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2 Department of Mathematics, University of Kaiserslautern, Germany

Abstract. This papers deals with the restoration of images corrupted
by a non-invertible or ill-conditioned, linear transform and Poisson noise.
Poisson data typically occurs in imaging processes where the images are
obtained by counting particles, e.g., photons, that hit the image domain.
Using the Anscombe transform Poisson noise can be approximated by
additive Gaussian noise with zero mean and unit variance. Then the
least squares difference between the Anscombe transformed corrupted
image and the original image can be estimated by the number of image
pixels. We use this information by considering an Anscombe transformed
constrained model to restore the image. The advantage to corresponding
penalized approaches consists in the existence of a good model parameter
estimation. We solve the constrained minimization problem by applying
primal-dual algorithms together with a projection onto the epigraph of
a convex function related to the Anscombe transform. We show that
this epigraphical projection can be computed by Newton’s methods with
an appropriate initial value. Numerical examples show the performance
of our algorithm, in particular, the close relation to the I-divergence
constrained model.

1 Introduction

The Poisson distribution exhibits a mean/variance relationship. This mean/variance
dependence can be reduced by using variance-stabilizing transformations (VST),
one of which is the Anscombe transform [1] defined as

T : [0,+∞)n → (0,+∞)n : v = (vi)1≤i≤n 7→ 2

(

√

vi +
3

8

)

1≤i≤n

.

It transforms Poisson noise to approximately Gaussian noise with zero-mean and
unit variance. The Anscombe transform has been employed in order to solve
inverse problems where one wants to recover an original signal u ∈ [0,+∞)m

from observations

f = P(Hu),



where P denotes an independent Poisson noise corruption process and H ∈
[0,+∞)n×m is a linear degradation operator, e.g. a blur. Note that we consider
images of size M ×N columnwise reshaped as vectors of length m = MN .
In this context, one of the possible uses of the Anscombe transform is i) to
transform the degraded observations f , ii) to apply a data recovery technique
which is valid for an additive white zero-mean Gaussian model and iii) to apply
an inverse transform to the so-recovered signal [7] (see also [17] for more recent
developments). Note that this method appears mainly to be well-founded for
denoising problems. When a linear degradation operator H is present, a better
approach consists of adopting a variational framework [8, 12] where one mini-
mizes a data fidelity term

u 7→ ‖T (Hu)− T (f)‖22 (1)

penalized by a (sum of) regularization term(s) serving to incorporate prior in-
formation about the sought signal u. The approach is also closely related to a
Maximum A Posteriori (MAP) estimate, where the function in (1) is substi-
tuted for the minus-log-likelihood of the Poisson noise, i.e., by the I-divergence
(generalized Kullback-Leibler divergence)

u 7→ D(b,Hu) :=

{

〈1n, f log f
Hu − f +Hu〉 if Hu > 0,

+∞ otherwise,

see [13, 20]. One of the drawbacks of these penalized methods is that multiplica-
tive constants weighting the regularization terms (the so-called regularization
parameters) need to be set carefully, which may be a difficult task.
A way of circumventing this problem consists of adopting a constrained approach
instead of a regularized one, by imposing that

‖T (Hu)− T (f)‖22 ≤ τ (2)

where τ ∈ [0,+∞). Based on the statistical properties of the Anscombe trans-
form and the law of large number, a consistent choice for the above bound is
τ = n, when the number of pixels n is large. In this work, we will investigate
such an approach by solving the following problem:

minimize
u∈C

Φ(Lu) subject to ‖T (Hu)− T (f)‖22 ≤ τ, (3)

where C is a nonempty closed convex subset of [0,+∞)m, L ∈ R
q×m, and

Φ : Rq → (−∞,+∞] is a proper, lower-semicontinuous, convex functions. A typ-
ical choice for C is the nonnegative orthant of Rm. The classical Total Variation
objective function [19] is obtained, as a special case, when Φ is an ℓ2,1 norm
and L corresponds to a discrete gradient operator. Constrained models with the
I-divergence have been considered in [5, 21], where in the second paper special
attention was paid to the relation between the parameters of the constrained
and the penalized problem via discrepancy principles. Note that recently penal-
ized versus constrained problems in a rather general form were handled in [2]. In



[9], the I-divergence constraint was replaced through a polyhedral approxima-
tion technique and an epigraphical projection method was applied to solve the
problem. In this work, we will also take advantage of an epigraphical projection
approach to solve the Anscombe constrained model (1) and we will show that
the required epigraphical projections can be easily determined in this context.
The structure of this paper is as follows: Section 2 recalls the notation. In Section
3 we determine the epigraphical projection onto a function related to the con-
straint (1) which plays the central role in the primal dual algorithms established
in Section 4. In particular, we provide a good starting point for the involved
Newton method. Numerical examples are presented in Section 5 underlining the
good approximation of the I-divergence constrained approach by our Anscombe
constrained model. Finally, a summary and conclusions are given in Section 6.

2 Notation

Let Γ0(R
n) denote the set of proper, lower-semicontinuous, convex functions

mapping from R
n to (−∞,+∞]. The epigraph of ϕ ∈ Γ0(R

n) is the nonempty,
closed, convex subset of Rn+1 defined as

epiϕ := {(u, ζ) ∈ R
n × R : ϕ(u) ≤ ζ}.

For a nonempty, closed, convex set C ⊂ R
n we denote by ιC ∈ Γ0(R

n) its
indicator function

ιC(u) :=

{

0 if u ∈ C,

+∞ otherwise,

and by PC the orthogonal projector onto C. Beyond epigraphs of functions from
Γ0(R

n) we will consider the half-spaces Vτ := {u ∈ R
n : 〈1n, u〉 ≤ τ}, where 1n

denotes the vector consisting of n entries 1. For a norm ‖ · ‖ on R
n we denote

by B‖·‖ := {u ∈ Rn : ‖u‖ ≤ 1} the unit ball with respect to this norm and by
‖ · ‖∗ the dual norm. Using this notation and defining, for every i ∈ {1, . . . , n},

ϕi : [0,+∞) → [0,+∞) : s 7→
(

2

√

s+
3

8
− (T (f))i

)2

,

problem (1) can be rewritten as

minimize
(u,ζ)

ιC(u) + Φ(Lu) +

n
∑

i=1

ιepiϕi
((Hu)i +

3

8
, ζi) + ιVτ

(ζ). (4)

Now one can choose a primal-dual splitting algorithm as those proposed in [4,
6, 11, 22] to solve this problem. One step in all these algorithms consists in the
orthogonal projections onto the epigraphs of ϕi for all i = 1, . . . , n which is the
topic of the next section.



3 Epigraphical Projection

In this section we deal with the projection onto the epigraph of the function
ϕ ∈ Γ0(R) defined as

ϕ(s) =

{

(2
√
s− z)2 if s ≥ 0,

+∞ otherwise,
(5)

where z > 0, see Fig. 1.
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(x, ζ)

Pepiϕ(x, ζ)

Fig. 1. The epigraph of ϕ for z = 3 and the epigraphical projection Pepiϕ(x, ζ) of some
point (x, ζ).

Proposition 1. Let ϕ be defined by (3) with z > 0. Then the epigraphical pro-
jection of (x, ζ) ∈ R

2 is given by

Pepiϕ(x, ζ) =



























(max{x, 0}, ζ) if (max{x, 0}, ζ) ∈ epiϕ,
(

(

t++z
2

)2

, t2+

)

if 4x ≥ z2,

(

(

t−+z
2

)2

, t2−

)

if 4x < z2,

where t+, resp. t− is the unique root in [0,+∞), resp. in [−z, 0) of the cubic
polynomial

p(t) := 17t3 + 3zt2 + (3z2 − 16ζ − 4x)t+ z(z2 − 4x). (6)

Proof. The function ϕ fulfills ϕ(0) = z2 and

ϕ′(s) = 4− 2z√
s











< 0 if 0 < s < z2

4 ,

= 0 if s = z2

4 ,

> 0 if s > z2

4



and therefore lims→0
s>0

ϕ′(s) = −∞. Thus, if x ≤ 0 and ζ ≥ z2, then Pepiϕ(x, ζ) =

(0, ζ). If (x, ζ) ∈ epiϕ then Pepiϕ(x, ζ) = (x, ζ).
We consider the remaining cases (max{x, 0}, ζ) 6∈ epiϕ. The tangent vector of
the curve associated with the graph of ϕ reads (1, ϕ′(s)), s > 0. The uniquely

determined orthogonal projection (x̂, ζ̂) := Pepiϕ(x, ζ) has to satisfy

(

x
ζ

)

−
(

x̂

ζ̂

)

⊥
(

1
ϕ′(x̂)

)

and ζ̂ = ϕ(x̂), x̂ ≥ 0 (7)

which leads to

0 = (x− x̂)
√
x̂+ 2

(

ζ − (2
√
x̂− z)2

)

(2
√
x̂− z), x̂ ≥ 0.

Substituting t̂ := 2
√
x̂− z ≥ −z this can be rewritten as

0 = 17t̂3 + 3zt̂2 + (3z2 − 16ζ − 4x)t̂+ z(z2 − 4x) = p(t̂), t̂ ≥ −z.

Conversely, if t̂ ≥ −z is a root of the polynomial p in (1), then x̂ =
(

t̂+z
2

)2

fulfills

(3). When x ≥ z2/4 then also x̂ ≥ z2/4 (see Fig. 1), thus we are interested in the
restriction of ϕ to [z2/4,+∞) i.e., the nonnegative roots of p. The restriction of
ϕ to [z2/4,+∞) is convex, monotonically increasing, and (x, ζ) /∈ epi ϕ. Hence,

there is a unique point (x̂, ζ̂) on its graph that satisfies (3), i.e., p has a unique
root in [0,+∞). Analogously, when x < z2/4 then also x̂ < z2/4, thus we are
interested in the restriction of ϕ to [0, z2/4) i.e., the roots of p in the interval
[−z, 0). The restriction of ϕ to [0, z2/4) is convex and monotonically decreasing,
and the uniqueness of the root follows by the same arguments. Finally, it can be

noticed that ζ̂ = ϕ

(

(

t̂+z
2

)2
)

= t̂2 since t̂ ≥ −z, which completes the proof. �

The next proposition states that the root t+, resp. t−, of polynomial p can be
computed efficiently by Newton’s method with initial value t0 := 2

√

max{x, 0}−
z. Indeed we have seen in our numerical examples that this t0 is a very good
starting point.

Proposition 2. Let (max{x, 0}, ζ) 6∈ epiϕ and t0 := 2
√

max{x, 0} − z. Let the
polynomial p be defined by (1). Then the Newton method for solving p(t) = 0
with initial value t0 converges (after a finite number of steps) monotonically to
the root t+ if 4x− z2 ≥ 0, resp., t− if 4x− z2 < 0.

Proof. 1. First we show that

i) p(t0)p(0) ≤ 0,
ii) p′(t0) > 0,

where equality in i) holds true iff 4x = z2.
If x < 0, then t0 = −z and consequently, since (0, ζ) 6∈ epiϕ, i.e., z2 > ζ, we
obtain

p(0) = z(z2 − 4x) > 0, p(t0) = p(−z) = 16z(ζ − z2) < 0



which proves i). Further, since p′(t) = 51t2 + 6zt+ 3z2 − 4x− 16ζ we obtain

p′(t0) = p′(−z) = 48z2 − 16ζ − 4x ≥ 16(4z2 − ζ) > 0.

If x ≥ 0 then t0 = 2
√
x− z. Consequently, we have p(0) = −z(z + 2

√
x)t0 and

p(t0) = 17t30 + 2zt20 + (3z2 − 16ζ − 4x)t0 + (t20 + z2 − 4x)z = 16t0(t
2
0 − ζ).

Since (x, ζ) 6∈ epiϕ, i.e., t20 > ζ we conclude that i) holds true. Finally ii) follows
by

p′(t0) = 51t20+6zt0+3z2−16ζ−4x = 8(6t20−2ζ+x) = 16(t20−ζ)+8(4t20+x) > 0.

Since, in both cases, p(t0) 6= 0, equality arises in i) iff p(0) = 0 i.e. 4x = z2.
2. The following result is well-known, see, e.g., [14, Theorem 18.3]: Newton’s
method for finding the unique root of a differentiable, convex, strictly increasing
function on an interval converges monotonically if we start at the right endpoint
of the interval. There is an analogue result for concave functions.
3. Since p′′(t) = 6(17t+ z), p is convex for t ≥ − z

17 and concave otherwise.
3.1 Let t0 > 0 which implies 4x− z2 > 0. Then p(0) < 0 and, according to Part
1i), p(t0) > 0. Hence, by Proposition 1, t+ is the unique root of p in (0, t0). Since p
is continuous, p(t+) = 0 and p(t0) < 0, we necessarily have p′(t+) ≥ 0 (otherwise
there would exist another root of p on (t+, t0)). Thus, since p is strictly convex,
it is strictly monotone increasing on [t+, t0] and we can invoke the argument in
Part 2 of the proof.
3.2 Let t0 < 0 which implies 4x − z2 < 0. Then, p(0) > 0 and p(t0) < 0 and
by Proposition 1 we know that t− ∈ (t0, 0) is the unique root of p in [−z, 0). If
t− ≤ − z

17 , then we are done by similar arguments as in 3.1 for concave functions.
It remains to consider the case when t− > − z

17 .
If t0 > − z

17 , then we know by the strict convexity of p on [t0,+∞) that p′

is strictly increasing on this interval and by Part 1ii) we further have p′(t) >
p′(t0) > 0 for every t > t0. Thus, p itself is strictly increasing on [t0,+∞). Con-
sequently, one Newton step with initialization t0 generates t1 = t0 − p(t0)/p

′(t0)
and the convexity inequality p(t1) ≥ p(t0) + p′(t0)(t1 − t0) shows that p(t1) ≥ 0.
We thus are in the setting of Part 2 and the method converges monotonically.
Finally, let t0 ≤ − z

17 so that

4x ≤
(

16

17

)2

z2. (8)

Since p(− z
17 ) < 0 must be valid, a straightforward calculation yields

p
(

− z

17

)

=
2z

17

(

z2

17
+ 7z2 + 8ζ − 32x

)

< 0 ⇔ 8ζ < 32x− z2

17
− 7z2. (9)

We shall now prove that p′(t) > 0 for all t ∈ R, so that p is strictly increasing.
Since p′ is quadratic polynomial with minimimum at − z

17 we have only to show



that p′
(

− z
17

)

= 2
(

24
17z

2 − 8ζ − 2x
)

> 0. Plugging in (3) and (3) we indeed
obtain

1

2
p′
(

− z

17

)

>
24

17
z2 − 34x+

z2

17
+ 7z2 >

25

17
z2 − 128

17
z2 + 7z2 =

16

17
z2 > 0.

Thus, after a finite number of steps the Newton algorithm arrives at some tk ≥ t−
and we can apply Part 2 of the proof.
3.3 Let t0 = 0 which implies 4z − t2 = 0. Then we get t+ = t0. �

4 Primal-Dual Algorithms

We can apply the projection onto the epigraph of ϕ in combination with any
primal-dual algorithm proposed in [4, 6, 11, 22] or an alternating direction method
of multipliers. Here we use exemplary the primal-dual hybrid gradient algorithm
from [6, 18] with an extrapolation (modification) of the dual variable which we
will call PDHGMp. Based on the following reformulation of (2),

minimize
(u,ζ),(v,η)

ιC(u) + ‖v2‖+
n
∑

i=1

ιepiϕi
(v1,i, ηi) + ιVτ

(ζ)

subject to





H 0
L 0
0 I





(

u
ζ

)

+





3/8
0
0



 =





v1
v2
η



 . (10)

where we have used Φ := ‖ · ‖ and the nonnegative orthant C of R
m, this

algorithm reads:

Algorithm 1 (PDHGMp for solving the Anscombe constrained problem)
Initialization: u(0), ζ(0), p(0) = p(−1) and p̄(0) = p(0)+θ(p(0)−p(−1)), θ ∈ (0, 1], ρ, σ > 0
with ρσ < 1/max{1, ‖H∗H + L∗L‖2}
For k = 0, 1, . . . repeat until a stopping criteria is reached

1. u(k+1) = PC

(

u(k) − σρ
(

H∗p̄
(k)
1 + L∗p̄

(k)
2

))

2. ζ(k+1) = PVτ

(

ζ(k) − σρp̄
(k)
3

)

3. (v
(k+1)
1,i , η

(k+1)
i ) = Pepiϕi

(

p
(k)
1,i + (Hu(k+1))i + 3/8 , p

(k)
3,i + ζ

(k+1)
i

)

, i = 1, . . . , n

4. v
(k+1)
2 = (I − Pσ−1B‖·‖∗

(p
(k)
2 + Lu(k+1)) = proxσ−1‖·‖(p

(k)
2 + Lu(k+1))

5. p
(k+1)
1 = p

(k)
1 +Hu(k+1) + 3/8− v

(k+1)
1

6. p
(k+1)
2 = p

(k)
2 + Lu(k+1) − v

(k+1)
2

7. p
(k+1)
3 = p

(k)
3 + ζ(k+1) − η(k+1)

8. p̄(k+1) = p(k+1) + θ(p(k+1) − p(k)).

Step 3 requires the epigraphical projections discussed in the previous section,
Step 4 can be performed by coupled soft shrinkage with threshold σ−1 if we
use the ℓ2,1-norm. The other steps can be computed in a straightforward way.



We will compare this algorithm with the PDHGMp applied to the I-divergence
constrained problem

minimize
u∈C

‖Lu‖ subject to D(f,Hu) ≤ τI (11)

using a similar splitting as in (4) but without the variables ζ and η:

Algorithm 2 (PDHGMp for solving the I-divergence constrained problem)
Initialization: u(0), p(0) = p(−1) and p̄(0) = p(0) + θ(p(0) − p(−1)), θ ∈ (0, 1], ρ, σ > 0
with ρσ < 1/‖H∗H + L∗L‖2
For k = 0, 1, . . . repeat until a stopping criteria is reached

1. Step 1 of Algorithm 1

2. minimize
v1

‖v1 − (Hu(k+1) + p
(k)
1 )‖22 subject to D(f, v1) ≤ τI as in [21].

3.− 7. Steps 4. - 6. and 8. of Algorithm 1

In [23], see also [3], statistical arguments were used to show that τI = 1
2n

is a good estimate in case of moderate Poisson noise. In [5] this estimate was
improved in case f has many zero components.

5 Numerical Examples

In this section we demonstrate the performance of our algorithm by numerical
examples implemented in MATLAB (Intel Core i7-870 Processor with 8M Cache,
2.93 GHz, 8 GB physical memory). We have tested the two original images u,
namely ’cameraman’ (256× 256) and ’brain’ (184× 140) depicted in Fig. 2 and
denoted by B1, resp. B2 in the following. The images were blurred by a Gaussian

Fig. 2. Original images ’cameraman’ (left) and phantom of a brain image (right).

matrix H with standard deviation 1.3 and mirrored boundary. Their gray values
are interpreted as photon counts in the range [0, ν], where ν is the intensity of the
image. We tested ν = 600, 1200, 2000, 3000 and denoted the blurred, noisy images



by B1ν and B2ν . For synthetically adding Poisson noise to the noise-free image
we applied the MATLAB routine imnoise(X,’poisson’). For a quantitative
comparison of the images we computed the peak signal to noise ratio (PSNR) and

the (MAE) defined by PSNR = 10 log10
|maxu−minu|2

1
n‖u−u‖2

2

, and MAE = 1
n‖u − u‖1.

The ’true’ constraints between the blurred, noisy image f and the original image
u are given in Table 1. As can be seen, the estimates τI = n/2 and τ = n are
good approximations of the true constraints D(f,Hu) and ‖T (Hu) − T (f)‖22.

D(f,Hu)/n ‖T (Hu) − T (f)‖2
2/n PSNR MAE

B1600 0.5020 1.0034 23.38 24.95
B11200 0.5018 1.0039 23.79 44.60
B12000 0.4979 0.9960 23.97 69.75
B13000 0.4994 0.9989 24.06 100.73
B2600 0.5131 1.0004 20.17 36.61
B21200 0.5122 1.0178 20.37 69.47
B22000 0.5063 1.0085 20.49 112.05
B23000 0.4956 0.9899 20.52 165.47

Table 1. The original values D(f,Hu)/n, ‖T (Hu) − T (f)‖2
2/n and PSNR, MAE of f .

We computed the minimizer of our functional (1) with the l2,1-norm Φ and the
discrete gradient operator L by Algorithm 1 with τ = n. We compared the result
with the I-divergence constrained approach (4) and Algorithm 2 with τI = n/2.
The parameters σ and τ appearing in the PDHGMp are fitted such that the
algorithms give (up to two digits after the comma) the same PSNR, MAE and
TV-norm (times 105 or 106) after 1000 iterations as after 100000 iterations. In
the I-divergence constrained approach with the brain data we stopped after 5000
iterations. Further we have chosen θ = 1. Fig. 3 shows the restoration results for
B11200 and Fig. 4 for B21200. Table 2 summarizes the results for the different

Fig. 3. Result for the ’cameraman’ image B11200 corresponding to Table 3. Corrupted
image (left), restoration result by the Anscombe constrained model and Alg. 1 (middle),
difference image between the middle image and those denoised by I-divergence con-
strained model and Alg. 2 (right). The gray values in the difference image are between
-10 and 10, while the image values were scaled up to 1200.



Fig. 4. Result for the ’brain’ image B21200 corresponding to Table 3. Corrupted image
(left), restoration result by the Anscombe constrained model and Alg. 1 (middle),
difference image between the middle image and those denoised by the I-divergence
constrained model and Alg. 2 (right). The gray values in the difference image are
between -15 and 15, while the image values were scaled up to 1200.

intensities. As expected, we observe that the outcomes of the two algorithms are
very similar. More precisely, if uA, resp. uI denote the output of the restoration
procedure with Anscombe, resp. I-divergence constraints, then we get for image
B1 that ‖uA − uI‖2/(νn) ranges from 2.24e-6 to 6.76e-7 and max |uA − uI |/ν
from 0.0082 to 0.0026 for the different noise levels.
Finally, Table 3 compares Algorithms 1 and 2 for different constraints τ and τI
and a central part of the cameraman of size 130× 130 with ν = 3000 after 1000
iterations.

image σ ρ ‖T (Hu) − T (f)‖2
2 − n D(f,Hu) − n/2 TV-norm PSNR MAE

B1600 0.0599 2.8
-1.5323 - 8.9230e+5 25.58 15.4126

- 0.0049 8.9402e+5 25.59 15.40

B11200 0.042 3
9.0207 - 1.9190e+6 26.08 28.99

- 0.045 1.9198e+6 26.08 28.98

B12000 0.021 4.108
0.7789 - 2.6780e+6 22.72 67.06

- 0.7310 2.7331e+6 22.73 67.44

B13000 0.0329 4.001
-0.3559 - 5.1667e+6 26.64 67.49

- 0.2767 5.1673e+6 26.64 67.48

B2600 0.040 3.04
-2.7434 - 7.4158e+5 21.81 24.04

- 9.0129 7.5693e+5 21.91 23.58

B21200 0.034 3.97
0.0079 - 1.5598e+6 22.33 43.52

- 4.2683 1.5673e+6 22.36 43.34

B22000 0.021 4.108
0.7789 - 2.6780e+6 22.72 67.06

- 0.8585 2.6885e+6 22.73 66.97

B23000 0.0182 5.413
-0.5284 - 4.0565e+6 22.93 96.23

- 1.5536 4.0603e+6 22.94 96.09

Table 2. Results of Algorithms 1 and 2 with τ = n and τI = n

2
.

6 Summary and Conclusions

We have considered a constrained restoration model for images corrupted by a
linear transform and Poisson noise which involves the Anscombe transform. An
advantage of this approach in contrast to penalized ones is the existence of esti-
mates for the model parameter. We have provided algorithms to find a minimizer



scale σ ρ ‖T (Hu) − T (f)‖2
2 − n D(f,Hu) − n/2 TV-norm PSNR MAE

0.8 0.2 0.975
-0.0813 - 2.2400e+6 26.51 66.10

- -0.0585 2.2416e+6 26.5176 66.0681

1.0 0.0269 4
-2.4868 - 1.7071e+6 25.60 63.60

- -0.0425 1.7073e+6 25.60 63.57

1.0095 (optimal) 0.0239 4.002
-0.0616 - 1.6964e+6 25.56 63.87

- -1e-4 1.6914e+6 25.54 63.98

1.2 0.011 8
1.1405 - 1.5563e+6 24.93 68.89

- 0.0611 1.5565e+6 24.93 68.87

2 0.004 30.065
-1.7501 - 1.3388e+6 23.70 81.05

- -0.0257 1.3391e+6 23.71 81.06

Table 3. Results of Algotithms 1 and 2 on a part of B13000 for different constraining parameters
τ = scale·n and τI = scale·n

2
. The optimal scale is computed as in Table 1.

of the model based on epigraphical projections and have shown that the perfor-
mance is similar to a recently introduced I-divergence constrained model. Future
research comprises the following: i) replacing or combining the discrete gradient
operator L with other ones (discrete higher order operators, nonlocal means,
wavelet-like transforms) and handling other problems than deblurring ones, ii)
considering convex optimization problems involving multiple constraints

minimize
u∈Rn

R
∑

r=1

Φr(Lru) subject to Hsu ∈ Cs, s = 1, . . . , S

with linear operators Lr : R
n → R

Nr , Hs : R
n → R

Ms , Φr ∈ Γ0(R
Nr ) and

nonempty, closed, convex subsets Cs ⊂ R
Ms , where the epigraphical projec-

tion approach may be quite efficient, see [10], iii) restoring images with Poisso-
nian+Gaussian noise, see [15, 16], and iv) finding numerically efficient methods
to map the constraining parameter to the parameters of the corresponding pe-
nalizing functional.
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