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Abstract We study two-player zero-sum games over infinite-state graphs equipped with finitary con-
ditions. Such conditions refine the classical ω-regular conditions: instead of requiring that good events
occur infinitely often, they ensure the existence of a bound B such that in the limit good events occur
within B steps.
Our first contribution is to give (non-effective) characterizations of the winning regions for finitary
games over countably infinite-state arenas. From these results we obtain the strategy complexity, i.e
the memory required for winning strategies: we prove that memoryless strategies are sufficient for
finitary Büchi, and finite memory suffices for finitary parity.
We then study pushdown games with boundedness conditions, with two contributions. First we prove
a collapse result for pushdown games with finitary conditions, implying the decidability of solving
these games. Second we consider pushdown games with finitary parity along with stack boundedness
conditions, and show that solving these games is EXPTIME-complete.

1 Introduction

Games on graphs. Two-player games played on graphs is a powerful mathematical framework to ana-
lyze several problems in computer science as well as mathematics. In particular, when the vertices of the
graph represent the states of a reactive system and the edges represent the transitions, then the synthe-
sis problem (Church’s problem) asks for the construction of a winning strategy in a game played on the
graph [12,29]. Game-theoretic formulations have also proved useful for the verification, refinement, and com-
patibility checking of reactive systems [5]; and has deep connection with automata theory and logic, e.g the
celebrated decidability result of monadic second-order logic over infinite trees due to Rabin [31].

Omega-regular conditions: strengths and weaknesses. In the literature, two-player games on finite-
state graphs with ω-regular conditions have been extensively studied [19,20,22,23,36]. The class of ω-regular
languages provides a robust specification language for solving control and verification problems (see, e.g,
[30]). Every ω-regular condition can be decomposed into a safety part and a liveness part [3]. The safety part
ensures that the component will not do anything “bad” (such as violate an invariant) within any finite number
of transitions. The liveness part ensures that the component will do something “good” (such as proceed, or
respond, or terminate) in the long-run. Liveness can be violated only in the limit, by infinite sequences
of transitions, as no bound is stipulated on when the “good” thing must happen. This infinitary, classical
formulation of liveness has both strengths and weaknesses. A main strength is robustness, in particular,
independence from the chosen granularity of transitions. Another important strength is simplicity, allowing
liveness to serve as an abstraction for complicated safety conditions. For example, a component may always
respond in a number of transitions that depends, in some complicated manner, on the exact size of the
stimulus. Yet for correctness, we may be interested only that the component will respond “eventually”.
However, these strengths also point to a weakness of the classical definition of liveness: it can be satisfied by
components that in practice are quite unsatisfactory because no bound can be put on their response time.

Stronger notion of liveness: finitary conditions. For the weakness of the infinitary formulation of
liveness, alternative and stronger formulations of liveness have been proposed. One of these is finitary live-
ness [4]: it is satisfied if there exists a bound B such that every stimulus is followed by a response within



B transitions. Note that it does not insist on a response within a known bound B (i.e, every stimulus is
followed by a response within B transitions), but on response within some unknown bound, which can be
arbitrarily large; in other words, the response time must not grow forever from one stimulus to the next.
In this way, finitary liveness still maintains the robustness (independence of step granularity) and simplicity
(abstraction of complicated safety) of traditional liveness, while removing unsatisfactory implementations.

All ω-regular languages can be defined by a deterministic parity automaton; the parity condition assigns
to each state an integer representing a priority, and requires that in the limit, every odd priority is followed
by a lower even priority. Its finitary counterpart, the finitary parity condition, requires that there is a bound
B such that in the limit every odd priority is followed by a lower even priority within B transitions.

Games with finitary conditions. Games over finite graphs with finitary conditions have been studied
in [14], leading to very efficient algorithms. In this paper, we study games over infinite graphs with finitary
conditions, and then focus on the widely studied class of pushdown games, which model sequential programs
with recursion. This line of work belongs to the long and rich tradition of infinite-state systems and games,
(see e.g [1,11]). Pushdown games with the classical reachability and parity conditions have been studied
in [6,35]. It has been established in [35] that the problem of deciding the winner in pushdown parity games
is EXPTIME-complete. However, little is known about pushdown games with boundedness conditions; one
notable exception is parity and stack boundedness conditions [10,21]. The stack boundedness condition
naturally arises with the synthesis problem in mind, since bounding the stack amounts to control the depth
of recursion calls of the sequential program.

Bounds in ω-regularity. The finitary conditions are closely related to the line of work initiated by Bo-
jańczyk in [8], where the MSO + B logic was defined, generalizing MSO over infinite words by adding a
bounding quantifier B. The satisfiability problem for this logic over infinite words, and more generally over
infinite trees are major open questions in logic; a positive answer for the second would imply the decidability
of the Mostowski hierarchy, a long-standing open problem [17]. A fragment of MSO + B over infinite words
defined by ωB-expressions was shown to be decidable in [9], by introducing the model of ωB-automata, which
manipulate counters. They perform three kind of actions on counters: increment (i), reset (r) or nothing (ε).
It follows from [13] that automata with finitary conditions exactly correspond to ωB-automata without the
third action ε.

Regular cost-functions. A different perspective for bounds in ω-regular conditions was developed in [15]
with functions instead of languages, giving rise to the notion of regular cost-functions and cost logic. The
decidability of cost logic over finite trees was established in [18], and its extension over infinite trees is another
related major open question. A subclass of cost logic called temporal cost logic was introduced in [16] and
is the counterpart of finitary conditions for regular cost-functions, also reminiscent of desert automata [24].

While the decidability of MSO + B over infinite trees is the grand major open question, decidability for
finitely representable infinite-state games, such as pushdown games, will already be a significant achievement.
This paper is a step towards this goal.

Our contributions. In this work we consider infinite-state games with finitary conditions. We study two
questions: the memory requirements of winning strategies in general countably infinite-state games, and the
decidability of determining the winner in a pushdown game.

Strategy complexity. We give (non-effective) characterizations of the winning regions for finitary games over
countably infinite graphs, implying a complete picture of the strategy complexity. Most importantly, we
show that for finitary Büchi conditions Eve has a memoryless winning strategy, and that for finitary parity
conditions, memory of size d/2 + 1 suffices, where d is the number of priorities of the parity condition.

Pushdown games. We present two contributions.

First we establish a collapse result, reducing finitary conditions to uniform conditions, which allows to
apply a recent result from [7] and obtain the decidability of determining the winner in such games. The
bottom line is the decidability of the membership problem for two-way alternating finitary automata over
regular trees. More importantly, this implies the decidability of pushdown games with ωB-conditions, a step
towards the grand open question.
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Second we consider pushdown games with finitary parity along with stack boundedness conditions, and
establish that solving these games is EXPTIME-complete.

Technical contributions. Most of the proof techniques for finitary games over finite graphs rely on induc-
tions on the vertex set [14], hence do not apply to infinite graphs. Moreover, several crucial properties that
hold over finite graphs are no longer true over infinite graphs (see Examples 1,3,4).

To obtain the results on the strategy complexity, we give (non-effective) characterizations of the winning
regions. These characterizations are phrased in terms of fixpoints and countable unions, and obtained through
five steps. To this end, we introduce two variants of finitary conditions, the uniform counterparts, where the
bound on the number of steps is explicit and the bounded counterparts, where the bound must be enforced
from the start of the play.

For pushdown games, we show a collapse result, which roughly speaking states the equivalence between
the following quantifications: “for every play, there exists a bound” and “there exists a bound such that for
every play”. This is obtained by a fine analysis of the regularity of the winning regions for uniform conditions.

To solve pushdown games with finitary parity along with stack boundedness conditions, we combine two
ideas, obtaining an equivalent pushdown game with Büchi (instead of finitary parity) and restricted stack
boundedness conditions. The first idea is a reduction from finitary to bounded conditions by introducing
a restart gadget, allowing to restart the game from scratch finitely often. The second idea is a collapse for
finitary Büchi along with stack boundedness conditions to its infinitary counterpart, generalizing the case of
finite arenas; roughly speaking, we show that for finitary Büchi, if the stack is bounded along a play, then
the pushdown arena behaves as a finite arena.

2 Definitions

Arenas and games. The games we consider are played on an arena A = (V, (VE , VA), E), which consists
of a (potentially infinite but countable) graph (V,E) and a partition (VE , VA) of the vertex set V . A vertex
is controlled by Eve and depicted by a circle if it belongs to VE and controlled by Adam and depicted by a
square if it belongs to VA. Playing consists in moving a pebble along the edges: initially placed on a vertex v0,
the pebble is sent along an edge chosen by the player who controls the vertex. From this infinite interaction
results a play π, which is an infinite sequence of vertices v0, v1, . . . where for all i, we have (vi, vi+1) ∈ E, i.e
π is an infinite path in the graph. We denote by Π the set of all plays, and define conditions for a player
by sets of winning plays Ω ⊆ Π . The games are zero-sum, which means that if Eve’s condition is Ω, then
Adam’s condition is Π \ Ω, usually denoted by “CoΩ” (the conditions are opposite). Formally, a game is
given by a couple G = (A, Ω) where A is an arena and Ω a condition.

Strategies. A strategy for a player is a function that prescribes, given a finite history of the play, the next
move. Formally, a strategy for Eve is a function σ : V ∗ · VE → V such that for a finite history w ∈ V ∗ and
a current vertex v ∈ VE , the prescribed move is legal, i.e along an edge: (v, σ(w · v)) ∈ E. Strategies for
Adam are defined similarly, and usually denoted by τ . Once a game G = (A, Ω), a starting vertex v0 and
strategies σ for Eve and τ for Adam are fixed, there is a unique play denoted by π(v0, σ, τ), which is said
to be winning for Eve if it belongs to Ω. The sentence “Eve wins from v0” means that she has a winning
strategy from v0, that is a strategy σ such that for all strategies τ for Adam, the play π(v0, σ, τ) is winning.
We denote by WE(G) the set of vertices from where Eve wins, also referred as winning set, or winning region,
and analogously WA(G) for Adam. A very important theorem in game theory, due to Martin [28], states
that Borel games (that is, where the condition is Borel) are determined, i.e we have WE(G) ∪WA(G) = V :
from any vertex, exactly of the two players has a winning strategy. Throughout this paper, we only consider
special cases of Borel conditions, hence our games are determined.

Memory structure. We define memory structures and strategies relying on memory structures. A memory
structure M = (M,m0, µ) for an arena A consists of a set M of memory states, an initial memory state m0 ∈
M , and an update function µ : M × E → M . A memory structure is similar to an automaton synchronized
with the arena: it starts from m0 and reads the sequence of edges produced by the arena. Whenever an edge
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is taken, the current memory state is updated using the update function µ. A strategy relying on a memory
structure M, whenever it picks the next move, considers only the current vertex and the current memory
state: it is thus given by a next-move function ν : VE ×M → V . Formally, given a memory structure M and
a next-move function ν, we can define a strategy σ for Eve by σ(w ·v) = ν(v, µ∗(w ·v)). (The update function
can be extended to a function µ∗ : V + → M by defining µ∗(v) = m0 and µ∗(w · u · v) = µ(µ∗(w · u), (u, v)).)
A strategy with memory structure M has finite memory if M is a finite set. It is memoryless, or positional
if M is a singleton: in this case, the choice for the next move only depends on the current vertex. Note that
a memoryless strategy can be described as a function σ : VE → V .

We can make the synchronized product explicit: an arena A and a memory structure M for A induce the
expanded arena A×M = (V ×M, (VE×M,VA×M), E×µ) where E×µ is defined by ((v,m), (v′,m′)) ∈ E×µ
if (v, v′) ∈ E and µ(m, (v, v′)) = m′. There is a natural one-to-one mapping between plays in A and in A×M,
and also from memoryless strategies in A ×M to strategies in A using M as memory structure. It follows
that if a player has a memoryless winning strategy for the arena A × M, then he has a winning strategy
using M as memory structure for the arena A. This key property will be used throughout the paper.

Omega-regular conditions. We define the Büchi and parity conditions. We equip an arena A with a
coloring function c : V → [d] where [d] = {0, . . . , d} is the set of colors or priorities. For a play π, let
Inf(π) ⊆ [d] be the set of colors that appear infinitely often in π. The class of parity conditions is defined as
follows:

Parity(c) = {π | min(Inf(π)) is even};

i.e, the parity condition requires that the lowest color visited infinitely often is even. Here, the color set [d]
is interpreted as a set of priorities, even priorities being “good” and odd priorities “bad”, and lower priorities
preferable to higher ones. The parity conditions are self-dual, meaning that the completement of a parity
condition is another parity condition: CoParity(c) = Π \ Parity(c) = Parity(c+ 1).

As a special case, the class of Büchi conditions are defined using the color set [1] = {0, 1}. Setting F as
c−1(0) ⊆ V :

Büchi(F ) = {π | 0 ∈ Inf(π)};

i.e, the Büchi condition Büchi(F ) requires that infinitely many times vertices in F are reached. We usually
call F the Büchi set and say that a vertex is Büchi if it belongs to F . The dual is CoBüchi(F ) condition,
which requires that finitely many times vertices in F are reached.

Finitary conditions. Finitary conditions add bounds requirements over omega-regular conditions [4]. Given
a coloring function c : V → [d] and a position k, we define:

distk(π, c) = inf
k′≥k

{
k′ − k |

c(πk′ ) is even, and
c(πk′) ≤ c(πk)

}
;

i.e distk(π, c) is the “waiting time” by means of number of steps from the kth vertex to a preferable priority
(that is, even and lower). The finitary parity winning condition FinParity(c) was defined as follows in [14]:

FinParity(c) = {π | lim sup
k

distk(π, c) < ∞};

i.e, the finitary parity condition requires that the supremum limit of the distance sequence is bounded.
In the special case where C = {0, 1}, this defines the finitary Büchi condition: setting F = c−1(0), we

denote distk(π, F ) = inf{k′ − k | k′ ≥ k, πk′ ∈ F}, i.e distk(π, F ) is the number of transitions followed from
the kth vertex before reaching the next vertex in F . (Note that this is consistent with the previous notation
distk(π, c).) Then:

FinBüchi(F ) = {π | lim sup
k

distk(π, F ) < ∞}.

Example 1. We conclude this section by an example witnessing the difference between playing a Büchi
condition and a finitary Büchi condition over an infinite arena. This is in contrast to the case of finite
arenas, where winning for Büchi and finitary Büchi conditions are equivalent. The Figure 1 presents an
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infinite arena where only Adam has moves; he loses for the condition CoBüchi(F ) but wins for the condition
CoFinBüchi(F ). We give two representations: on the left, as a pushdown game (defined in Section 4), and
on the right, explicitly as an infinite-state game.

F

⊥

push(a) pop(a)

F

F F F . . .

. . .

Figure 1. Adam loses for CoBüchi(F ) but wins for CoFinBüchi(F ).

A play consists in rounds, each starting whenever the pebble hits the leftmost vertex. Along a round,
Adam follows the top path, remaining in Büchi vertices; he may decide at any point to follow an edge down,
following the bottom Büchi-free path before geting back to the leftmost vertex.

Whatever Adam does, infinitely many Büchi vertices will be visited, so Adam loses for the condition
CoBüchi(F ). However, by going further and further to the right, Adam ensures longer and longer paths
without Büchi vertices, hence wins for the condition CoFinBüchi(F ).

3 Strategy complexity for finitary conditions over infinite-state games

In this section we give characterizations of the winning regions for finitary conditions over infinite arenas,
and use them to establish the strategy complexity for both players. We show that memoryless strategies are
sufficient for finitary Büchi, and that finite-memory strategies of size d (the number of colors) suffice for
finitary parity, whereas the opponent requires infinite memory. To this end, we take five steps, summarized
in Figure 2, which involve two variants of finitary conditions: uniform and bounded.

bounded
uniform
Büchi

uniform
Büchi

finitary
Büchi

bounded
parity

finitary
parity

Figure 2. Results implications

Uniform conditions. The bound B ∈ N is made explicit; for instance the uniform Büchi condition is:

UniBüchi(F,B) = {π | lim sup
k

distk(π, F ) ≤ B}.

Bounded conditions. The requirement is not in the limit, but from the start of the play, i.e the distance
function is bounded rather than eventually bounded; for instance the bounded parity condition is:

BndParity(c) = {π | sup
k

distk(π, c) < ∞}.

The two variants can be combined, for instance the bounded uniform Büchi condition is:

BndUniBüchi(F,B) = {π | sup
k

distk(π, F ) ≤ B}.
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Let us point out that in the special case of Büchi conditions, we have BndBüchi(F ) = FinBüchi(F ), hence
we can refer to these conditions either as bounded Büchi or as finitary Büchi.

Attractors. Given F ⊆ V , define Pre(F ) as the union of {u ∈ VE | ∃(u, v) ∈ E, v ∈ F} and {u ∈ VA |
∀(u, v) ∈ E, v ∈ F}. The attractor sequence is the step-by-step computation of the least fixpoint of the
monotone function X 7→ F ∪ Pre(X):

{
AttrE0 (F ) = F

AttrEk+1(F ) = F ∪ Pre(AttrEk (F ))

The sequence (AttrEk (F ))k is increasing with respect to set inclusion, so it has a limit, denoted AttrE(F ), the
attractor to F . An attractor strategy to F ⊆ V for Eve is a memoryless strategy that ensures from AttrE(F )
to reach F within a finite number of steps. Specifically, an attractor strategy to F from AttrEB(F ) ensures
to reach F within the next B steps.

3.1 Constructing memoryless strategies.

We start with two general techniques to construct memoryless strategies. Both techniques are about com-
posing several memoryless strategies into one. The first lemma deals with union, and states that winning
positionally for each condition Ωn implies to win positionally for ∪n∈NΩn:

Lemma 1 (Union and memoryless strategies [21]). Let (Ωn)n∈N be a family of Borel conditions, and
assume ∪n∈NΩn is prefix-independent. If for all n ∈ N, Eve wins positionally for the condition Ωn from Vn,
then she wins positionally for the condition ∪n∈NΩn from ∪n∈NVn.

Proof. We denote by Ω the condition ∪n∈NΩn.
For all n ∈ N, let σn be a memoryless strategy winning from Vn for the condition Ωn. We construct σ

memoryless strategy on ∪n∈NVn: for v ∈ ∪n∈NVn, we define σ(v) = σk(v) where k is the smallest integer such
that v ∈ Vk. A play π consistent with σ will ultimately be consistent with some σk: so π = v0, . . . , vn · π′

where π′ ∈ Ωk. It follows that π′ ∈ Ω, and since Ω is prefix-independent, π ∈ Ω. Thus Eve wins for the
condition Ωk, hence σ is a memoryless winning strategy from ∪n∈NVn for the condition Ω.

The second lemma, introduced and proved in a more general framework in [25], is about fixpoint.

Lemma 2 (Fixpoint and memoryless strategies [25]). Let Ω be a Borel prefix-independent condition,
and Ω′ a condition. If the following properties hold for all games:

1. WE(Ω
′) ⊆ WE(Ω),

2. if WE(Ω
′) is empty then WE(Ω) is empty.

then for all games with condition Ω, there exists a memoryless winning strategy for Eve from her winning
set.

3.2 Strategy complexity for bounded uniform Büchi games

Our first step is the study of bounded uniform Büchi games. In this subsection, we obtain the following
results:

Proposition 1 (Strategy complexity for bounded uniform Büchi games). For all bounded uniform
Büchi games with bound B, the following assertions hold:

1. There exists a memoryless winning strategy for Eve from her winning set.
2. There exists a winning strategy for Adam with B memory states from his winning set.
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3. In general, winning strategies for Adam require at least B − 1 memory states, even over finite arenas,
for B ≥ 3.

We start by showing that Eve’s winning set can be described using a greatest fixpoint, which allows to
define a winning memoryless strategy. We define the following sequence (Zk)k of subsets of V :

{
Z0 = V

Zk+1 = AttrEB(F ∩ Pre(Zk))

This sequence is decreasing with respect to set inclusion, so it has a limit denoted by Z 1, equivalently
defined as the greatest fixpoint of the monotone function X 7→ AttrEB(F ∩ Pre(X)).

Lemma 3.
Z = WE(BndUniBüchi(F,B)) .

Proof. We prove both inclusions.

– We first show that Z ⊆ WE(BndUniBüchi(F,B)). Let σB be a memoryless strategy that ensures from
AttrEB(F ∩ Pre(Z)) to reach F ∩ Pre(Z) within B transitions. We define a strategy σ on Z by:

σ(v) =

{
σB(v) if v ∈ AttrEB(F ∩ Pre(Z)) \ F ∩ Pre(Z)

v′ ∈ Z if v ∈ F ∩ Pre(Z)

Consider π = v0v1 . . . a play starting from v0 ∈ Z consistent with σ. By definition of σB it will reach
F ∩ Pre(Z) within B transitions, say at vertex vk0

for 0 ≤ k0 ≤ B. Furthermore the play vk0+1 . . . is
consistent with σ and starts from vk0+1 ∈ Z, so repeating this reasoning by induction, we show that π
visits F infinitely often, and that the distance to the next Büchi vertex remains smaller than B. Thus σ
is a memoryless winning strategy for BndUniBüchi(F ) from Z.

– We now show that V \ Z ⊆ WA(BndUniBüchi(F,B)). Consider a vertex v not in Z, we define its rank
to be the smallest k such that v does not belong to Zk; note that the rank cannot be 0. A vertex of rang
k + 1 belongs to Zk but not to Zk+1. For each k we define a strategy τk:
• For k 6= 0, the strategy τk ensures that from V \AttrEB(F ∩ Pre(Zk)), if a Büchi vertex v is reached

within B transitions, then it does not belong to Pre(Zk). Moreover, either v belongs to Eve and any
successor will be in V \Zk, or it belongs to Adam and the strategy τk chooses a successor in V \Zk.

• For k = 0, the strategy τ0 ensures that from V \ AttrEB(F ), no Büchi vertex is reached within B
transitions.

We now define a strategy τ from Z: from a vertex of rank k + 1, play consistently with τk. If a Büchi
vertex v is reached within B transitions, then by definition of τk the successor v′ of v will be in V \ Zk,
i.e has a lower rank. From this vertex v′, restart from scratch, i.e play consistently with τk′ if v′ has
rank k′ + 1 < k + 1 until the next visit to a Büchi vertex, and so on.
We argue that τ is a winning strategy from V \ Z. Indeed, consider a play π = v0v1 . . . from V \ Z
consistent with τ . If v0 has rank k + 1, then either within B transitions no Büchi vertices are visited
(hence Adam wins) or its successor has a lower rank, and the play starting from this successor is consistent
with τ . Since there is no infinite decreasing sequence of integers, the play π cannot satisfy the bounded
uniform Büchi condition. Hence τ is a winning strategy from V \ Z.

So far, we proved that in bounded uniform Büchi games, Eve has a memoryless winning strategy from
her winning set.

1 This follows from our assumption that the arenas have a countable set of vertices. Here we could drop this
assumption and define the sequence indexed by ordinals, which we avoided for the sake of readability.
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It is not clear from this characterization how to implement a winning finite-memory strategy for Adam.
To prove the finite-memory determinacy for Adam, we rely on a reduction to safety games, that we present
now. Define the memory structure M = ({0, . . . , B}, 0, µ) as:

µ(i, (v, v′)) =






0 if v ∈ F or v′ ∈ F

i+ 1 if i < B and v, v′ /∈ F

B otherwise

Intuitively, the memory structure counts the number of steps since the last visit to a Büchi vertex. Then
(G,BndUniBüchi(F,B)) is equivalent to (G ×M, Safety(V ×{0, . . . , B− 1})). Since Adam has a memoryless
winning strategy for any safety condition from his winning set, we deduce a strategy using M as memory
structure winning from his winning set in G. Moreover, a winning strategy using M does not make use of
the additional memory state B, hence it actually uses B memory states, and not B + 1.

Note that the memoryless result for Eve cannot be obtained from this reduction. The following example
shows that the upper bound given above is (almost) tight.

Example 2. Figure 3 presents an arena where Adam wins for the condition CoBndUniBüchi(F,B +1) using
B memory states and loses with less. Here B ≥ 2. A play consists in repeating infinitely often the following

c v6=i

1 B

1 i B

1 j B

1 B

to c

Figure 3. An arena where Adam needs B memory states to win

two steps: first, from c Adam chooses an i from {1, . . . , B}, then from v6=i Eve chooses a j different from i,
and follows a path of length B where only the jth vertex belongs to F . Adam wins using B memory states
by playing the last choice of Eve: this way, either Eve chooses a j larger than i so no Büchi vertices will be
visited within B+2 transitions, or she chooses a j smaller than i. The last case cannot occur infinitely often,
so the uniform Büchi condition is violated. If Adam uses less than B memory states, then there exists an i
that he will never choose: Eve wins BndUniBüchi(F,B + 1) by choosing i every time.

3.3 Strategy complexity for uniform Büchi games

Our second step is about uniform Büchi games. In this subsection, we obtain the following results:

Proposition 2 (Strategy complexity for uniform Büchi games). For all uniform Büchi games with
bound B, the following assertions hold:

1. There exists a memoryless winning strategy for Eve from her winning set.
2. There exists a winning strategy for Adam with B + 1 memory states from his winning set.
3. In general, winning strategies for Adam require at least B − 1 memory states, even over finite arenas,

for B ≥ 2.
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The bounded uniform Büchi conditions are the prefix-dependent counterpart of the uniform Büchi con-
ditions:

UniBüchi(F,B) = V ∗ · BndUniBüchi(F,B) .

However, this equality does not imply the equality between WE(UniBüchi(F,B)) and the attractor of
WE(BndUniBüchi(F,B)). One inclusion holds:

AttrE(WE(BndUniBüchi(F,B))) ⊆ WE(UniBüchi(F,B)),

but the other fails, as shown in Figure 4.

F F

Figure 4. AttrE(WE(BndUniBüchi(F, 0))) ( WE(UniBüchi(F, 0))

This shows that one iteration of the bounded uniform Büchi winning set does not give the whole uniform
Büchi winning set. However, the following properties hold:

1. WE(BndUniBüchi(F,B)) ⊆ WE(UniBüchi(F,B)),
2. if WE(BndUniBüchi(F,B)) is empty then WE(UniBüchi(F,B)) is empty.

We prove the second item. Assume that WE(BndUniBüchi(F,B)) = ∅, then WA(BndUniBüchi(F,B)) = V :
from everywhere Adam can fool the bound B once. It is then easy to see that he can fool the bound B
infinitely often, i.e that WA(UniBüchi(F,B)) = V , which implies WE(UniBüchi(F,B)) = ∅. Thanks to
Lemma 2 and Proposition 1, Eve has a memoryless strategy from her winning set.

The proof of the results for Adam follows the same lines as above. We first lift up the reduction, which
is now from uniform Büchi games to CoBüchi games. The memory structure is the same as above, and now
(G,UniBüchi(F,B)) is equivalent to (G ×M,CoBüchi(V × {0, . . . , B − 1})). Since Adam has a memoryless
winning strategy in any Büchi game from his winning set, we deduce a strategy using M as memory structure
winning from his winning set in G. Notice that this gives an upper bound of B + 1 memory states, whereas
in the case of bounded uniform Büchi games, we had an upper bound of B memory states.

We now discuss the lower bound: we can easily see that the statements about the game presented in
Example 2 hold true for bounded uniform Büchi conditions as well as for uniform Büchi conditions, hence
the same lower bound of B − 1 applies.

3.4 Strategy complexity for finitary Büchi games

Our third step is about finitary Büchi games. In this subsection, we obtain the following results:

Proposition 3 (Strategy complexity for finitary Büchi games). For all finitary Büchi games, the
following assertions hold:

1. There exists a memoryless winning strategy for Eve from her winning set.
2. In general winning strategies for Adam require infinite memory, even for pushdown arenas.

We show how to obtain the winning region for finitary Büchi from the winning regions for uniform Büchi.
Denote by U the set of vertices AttrE (

⋃
B WE(UniBüchi(F,B))).

We first show how to obtain a memoryless strategy that wins for the condition FinBüchi(F ) from U . We
know from Proposition 2 that Eve wins for the condition UniBüchi(F,B) using a memoryless strategy from
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WE(UniBüchi(F,B)). Now thanks to Lemma 1 we deduce that Eve wins for the condition
⋃

B UniBüchi(F,B)
(that is, FinBüchi(F )) from

⋃
B WE(UniBüchi(F,B)) using a memoryless strategy, and from its attractor

by coupling this with an attractor strategy.
Intuitively, U is the set of vertices where Eve has a strategy to attract in a region won for some uniform

Büchi condition. That is, from some point onwards, Eve can announce a bound B and claim “I will win for
the condition UniBüchi(F,B)”. However, it may be that even if Eve wins, she is never able to announce a
bound: such a situation happens in Example 3.

Example 3. Figure 5 presents an infinite one-player arena, where Eve wins yet is not able to announce a
bound. A loop labeled n denotes a loop of length n, where a Büchi vertex is visited every n steps. In this
game, as long as Adam decides to remain in the top path, Eve cannot claim that she will win for some
uniform Büchi condition.

F

F F
. . .

F
. . .

F
F

F . . .

n

Figure 5. An infinite arena where Eve cannot predict the bound.

It follows from this example that in general, the inclusion is strict. However, the following properties
hold:

1. U ⊆ WE(FinBüchi(F )),
2. if U is empty then WE(FinBüchi(F )) is empty.

We prove the second item. Assume the premise, then for all B, the winning set WE(UniBüchi(F,B)) is
empty, so Adam wins for the condition CoUniBüchi(F,B) from everywhere: let τB be a winning strategy for
Adam. From any vertex, the strategy τB ensures that at some point, there will be a sequence of B consecutive
non-Büchi vertices. Playing in turns τ1 until such a sequence occurs, then τ2, and so on, ensures to spoil
the condition FinBüchi(F ). Hence Adam wins everywhere for the condition CoFinBüchi(F ), which implies
WE(FinBüchi(F )) = ∅.

Thus the winning region for finitary Büchi is obtained as the least fixpoint of the operator U , implying
the memoryless determinacy for finitary Büchi, relying on Lemma 2.

An arena where Adam needs infinite memory to win in a finitary Büchi game was already presented and
discussed in Figure 1.

We summarize in the following theorem the winning sets characterizations obtained for the three variants
of Büchi conditions, using mu-calculus formulae with infinite disjunction.

Theorem 1 (Characterizations of the winning set).

WE(BndUniBüchi(F,B)) = νZ ·AttrEB(F ∩ Pre(Z))

WE(UniBüchi(F,B)) = µY · νZ ·AttrEB((F ∪ Y ) ∩ Pre(Z))

WE(FinBüchi(F )) = µX ·

(
⋃

B∈N

µY · νZ · AttrEB((F ∪ Y ∪X) ∩ Pre(Z))

)

10



3.5 Strategy complexity for bounded parity games

Our fourth step is about bouded parity games. In this subsection, we obtain the following results:

Proposition 4 (Strategy complexity for bounded parity games). For all bounded parity games, the
following assertions hold:

1. There exists a winning strategy for Eve from her winning set that uses at most d/2 + 1 memory states,
where d is the number of colors.

2. In general, winning strategies for Eve from her winning set require two memory states (i.e, memoryless
strategies do not suffice for winning).

Note that the upper bound and the lower bound presented in this proposition do not match; we were not
able to generalize Example 4 to improve the lower bound from 2 to d/2 + 1.

We present a reduction from bounded parity games to bounded Büchi games. We consider a coloring
function c : V → [d], and assume d is even. Define the memory structure M = ({1, 3, . . . , d−1}∪{d},m0, µ),
where:

µ(m, (v, v′)) =





m if c(v′) ≥ m

c(v′) if c(v′) < m and c(v′) is odd

d if c(v′) < m and c(v′) is even

m0 =

{
c(v0) if c(v0) is odd

d otherwise

Intuitively, this memory structure keeps track of the most urgent pending request.
Let F = {(v, d) | c(v) is even}. We argue that G = (A,BndParity(c)) is equivalent to G × M = (A ×

M,BndBüchi(F )). This follows from the equivalence:

π ∈ BndParity(c) if and only if π̃ ∈ BndBüchi(F ),

where π̃ is the play in G ×M corresponding to π.
Thanks to Proposition 3, Eve has a memoryless winning strategy in any bounded Büchi game from her

winning set, which implies that she has a strategy using M as memory structure winning from her winning
set in the original bounded parity game G.

Note that this does not give a reduction from finitary parity games to finitary Büchi games: the above
equivalence does not hold for the prefix-independent conditions. For instance, π = 1 · 2ω satisfies the finitary
parity condition but π̃ = (1, 1) · (2, 1)ω does not satisfy the finitary Büchi condition (the memory state
remains equal to 1 forever).

We now consider the lower bounds on memory. The fact the Eve needs memory is illustrated in Example 4.
Note that from the special case of bounded Büchi conditions we already know an infinite lower bound for
Adam.

Example 4. Figure 6 presents an infinite arena, where for condition BndParity(c), Eve needs two memory
states to win. This is in contrast with finite arenas, where she has memoryless winning strategies [14]. The
label n on an edge indicates that the length of the path is n. A play is divided in rounds, and a round is as
follows: first Adam makes a request, either 1 or 3, and then Eve either answers both requests and proceeds
to the next round, or stops the play visiting color 2. Assume Eve uses a memoryless strategy, and consider
two cases: either she chooses always 0, then Adam wins by choosing always 3, ensuring that the response
time grows unbounded, or at some round she chooses 2, then Adam wins by choosing 1 at this particular
round, ensuring that this last request will never be responded. However, if Eve answers correctly – that is
choosing color 0 for the request 1, and color 2 for the request 3 – the bounded parity condition is satisfied,
and this requires two memory states.

11



vn

1

3

0

2

n

to v
n+1

Figure 6. An infinite arena where Eve needs memory to win BndParity(c).

Before proceeding to the fifth and last step, let us discuss why the fourth step was about bounded parity
conditions rather than uniform ones. In both uniform parity games and bounded parity games, Eve needs
memory to win; this is shown in Example 4 for bounded parity conditions, and in Example 5 for uniform
parity conditions. It follows that using any of the two routes would not give memoryless winning strategies
for our final goal, finitary parity conditions. Furthermore, extending the techniques for bounded Büchi games
to bounded parity games is quite technical, as characterizing the winning regions requires nesting least and
greatest fixpoints, whereas the reduction we described from bounded parity games to bounded Büchi games
is both conceptually simple and effective.

Example 5. Figure 7 presents a finite arena, where for condition UniParity(p, 2), Eve needs two memory
states to win. First Adam makes a request, either 1 or 3, and then Eve chooses between 0 and 2. If Eve
answers correctly – that is choosing color 0 for the request 3, and color 2 for the request 1– the bound
requirement is satisfied, and this requires two memory states. Otherwise, either the bound requirement is
too large (if she chooses color 0 while Adam chose color 3) or the answer is not appropriate (if she chooses
color 2 while Adam chose color 1). This example is easily generalized to the case of 2d+ 1 colors, and there
Eve needs d+ 1 memory states to answer the requests appropriately.

v0

3

1

2

0

Figure 7. An arena where Eve needs memory to win UniParity(p, 2).

3.6 Strategy complexity for finitary parity games

Our last step is about finitary parity games. In this subsection, we obtain the following results:

Proposition 5 (Strategy complexity for finitary parity games). For all finitary parity games, there
exists a winning strategy for Eve from her winning set that uses at most d/2 + 1 memory states, where d is
the number of colors.

Once again, we rely on Lemma 2 to prove this result. Specifically, we have:

1. WE(BndParity(c)) ⊆ WE(FinParity(c)),
2. if WE(BndParity(c)) = ∅ then WE(FinParity(c)) = ∅.

The proof is easy and follows the same lines as for the previous use of Lemma 2. Note however that a small
technical issue arises here: one has to apply the induction construction not directly to the arena A, but to
A×M, where M is the memory structure, in order to combine positional strategies.

We now summarize the main results for finitary Büchi and parity conditions in the following theorem.
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Theorem 2 (Strategy complexity for finitary games). The following assertions hold:

1. For all finitary Büchi games, there exists a memoryless winning strategy for Eve from her winning set.

2. For all finitary parity games, there exists a winning strategy for Eve from her winning set that uses at
most d/2 + 1 memory states, where d is the number of colors.

3. For all finitary Büchi and parity games, winning strategies for Adam require infinite memory in general,
even for pushdown arenas.

This theorem gives the almost complete picture: the notable exception is the gap for finitary parity games,
where we prove that d/2 + 1 memory states are sufficient for Eve, yet without showing that any memory
is required at all. Although we think that memoryless strategies always exist, we were not able to prove it.
Our techniques through bounded parity games cannot be improved for this purpose, as we showed that for
these games Eve requires memory.

4 Pushdown games with finitary conditions

In this section we consider pushdown games with finitary conditions, and prove a collapse result which, along
with a recent result from Blumensath, Colcombet, Kuperberg and Vanden Boom [7], imply that determining
the winner in such games is decidable.

Pushdown arenas. A pushdown process is a finite-state machine which features a stack: it is described as
(Q,Γ,∆) where Q is a finite set of control states, Γ is the stack alphabet and ∆ is the transition relation.
There is a special stack symbol denoted ⊥ which does not belong to Γ , we denote by Γ⊥ the alphabet
Γ ∪{⊥}. A configuration is a pair (q, u⊥) (the top stack symbol is the leftmost symbol of u). There are three
kinds of transitions in ∆:

– (p, a, push(b), q): allowed if the top stack element is a ∈ Γ⊥, the symbol b ∈ Γ is pushed onto the stack.

– (p, pop(a), q): the top stack symbol a is popped from the stack, for a ∈ Γ .

– (p, a, skip, q): allowed if the top stack element is a ∈ Γ⊥, the stack remains unchanged.

The symbol ⊥ is never pushed onto, nor popped from the stack. The pushdown arena of a pushdown process
is defined as (Q × Γ ∗⊥, (QE × Γ ∗⊥, QA × Γ ∗⊥), E), where (QE , QA) is a partition of Q and E is given by
the transition relation ∆. For instance if (p, a, push(b), q) ∈ ∆, then ((p, aw⊥), (q, baw⊥)) ∈ E, for all words
w in Γ ∗.

Conditions. The conditions for pushdown arenas are specified over the control states, i.e do not depend on
the stack content: the coloring function assigns to any state a color. In other words, a coloring function is
given by c : Q → [d], and extended to c : Q× Γ ∗⊥ → [d] by c(q, u⊥) = c(q).

We begin this section by giving two examples witnessing interesting phenomena of pushdown games with
finitary conditions.

Example 6. Figure 8 presents a pushdown game where Eve wins the uniform Büchi condition with the bound
0, as any play eventually remains in a self-loop around a Büchi state. However, it may take an arbitrary
number of steps before this stabilization happens, depending on Adam. Let us first look at the two bottom
states: in the left-hand state at the bottom, Adam can push as many b’s as he wishes, and moves the token
to the state to its right, where all those b’s are popped one at a time. In other words, each visit of the two
bottom states allows Adam to announce a number N and to prove that he can ensure not to visit any Büchi
states for N steps. We now look at the states on the top line: the initial state is the leftmost one, where
Adam can push an arbitrary number of a’s. We see those a’s as credits: from the central state, Adam can
use one credit (i.e pop an a) to pay a visit to the two bottom states. When he runs out of credit, which will
eventually happen, he moves the token to the rightmost state, where nothing happens anymore.
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F

F

Fpush(a)

push(b) pop(b)

pop(a)

Figure 8. A pushdown game with finitary Büchi conditions.

Example 7. Figure 9 presents a pushdown Büchi game where Eve wins the uniform Büchi condition with the
bound 2, but to do this she has to maintain a small stack. A play in this game divides into infinitely many
rounds, which start by a visit to q. As in the previous example, each letter a on the stack is a “credit”. A
round consists in the following actions: first Eve chooses whether she wants to pop some a’s from the stack
(self-loop around q), and then moves the token to the Büchi state, second Adam decides either to push an
a and start the next round or to go to the rightmost state p to pop some a’s. The latter action should be
understood as using credits (a’s on the stack) to remain away from the Büchi state; using N credits, he can
stay in p for N steps. It follows that Eve should everytime keep the stack low to avoid long stays in p. This
rules out the greedy (attractor) strategy for her which would rush to the Büchi state without considering
the stack; a wiser strategy ensuring the bound 2 is to start every round by popping the a pushed during the
previous round.

q F p

push(a)

pop(a)

pop(a) pop(a)

Figure 9. A pushdown game with finitary Büchi conditions.

4.1 Regular sets of configurations and P-automata

We will use P-automata to recognize sets of configurations: a P-automaton B = (S, δ, F ) for the pushdown
process P = (Q,Γ,∆) is a classical automaton over finite words: S is a finite set of control states, δ : S×Γ → S
is the transition function and F is the subset of S of final states. We assume that the set of states S contains
Q. A configuration (q, u⊥) is accepted by B if it is accepted using q ∈ Q ⊆ S as initial state. A set of
configuration is said regular if it is accepted by a P-automaton.

A P-automaton can be alternating, with the standard semantics: the transition function is δ : S × Γ →
B+(S), where B+(S) is the set of positive boolean formulae over S. We denote by 0 and 1 the constants
“false” and “true”.

The following theorem states that for very general conditions, the winning region is regular [32,33].

Theorem 3 ([33]). For all pushdown games, for all winning conditions Ω ⊆ Qω that are Borel and prefix-
independent, the set WE(Ω) is a regular set of configurations recognized by an alternating P-automaton of
size |Q|.

4.2 The collapse result

Proposition 6 (The forgetful property). For all pushdown finitary parity games, there exists N such
that

WE(FinParity(c)) = WE(UniParity(c,N)) .
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The intuition behind the name forgetful property is the following: even if a configuration carries an
unbounded amount of information (since the stack may be arbitrarily large), this information cannot be
forever transmitted along a play. Indeed, if Adam wants to produce arbitrarily long paths without Büchi
states, he has to use the stack, consuming or forgetting its original information.

The Example 6 shows that the content of the stack can be used as “credit” for Adam to prove that he
can remain away from a Büchi state for a long time, but also that if Eve wins then from some point onwards
this credit vanishes.

Let A be a pushdown arena defined by the pushdown process P = (Q,Γ,∆). Thanks to Theorem 3, for
every B there exists BB an alternating P-automaton of size |Q| recognizing WE(UniParity(c, B)). As a first
step, we show by a careful analysis of the construction from [33] that the automata BB are increasing with
respect to a simulation-based ordering.

The definition of BB relies on the notion of conditional games [32,35]. Given a pushdown game G = (A, Ω)
and a subset R ⊆ Q, we define the pushdown game G(R) over the pushdown process P with the condition
Ω(R), defined by the union of:

– plays in Ω where the stack is never emptied;
– plays whose first configuration with empty stack is (q,⊥) where q ∈ R.

Then we define:
R(p, a) = {R ⊆ Q | (p, a⊥) ∈ WE(G(R))} .

To define the automaton BB, we rely on RB(p, a) for the conditional games of the condition UniParity(c, B).
BB is defined by (Q, δ, F ), where:

– the transition function δ is given by:

δ(p, a) =
∨

R∈RB(p,a)

∧

r∈R

r for a 6= ⊥

{
δ(p,⊥) = 1 if Eve wins from (p,⊥) for UniParity(c, B)

δ(p,⊥) = 0 if Adam wins from (p,⊥) for UniParity(c, B)

– the set of final states is empty: F = ∅.

Note that the fact that the set of final states is empty does not imply that no configuration is accepted;
indeed, the transitions from the empty stack are either directly accepting or rejecting.

Let B,B′ be two alternating P-automata with the same set of states Q and empty set of final states. Say
B � B′, read B is simulated by B′, if for all p ∈ Q and a ∈ Γ⊥, we have δB(p, a) ⇒ δB′(p, a). Note that this
implies that B′ accepts more configurations than B.

The following lemma implies that BB � BB+1.

Lemma 4.
RB(p, a) ⊆ RB+1(p, a)

Proof. Let R ∈ RB(p, a): Eve wins from (p, a⊥) the conditional game for R for the condition UniParity(c, B).
A fortiori, she wins in the same situation for the condition UniParity(c, B + 1), so R ∈ RB+1(p, a).

Since there are finitely many alternating P-automata of size |Q|, the increasing sequence (BB)B∈N is
ultimately constant, i.e there exists N such that BN = BN+1 = . . .. In other words, we have:

WE(UniParity(c,N)) = WE(UniParity(c,N + 1)) = . . . .

We argue that:
WE(FinParity(c)) = WE(UniParity(c,N)) .

Indeed, from the complement of WE(UniParity(c,N)), Adam can ensure to fool the bound N , but also N+1,
and so on, yet remaining there. Iterating such strategies ensures to spoil the finitary parity condition, which
concludes the proof.
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Remark 1. The above proof does not give a bound on N ; indeed, the sequence (BB)B∈N is ultimately constant,
but the fact that two consecutive automata are equal, i.e BB = BB+1, does not imply that from there on
the sequence is constant. It follows that N can be a priori arbitrarily large.

4.3 Decidability of pushdown finitary games

Following [26], we reduce the problem of determining the winner in a pushdown game to the membership
problem for two-way alternating automata over regular trees.

We start from a pushdown process P = (Q,Γ,∆), a partition (QE , QA) of the control states, and a
condition Ω. We define the pushdown game induced by G = (A, Ω), and fix an initial configuration (q0,⊥)
for the game.

We denote by Act(Γ ) the following set of actions on the stack: {push(a) | a ∈ Γ} ∪ {pop, skip}, where
push(a) should be understood as “going down in the direction a”, pop as “going up” and skip as “no move”.

We define a two-way alternating automaton with condition Ω; let A = (Q,Γ⊥, δ, q0, Ω), where the tran-
sition relation δ : Q × Γ⊥ → B+(Act(Γ ) × Q) is defined as follows: δ(p, a) is the disjunction of all possible
transitions from (p, a) if p ∈ QE , and the conjunction of all possible transitions from (p, a) if p ∈ QA.

We run the automaton A on the Γ -tree, which represents the stack contents. We assume without loss of
generality that Γ = {1, . . . , k}; the Γ -tree is the infinite k-ary tree where the label of the node u is the last
letter of u if u 6= ε, and ⊥ otherwise.

Lemma 5 ([26]). Eve wins G from (q0,⊥) if and only if the Γ -tree is accepted by A.

We thus consider a two-way alternating automaton A with finitary conditions, and a regular tree t. By
definition, t is accepted by A if Eve wins the acceptance game for A over t:

∃σ, ∀π, ∃B, π ∈ UniParity(c, B) ,

i.e there exists a strategy σ for Eve such that for all plays π, there exists a bound B such that π satisfies
the condition UniParity(c, B). The above collapse result, Proposition 6, implies a quantifier switch:

∃B, ∃σ, ∀π, π ∈ UniParity(c, B) .

In other words, the bound B is now uniform over all plays. It follows that an equivalent formulation of this
membership problem is to see A as a two-way alternating cost-automaton. This allows to use the following
recent result:

Proposition 7 ([7]). The membership problem for two-way alternating cost-automata over regular trees is
decidable.

This result is obtained by generalizing the simulation technique from [34], which transforms a two-way
automaton into a one-way automaton, merging several runs into one. A key ingredient in this simulation is
that the bound is uniform over all paths, allowing to keep track of only one value; this technique seems hard
to adapt to the finitary case, where the bound depends on the path.

It is standard to solve pushdown games by reduction to the membership problem of two-way alternating
automata over regular trees. Conversely, one can reduce the second problem to the first; indeed, the accep-
tance game of a two-way alternating automaton over a regular tree is a pushdown game, up to syntactic
transformations. This simple observation combined with Proposition 6 allows to strengthen Proposition 7:

Proposition 8. The membership problem for two-way alternating finitary automata over regular trees is
decidable.

The main result of this section follows:

Theorem 4. Determining the winner in a pushdown finitary parity game is decidable.
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All the results in this section hold for the whole class of ωB-conditions [9], but were presented here only
for the subclass of finitary conditions for the sake of readability. The same proof applies by replacing finitary
conditions by ωB-conditions, the only difference being what means “fooling the bound N ”: in the case of
finitary conditions, it means that a request is pending for N steps, and in the case of ωB-conditions, it means
that some counter’s value exceeds N .

The general statement is:

Theorem 5. Determining the winner in a pushdown ωB-game is decidable.

4.4 Lower bound on the collapse

A careful analysis of Proposition 7 reveals that the collapse bound N of Proposition 6 is computable. We
show that this bound is at least doubly-exponential in the number of states and exponential in the stack
alphabet.

The relevant parameters for pushdown arenas are n = |Q|, the number of states, and k = |Γ |, the size of
the stack alphabet.

The collapse bound for deterministic pushdown systems We start by considering deterministic
pushdown systems, which is the very restricted case of pushdown games where from every configuration,
there is only one transition, so no player has choice.

Standard pumping arguments shows that the collapse bound is at most exponential in both the number
of states and the stack alphabet.

Lemma 6. For all deterministic pushdown systems, we have:

WE(FinBüchi(F )) = WE(UniBüchi(F,N)),

for N = n2 · kn·k+1.

Proof. We prove the left-to-right inclusion. Consider a path π, and assume it satisfies the finitary Büchi
condition FinBüchi(F ). We will show that it also satisfies the uniform Büchi condition for the bound N =
n2 · kn·k+1. This collapse result is similar in fashion to the one obtained from the study of finitary games
over finite arenas. It is clear that in this setting, if a path in a deterministic arena satisfies the finitary
Büchi condition, then it satisfies the uniform Büchi condition for the bound n − 1 (n being the number of
vertices). Indeed, such a path is ultimately periodic, and the simple cycle it describes has length at most
n. The content of this proof is to exhibit such a periodic pattern in π. Using a case distinction, we prove
that either π ultimately repeats a cycle of length at most n · kn·k, or ultimately repeats a cycle of increasing
height (with respect to the stack) of length at most n2 · kn·k+1. The two cases we consider are the following,
they are illustrated in Figure 11:

1. there is some configuration that appears twice;
2. no configuration appears twice.

Before going through these two cases, we state an observation that will be used several times in the
proof: a simple path (that is, where each configuration appears at most once) whose maximal stack height
difference is less than H has length at most n · kH .

We start with the first case. It is clear that π is ultimately periodic; let C be the simple cycle described
by π. We can see that the maximal stack height difference in the cycle C is less than n · k, relying on a
vertical pumping argument. It follows, relying on the earlier observation, that the cycle has length at most
n · kn·k.

We now focus on the second case. Here π is not ultimately periodic, but we will show that it repeats a
cycle of increasing height. Define a step to be a configuration (q, u⊥) in π whose stack height is minimal
among the configurations that are visited after (q, u⊥) in π. Since no configuration appears twice, it is clear
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Figure 10. The case distinction for Lemma 6.

that π has infinitely many steps. We say that two steps are consecutive in π if there are no steps inbetween in
π. We first observe that two consecutive steps are separated by at most n · kn·k transitions: indeed the stack
height, which remains higher than the height of the first step, must remain within the n · k intervall above
the first step. Consider now the n · k first steps; two of them share the same state and top stack content,
let us denote them (q, au⊥) and (q, avau⊥). The path π ultimately repeats a cycle of increasing height, as
follows:

(q, au⊥) → (q, avau⊥) → . . . → (q, (av)pau⊥),

whose length is bounded by n2 · kn·k+1. This concludes.

The collapse bound proved in this lemma seems a priori quite large for such an easy case, as it is
exponential in both n and k. However, Example 8 shows that is it asymptotically tight.

Example 8. Figure 11 presents a deterministic pushdown game, where the only path from (F,⊥) satisfies the
condition UniBüchi(F,N) for N = O(2n) but not for asymptotically less. This system encodes a number in
binary in the stack with the least significant bit on the top of the stack. It has two phases: an initialization
phase and an increment phase.

The initialization phase has n states and consists in pushing n times the symbol 0. The increment phase
consists in adding one to the number encoded in the stack, i.e 1k0u⊥

∗
−−→ 0k1u⊥. This phase goes on until

it reaches the stack content 1n⊥, which is emptied to reach the only Büchi state F , and start from scratch.
This pushdown process has O(n) states and the collapse bound is O(2n).

An easy generalization consists in encoding in base k instead of 2, which would give an arena of size
O(k · n) and a collapse bound asymptotically in kn, i.e with an exponential bound in the number of states
but not in the stack alphabet.

To obtain an arena where the collapse bound is exponential in both parameters, we perform slight
modifications, as follows. In the latter arena, the numbers are encoded with n bits; we improve this by
encoding the numbers using k · n bits. The increment phase remains the same. The initialization phase is
not optimal; an ideal initialization phase would use O(n) states to push 0k·n on the stack, but this is not
possible, so we use a weaker initialization phase with n states that pushes:

(k − 1) . . . (k − 1)︸ ︷︷ ︸
n

· (k − 2) . . . (k − 2)︸ ︷︷ ︸
n

· . . . · 1 . . . 1︸ ︷︷ ︸
n

· 0 . . . 0︸ ︷︷ ︸
n

.

The modified gadget is represented in Figure 12.

Since the counter does not start from 0 but from the number encoded in the latter stack, this new arena
performs at bit less than kk·n increment phases, but more than half this number, so its collapse bound is
O(kk·n), exponential in both n and k, and not asymptotically less.
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F

q1 q2 . . . qn−1 qn

p0

pn−1 . . . p2 p1

rn−1 . . . r2 r1

sn−1 . . . s2 s1

push(0)

push(0) push(0)

pop(0)

push(1)

pop(1)

pop(1)

pop(1)

pop(0)pop(0)pop(0)

push(1)push(1)push(1)

push(0)

push(0)

Figure 11. A deterministic pushdown system with an exponential collapse bound.

q′0 q′1
. . . q′n−1 q′n to qn

⊥,push(0)
0, push(1)

...

(k − 2), push(k − 1)

0,push(0)
1,push(1)

...

(k − 1),push(k − 1)

0, . . . , k − 2

k − 1

Figure 12. The improved initialization gadget.
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The collapse bound for pushdown games For the following three examples, we denote by p1, p2, . . . the
sequence of prime numbers, and by qn the product of the first n prime numbers. We first start with the case
where the stack alphabet has size one, i.e the subclass of one-counter pushdown games. Example 9 shows
that in this case the bound is exponential in the number of states.

Example 9. Figure 13 presents a one-counter pushdown game, where for the condition UniBüchi(F,N), Eve
wins for N = qn but not for N − 1. Eve first pushes a sequence of a’s on the stack, then Adam chooses a
prime number up to pn and checks that the size of this sequence is divisible by this number. For this, Adam
goes to a loop of size pk, going deterministically through it while popping one a at a time. If the empty stack
is encountered in the beginning of the loop, then the size of the stack is divisible by pk, and the game starts
from scratch, visiting a Büchi state on the way.

Since Eve does not know in advance which prime number Adam is going to choose among p1, . . . , pn, she
has to push a non-empty sequence of size divisible by qn = Π1≤i≤npi. The size of the arena is O(

∑
1≤i≤n pi) =

O(n · pn), whereas the smallest bound Eve can secure is qn. An easy calculation shows that qn is exponential
in O(n · pn).

i

push(a)

1 0

a

pop(a)

pop(a)

pop(a)

1

0

2

pop(a) pop(a)

pop(a)

pop(a)

F to i

⊥

⊥

Figure 13. A one-counter pushdown game with an exponential bound.

We now consider a stack alphabet of size two, and combine the two ideas underlying Example 8 and
Example 9, that is:

– Eve needs to push a sequence of exponential size;

– this sequence, seen as a binary decomposition of the number 0, is incremented by one until it reaches
the sequence of 1’s, where the game empties the stack, starts from scratch and visits a Büchi state along
the way.

Example 10 implements this idea, showing that the collapse bound is at least doubly-exponential in the
number of states.

Example 10. Figure 14 presents a pushdown game, where Eve wins for the condition UniBüchi(F,N) for
N = O(2qn), but not for N = o(2qn). In the figure, “sh” stands for stack-height: we saw in Example 9 how
Adam can check that the size of the stack is a multiple of qn, product of the n first prime numbers, using only
O(n · pn) states. As in the previous example, Eve first pushes a sequence of 0’s on the stack, whose length
must be a multiple of qn, otherwise Adam wins by checking it. From s starts a binary increment similar to
the one presented in Example 8; however in this example, the number of bits allowed was linear in the size
of the arena, and we are now lifting this up to an exponential number of bits. So, we have to rely on the
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players’ interactions to ensure that the binary increment is correctly executed. The action performed in the
stack should be:

(s, 1k0u⊥)
∗

−→ (s, 0k1u⊥).

The first part is deterministic:
(s, 1k0u⊥)

∗
−→ (c, 1u⊥).

From c, Eve pushes some 0 on the stack. If she pushes less than k symbols, then Adam wins by checking, so
she has to push at least k. Note, however, that she could push k plus any multiple of qn, but she would only
do herself a disservice.

The arena has size O(n · pn), so N is doubly-exponential in the number of states.

i

sh 6≡ 0[q]

s c F to i

push(0)

0

pop(1)

pop(0) push(1)

push(0)

⊥

Figure 14. A pushdown game with a doubly exponential bound.

We now turn to a stack alphabet of size 2k + 1, and roughly “nest” Example 10.
Let Γ = {a1, b1, . . . , ak, bk} ∪ {♯}. The stack configurations we consider belong to the regular language:

L =
⋃

1≤i≤k

({ai, bi}
qn)

+ · ♯ · ({ai−1, bi−1}
qn)

+ · ♯ . . . ♯ · ({a1, b1}
qn)

+
.

Each block ({ai, bi}qn)
+

is seen as a number encoded in binary, where ai is 0 and bi is 1, which is initialized
to aqni and incremented by one step by step. However, the incrementation policy requires that to increment
in the ith block for i < k, one must increment in the (i + 1)th block. Hence two increment phases in the ith

block are separated by 2qn increment phases in the (i+1)th block, which implies that two increment phases
in the first block are separated by 2(k−1)·qn transitions. Hence the 2qn increment phases required in the first
block are executed within 2k·qn steps. Example 11 constructs such a game.

Example 11. We sketch the construction of a pushdown game, where Eve wins UniBüchi(F,N) for N =
O(2k·qn), but not for asymptotically less.

First, following an easy adaptation of Example 9 we construct a game where Eve wins if and only if the
stack content belongs to the language L. It has k components, each in charge of checking a block {ai, bi}qn .
Eve first chooses i, and then Adam chooses a prime number to check that the size of the block is a multiple
of the chosen prime number. Once a ♯ symbol is reached, it is popped and the run goes on with the (i− 1)th

component, until the stack is empty. The size of this game is O(k · n · pn).
As before, Eve first pushes a sequence of a1’s on the stack, whose length must be a multiple of qn,

otherwise Adam wins by checking it. If he sends the pebble to d, then Eve chooses an i and starts a binary
increment from vi, similar to the one presented in Example 10. There are some differences, which appear at
the end of an increment phase. If the block contained no ai’s, then the following case distinction occurs:

– If 1 < i ≤ k, then the symbol ♯ is popped from the stack, and another increment phase starts from vi−1.
– If i = 1, then the game starts from scratch after paying a visit to a Büchi state.

Otherwise, the first ai is turned into a bi, and then Eve pushes some ai’s before sending the pebble to a
state controlled by Adam. There, he can check that the stack content belongs to L, but he also has another
option, following the case distinction:
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– If 1 ≤ i < k, then Adam can send the pebble back to the initial state, pushing a ♯ symbol along the way.
– If i = k, then Adam can send the pebble to vk.

Whenever Adam sends the pebble back to the initial state after an increment phase of the ith block, Eve
has no choice but to push a sequence of ai+1’s on the stack, whose length must be a multiple of qn, otherwise
Adam wins since the stack content would not belong to L.

The arena obtained has size O(k · n · pn) +O(k) = O(k ·n · pn), so the bound required for Eve to win the
uniform Büchi condition is doubly-exponential in the number of states and exponential in the stack alphabet.

5 Pushdown games with finitary and stack boundedness conditions

In this section, we consider pushdown games with finitary parity along with stack boundedness conditions.
We prove that solving such games is EXPTIME-complete.

We describe the two ideas separately; the first is a reduction from finitary parity to bounded parity, and
the second a collapse result for finitary Büchi along with stack boundedness conditions. We then show how
to combine them to obtain a complete reduction, with an optimal complexity.

We denote by BndSt the stack boundedness condition, defined as

BndSt = {π | ∃N,
all configurations in π have
stack height less than N

} .

5.1 A reduction from finitary parity to bounded parity

The reduction relies on a restart gadget. We consider a pushdown game with finitary parity conditions, given
by the coloring function c : Q → [d], where we assume d to be odd. Between every edge of the game we add a
restart gadget, where Eve can choose either to follow the edge, or to “restart”: this entails that first a vertex
with priority 0 is visited, where Adam can stay as long as he wants by pushing on the stack a new symbol
♯, and then Eve takes over, staying in a vertex with priority d until all the ♯ symbols are popped away from
the stack, before following the original edge. The intuition is the following: whenever Eve chooses to restart,
visiting the vertex with priority 0 answers all previous requests, but this comes with the cost that Adam
will be able to let a request unanswered for a long time. Therefore, Eve can restart only finitely many times.
The gadget is represented in Figure 15.

p q

cq

0 d

push(♯) pop(♯)

Figure 15. The restart gadget.

Lemma 7. Eve wins the finitary parity game if and only if she wins in the reduced game with the bounded
parity condition.

Proof. We prove both implications.
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– Assume Eve wins the finitary parity game, and let σ be a winning strategy. We construct a strategy σR

in the reduced bounded parity game. It maintains a counter, initially set to 1, whose value is denoted by
B. The strategy σR plays consistently with σ. It restarts if there exists a request made before the last
B transitions that has not been serviced, and if so increments the counter by one. We argue that σR is
winning for the bounded parity condition. Consider πR a play consistent with σR: if it remains in the
restart gadget forever (Adam pushes ♯ forever), it is winning. Otherwise, if a restart occurs for a value
B of the counter, then there is a pending request not serviced within B transitions, which got serviced
through the restart. Let π be the corresponding play in the parity game, where we skip the restarts: π
is consistent with σ, so it satisfies the finitary parity condition. Now, it is clear that πR contains only
finitely many restarts, otherwise it would include requests that are not serviced within B transitions,
for arbitrary B, which contradicts the fact that π satisfies the finitary parity condition. It follows that
πR and π coincide from some point onwards, so πR satisfies the bounded parity condition, and σR is a
winning strategy in the reduced bounded parity game.

– Conversely, assume that Adam wins the finitary parity game, and let τ be a winning strategy. We
construct a strategy τR in the reduced bounded parity game. As for the case of Eve, it features a counter,
initialized to 1 and whose value is denoted by B. Outside the restart gadget, τR plays consistently with τ ,
and inside the restart gadget, τR pushes exactly B times the symbol ♯, and then increments the counter
by one. Consider πR a play consistent with τR, there are two cases: either it includes finitely many uses
of the restart gadgets, or infinitely many. In the first case, πR coincides from some point onwards with a
play π consistent with τ , so it spoils the bounded parity condition. In the second case, the request made
in the last vertex of the restart gadget remains unserviced for an unbounded time, so the bounded parity
condition is fooled as well. It follows that πR spoils the bounded parity condition, thus τR is a winning
strategy in the reduced bounded parity game.

5.2 The special case of Büchi conditions

In the study of finitary games over finite graphs [14], the following observation is made: finitary Büchi
coincide with Büchi, while finitary parity differs from parity as soon as three colors are involved. Over
pushdown arenas, even finitary Büchi differs from Büchi, as noted in Example 1. Yet when intersected with
the stack boundedness condition, the case of finitary Büchi specializes again and collapses to Büchi.

Lemma 8. For all pushdown games,

WE(FinBüchi(F ) ∩ BndSt) = WE(Büchi(F ) ∩ BndSt) .

The left-to-right inclusion is clear, since FinBüchi(F ) ⊂ Büchi(F ). The converse inclusion follows from
memoryless determinacy for the condition Büchi(F )∩BndSt [10]: assume σ is a memoryless strategy ensuring
Büchi(F ) ∩ BndSt, and let π be a play consistent with σ. First note that between two visits of the same
configuration, there must be a Büchi configuration, otherwise iterating this loop would be a play consistent
with σ yet losing. The second observation is that since the stack height remains smaller than a bound N , the
number of different configurations visited in π is finite and bounded by a function of N . The combination of
these two arguments imply that π satisfies FinBüchi(F ).

5.3 The complete reduction

We show how to use both ideas to handle pushdown games with finitary parity and stack boundedness
conditions. We present a three-step reduction, illustrated in Figure 16.

The first step is to adapt the reduction from finitary parity to bounded parity, now intersected with the
stack boundedness condition. To this end, we need to modify the stack boundedness condition so that it
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FinParity(c)
and

BndSt

BndParity(c)
and

BndSt(Q)

FinBüchi(F )
and

BndSt(Q)

Büchi(F )
and

BndSt(Q)

restart ×M collapse

Figure 16. Sequence of reductions

ignores the configurations in the restart gadget; we define its restriction to Q:

BndSt(Q) = {π | ∃N,
all configurations in π
with control state in Q

have stack height less than N
} .

Now the reduction is from finitary parity and stack boundedness to bounded parity and restricted stack
boundedness.

The second step is the reduction from bounded parity to finitary Büchi by composing with the memory
structure from Proposition 4, keeping track of the most urgent pending request. We are now left with a
pushdown game with the condition finitary Büchi and restricted stack boundedness.

The third step is the collapse of finitary Büchi to Büchi. Note that the collapse stated in Lemma 8 deals
with stack boundedness, not restricted to a subset Q. Indeed, the result does not hold in general for this
modified stack boundedness condition, but it does hold here due to the special form of the restart gadget,
that can be used only finitely many times.

Formally, we first need to extend the memoryless determinacy for the condition Büchi and restricted
stack boundedness.

Lemma 9. For all pushdown games with condition Büchi and restricted stack boundedness, Eve has a mem-
oryless winning strategy from her winning set.

Proof. The proof is a straightforward adaptation of Proposition 1 from [21].

Now, consider σ a memoryless strategy ensuring the condition Büchi and restricted stack boundedness in
the pushdown game obtained through the above reductions; we prove that σ ensures finitary Büchi. Let π be
a play consistent with σ, there are two cases: either the play remains forever in the restart gadget, or from
some point onwards the restart gadget is not used anymore. In the first case, the finitary Büchi condition is
clearly satisfied. In the other case, the play satisfies the general stack boundedness condition, and the same
reasoning as for Lemma 8 concludes that the finitary Büchi condition is satisfied.

This three-step reduction produces in linear time an equivalent pushdown game with the condition Büchi
and stack boundedness restricted to Q. It has been shown in [10,21] that deciding the winner in a pushdown
game with condition Büchi and stack boundedness is EXPTIME-complete; a slight modification of their
techniques extends this to the restricted definition of stack boundedness.

Theorem 6. Determining the winner in a pushdown game with finitary parity and stack boundedness con-
ditions is EXPTIME-complete.
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