Mσ) .

With the function χσ we define in the same way the Kσ-equivariant form

PKσ = χσ + dχσ

(∫ ∞

0
ıe−ıtDλσdt

)
λσ ∈ A−∞

Kσ,cpt(Yσ) .

The inclusion Mσ →֒ M of an open subset defines a natural morphism
A∗

cpt(Mσ) → A∗
cpt(M) between the differential forms with compact support, and

hence a morphism
j : A−∞

K,cpt(Mσ) → A−∞
K,cpt(M) between the K-equivariant forms with compact

support. We know from Proposition 2.4, that

P
K

= j
(
P̃K

)
in H−∞

K,cpt(M).

Let π : Mσ → K/Kσ , [k, y] 7→ [k] be the projection map, and denote by∫
Fiber := π∗ : A−∞

K,cpt(Mσ) → A−∞
K (K/Kσ) the morphism of integration along

the fiber of π. Then we have

FM |k =

∫

Mσ

eıΩk P̃K

=

∫

K/Kσ

( ∫

Fiber
eıΩk P̃K

)
. (3.15)

12



In the next paragraph we are going to show that the ‘computation’ of the
closed equivariant form

∫
Fiber eıΩk P̃K ∈ A−∞

K (K/Kσ) can be deduced from those
of the generalized function∫
Yσ

eıΩkσ PKσ ∈ C−∞(kσ)Kσ .

Restriction of generalized equivariant forms

The manifold Yσ is oriented by its symplectic form, and K×KσYσ is oriented
by the symplectic form on M . Hence, we get an orientation o for K/Kσ and we
verify that this orientation coincides with those of Definition 1.3. This gives a

polynomial square root Y → Πk/kσ
(Y ) := det

1/2
k/kσ ,o(Y ), Y ∈ kσ (we will use also

the notation Πk/kβ0
for this polynomial). Note that Πk/kσ

never vanishes on the
open subset Uσ.

We have a natural identification between A∗(K/Kσ) and C∞
(
K, (∧k∗)horKσ

)Kσ

,

where Kσ-invariants are taken with respect to the action of Kσ by right multi-
plication on K and coadjoint action on k∗. The restriction map to the neutral
element e ∈ K, A∗(K/Kσ) → (∧k∗)horKσ , α → αe, defines a morphism

A−∞
K (K/Kσ) −→ C−∞

(
k , (∧k∗)horKσ

)Kσ

α(X) 7−→ αe(X) .

Let E1, · · · , Ep be a basis of k∗, and let {EI = Ei1 ∧ · · · ∧Eik , I = [i1 < i2 <
· · · < ik] ⊂ [1, 2, . . . , p]} be the corresponding basis of ∧k∗. In particular, E∅ = 1
generates R ⊂ ∧k∗. For each α ∈ A−∞

K (K/Kσ), the form αe can be decomposed
relatively to the basis {EI , I}: αe =

∑
I(αe)[I] EI with (αe)[I] ∈ C−∞(k).

We say that α admits a restriction to kσ if the wave front set of each com-
ponent (αe)[I] is transverse to kσ (see [8] for this notion). In this case, each
generalized function (αe)[I] admits a restriction to kσ . We can then define
rkσα := (αe)[∅]|kσ that is a generalized Kσ-invariant function on kσ. This defi-

nition extends the usual restriction map rkσ : A∞
K (K/Kσ) → C∞(kσ)Kσ .

Remark 3.2 There is a basic way to know if α ∈ A−∞
K (K/Kσ) admits a re-

striction to kσ. Suppose there exist αa ∈ A∞
K (K/Kσ), a > 0, such that

- lima→∞ αa = α, and
- the restriction αa

e |kσ ∈ C∞(kσ,∧k∗) converges in C−∞(kσ ,∧k∗) when a →
∞. In particular rkσαa ∈ C∞(kσ)Kσ converges in C−∞(kσ)Kσ when a → ∞.

Then the equivariant form α admits a restriction to kσ and we have rkσα =
lima→∞ rkσαa.

Recall Proposition 31 of [8].

Proposition 3.3 Let α ∈ A−∞
K (K/Kσ) be a closed equivariant form that ad-

mits a restriction to kσ. Then for every f ∈ C∞
cpt(k), we have

<
(∫

K/Kσ

α
)
(X), f(X)dX >k= cte < rkσα(Y ),Πk/kσ

(Y )f
K

|kσ(Y )dY >kσ ,

with cte = (−2π)dim(K/Kσ)/2 vol(K,dX)

vol(Kσ ,dY )
.

13



We can now state the following

Lemma 3.4 The closed K-equivariant form
∫
Fiber eıΩk P̃

K ∈ A−∞
K (K/Kσ) ad-

mits a restriction to kσ equal to
∫
Yσ

eıΩkσ PKσ ∈ C−∞(kσ)Kσ .

Proof : Here we are in the situation of Remark 3.2. We know already that

P̃
K

is the limit of the equivariant form P̃
K

a := χ + dχ
(∫ a

0 ıe−ıtDλ̃
K dt

)
λ̃K ∈

A∞
K,cpt(Mσ), and so α :=

∫
Fiber eıΩk P̃

K
is the limit of the equivariant forms

αa :=
∫
Fiber eıΩk P̃

K

a ∈ A∞
K (K/Kσ). Consider the maps αa

e |kσ ∈ C∞(kσ,∧k∗)Kσ .
We have

αa
e |kσ(Y ) =

∫

Yσ

eıΩe+ı(µσ ,Y )P̃
K

a,e, with

P̃
K

a,e = χσ + dχσ

(∫ a

0
ıe−ıt dλ̃

K
|eeıt(Φλσ ,Y )dt

)
λ̃K |e,

where Ωe, λ̃
K
|e and dλ̃

K
|e are in ∧k∗⊗A∗(Yσ). In these equalities we have used

that (Φλ̃
K
|e, Y )k = (Φλσ , Y )k for every Y ∈ kσ (see equation (3.14)). Since dχσ

is equal to 0 in a neighbourhood of {Φλσ = 0}, we see that αa
e |kσ converge in

C−∞(kσ,∧k∗)Kσ , when a → ∞.
If iσ : Yσ →֒ Mσ denotes the Kσ-equivariant inclusion, we have i∗σ(λ̃

K
) =

λσ, and i∗σ(Ω) = Ωσ (see equation (3.14)). Then we see that the functions
rkσαa =

∫
Yσ

eıΩkσ PKσ
a with PKσ

a = χσ + dχσ

(∫ a
0 ıe−ıtDλσdt

)
λσ converge to∫

Yσ
eıΩkσ PKσ when a → ∞. The proof is completed. �

Proposition 3.5 We have the following description of the generalized function
FM |k. For every function f ∈ C∞

rd(k), we have

< FM |k(X), f(X)dX >k= cte <
(∫

Yσ

PKσ

)
(Y ), eı(β0,Y )Πk/kσ

(Y )f
K

|kσ(Y )dY >kσ ,

with cte = (−2π)dim(K/Kσ)/2 vol(K,dX)

vol(Kσ ,dY )
.

Proof : Let U be a Kσ-invariant tubular neighbourhood of Kσ.β in Yσ, and
denote by p : U → Kσ.β the corresponding fibration. We denote by i : Kσ.β →֒
U the 0-section of this fibration. We need to compute the restriction i∗(Ωkσ) of
the equivariant form Ωkσ on Kσ.β. First we note that the inclusion Kσ.β →֒ Yσ

is an isotropic embedding, because β0 = µσ(Kσ.β) is fixed by Kσ: for every
X,X ′ ∈ kσ , and m ∈ Kσ.β we have Ωσ|m(XYσ ,X ′

Yσ
) = −(β0, [X,X ′]) = 0.

Then i∗(Ωσ) = 0 and we have also i∗(µσ) = β0. Finally we get i∗(Ωkσ)(Y ) =
(β0, Y ), Y ∈ kσ.

The equivariant form PKσ can be taken with (compact) support in U , and
we have

(∫

Yσ

eıΩkσ PKσ

)
(Y ) =

∫

Kσ.β
i∗(eıΩkσ )(Y )p∗

(
PKσ

)
(Y )

= eı(β0,Y )

(∫

Yσ

PKσ

)
(Y ).
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With this equality, the Proposition is just a consequence of Proposition 3.3,
Lemma 3.4, and the equality (3.15). �

4 Second reduction: Deformation procedure

We are now going to compute the generalized function
∫
Yσ

PKσ by means of a
deformation procedure (see Proposition 3.11 of [16] and section 2.3 of [17]).

We first recall briefly the context of our computation. Let M be a semi-
simple orbit of the adjoint representation of a real semi-simple Lie group G. We
have shown that M = G.β with β = β0 + β1, β0 ∈ k, β1 ∈ p and [β0, β1] = 0. In
the last section we have denote by kσ the subalgebra of k fixed by the adjoint
action of β0. We have also defined a symplectic Kσ-manifold Yσ which is an
open neighbourhood of Kσ.β in M ∩ (kσ ⊕ p). The action of Kσ is Hamiltonian
and the moment map µσ : Yσ → kσ is the restriction to Yσ of the orthogonal
projection g → kσ .

The equivariant form PKσ is supported in a (small) neighbourhood of Kσ .β
in Yσ, and to compute it we just need to describe a Kσ-invariant neighbourhood
of Kσ.β in Yσ.

We have already remarked that the inclusion Kσ.β →֒ Yσ is an isotropic
embedding. In fact Kσ .β is the 0-level of the shifted (Kσ-invariant) moment
map µσ − β0. Then to describe a Kσ-invariant neighbourhood of Kσ.β in Yσ

we can use the normal-form recipe of Marle, Guillemin and Sternberg.
First we can form, following Weinstein (see [11, 23]), the symplectic normal

bundle
Vβ0

:= T(Kσ.β)⊥,Ωσ

/
T(Kσ.β) , (4.16)

where the orthogonal ( ⊥,Ωσ) is taken relatively to the symplectic 2-form Ωσ.
Let Kβ be the subgroup of Kσ which stabilizes β, and let kβ be its Lie algebra
(Kβ is the subgroup of point k ∈ K such that k.β0 = β0 and k.β1 = β1). We
have

Vβ0
= Kσ ×Kβ

Vβ0

where the vector space Vβ0
:= Tβ(Kσ .β)⊥,Ωσ

/
Tβ(Kσ .β) inherits a symplectic

structure and an Hamiltonian action of the group Kβ .

Lemma 4.1 The vector space Vβ0
is equal to [p, β0] ∼= p/pβ0

and is equipped
with the natural Kβ-action. The moment map µβ : Vβ0

→ kβ associated to this
action verifies

µβ(y) = −1

2
prkβ

(
[y, [y, β0]]

)
, y ∈ [p, β0] ,

where prkβ
: kσ → kβ denotes the orthogonal projection. Moreover, µβ(y) = 0

iff y = 0.

Proof : The vector space TβM = [g, β] carries the symplectic form Ωβ that
is defined by the equation

Ωβ([X,β], [Y, β]) := −B(β, [X,Y ]), for X,Y ∈ g, (4.17)
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where B is the Killing form on g. We see from (4.17) that the symplectic or-
thogonal [kσ , β1]

⊥,Ωσ of the vector space Tβ(Kσ .β) = [kσ, β1] in TβM is equal to
the subspace B-orthogonal to kσ . Then we have Vβ0

= (kσ)⊥,B ∩TβYσ/[kσ , β1].
The subspace [g, β] of g is θ-stable because ker(ad(β)) = ker(ad(θβ)) =

ker(ad(β0)) ∩ ker(ad(β1)) is θ-stable and [g, β] = ker(ad(β))⊥,B . Hence we get

TβYσ = [g, β] ∩ (kσ ⊕ p)

= [g, β] ∩ kσ︸ ︷︷ ︸
⊂ k

⊕ [g, β] ∩ p︸ ︷︷ ︸
⊂ p

. (4.18)

The k-part of (kσ)⊥,B∩TβYσ is reduced to {0} because it is included in (kσ)⊥,B∩
kσ = {0} (see (4.18)). Hence we have (kσ)⊥,B∩TβYσ = [g, β]∩p = [k, β1]+[p, β0]
because p is B-orthogonal to kσ . Using the decomposition k = kσ⊕ [k, β0] we can
finally write (kσ)⊥,B ∩ TβYσ = [kσ, β1] ⊕ [p, β0] (the last sum is direct because
the two members are B-orthogonal and B is positive definite on p). We proved
finally that Vβ0

is equal to [p, β0]. The computation of µβ is left to the reader.
For the last point, we remark that (prkβ(X), β0)k = (X,β0)k for every X ∈ kσ ,
because β0 ∈ kβ. It follows that (µβ(y), β0)kσ = 1

2‖[y, β0]‖2 for every y ∈ [p, β0],
and this proves the last assertion. �

Consider now the following symplectic manifold

Ỹσ := Vβ0
× T(Kσ/Kβ) = Kσ ×Kβ

(
kσ/kβ ⊕ p/pβ0

)
(4.19)

where the tangent bundle T(Kσ/Kβ) is here naturally identified with the cotan-
gent bundle T∗(Kσ/Kβ) through the Kσ-invariant scalar product on kσ/kβ com-
ing from the scalar product on k (after identification of kσ/kβ with the orthog-
onal complement of kβ in kσ). The action of Kσ on Ỹσ is Hamiltonian and the
moment map µ̃σ : Ỹσ → kσ is given by the equation

µ̃σ([k;x, y]) = β0 + k.(x + µβ(y)) k ∈ Kσ, x ∈ kσ/kβ , y ∈ p/pβ0
. (4.20)

The local normal form Theorem, applied to the moment map µσ − β0, (see
[19] Proposition 2.5 ) tells us that there exists a Kσ-Hamiltonian isomorphism

Υ : U1
∼→ U2,

where U1 is a Kσ-invariant neighbourhood of Kσ.β in Yσ, and U2 is a Kσ-
invariant neighbourhood of Kσ/Kβ in Ỹσ. Furthermore the isomorphism, when

restricted to Kσ.β, corresponds to the natural isomorphism Kσ.β
∼→ Kσ/Kβ .

Let H̃σ be the Hamiltonian vector field on Ỹσ of 1
2‖µ̃σ‖2. For every [k;x, y] ∈

Ỹσ we have

H̃σ|[k;x,y] =
(
k.µ̃σ([1;x, y])

)

Ỹσ

|[k;x,y]

=
d

dt
∣∣∣t=0

[k.e−t X ;x, y] , with X = β0 + x + µβ(y)

= −xKσ,r(k) − [β0, y] − [µβ(y), x + y] . (4.21)
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In the last equality, xKσ ,r is the vector field generated by the right action of
{et x, t ∈ R} on Kσ.

Remark now that the action of Kβ on Vβ0
comes from a Kσ-action. Hence

the vector bundle Ỹσ → T(Kσ/Kβ) is trivial through the isomorphism

Ξ : Ỹσ
∼−→ T(Kσ/Kβ) × Vβ0

(4.22)

[k;x, y] 7−→ ([k, x], k.y) .

We have a natural Kβ-invariant Euclidean structure on kσ/kβ⊕p/pβ0
coming

from the Euclidean structure of g and we denote by (·, ·)T(Kσ/Kβ) the induced

Kσ-invariant Riemannian structure on T(Kσ/Kβ) (see equation (3.13)).

Definition 4.2 Let θβ0
be the Kσ-invariant 1-form on Vβ0

given by θβ0
|y =

−([β0, y], dy)p, y ∈ Vβ0
, and let γσ be the Kσ-invariant 1-form on T(Kσ/Kβ) de-

fined by the equation: γσ|[k;x,y] = −
(
xKσ,r(k), ·

)
T(Kσ/Kβ)

, [k;x] ∈ T(Kσ/Kβ).

We will denote by λ̃σ the Kσ-invariant 1-form on Ỹσ defined below

λ̃σ = Ξ∗
(
γσ + θβ0

)
.

We are going to prove that λ̃σ and λσ define (in cohomology) the same
generalized equivariant form in the neighbourhood of Kσ/Kβ (through the iso-

morphism Υ). First we compute the function
(
Φλ̃σ

, µ̃σ

)
near Kσ/Kβ . We

have
(
Φλ̃σ

, µ̃σ

)
([k;x, y]) = γσ

(
XT(Kσ/Kβ)

)
([k, x]) + θβ0

(
XVβ0

)
(k.y) with X = µ̃σ([k;x, y])

= ‖x‖2
k +

([
β0, k.y

]
,
[
µ̃σ([k;x, y]), k.y

])
p

= ‖x‖2
k + ‖[β0, y]‖2

p + O(‖x, y‖3). (4.23)

In the last equality we just use the fact that µ̃σ([k;x, y]) = β0 +O(‖x, y‖), then([
β0, k.y

]
,
[
β0 + O(‖x, y‖), k.y

])

p
= ‖[β0, k.y]‖2

p+O(‖x, y‖3) and the Kσ-invariance

of β0 imposes ‖[β0, k.y]‖2
p = ‖[β0, y]‖2

p.
From the equality (4.23), we know that there exists a Kσ-invariant neigh-

bourhood Ṽ of the 0-section in Ỹσ such that the function (Φλ̃σ
, µ̃σ) is strictly

positive on Ṽ \ {Kσ/Kβ} (Note that the vector [β0, y] is non-zero for each non-
zero vector y ∈ p/pβ0

). In particular we get {Φλ̃σ
= 0} ∩ Ṽ = Kσ/Kβ .

Let χ̃σ ∈ C∞
cpt(Ỹσ) be a function supported on Ṽ ∩ U2, and equal to 1 in a

neighbourhood of Kσ/Kβ . With this function we define the equivariant form

P̃
Kσ

= χ̃σ + dχ̃σ

(∫ ∞

0
ıe−ıtDλ̃σdt

)
λ̃σ ∈ A−∞

Kσ,cpt(Ỹσ) .

The main point of our deformation procedure is the following
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Lemma 4.3 The generalized Kσ-equivariant forms PKσ , and Υ∗
(
P̃

Kσ
)
, define

the same cohomology class in H−∞
Kσ,cpt(Yσ). In particular we have the equality

∫

Yσ

PKσ =

∫

Ỹσ

P̃
Kσ

of Kσ-invariant tempered generalized functions on kσ.

Proof : This is a consequence of Proposition 3.11 of [16], with the function
f := µσ on the manifold V := Υ−1(Ṽ ∩U2), with the 1-forms λσ and Υ∗(λ̃σ). All
the point is that the functions (ΦΥ∗(λ̃σ), µσ) = (Φλ̃σ

, µ̃σ) ◦ Υ and (Φλσ , µσ) =

‖Hσ‖2 are strictly positive on V \ {Kσ.β}. This fact implies that the 1-forms
λσ and Υ∗(λ̃σ) define the same equivariant forms in cohomology. �

Consider now the Kσ-equivariant form e−ıDλ̃σ on Ỹσ. First of all we note
that the 1-form λ̃σ is linear in the variable x ∈ kσ/kβ , and quadratic in the
variable y ∈ p/pβ0

. Consider the corresponding map Φλ̃σ
: Ỹσ → kσ. For every

Z ∈ kσ, [k; , x, y] ∈ Ỹσ we have
(
Φλ̃σ

, Z
)

k
([k;x, y]) =

(
x, prkσ/kβ

(k−1.Z)
)

k
+

(
[β0, k.y], [Z, k.y]

)

p

=
(
x, k−1.Z

)
k
+

(
[[β0, k.y], k.y], Z

)
k

[1]

=
(
k(x + [[β0, y], y]), Z

)
k
. [2]

For the point [1]: we first use the fact that (X, prkσ/kβ
(X ′))k = (prkσ/kβ

(X),X ′)k,
for X,X ′ ∈ kσ, and we use also the identity (a, [X, b])p = ([a, b],X)k, for a, b ∈ p,
and X ∈ k. The point [2] follows from the Kσ-invariance of β0. We have found
the following expression: Φλ̃σ

([k;x, y]) = k(x + [[β0, y], y]), [k;x, y] ∈ Ỹσ.
Consider, for every t > 0, the following Kσ-equivariant contraction

δt : Ỹσ −→ Ỹσ (4.24)[
k;x, y

]
7−→

[
k,

x

t
,

y√
t

]
.

We have tδ∗t (λ̃σ) = λ̃σ and tδ∗t (Φλ̃σ
) = Φλ̃σ

for every t > 0. This gives

δ∗t

(
e−ı tDλ̃σ

)
= e−ıDλ̃σ in A∞

Kσ
(Ỹσ),

for every t > 0.
For every f ∈ C∞

rd(kσ), the differential form < e−ıDλ̃σ(Y ), f(Y )dY >kσ is

the product of the differential form e−ı dλ̃σ which has a polynomial dependence
in the direction of the fibers, with the function f̂(−Φλ̃σ

) which is rapidly de-

creasing along the fibers. The differential form < e−ıDλ̃σ(Y ), f(Y )dY >kσ is

then integrable on Ỹσ. We denote by
∫
Ỹσ

e−ıDλ̃σ the tempered Kσ-invariant
function on kσ defined by

<
(∫

Ỹσ

e−ıDλ̃σ

)
(Y ), f(Y )dY >kσ :=

∫

Ỹσ

< e−ıDλ̃σ(Y ), f(Y )dY >kσ for f ∈ C∞
rd(kσ).
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Proposition 4.4 We have the following equality

∫

Ỹσ

P̃
Kσ

=

∫

Ỹσ

e−ıDλ̃σ

of Kσ-invariant tempered generalized functions on kσ.

Proof : The generalized equivariant form P̃
Kσ

is the limit of the smooth
equivariant form

P̃
Kσ

a := χ̃σ + dχ̃σ

(∫ a

0
ıe−ıtDλ̃σdt

)
λ̃σ

= χ̃σe−ıaDλ̃σ + D
(

χ̃σ(

∫ a

0
ıe−ıtDλ̃σdt)λ̃σ

)
,

when a → ∞. Note that the equivariant form χ̃σ(
∫ a
0 ıe−ıtDλ̃σdt)λ̃σ is with

compact support on Ỹσ, then after integration on Ỹσ we get

∫

Ỹσ

P̃
Kσ

a =

∫

Ỹσ

χ̃σe−ıaDλ̃σ =

∫

Ỹσ

χ̃σ◦δa e−ıDλ̃σ

where we make the change of variable δa in the last equality. From this, we see

that
∫
Ỹσ

P̃
Kσ

= lima→∞

∫
Ỹσ

χ̃σ ◦δa e−ıDλ̃σ . The function χ̃σ is equal to 1 in a
neighbourhood of the 0-section, then lima→∞ χ̃σ ◦δa = 1, and we conclude with
the ‘Lebesgue’ convergence argument. �

5 Computation of
∫
Ỹσ

e
−ıDλ̃σ

Note that the vector field on Ỹσ generated by β0 is identically equal to zero on
T(Kσ/Kβ) and on Vβ0

we have β0Vβ0
|[k,y] = −[β0, y]. With the Kσ-equivariant

form
−ıDλ̃σ(X + ısβ0) = −ıDλ̃σ(X) − s‖[β0, y]‖2

depending of the parameter s > 0, we can compute the generalized function∫
Ỹσ

e−ıDλ̃σ as a limit of the generalized functions Λs on kσ defined by the equa-
tion

Λs(X) =

∫

Ỹσ

e−ıDλ̃σ(X+ısβ0), s > 0.

The integration is well defined because e−ıDλ̃σ(X+ısβ0)|[k;x,y] = e−ıDλ̃σ(X)|[k;x,y] e
−s‖[β0,y]‖2

and the function [k;x, y] → e−s‖[β0,y]‖2

is bounded on Ỹσ. To compute Λs,

first we can integrate e−ıDλ̃σ(X+ısβo) on the fibers of the projection π1 : Ỹσ →
T(Kσ/Kβ). The term e−s‖[β0,y]‖2

insures that the equivariant form (π1)∗

(
e−ıDλ̃σ(X+ısβo)

)

is smooth, and we have

(π1)∗

(
e−ıDλ̃σ(X+ısβ0)

)
= e−ıDγσ(X)(π1)∗ ◦ Ξ∗

(
e−ıDθβ0

(X+ısβ0)
)
.
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The map Ξ is a trivialization of the bundle π1 : Ỹσ → T(Kσ/Kβ), then

the equivariant form (π1)∗ ◦ Ξ∗
(
e−ıDθβ0

(X+ısβ0)
)
∈ A∞

Kσ
(T(Kσ/Kβ)) is equal

to the function ∫

Vβ0

e−ıDθβ0
(X+ısβ0), X ∈ kσ. (5.25)

The equivariant Euler form Eulo(p/pβ0
) of the oriented Kσ-bundle Vβ0

= p/pβ0
→

{0} is equal to the a Kσ-invariant polynomial X ∈ kσ → Πp/pβ0
(−1

2π X) ( for

Πp/pβ0
see the Definition 1.3).

The integrals like (5.25) have been studied in section 4 of [16], where we
prove in particular that

∫

Vβ0

e−ıDθβ0
(X+ısβ0) = Eulo(p/pβ0

)(X + ısβ0)
−1 (5.26)

for every X ∈ kσ, s > 0. Hence, we have the following

Lemma 5.1 The generalized function
∫
Ỹσ

e−ıDλ̃σ is the limit of the generalized
functions

Λs(X) =
1

Eulo(p/pβ0
)(X + ısβ0)

∫

T(Kσ/Kβ)
e−ıDγσ(X), s > 0,

when s → 0+.

Then it remains to compute the generalized function
∫
T(Kσ/Kβ) e−ıDγσ(X), X ∈

kσ.

Proposition 5.2 Let L be a compact Lie group and H a closed subgroup, with
corresponding Lie algebras l, and h. We denote by λL/H the (L-invariant)
Liouville 1-form on T∗(L/H). For every f ∈ C∞

rd(l) the differential form <

eıDλL/H(X), f(X)dX >l is integrable on T∗(L/H) and

∫

T
∗
(L/H)

< eıDλL/H(X), f(X)dX >l= cte < 1h(Y ), f
L

(Y )dY >h,

with cte = (2ıπ)dim(L/H) vol(L,dX)

vol(H,dY )
, and 1h is the constant function equal to 1

on h.

Remark 5.3 A similar computation has been done by Witten in [24] (See equa-
tion (2.42)).

Proof : First we parameterize the Liouville 1-form λL/H ∈ A1(T∗(L/H)).
Let r be a H-invariant complement of h in l: l = h ⊕ r. Then the dual vector
space r∗ is naturally identified with the orthogonal (for the duality) h⊥ of h

in l∗. The tangent bundle T(L/H) (resp. the cotangent bundle T∗(L/H))
is naturally identified with the bundle L ×H r over L/H (resp. the bundle
L ×H r∗). Let Ei, i = 1, · · · ,dim(G/H) be a basis of r, and we denote by Ei

the corresponding dual basis of r∗. For every X ∈ l, let XL,r the vector field
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on L generated by the right action of L on itself: XL,r|l = d
dt

∣∣∣
t=0

l.etX , l ∈ L.

Let ωi, i = 1, · · · ,dim(G/H) be the (left) L-invariant 1 forms on L such that
ωi(XL,r) is a constant function on L equal to 〈Ei,X〉 for every X ∈ l. The

space
(
A1(L)L ⊗ r

)
H−basic

is a subspace of the space of (left) L-invariant one

form on L ×H r∗, where the H-invariant are taken with respect to the action
of H by right multiplication on L, and adjoint action on r ; the L-invariant
are taken with respect to the action of L by left multiplication on itself. The

1-form λL/H ∈
(
A1(L)L ⊗ r

)
H−basic

is defined by the equation

λL/H |[l,ξ] :=

dim(r)∑

i=1

〈ξ,Ei〉 ωi|l, [l, ξ] ∈ L ×H r∗. (5.27)

A straightforward computation gives DλL/H(X)|[l,ξ] = ΩL/H+〈l.ξ,X〉, [l, ξ] ∈
L×H r∗, X ∈ l, where ΩL/H = dλL/H =

∑k
i=1 dEi∧ωi+Eidωi is the symplectic

two form on L ×H r∗ ∼= T∗(L/H). The corresponding Liouville volume form
Ωk

L/H

k! is equal to Πk
i=1dEi ∧ ωi. Then, for every L-invariant function f ∈ C∞

rd(l)
we have

∫

T
∗
(L/H)

< eıDλL/H(X), f(X)dX >l = (ı)k

∫

L×Hr∗

Ωk
L/H

k!
f̂(−l.ξ) [1]

= (ı)k

∫

L/H
Πiωi

∫

Fiber
f̂(−l.ξ)ΠidEi. [2]

In [1], the function f̂ ∈ C∞
rd(l∗) is the Fourier transform of f relatively to the

measure dX, and k = dim(L/H). In [2], we have decomposed Πk
i=1dEi ∧ ωi

in Πiωi ∧ ΠidEi, and the morphism
∫
Fiber : A∗

rd(L ×H r∗) → A∗(L/H) is the
morphism of integration along the fiber of L ×H r∗ → L/H.

The L-invariance of f imposes that [l] →
∫
Fiber f̂(−l.ξ)ΠidEi is constant

on L/H, and is equal to
∫
r∗

f̂(−ξ)dξ, where dξ is the Lebesgue measure on r∗

compatible with ΠidEi. The double Fourier integral gives

∫

r∗
f̂(−ξ)dξ = (2π)k

∫

h

f(Y )dY,

where dX
dY is the Lebesgue measure on r dual to dξ. Finally, we have proved

that
∫

T
∗
(L/H)

< eıDλL/H(X), f(X)dX >l= (2ıπ)kvol(L/H,Πiωi)

∫

h

f |h(Y )dY.

But vol(L/H,Πiωi) = vol(L,dX)

vol(H,dY )
, and Proposition is then proved. �

We come back now at the previous situation. We verify that the 1-form −γσ

on T(Kσ/Kβ) corresponds to the Liouville 1-form on T∗(Kσ/Kβ), through the
identification T∗(Kσ/Kβ) ∼= T(Kσ/Kβ).
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The function defined over kσ, X → Eulo(p/pβ0
)(X + ısβ0)

−1, defines, when
s → 0+, a generalized function in C−∞(V ) on each vector subspace V ⊂ kσ that
contains β0. We denote by Eul−1

β0
(p/pβ0

) this generalized function (whatever
the vector subspace V is).

We can now state the Theorem.

Theorem 5.4 Let M be a closed orbit in g. There exists a unique (β0, β1) ∈
t+ × p with [β0, β1] = 0 such that M = G.(β0 + β1). Let Kβ be the stabilizer
of β := β0 + β1 in K, and let kβ be its Lie algebra. The generalized function
Eul−1

β0
(p/pβ0

) ∈ C−∞(kβ0
)Kβ0 admits a restriction to kβ , and for every function

f ∈ C∞
rd(k)K we have

< F
M
|k(X), f(X)dX >k= cte < Eul−1

β0
(p/pβ0

)(Z), eı(β0,Z)f |kβ
(Z)Πk/kβ0

(Z)dZ >kβ
,

with cte = (−2π)dim(K/Kβ0
)/2(2πı)dim(Kβ0

/Kβ) vol(K,dX)

vol(Kβ ,dZ)
.

Proof : Proposition 5.2 and Lemma 5.1 give

< Λs(X), f(X)dX >kσ= cte <
1

Eulo(p/pβ0
)(Y + ısβ0)

, f |kβ
(Y )dY >kβ

for every function f ∈ C∞
rd(kσ) that is Kσ-invariant, and with cte = (2ıπ)dim(kσ/kβ) vol(Kσ ,dX)

vol(Kβ ,dY )
.

After taking the limit s → 0+, we get from Lemma 5.1

<
(∫

Ỹσ

e−ıDλ̃σ

)
(X), f(X)dX >kσ= cte < Eul−1

β0
(p/pβ0

)(Y ), f |kβ
(Y )dY >kβ

.

Now Proposition 3.5, Lemma 4.3 , and Proposition 4.4 used with this last
equality complete the proof. �
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