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Abstract 

A representative element of the cross-ply laminate was modeled by the discrete element 

method (DEM) to analyze the stresses distribution. The DEM modeling results were 

compared with those from alternative approaches to validate the DEM model. The 

transverse cracking and interfacial delamination in [0˚1/90˚3]s and [90˚n/0˚1]s cross-ply 

laminates under transverse loading were analyzed by comparing crack densities as well 

as stiffness reduction with those from experiments and other numerical methods. It was 

found that the proposed DEM model can simultaneously capture the transverse 

cracking and delamination phenomenon, and can predict the variation of crack density 

and stiffness reduction accurately. 

 

Keywords: cross-ply laminates; stress distribution; transverse cracking; delamination; 

stiffness reduction; DEM 

 

1. Introduction 

Fiber reinforced composites have many attractive material properties characterized by 

the high strength and stiffness to mass ratios, damage tolerance and corrosion resistance, 

making them suitable for many structural applications such as wind turbine, armor, 

naval and aerospace structures [1]. A major concern in the use of composite materials is 

the susceptibility to damage resulting from the intrinsic microstructures under 

complicated external loading. Due to the complex nature of fiber reinforced composite 

materials, the onset of damage does not cause instantaneous failure of the entire 

structure. More often transverse cracking and delamination are typical damages taking 

place before the final catastrophic failure when the cross-ply laminates are subject to 

transverse tensile loading [2]. Transverse cracking can be initiated from the defects of 

matrix or after the fiber/matrix interfacial debonding caused by the tensile stress in the 

90º ply. Delamination is normally initiated by the shear stress concentrating between 

the two neighboring plies due to the dissimilar material properties of the two adjacent 

plies, under the action of transverse loadings or free-edge stresses.  

Therefore, the analysis of stress distribution is of critical importance for the prediction 

of damage and the application of appropriate failure criteria. Theoretical solutions of 

stress distribution have been achieved by using different analytical models, such as the 
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classical laminate theory (CLT) [3, 4], the full layer-wise theory [5] and the stress 

transfer model [6, 7]. Finite element method (FEM), as one of the most commonly used 

numerical methods for stress analysis, has also been used to compute the interlaminar 

stress distribution [8]. However, FEM is sometimes time consuming and even 

unreliable when high order singularities occur [9]. Ye et al. [10] developed a state space 

finite element method, which is a semi-analytical method, to solve the stress 

singularities in the vicinity of free-edge or localized traction free surface by combining 

the traditional finite element approximation and the recursive formulation of state space 

equation. 

Even though many methods can properly predict the stress distribution in composite 

laminates under various loading conditions, few of them can be applied to describe the 

progressive damage behaviors, e.g., the initiation and propagation of transverse 

cracking and/or delamination. The onset of transverse cracking is normally predicted 

by a damage analysis model using either a strength based theory [11] or the critical 

fracture energy release rate [12] as failure criterion.  

The study of delamination has attracted continuous attention of the composite 

researchers. Fracture mechanics, such as linear elastic fracture mechanics (LEFM), was 

employed in the study of propagation of a pre-defined or existing crack. However, it 

cannot characterize crack initiation [13]. Interface element was also proposed in FEM 

analysis to represent the interface where delamination may occur. Chen et al. [14] 

implemented interface elements, which were characterized by a linear decohesion 

model, into FEM software packages to predict progressive delamination of composite 

materials. Bruno et al. [15] analyzed the mix mode delamination by coupling the 

interface elements approach and fracture mechanics with the consideration of 

crack-faces interaction. Wagner et al. [16] argued that mesh refinement in FEM may not 

necessarily lead to a converged solution and presented a softening interface element 

with non-vanishing thickness to simulate growing delamination in composite structures. 

Nishikawa et al. [17] developed an updating-element technique, in which near the 

damage process zone a fine mesh was located and varied automatically, to reduce the 

computational cost of simulating delamination in CFRP cross-ply composite under 

transverse loading. To overcome crack closure problems, cohesive zone model (CZM) 

has often been implemented into FEM codes to connect two different substructures. 

The CZM is usually characterized by a bilinear relationship of displacement and 

traction force, with an imposed maximum strength and maximum amount of facture 

energy. Hu et al. [18] used a CZM adapted with the explicit central difference algorithm 

to present the interface damage between matrix and fiber under quasi-static transverse 

loading. Meo and Thieulot [19] compared CZM with the fracture mechanics models for 

mode I delamination and observed good correlations. Borg et al. [20] used a discretized 

cohesive zone model to simulate modes I, II and III crack initiation and propagation. 

Pantano and Averill [21] proposed a mesh-independent interface method to simulate 

the mixed-mode delamination growth. Xie and Waas [22] developed a similar CZM 

model based on discrete spring method, which is found to be independent of mesh size 

and more computationally efficient. Several other numerical methods were also 



  

proposed to predict the onset and evolution of interlaminar failure and the final collapse, 

such as continuum damage model (CDM) [23, 24] and boundary element method 

(BEM) [25]. 

The interactions of transverse cracking and delamination have also been taken into 

account by the numerical models developed for the simulation of progressive damage 

process in cross-ply laminates. Berthelot and Corre [26] presented a statistical model, 

by which the initiation of transverse cracking and delamination was evaluated 

according to the local stress values. Okabe et al. [27] used an embedded process zone 

(EPZ) model in FEM to simulate transverse cracking and interlaminar delamination by 

assuming that the damage only propagated along the pre-defined embedded process 

zone. The above mentioned methods have made respective contribution to the study of 

damage and failure of composite laminates. However, most of them were based on 

continuum mechanics and could not account for the complex nature of the 

microstructures of the composite materials. Also, they all faced the difficulties in 

dealing with the problems such as crack tip singularities and incorporation of dynamic 

material behaviors. This is the bottleneck that limits the applications of the existing 

models. On the other hand, the transverse cracking as well as delamination are 

commonly formed by smaller damage events, such as matrix cracking and fiber/matrix 

debonding, which take place randomly across the whole material domain. Therefore, 

the evaluation of transverse cracking and delamination is more realistic and accurate if 

they are statistically characterized by smaller collective damage events occurring at 

smaller scale.  

As a natural progress of the research in the area of modeling damage at microscopic 

scales, a discrete element method (DEM) is proposed in this paper to simulate dynamic 

initiation and propagation of transverse cracking and interlaminar delamination which 

are characterized by two contact constitutive models, respectively.  DEM has been 

used in our previous research of microbond test [28] and transverse cracking [29] of 

composite materials. The purpose of this research is not only to validate the application 

of DEM in terms of its advantages in the simulation of cracking density and stiffness 

reduction prediction, but also to highlight the potential of DEM in the future research 

application for composite damage mechanism, composite material design and 

optimization. 

2. Discrete Element Method (DEM) 

Discrete element method (DEM) was proposed by Cundall to study the discontinuous 

mechanical behavior of rock [30] and has been implemented in many other fields, such 

as geomaterials [31], granular materials [32], concrete [33], ceramics [34]. The particle 

discrete element method assumes that the particle elements are usually disc in 2D or 

spherical in 3D due to the simplicity of contact algorithm and the saving of 

computational time. The contact forces between any two particles are determined from 

the overlap and relative movements of the particle pair according to a specified 

force-displacement law. In 2D DEM, the motion of the particles over a time step t  is 

governed by Newton’s second law as below [30, 32]:  



  

    Translational motion                                     (1)                                                

    Rotational motion                                             (2)  

where (i = 1, 2) denotes, respectively, the x-and y- co-ordinate directions, Fi is the 

resultant force of the particle; vi is the translational velocity; m is the mass of the 

particle; gi is the body force acceleration vector (e.g., the gravity loading); M3 is the out 

of balance moment referred to the out-of-plane axis, 3 is the rotational velocity about 

the out-of-plane axis; I is the rotational inertia of the particle; and t is time. Damping, 

e.g., local damping or viscous damping, can be added into the DEM model to dissipate 

the kinetic energy together with particles’ frictional sliding so as to obtain a steady-state 

solution more efficiently [35]. Equations (1) and (2) are usually solved by a finite 

difference scheme. Both the specified force-displacement law and Newton’s second 

motion law are used in the calculation cycle of the discrete element method. 

 

DEM allows particles to be bonded together at contacts and to be separated when the 

bond strength or energy is exceeded. Therefore it can simulate the motion of individual 

particles and also the behavior of bulk material which is formed by assembling many 

particles through bonds at contacts with specific constitutive laws. In a DEM model of 

bulk material, elementary micro scale particles are assembled to form the bulk material 

with macroscopic continuum behavior determined only by the interaction of particles 

[35, 36]. Unlike the traditional solution using the strain and stress relations, contact 

properties are the predominant parameters in a DEM solution, combined with size and 

shape of the particles. Subject to external loading, when the strength or the fracture 

energy of a bond between particles is exceeded, flow and disaggregation of the particle 

assembly occur and the bond starts to break. Consequently, cracks form naturally at 

micro scale. Hence, damage modes and their interaction emanate as the process of 

debonding of particles. The way that DEM discretizes the material domain gives the 

most significant advantage over the traditional continuum mechanics based 

methodologies, as the difficulties encountered by the traditional methods, such as 

dynamic material behavior of composites, crack tip singularities and crack formulation 

criteria can all be avoided due to the naturally discontinuous representation for the 

microstructure of composite materials via particle assemblies in DEM.  

Wittel et al. [37] constructed a two dimensional triangular lattice of springs to model 

the [0/90]s cross-ply laminates based on DEM. The nodes in the lattice model represent 

fibers, and the springs with random breaking thresholds according to Weibull 

distribution represent the disordered matrix. Molecular dynamic simulation was used to 

follow the time evolution. However, the topological disorder of the material was 

neglected, and the orthotropic behavior of 0˚ ply and the adhesion of ply-ply interface 

were not considered in this model. 

3. DEM Model of Cross-ply Laminates 

3.1 DEM Model of laminae ply 

In this paper, 2D DEM model was constructed by using a six-spring hexagonal 

arrangement as the basic unit, as shown in Fig.1, to represent the composite laminae. 



  

Each contact between the particles is described by a normal spring and a tangential 

spring with spring constants kn and ks, respectively. Therefore, the elastic properties 

(i.e., elastic modulus and Possion’s ratio) of the material are related to the constants of 

the springs. Sawamoto et al [38], Kim et al. [39], and Taverez and Plesha [40] derived 

the equations of spring constants for isotropic materials. Liu and Liu [41] proposed a 

general formula for both anisotropic and isotropic materials, as follows: 

                               (3) 

Where, kn1 and ks1 are the spring constants at the contacts between particles 0 and 6, and 

particles 0 and 3; kn2 and ks2 are the spring constants at the contacts between particles 0 

and 1, and particles 0 and 4; kn3 and ks3 are the spring constants at the contacts between 

particles 0 and 2, and particles 0 and 5; and δ is the element thickness. cij (i=6, j=6) are 

the elastic coefficients of the material stiffness matrix, 

                                                   (4) 

For a 2D orthotropic laminae materials (e.g., 0˚ ply), c16=c26=0, and Eq. (3) is reduced 

to 

                                         (5)  

The material stiffness coefficients for an orthotropic material under plane stress 

condition are calculated as 

                                                              (6) 



  

For a 2D isotropic material (e.g., 90˚ ply), Eqs.5 and 6 can be simplified as 

                                                               (7)  

As illustrated by Eq.7, the Poisson’s ratio of a 2D isotropic material must be smaller 

than 0.33 for a positive ks when the hexagonal packing scheme is used. 

 

Fig.1 Hexagonal packing of discrete particles 

Solid materials are usually modeled by DEM through adding a bond at the contact of 

two contacting particles. Bonds in DEM can be envisioned as a kind of glue joining the 

two contacting particles. There are two intrinsic bonds, contact bond and parallel bond 

in PFC2D [42] that is a popular commercial code of DEM and is used as the simulation 

platform of this research. A parallel bond can be regarded as a set of elastic springs with 

constant normal and shear stiffness, uniformly distributed over either a circular or 

rectangular cross-section lying on the contact plane and centered at the contact point, as 

shown in Fig.2 [35]. Parallel bond can transmit both forces and moments, and will be 

used in this paper.  
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Fig.2 Parallel bond in two dimensional DEM  

In the DEM model with parallel bonds, the contact stiffness, Ki, at each particle-particle 

contact is resulted from both particles’ stiffness and parallel bond’s stiffness through the 

following formulations [35], 

                                                       (8) 

                                                            (9) 

(a) Hexagonal packing (b) Contact between particles 
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                                                       (10) 

Where  and A are the radius and cross-section area of the parallel bond, respectively. 

δ is the element thickness, is the parallel bond stiffness and  is the equivalent 

stiffness of the two contacting particles. i is in place of n or s which denotes normal or 

shear direction, respectively. If the two particles in contact have the same normal and 

shear stiffness, 

                                                      (11)  

In order to simulate the stiffness of particle assembly dominantly by the parallel bond, 

the particles’ stiffness is set to be much smaller than that of the parallel bond, e.g., 

                                                       (12)  

and  

                                                           (13)  

Therefore the parallel bond stiffness can be calculated by combining Eq.5 and Eq.13, or 

Eq.7 and Eq.13. The parallel bond has a linear elastic behavior, as shown in Fig.3. The 

bond breaks when the contact force exceeds its strength [28, 34]. 

 

Fig.3 Constitutive behavior of the parallel bond at contact 

3.2 DEM Model of Ply-ply Interface 

As suggested in [43, 44] that the interface between two composite plies is adhesive, 

there exist residual interfacial traction forces, even when the two plies are detached but 

before they are entirely separated. Therefore alternative contact models have been 

proposed by DEM users to account for the complex interfacial behaviour by 

considering more complicated constitutive laws. The contact softening model was 

proposed for this purpose based on the contact bond model [35, 39]. The concept of 

contact softening model (illustrated in Fig.4) is similar to the cohesive zone model 

(CZM) in the continuum mechanics [17, 22]. The only difference between these two 

models is the unloading and reloading curves after yielding.  
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Fig.4 Constitutive behavior of contact softening model 

The contact softening model describes the behavior of contact bonds in elastic, and 

represents plastic deformation by linearly softening the bond after the contact force 

reaches the bond strength. In both tensile and shear situations, the bond strength 

decreased to zero when the plastic displacement reaches the maximum plastic 

displacement Upmax which is related to the fracture energy release rate G. The interfacial 

crack may behavior as mode I, mode II or mix mode according to the stress field at the 

crack tip. In order to simulate the three fracture modes in DEM, the maximum plastic 

displacement Upmax was kept constant, while the bond normal and shear strengths were 

defined individually. Hence, in a two dimensional system, the fracture energy release 

rate for mode I and mode II are, respectively: 

                                               (14)  

And 

                                               (15)  

In 2D DEM, the contact stresses at the bond are taken as the average stress between the 

two contacting particles [35], as calculated below:  

                                                    (16) 

                                                     (17)  

The fracture energy release rate can be calculated as: 

               (18)  

σn and σs are the normal and shear stresses of the bond when yield occurs. For the mixed 

mode, the fracture energy release rate is somewhere between the rates of two single 

fracture modes. 

The interface of the laminate is treated as the contact between two single layers of 

particles that are symmetrically arranged in the DEM model, as illustrated in Fig.5. A 

detailed study of the progressive interfacial delamination under mode I, mode II as well 
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as mix mode in composite laminates by DEM is referred to [45], where the 

specifications for the respective dedicated interfacial delamination models can also be 

found. 

 

 
Fig.5 Configuration of interface in DEM model 

4. Stress Distribution at Free-edge and Interface 

The interlaminar stress distribution close to ply cracks as well as free edge of a laminate 

was usually studied by a representative element as shown in Fig.6 [6, 10], where it is 

assumed that the ply cracks (indicated by red lines) are uniformly distributed along the 

length parallel with the loading direction. This representative element is also adopted in 

this paper to validate the DEM model by comparising with the solutions from existing 

studies [46]. In this paper, it is assumed that both the 90º and 0º plies are made of 

transversely isotropic materials. When the 3D material is reduced to a 2D model, the 

90º and 0º plies are equivalently represented by the respective isotropic and orthotropic 

materials. The stress distribution analysis of a [0˚/90˚]s laminate, with the following 2D 

mechanical properties, was carried out by the developed DEM model. 

 

 For the 90º ply:  E=14.48 GPa; υ=0.21 

   For the 0º ply:  EL=137.9 GPa; ET=14.48 GPa; υLT=0.21; GLT=5.86 GPa 

 

The geometry of the representative element is assumed to have the width L, and 

thickness h, with L = 4h. Also each of the material layers is of equal thickness h/4 and 

idealized as a homogeneous material. Constant displacement loading was applied on 

the 0˚ ply at both ends of the element with a constant horizontal velocity of 0.05 m/s , 

which represents for a quasi-static loading condition [28]. Figure 7 shows the 

comparisons for the through thickness distribution of the normal stress . The 

peeling and shear stresses at the interface of the laminate are plotted and compared, 

respectively in Fig.8 and Fig.9. It can be observed that the developed DEM model can 

predict the stress distribution accurately, with the results agreeing very well with those 

obtained from the space state finite element method [46].  

 

Fig.6 A representative element for cross-ply laminate 
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Fig.7 Distribution of axial stress through the thickness at x=0 
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Fig.8 Distribution of interlaminar shear stress at 0˚/90˚ interface  
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Fig.9 Distribution of interlaminar normal stress at 0˚/90˚ interface 



  

 

5. DEM Simulation of Transverse and Delamination 

The damage in cross-ply composite laminates, e.g., transverse cracking and 

delamination, can be represented by the breakage of bonds at the contacts of particles in 

DEM. An example of [0˚/90˚3]s glass fiber reinforced epoxy laminate is considered in 

this paper. The results are compared with the statistical analysis in [26] and the 

experimental studies in [47]. It is worth to mention here that physical delamination of 

the laminate could be in the form of interfacial delamination, occurring right along the 

0
o
 and 90

o 
interface, or in the form of cracks in the 90

o
 plies which are close and parallel 

to the interface. Therefore, in the examples shown in the remainder of this paper, the 

terminology ‘without interfacial delamination’ does not necessarily suggest that there is 

no physical delamination. The material properties used for the model are as follows: 

 

For the 90º ply:  E=13.0 GPa; υ=0.3 

   For the 0º ply:   EL=41.7 GPa; ET=13.0 GPa; υLT=0.3; GLT=3.4 GPa 

 

Each ply has a thickness of 0.203 mm and a length of 50 mm, as shown in Fig.10, where 

the particles with blue and gray colors indicate 0˚ and 90˚ plies, respectively. A constant 

loading velocity was applied at both sides of the specimen, and the average applied 

loading stress σc was recorded. The bond strength in the 0˚ plies was set to be large 

enough to avoid any breakage. The tensile strength of the parallel bonds in the 90˚ plies, 

σt, was 67 MPa with a variation of 30% following a normal distribution law [26], and 

the shear strength was assumed much higher to ensure that only tensile failure occurred. 

Interfacial delamination was not considered initially by applying a sufficiently high 

interfacial strength. From the DEM dynamic simulation of the damage process, it can 

be seen that transverse cracking occurs as failure of particle bonds that are relatively 

weaker, and propagates through the bond breakages, as demonstrated in Fig.10 (a) – (c). 

The saturated transverse cracks are almost uniformly distributed, and severe damage 

caused by stress concentration at the tips of the transverse cracks is evident from the 

DEM results. Interfacial delamination was introduced by setting the interfacial shear 

strength τ to 48 MPa and the interface fracture energies GI and GII to 257 J/mm
2
 and 856 

J/m
2
, respectively [14]. A variation of 30% was also introduced to reflect the non 

uniform distribution of these properties. When interfacial delamination is included, as 

shown in Fig.10 (d), it occurs at the tips of the transverse cracks, but this does not affect 

change the distribution of transverse cracks significantly when comparing to Fig.10 (c). 

However, magnified views of the models with/without interfacial delamination showed 

that less damage was observed in 90˚ ply along the interface when interfacial 

delamination was considered as indicated in Fig.11 (a) and (b). In this study the 

interface was regarded as delaminated when the interfacial strength was reached 

(represented by a black line in Fig.10 as well as in Fig.11 with magnified views), even 

though the fracture energy was not exceeded. The saturation pattern of transverse 

cracking in the DEM model was found to have a good agreement with the observed 

experimental results from [47] (see Fig.12).  



  

Quantitative analyses were carried out by counting the number of transverse cracks at 

selected loading increment in the DEM simulation and plotting the transverse crack 

density against the average loading stress, as shown in Fig.13. Good agreement of the 

transverse crack density was found between the DEM simulation and available  

experimental results [47] and statistical analysis [26]. There is a significant discrepancy 

when the DEM modeling (without interfacial delamination) was compared with the 

results from the statistical analysis (without delamination). This was because this 

dedicated statistical model deals with only transverse cracks while the DEM model 

allows both transverse cracking and delamination within the 90
o
 plies.  The crack 

density tends to become saturated in the DEM modeling without interfacial 

delamination, since the cracks can propagate within the 90˚ ply along the interface 

through matrix failure (as shown in Fig.11 (a)). The crack density in the statistical 

analysis model without delamination remains increasing due to the assumption that all 

cracks occur only in the through-thickness direction. The comparisons show that the 

crack density in the DEM model without interfacial delamination is greater than the one 

with interfacial delamination when the loading stress reached about 80 MPa, at which 

interfacial delamination starts. Since the variation of the 90 plies strength (i.e., 30%) 

was chosen, it appears that the DEM model with interfacial delamination 

underestimates the crack density. It suggests that a smaller interfacial strength variation 

could lead to a better agreement. It is expected that thermal residual stress along the 

interface might also affect the crack density evolution, which has not been included in 

the current DEM models.  

 

 
(a) σc=64.38MPa  

 
(b) σc=110.4MPa               

 
(c) σc=294.3MPa (without interfacial delamination) 

 
(d) σc=294.3MPa (with interfacial delamination) 

Fig.10 Dynamic initiation and propagation of transverse cracking and/or delamination 

in [0˚1/90˚3]s cross-ply laminate. 

(Particles with blue and gray colors indicate 0˚ and 90˚ plies, respectively. Red short lines are 

micro-cracks in 90˚ ply, and black short lines indicate interfacial delamination.) 

 

 

(a) without interfacial delamination 



  

 

(b) with interfacial delamination 

Fig.11 Magnified views of modeling at σc=294.3MPa 

 
Fig.12 Typical transverse cracking saturation patterns in [0˚1/90˚3]s laminate [47] 
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Fig.13 Transverse cracking density versus average applied stress in [0˚1/90˚3]s laminate 
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Fig.14 Stiffness reduction in [0˚1/90˚3]s laminate 

 

The remaining stiffness of the specimen was also calculated from the corresponding 

loading stress and strain, and compared to the experimental results in [47] which are 

nominized in Fig.14. Comparable stiffness reduction rate from both the DEM modeling 

and experimental investigation can be observed. The reduced stiffness from the DEM 

model is always lower than the one from the test. This under estimated stiffness may be 

due to the fact that the experimental data were measured after the specimens were 

unloaded [47] during which some micro-cracks may be closed leading to a relative 

larger remaining stiffness, while the stiffness in DEM modeling was calculated directly 

by the stress and strain values at the exact loading points without the unloading and 

reloading process.  

 

Simulations of the damage in [90˚n/0˚1]s cross-ply fiber reinforced composite laminates 

were also carried out using the similar DEM model. The material properties used in the 

simulations are as follows [27]:  

 

For the 90º ply:  E=9.6 GPa; υ=0.31 

   For the 0º ply:  EL=39.7 GPa; ET=9.6 GPa; υLT=0.31; GLT=4.5 GPa 

 

The ply thickness is 90 μm. The average tensile strength of the 90˚ plies were assumed 

the same as the matrix yielding stress, σt =73 MPa, and the interface fracture energies GI 

and GII were 200 J/mm
2
 and 400 J/m

2
, respectively. Tensile strength of the 90˚ plies was 

assigned with a variation of 10% following the normal distribution law to account for 

the random failure taking place within the plies. Interface fracture energy was chosen 

with also a variation of 10%. As illustrated in Fig.15, the transverse cracks are almost 

uniformly distributed within all 90˚ plies. Unlike the [0˚1/90˚n]s laminates, the outside 

surfaces of the 90˚ plies in the [90˚n/0˚1]s laminates are more undulated and the 

detachment between the 0˚ and 90˚ plies at the delaminated position become more 

pronounced. This becomes even more obvious for the laminates with more 90˚ plies. 

This is due to the unsymmetrical stress distribution within the 90˚ plies since their 

outside surfaces are free of restraint. The thicker the 90˚ plies are, the larger the 

deformation caused by the unsymmetrical stresses will be. The extension of transverse 

cracks to the free surfaces at various positions of the 0˚ ply makes the stresses generated 

in the 90˚ plies also unsymmetrical and variable along the interfaces, causing the 0˚ ply 

exhibiting a bending type of deformation. The DEM simulations of damage were 

compared with the experimental investigations, as shown in Fig.16 [27], confirming 

that the detachment of the delaminated 90˚ plies and the deflection of the whole 

specimen were accurately captured by the DEM model. It was also found that the 

average length of the delamination zones increased with the thickness increase of the 

90˚ plies. 

 

In Fig.17, quantitative study of  damage evolution was carried out by calculating  

crack density at various strains, and compared with the experimental results [27] and 



  

the FEM solutions [27]. In the FEM models, special interfacial elements were required 

to be introduced into the 90˚ plies in order to initiate transverse cracks at the pre-defined 

positions. From the comparisons, good agreement was found in the development of 

crack density in all of the three laminates.  

 

Furthermore, the curved propagation path of transverse cracking and the delamination,  

formed by both matrix cracking and interfacial failure, show a more comparable  

prediction than the FEM solution when compared with the experiments. Fig. 18 shows 

stiffness reduction obtained from the DEM simulation for the three laminates when 

they are subject to different levels of strains. All three laminates experienced sharp 

stiffness degradation after the loading is first applied. When the strain reaches a certain 

level, i.e., 1.0% in Fig.18, the rate of stiffness reduction becomes much smaller. 

Comparing Fig.18 with Fig.17, it can be observed that after the loading strain of 1.0% 

the remaining stiffness is almost constant, while the crack density is still increasing, 

especially in the [90˚1/0˚1]s and [90˚2/0˚1]s laminates. And it seems that the more 90˚ ply 

the laminate has, the slower the increase rate of crack density becomes. The reason for 

this is probably that large delamination length was formed in the laminates with thicker 

90˚ plies, resulting in fewer transverse cracks within the space between any two 

existing transverse cracks, as indicated in Fig.15. 

 

(a) [90˚1/0˚1]s laminate 

 
(b) [90˚2/0˚1]s laminate 

 
(c) [90˚3/0˚1]s laminate 

Fig.15 Transverse cracking and delamination in [90˚n/0˚1]s cross-ply laminates at a 

loading strain of 2%. (Pictures were partially screen-printed with a length of 3mm) 

      

(a) [90˚2/0˚1]s laminate at 1.9% loading strain    (b) [90˚3/0˚1]s laminate at 1.8% loading strain 

Fig.16 Damage of [90˚n/0˚1]s cross-ply laminates observed in experiments [27]  
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Fig.17 Transverse cracking density as a function of applied strain in [90˚n/0˚1]s 

cross-ply laminates 
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Fig.18 Stiffness reduction in [90˚n/0˚1]s laminate 

6. Concluding remarks 

The Discrete Element Method (DEM) has been employed to simulate dynamic 

initiation and propagation of transverse cracking as well as interfacial delamination in 

cross-ply laminates under uniaxial loading. The 90º and 0º plies were respectively 

treated as isotropic and orthotropic materials whose elastic properties were accounted 

by adopting the parallel bond model at the contacts of the discrete particles. The 

interface between the 90º and 0º plies was represented by a contact softening model. 

The developed DEM model was validated by comparing the stresses distribution in a 

representative element of cross-ply laminate with the results obtained from the 

analytical methods. As an application of the developed DEM model, the transverse 

cracking and interfacial delamination in both [0˚1/90˚n]s and [90˚n/0˚1]s cross-ply 

laminates under transverse loading were analyzed by comparing the calculated crack 

density with the experimental data and other numerical predications.  

 

The comparisons shown that the DEM model is capable of not only modeling the 



  

damage in laminates at microscopic particle level, but also capturing both the 

transverse cracking and delamination phenomenon, and predicting crack density as 

well as stiffness reduction quantitatively at macroscopic level.   

 

The authors believe that further development of the model will enable more 

complicated damage in cross-ply laminates to be simulated by DEM, where more 

microstructure aspects, i.e., fiber volume, fiber diameter and fiber/matrix interface, and 

thus fiber breakage and fiber/matrix debonding can all be taken into account. 
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>We model cross-ply laminates by particle based discrete elements. > We examine dynamic 

process of transverse cracking and interface delamination. > We examine the interaction between 

transverse cracking and delamination. > Stiffness reduction is studied against crack density with 

and without delamination. 

 

 




