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Epigraphical Projection for Solving Least
Squares Anscombe Transformed Constrained
Optimization Problems

Stanislav Harizanov', Jean-Christophe Pesquet?, and Gabriele Steidl!

! Department of Mathematics, University of Kaiserslautern, Germany
2 Laboratoire d’Informatique Gaspard Monge, Université Paris-Est, France

Abstract. This papers deals with the restoration of images corrupted
by a non-invertible or ill-conditioned linear transform and Poisson noise.
Poisson data typically occur in imaging processes where the images are
obtained by counting particles, e.g., photons, that hit the image sup-
port. By using the Anscombe transform, the Poisson noise can be ap-
proximated by an additive Gaussian noise with zero mean and unit vari-
ance. Then, the least squares difference between the Anscombe trans-
formed corrupted image and the original image can be estimated by
the number of observations. We use this information by considering an
Anscombe transformed constrained model to restore the image. The ad-
vantage with respect to corresponding penalized approaches lies in the
existence of a simple model for parameter estimation. We solve the con-
strained minimization problem by applying a primal-dual algorithm to-
gether with a projection onto the epigraph of a convex function related
to the Anscombe transform. We show that this epigraphical projection
can be efficiently computed by Newton’s methods with an appropriate
initialization. Numerical examples demonstrate the good performance
of our approach, in particular, its close behaviour with respect to the
I-divergence constrained model.

1 Introduction

The Poisson distribution exhibits a mean/variance relationship. This mean/variance
dependence can be reduced by using variance-stabilizing transformations (VST),
one of which is the Anscombe transform [1] defined as

3
T:1]0,+00)" = (0,400)": v = (v3)1<i<n > 2 ( v + §>

1<i<n

It transforms Poisson noise to approximately Gaussian noise with zero-mean and
unit variance. The Anscombe transform has been employed in order to solve
inverse problems where one wants to recover an original signal @ € [0, +00)™
from observations

f =P(HT),



where P denotes an independent Poisson noise corruption process and H €
[0, 400)™*™ is a linear degradation operator, e.g. a blur. Note that we consider
images of size M x N columnwise reshaped as vectors of length m = M N.

In this context, one of the possible uses of the Anscombe transform is i) to
transform the degraded observations f, i) to apply a data recovery technique
which is valid for an additive white zero-mean Gaussian model and 4ii) to apply
an inverse transform to the so-recovered signal [7] (see also [18] for more recent
developments). Note that this method appears mainly to be well-founded for
denoising problems. When a linear degradation operator H is present, a better
approach consists of adopting a variational framework [8,13] where one mini-
mizes a data fidelity term

wes | T(Hu) = T(f)]5 (1)

penalized by a (sum of) regularization term(s) serving to incorporate prior in-
formation about the sought signal w. The approach is also closely related to a
Maximum A Posteriori (MAP) estimate, where the function in (1) is substituted
for the neg-log-likelihood of the Poisson noise, i.e., the I-divergence (generalized
Kullback-Leibler divergence)

wes D(f, Hu) = {<1n,f1ogHLu — [+ Hu) if Hu>0,

400 otherwise,
where (-,-) denotes the standard Euclidean inner product and 1,, denotes the
vector consisting of n entries equal to 1 (see [14,21]). One of the drawbacks of
these penalized methods is that multiplicative constants weighting the regular-
ization terms (the so-called regularization parameters) need to be set carefully,
which may be a difficult task.
A way of circumventing this problem consists of adopting a constrained approach
instead of a regularized one, by imposing that

IT(Hu) = T(f)l3 <7 (2)

where 7 € [0, +00). Based on the statistical properties of the Anscombe trans-
form and the law of large numbers, a consistent choice for the above bound
is 7 = n, when the number of observations n is large. In this work, we will
investigate such an approach by solving the following problem:

minimize $(Lu) subject to || T(Hu) = T(f)[; <7, (3)
where C is a nonempty closed convex subset of [0,+00)™, L € R?™ and
@: R? — (—o00,400] is a proper, lower-semicontinuous, convex function. A typi-
cal choice for C' is the nonnegative orthant of R™. The classical Total Variation
objective function [20] is obtained, as a special case, when @ is an ¢ ; norm and
L corresponds to a discrete gradient operator. Constrained models based on the
I-divergence have been considered in [5,22], where in the second paper special
attention was paid to the relation between the parameters of the constrained



and the penalized problem via discrepancy principles. Note that recently penal-
ized versus constrained problems in a rather general form were handled in [2]. In
[9], the I-divergence constraint was replaced through a polyhedral approxima-
tion technique and an epigraphical projection method was applied to solve the
problem. In this work, we will also take advantage of an epigraphical projection
approach to solve the Anscombe constrained model (3) and we will show that
the required epigraphical projections can be easily determined in this context.
The structure of this paper is as follows: Section 2 recalls the notation. In Sec-
tion 3 we determine the epigraphical projection for a function related to con-
straint (2) which plays a central role in the primal dual algorithms established
in Section 4. In particular, we provide a good starting point for the involved
Newton method. Numerical examples are presented in Section 5 emphasizing
the good approximation of the I-divergence constrained approach achieved by
our Anscombe constrained model. Finally, a summary of our contribution and
some conclusions are given in Section 6.

2 Notation

Let I'h(R™) denote the set of proper, lower-semicontinuous, convex functions
mapping from R" to (—oo,4+00]. The epigraph of ¢ € IH(R™) is the nonempty,
closed, convex subset of R™*! defined as

epip = {(v,0) e R" xR : p(v) < (}.

For a nonempty, closed, convex set C C R™ we denote by tc € IH(R™) its
indicator function

to(u) =
o) 400 otherwise,

{0 ifueC,

and by Pg the orthogonal projector onto C. Beyond epigraphs of functions from
I'p(R™) we will consider the half-space V. := {¢ € R" : (1,,,¢) < 7}. Using this
notation and defining, for every ¢ € {1,...,n},

@it [0,+00) = [0,400): 5 — (2¢/s — (T(f))i)Q,

problem (3) can be rewritten as

n

3
+ d(L +§ei-Hi+_7i+V . 4
(fgg}}g}fuew to(u) (Lu) Z_:1L p %(( u) 3 §) w, (€) (4)

Now one can choose a primal-dual splitting algorithm as those proposed in [4,
6,11,12,23] to solve this problem. One step in all these algorithms consists of
the orthogonal projections onto the epigraphs of ¢; for all i € {1,...,n} which
is the topic of the next section.



3 Epigraphical Projection

In this section, we deal with the projection onto the epigraph of the function
¢ € IH(R) defined as

400 otherwise,

ols) = {(2\/52)2 if s >0, (5)

where z > 0, see Fig. 1.

Fig. 1. The epigraph of ¢ for z = 3 and the epigraphical projection Pepi,(z,() of some
point (z, ().

Proposition 1. Let ¢ be defined by (5) with z > 0. Then the epigraphical pro-
jection of (z,¢) € R? is given by
(max{z,0},¢) if (max{x,0},() € epip,

(”“)2 2) if 4z > 22
Pepitp(xvg) = 2 T - ’

2
((tjz) ,tQ_) if 4 < 22,

where t4, resp. t— 1is the unique root in [0,+00), resp. in (—z,0) of the cubic
polynomial

p:t s 173 + 324 + (327 — 16¢ — 4a)t + 2(2% — 42). (6)

Proof. The function ¢ fulfills ¢(0) = 22 and

<0 if0<s< %,
=0 ifs=Z,
2

: z
>0 1fS>T

o) —a 2
@' (s) =4 7



and therefore lims_.o ¢'(s) = —oo. Thus, if # < 0 and ¢ > 22, then Pepip(z,() =
5>0

(0,¢). In addition, if (z,() € epiyp, then Pepip(z, () = (z,().

We consider the remaining cases when (max{x, 0}, () & epi . The tangent vector

of the curve associated with the graph of ¢ reads (1, ¢’(s)), s > 0. The uniquely

determined orthogonal projection (Z,() := Pepi,(z, () has to satisfy

O

which leads to

o:(x—i)\/E+2(g—(2\/§—z)2) Vi —z), &>0.

Substituting  := 2v/# — z > —z, this can be rewritten as
0 = 1783 + 321% + (322 — 16¢ — 4a)t + 2(2? — 4x) = p(f), > —=z.

. SN2
Conversely, if ¢ > —z is a root of the polynomial p in (6), then & = (HTZ) fulfills

(7). When x > 22/4 then also 2 > 22 /4 (see Fig. 1), thus we are interested in the
restriction of ¢ to [22/4, +00) i.e., the nonnegative roots of p. The restriction of
¢ to [22/4,+00) is convex, monotonically increasing, and (z,¢) ¢ epi . Hence,
there is a unique point (Z, CA) on its graph that satisfies (7), i.e., p has a unique
root in [0, +00). Analogously, when z < 2?/4 then also & < 22/4, thus we are
interested in the restriction of ¢ to [0, 22/4) i.e., the roots of p in the interval
(—2,0). The restriction of ¢ to [0, 22/4) is convex and monotonically decreasing,
and the uniqueness of the root follows by the same arguments. Finally, it can be

o - 2 N .
noticed that ( = ¢ ((HTZ) > = t? since t > —z, which completes the proof. (I

The next proposition states that the root ¢, resp. t_, of polynomial p can be
computed efficiently by Newton’s method with initial value ¢y := 2/max{z,0}—
z. Indeed, we have seen in our numerical examples that ¢y is a very good starting
point.

Proposition 2. Let (max{z,0},¢) € epi and to := 24/max{z,0} — z. Let the
polynomial p be defined by (6). Then the Newton method for finding a zero of p
with initial value to converges (after a finite number of steps) monotonically to
the root t if 4x > 22, resp., t_ if 4x < 22

Proof. 1. First we show that

i) p(to)p(0) <0,
i) p'(ty) > 0,

where equality in i) holds true iff 4z = 22.

If x < 0, then ¢ty = —z and consequently, since (0,() & epigp, i.e., 22 > (, we
obtain: p(0) = z(22—4x) > 0 and p(tg) = p(—2) = 162(¢ —22) < 0, which proves
i). Further, since p’: t — 51t + 62t + 322 — 42 — 16(, we obtain

p'(to) = p/(—2) = 482% — 16¢ — 4z > 16(42® — ¢) > 0.



If > 0, then ¢ty = 24/x — z. Consequently, we have p(0) = —z(z + 2/x)to and
p(to) = 17t3 + 2243 + (327 — 16¢ — 4x)to + (3 + 2% — 4x)z = 16t0(t3 — ).

Since (z,() & epip, i.e., t3 > ¢ we conclude that i) holds true. Finally ii) follows
by

P/ (to) = 512 +62t9+322 —16¢ —4a = 8(6t3 —2(+x) = 16(t2—¢)+8(4t2+x) > 0.
Since, in both cases, p(to) # 0, equality arises in i) iff p(0) = 0 i.e. 4z = 22,

2. The following result is well-known, see, e.g., [15, Theorem 18.3]: Newton’s
method for finding the unique root of a differentiable, convex, strictly increasing
function on an interval converges monotonically if we start at the right endpoint
of the interval. There is an analogue result for concave functions.

3. Since p’: t + 6(17t+2), p is convex on [~ 1%, +00) and concave on (—o0, —%].
3.1 Let ¢y > 0 which implies 42 — 22 > 0. Then p(0) < 0 and, according to
Part 1i), p(tp) > 0. Hence, by Proposition 1, ¢4 is the unique root of p in (0, t).
Since p is continuous, p(t+) = 0 and p(tg) > 0, we necessarily have p'(t4) > 0
(otherwise there would exist another root of p on (t4,%)). Thus, since p is
strictly convex, it is strictly monotone increasing on [t4,t] and we can invoke
the argument in Part 2 of the proof.

3.2 Let tg < 0 which implies 4z — 2% < 0. Then, p(0) > 0 and p(to) < 0 and
by Proposition 1 we know that t_ € (to,0) is the unique root of p in (—z,0). If
t_ < — 17, then we are done by similar arguments as in 3.1 for concave functions.
It remains to study the case when t_ > — .

If tg > 17, then we know by the strict convexity of p on [tg, +00) that p’
is strictly increasing on this interval and by Part 1ii) we further have p'(t) >
p'(to) > 0 for every t > to. Thus, p itself is strictly increasing on [tg, +00). Con-
sequently, one Newton step with initialization to generates t1 = to — p(to)/p’(to)
and the convexity inequality p(t1) > p(to) + p'(to)(t1 —to) shows that p(t1) > 0.
We thus are in the setting of Part 2 and the method converges monotonically.
Finally, let to < —+% so that

da < (13)222 (8)

Since we must have p(—+%) < 0, a straightforward calculation yields

2

z 2z z
= P 9% — — — 752,
p( 17) 17<17+7z + 8¢ — 3x><0©8§<3x 7 7z, (9)

We shall now prove that p/(¢) > 0 for all t € R, so that p is strictly increasing.
Since p’ is a quadratic polynomial with minimimum at —+%, we have only to
show that p' (—%%) = 2 (3222 — 8¢ — 2z) > 0. Plugging in (8) and (9), we indeed
obtain

1,( Z) 24 22 25 , 128 ,

16
Z 22,2 34 z kel -
2p 1 > 172 3 z+17+7z > 17 7 + 722 172 > 0.



The sequence (t)ren generated by Newton’s algorithm is such that there exists
ko € N\ {0} such that ty, > t_. Otherwise, (tx)reny would be an increasing
sequence which would necessarily converge to t_ and there would exist k1 € N
such that p is convex over [tg,, +oo[. Then, we would have p(tg, 1) > 0.

Thus, after a finite number of steps, the algorithm arrives at {5, > t_ and we
can apply Part 2 of the proof.

3.3 Let tg = 0 which implies 4z — t2 = 0. Then, we get t, = t. ([

4 Primal-Dual Algorithms

We can apply the projection onto the epigraph of ¢ in combination with any
primal-dual algorithm proposed in [4,6,11,12,23] or an alternating direction
method of multipliers. For example, we use here the primal-dual hybrid gradient
algorithm from [6,19] with an extrapolation (modification) of the dual variable
which will be designated by PDHGMp. Based on the following reformulation of

(4),

n
minimize t(o(u) 4+t + &(v2) + L (v1.4,
iz, tolu) + o (O + 2(v) ; opi(V10078)

H|0
subject to L0 (10)
01

this algorithm reads:

Algorithm 1 (PDHGMp for solving the Anscombe constrained problem)
Initialization: u(®, ¢(®, (p; (© ))1< <3 = (ﬁ§~0))1§j§3, 6 € (0,1], (p,o) € (0,+00)? with
po < 1/max{1,||H"H + L L)z}

For k =0,1,... repeat until a stopping criterion is reached

1. o) = po (u(k) — ap(H*ﬁgk) + L*ﬁék)))

2. C(k+1) =Py, (C(k) Upﬁ(k))

3. (vgkfl), nl(kH)) Pepi o, (pﬁ‘? (Hu(k+1))i +3/8, pékl) —+ kaﬂ)) , i=1,...,n
4. oY = prox, 14 (p" + Lu®*tY)

5 pgk"'l) = pgk) + Hy kD + 3/8 — UYH—I)
6. pgk-H) :pék) + Lu(k+1) _ ’Uék_H)

7. It ) D )

8

,(k+1) _ p;k«kl) + 9(p§k+l)

- B -, =123

The projection in step 1 is quite simple if C' is the nonnegative orthant of R™.
Step 3 requires the epigraphical projections discussed in the previous section,
Step 4 can be performed by coupled soft shrinkage with threshold o~ if we use
the ¢5 ;-norm. The other steps can be computed in a straightforward way.



We will compare this algorithm with PDHGMp applied to the I-divergence con-
strained problem

mininéize &(Lu) subject to D(f,Hu) <7y (11)
ue

using a similar splitting to (10) but without the extra-variables ¢ and n:

Algorithm 2 (PDHGMp for solving the I-divergence constrained problem)
Initialization: u(®, (p;o))1§j§2 = (ﬁ;O))lgjg% 0 € (0,1], (p,0) € (0,+00)* with po <
1/||H*H + L*L||2

For k =0,1,... repeat until a stopping criteria is reached

1. Step 1 of Algorithm 1

2. mingnize [lvr — (pgk) + Hu™ )3 subject to  D(f,v1) < 71 as in [22].
3. — 5. Steps 4. - 6. of Algorithm 1

6. p " =pY p oY ), =12

J

In [24] (see also [3]) statistical arguments were used to show that 7; = in
is a good estimate in case of moderate Poisson noise. In [5] this estimate was

improved in case f has many zero components.

5 Numerical Examples

In this section, we demonstrate the performance of our algorithm by numerical
examples implemented in MATLAB (Intel Core i7-870 Processor with 8M Cache,
2.93 GHz, 8 GB physical memory). We have tested the two original images @,
namely 'cameraman’ (256 x 256) and ’brain’ (184 x 140), depicted in Fig. 2 and
denoted by B1, resp. B2 in the following.

Fig. 2. Original images ’cameraman’ (left) and phantom of a brain image (right).

The images were blurred by a matrix H corresponding to a Gaussian kernel
with standard deviation 1.3 and mirrored boundary (we have then m = n).
Their gray values are interpreted as photon counts in the range [0, v], where



D(J. Hw)/n][T(Hw) — T())[3/n|PSNR] MAE
Bligo 0.5075 1.0086 20.58 |66.41e-3
Blgoo 0.5020 1.0034 23.38 |41.59e-3
Bli200 0.5018 1.0039 23.79|37.17e-3
Bls0oo 0.4979 0.9960 23.97 |34.87e-3
B1ls000 0.4994 0.9989 24.06 |33.58e-3
B2100 0.4954 0.8866 18.34 (82.45e-3
B2600 0.5131 1.0004 20.17 |61.01e-3
B21200 0.5122 1.0178 20.37 |57.90e-3
B25000 0.5063 1.0085 20.49 |56.02e-3
B23000 0.4956 0.9899 20.52 |55.16e-3

Table 1. The original values of D(f, Ha)/n, |T(H@) — T(f)||3/n and PSNR, MAE of f.

v is the intensity of the image. We tested » = 100,600, 1200, 2000, 3000 and
denoted the blurred, noisy images by B1l, and B2,. In order to synthetically
add Poisson noise to the noise-free image, we applied the MATLAB routine
imnoise (X, ’poisson’). For a quantitative comparison of the images, we com-
puted the peak signal to noise ratio (PSNR) and the (MAE) defined by PSNR =

10 10g10 | mzilxﬂ—niinﬂ|2
7 llu—all3

the blurred, noisy image f and the original image U are given in Table 1. As can
be seen, the estimates 771 = n/2 and 7 = n are good approximations of the true
constraints D(f, Hu) and | T(Hu) — T(f)||3.

We computed a minimizer of our functional (3) with C' = [0, +00)", the £31-
norm for @, and the discrete gradient operator L (¢ = 2n) by using Algorithm 1
with 7 = n. We compared the result with the /-divergence constrained approach
(11) and Algorithm 2 with 7; = n/2. The parameters ¢ and p appearing in
PDHGMp (in this setting convergence is theoretically guaranteed for op < 1/9)
are fitted such that the algorithms give (up to two digits after the comma) the
same PSNR, MAE and TV-norm (times 105 or 10°) after 1000 iterations as after
100000 iterations. In the I-divergence constrained approach with the brain data,
we stopped after 5000 iterations. Furthermore, we have chosen 6 = 1. Fig. 3
shows the restoration results for Blis09 and Fig. 4 for B212q0.

, and MAE = |7 — u|1. The ’true’ constraints between

Fig. 3. Result for the 'cameraman’ image Bli200 corresponding to Table 3. Corrupted
image (left), restoration result by the Anscombe constrained model and Alg. 1 (middle),
difference image between the middle image and the one recovered by I-divergence
constrained model and Alg. 2 (right). The gray values in the difference image are
between -10 and 10, while the image values were scaled up to 1200.



image| o p [IT(Hw) — T(Hl53 — »[D(f, Hu) — n/2] TV-norm [PSNR] MAE
B1 0.09 [} 595 2.2837 - 1.2217e+5]| 24.28 [30.76¢-3
100 0,12 | - 2.5643 1.2646e+5| 24.39 |30.36e-3
~1.5323 - 8.9230e+5| 25.58 |25.69¢-3

Bleoo |0.0599] 2.8 B 0.0049  |8.9402e+5| 25.59 |25.67c-3
9.0207 - 1.9190e+6] 26.08 |24.16¢-3

Blizoo| 0.042| 3 - 0.045 1.91986+6| 26.08 |24.15¢-3
0.2634 - 3.3007¢+6] 26.35 |23.30e-3

Bl2000| 0.027 | 3.03 B 20.1911  |3.3017c+6| 26.36 |23.30e-3
~0.3559 B 5.1667¢+6| 26.64 |22.50e-3

Bl30000.032914.001 B 0.2767  |5.1673c+6| 26.64 |22.49¢-3
0.9730 B 0.9349e+5| 19.91 |59.78¢-3

B2100 | 0.55 10.25 - 0.001 1.0459¢+5| 20.39 |53.35¢-3
B2 0.040 | 5 o4 2.7434 - 7.4158¢+5| 21.81 |40.056-3
6901 0.050 | - 9.0129 7.5693e+5| 21.91 |39.28¢-3
B2 0.034 ] 5o~ 0.0079 - 1.55986+6] 22.33 |36.260-3
12001 0,042 |~ - 4.2683 1.5673e-+6| 22.36 [36.11e-3
B2 0.02T [ s 0.7789 B 2.6780e+6] 22.72 |33.53¢-3
20001 g 041 | - 0.8585 2.6885e+6| 22.73 |33.48e-3
B2 0.0182[ " "o -0.5284 - 1.0565e+6] 22.93 |32.08e-3
300010 0282|" - 1.5536 4.0603e+6| 22.94 |32.03e-3

Table 2. Results of Algorithms 1 and 2 with 7 =n and 77 = %.

Fig. 4. Result for the ’brain’ image B21200 corresponding to Table 3. Corrupted image
(left), restoration result by the Anscombe constrained model and Alg. 1 (middle),
difference image between the middle image and the one recovered by the I-divergence
constrained model and Alg. 2 (right). The gray values in the difference image are
between -15 and 15, while the image values were scaled up to 1200.

Table 2 summarizes the results for the different intensities. As expected, we
observe that the outcomes of the two algorithms are very similar. More precisely,
if ua, resp. uy denotes the output of the restoration procedure with Anscombe,
resp. I-divergence constraints, then we get for image B1 that ||ua —uz||2/(vy/n)
ranges from 0.004 to 1.74e-4 and max|us — uz|/v from 0.0612 to 0.0031 for the
different noise levels.

Finally, Table 3 compares Algorithms 1 and 2 for different constraints 7 and 77
and a central part of the cameraman of size 130 x 130 with v = 3000 after 1000
iterations.

6 Summary and Conclusions

We have considered a constrained restoration model for images corrupted by a
linear transform and Poisson noise by making use of the Anscombe transform.



scale o p [IT(Hw) = T(HI3 — n|[D(f, Hu) — n/2][ TV-norm [PSNR]| MAE
W o« | PP R E
1.0095 (optimal) 0.0239) 4002] 0 hed [1o9vieto| 255 o1 55es
12 Joou| s | T
2 |ooosfpooss T o5t |Vssotero| 2571 |37 0es

Table 3. Results of Algotithms 1 and 2 on a part of Blgppo for different constraining parameters
7 = scale:n and 77 = scale-5. The optimal scale is computed as in Table 1.

In contrast with penalized approaches, a main advantage of the proposed one
is that it makes it possible to employ a simple estimate for the model param-
eter. We have provided proximal algorithms to find a minimizer of the model,
which are based on epigraphical projections, and we have shown that the per-
formance is similar to a recently introduced I-divergence constrained model.
Future research directions include the following: ¢) replacing or combining the
discrete gradient operator L with other ones (discrete higher order operators,
nonlocal means, wavelet-like transforms) and handling other problems than de-
blurring ones, i) considering convex optimization problems involving multiple
constraints for which the epigraphical projection approach may be quite effi-
cient, see [10], i) restoring images with Poisson+Gauss noise, see [16,17], and
iv) finding numerically efficient methods to map the constraint bound to the
parameter of the corresponding penalized functional.

References

1. F. J. Anscombe. The transformation of Poisson, binomial and negative-binomial
data. Biometrika, 35:246-254, 1948.

2. A.Y. Aravkin, J. V. Burkey, and M. P. Friedlander. Variational properties of value
functions. Preprint Univ. British Columbia, 2012.

3. J. M. Bardsley and J. Goldes. Regularization parameter selection methods for
ill-posed Poisson maximum likelihood estimation. Inverse Problems, 25(9):095005,
2009.

4. R. I. Bot and C. Hendrich. Convergence analysis for a primal-dual monotone +
skew splitting algorithm with application to total variation minimization. Preprint
Univ. Chemnitz, 2012.

5. M. Carlavan and L. Blanc-Féraud. Sparse Poisson noisy image deblurring. [EEE
Transactions on Image Processing, 21(4):1834-1846, 2012.

6. A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of Mathematical Imaging and Vision,
40(1):120-145, 2011.

7. C. Chaux, L. Blanc-Féraud, and J. Zerubia. Wavelet-based restoration methods:
Application in 3d confocal microscopy images. In Proc. SPIE Conf. Wavelets, page
67010E, San Diego, 2007.

8. C. Chaux, J.-C. Pesquet, and N. Pustelnik. Nested iterative algorithms for convex
constrained image recovery problems. SIAM Journal on Imaging Science, 2(2):730—
762, 2009.



9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

G. Cherchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-Popescu. A proximal
approach for constrained cosparse modelling. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan,
2012.

G. Chierchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-Popescu. Epigraphical
projection and proximal tools for solving constrained convex optimization problems
- part I. Preprint, 2012.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal process-
ing. In Fized-Point Algorithms for Inverse Problems in Science and Engineering,
(H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H.
Wolkowicz, Editors), pages 185-212, New York, 2011. Springer-Verlag.

P. L. Combettes and J.-C. Pesquet. Primal-dual splitting algorithm for solving in-
clusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone
operators. newblock Set-Valued and Variational Analysis, 20(2):307-330, 2012.
F.-X. Dupé, J. Fadili, and J.-L. Starck. A proximal iteration for deconvolving
Poisson noisy images using sparse representations. IEEE Transactions on Image
Processing, 18(2):310-321, 2009.

M. A. T. Figueiredo and J. M. Bioucas-Dias. Restoration of Poissonian images
using alternating direction optimization. IEEE Transactions on Image Processing,
19(12):3133-3145, 2010.

M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des Wis-
senschaftlichen Rechnens. Teubner, Stuttgart, 2002.

A. Jezierska, E. Chouzenoux, J.-C. Pesquet, and H. Talbot. A primal-dual proxi-
mal splitting approach for restoring data corrupted with Poisson-Gaussian noise.
In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2012), Kyoto, Japan, 2012.

J. Li, Z. Shen, R. Jin, and X. Zhang. A reweighted ¢ method for image restoration
with Poisson and mixed Poisson-Gaussian noise. UCLA Preprint, 2012.

M. Mikkitalo and A. Foi. Optimal inversion of the Anscombe transformation
in low-count Poisson image denoising. IEEE Transactions on Image Processing,
20(1):99-109, 2011.

T. Pock, A. Chambolle, D. Cremers, and H. Bischof. A convex relaxation approach
for computing minimal partitions. IEEE Conference on Computer Vision and
Pattern Recognition, pages 810-817, 2009.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259-268, 1992.

S. Setzer, G. Steidl, and T. Teuber. Deblurring Poissonian images by split Breg-
man techniques. Journal of Visual Communication and Image Representation,
21(3):193-199, 2010.

T. Teuber, G. Steidl, and R.-H. Chan. Minimization and parameter estimation
for seminorm regularization models with I-divergence constraints. Preprint Univ.
Kaiserslautern, 2012.

B. C. Vu. A splitting algorithm for dual monotone inclusions involving cocoercive
operators. Advances in Computational Mathematics, 2012. Accepted.

R. Zanella, P. Boccacci, L. Zanni, and M. Bertero. Efficient gradient projec-
tion methods for edge-preserving removal of Poisson noise. Inverse Problems,
25(4):045010, 2009.



