Infinite-state games with finitary conditions

Krishnendu Chatterjee, Nathanaël Fijalkow

To cite this version:

Krishnendu Chatterjee, Nathanaël Fijalkow. Infinite-state games with finitary conditions. 2013. hal00773190v1

HAL Id: hal-00773190
 https://hal.science/hal-00773190v1

Preprint submitted on 11 Jan 2013 (v1), last revised 22 Apr 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Infinite-state games with finitary conditions

Krishnendu Chatterjee ${ }^{1}$ and Nathanaël Fijalkow ${ }^{2,3}$
${ }^{1}$ IST Austria, Klosterneuburg, Austria krishnendu.chatterjee@ist.ac.at
${ }^{2}$ LIAFA, CNRS \& Université Denis Diderot - Paris 7, France
nath@liafa.univ-paris-diderot.fr
${ }^{3}$ Institute of Informatics, University of Warsaw, Poland

Abstract

We study two-player zero-sum games over infinite-state graphs equipped with finitary conditions. Such conditions refine the classical ω-regular conditions: instead of requiring that good events occur infinitely often, they ensure the existence of a bound B such that in the limit good events occur within B steps. Our first contribution is to give (non-effective) characterizations of the winning regions for finitary games over countably infinite-state arenas. From these results we obtain the strategy complexity, i.e the memory required for winning strategies: we prove that memoryless strategies are sufficient for finitary Büchi, and finite memory suffices for finitary parity. We then study pushdown games with boundedness conditions, with two contributions. First we prove a collapse result for pushdown games with finitary conditions, implying the decidability of solving these games. Second we consider pushdown games with finitary parity along with stack boundedness conditions, and show that solving these games is EXPTIME-complete.

1 Introduction

Games on graphs. Two-player games played on graphs is a powerful mathematical framework to analyze several problems in computer science as well as mathematics. In particular, when the vertices of the graph represent the states of a reactive system and the edges represent the transitions, then the synthesis problem (Church's problem) asks for the construction of a winning strategy in a game played on the graph $[12,29]$. Game-theoretic formulations have also proved useful for the verification, refinement, and compatibility checking of reactive systems [5]; and has deep connection with automata theory and logic, e.g the celebrated decidability result of monadic second-order logic over infinite trees due to Rabin [31].
Omega-regular conditions: strengths and weaknesses. In the literature, two-player games on finitestate graphs with ω-regular conditions have been extensively studied [19,20,22,23,36]. The class of ω-regular languages provides a robust specification language for solving control and verification problems (see, e.g, [30]). Every ω-regular condition can be decomposed into a safety part and a liveness part [3]. The safety part ensures that the component will not do anything "bad" (such as violate an invariant) within any finite number of transitions. The liveness part ensures that the component will do something "good" (such as proceed, or respond, or terminate) in the long-run. Liveness can be violated only in the limit, by infinite sequences of transitions, as no bound is stipulated on when the "good" thing must happen. This infinitary, classical formulation of liveness has both strengths and weaknesses. A main strength is robustness, in particular, independence from the chosen granularity of transitions. Another important strength is simplicity, allowing liveness to serve as an abstraction for complicated safety conditions. For example, a component may always respond in a number of transitions that depends, in some complicated manner, on the exact size of the stimulus. Yet for correctness, we may be interested only that the component will respond "eventually". However, these strengths also point to a weakness of the classical definition of liveness: it can be satisfied by components that in practice are quite unsatisfactory because no bound can be put on their response time.
Stronger notion of liveness: finitary conditions. For the weakness of the infinitary formulation of liveness, alternative and stronger formulations of liveness have been proposed. One of these is finitary liveness [4]: it is satisfied if there exists a bound B such that every stimulus is followed by a response within
B transitions. Note that it does not insist on a response within a known bound B (i.e, every stimulus is followed by a response within B transitions), but on response within some unknown bound, which can be arbitrarily large; in other words, the response time must not grow forever from one stimulus to the next. In this way, finitary liveness still maintains the robustness (independence of step granularity) and simplicity (abstraction of complicated safety) of traditional liveness, while removing unsatisfactory implementations.

All ω-regular languages can be defined by a deterministic parity automaton; the parity condition assigns to each state an integer representing a priority, and requires that in the limit, every odd priority is followed by a lower even priority. Its finitary counterpart, the finitary parity condition, requires that there is a bound B such that in the limit every odd priority is followed by a lower even priority within B transitions.

Games with finitary conditions. Games over finite graphs with finitary conditions have been studied in [14], leading to very efficient algorithms. In this paper, we study games over infinite graphs with finitary conditions, and then focus on the widely studied class of pushdown games, which model sequential programs with recursion. This line of work belongs to the long and rich tradition of infinite-state systems and games, (see e.g $[1,11]$). Pushdown games with the classical reachability and parity conditions have been studied in $[6,35]$. It has been established in [35] that the problem of deciding the winner in pushdown parity games is EXPTIME-complete. However, little is known about pushdown games with boundedness conditions; one notable exception is parity and stack boundedness conditions [10,21]. The stack boundedness condition naturally arises with the synthesis problem in mind, since bounding the stack amounts to control the depth of recursion calls of the sequential program.
Bounds in ω-regularity. The finitary conditions are closely related to the line of work initiated by Bojańczyk in [8], where the MSO $+\mathbb{B}$ logic was defined, generalizing MSO over infinite words by adding a bounding quantifier \mathbb{B}. The satisfiability problem for this logic over infinite words, and more generally over infinite trees are major open questions in logic; a positive answer for the second would imply the decidability of the Mostowski hierarchy, a long-standing open problem [17]. A fragment of MSO $+\mathbb{B}$ over infinite words defined by ωB-expressions was shown to be decidable in [9], by introducing the model of ωB-automata, which manipulate counters. They perform three kind of actions on counters: increment (i), reset (r) or nothing (ε). It follows from [13] that automata with finitary conditions exactly correspond to ωB-automata without the third action ε.
Regular cost-functions. A different perspective for bounds in ω-regular conditions was developed in [15] with functions instead of languages, giving rise to the notion of regular cost-functions and cost logic. The decidability of cost logic over finite trees was established in [18], and its extension over infinite trees is another related major open question. A subclass of cost logic called temporal cost logic was introduced in [16] and is the counterpart of finitary conditions for regular cost-functions, also reminiscent of desert automata [24].

While the decidability of $\mathrm{MSO}+\mathbb{B}$ over infinite trees is the grand major open question, decidability for finitely representable infinite-state games, such as pushdown games, will already be a significant achievement. This paper is a step towards this goal.

Our contributions. In this work we consider infinite-state games with finitary conditions. We study two questions: the memory requirements of winning strategies in general countably infinite-state games, and the decidability of determining the winner in a pushdown game.
Strategy complexity. We give (non-effective) characterizations of the winning regions for finitary games over countably infinite graphs, implying a complete picture of the strategy complexity. Most importantly, we show that for finitary Büchi conditions Eve has a memoryless winning strategy, and that for finitary parity conditions, memory of size $d / 2+1$ suffices, where d is the number of priorities of the parity condition.
Pushdown games. We present two contributions.
First we establish a collapse result, reducing finitary conditions to uniform conditions, which allows to apply a recent result from [7] and obtain the decidability of determining the winner in such games. The bottom line is the decidability of the membership problem for two-way alternating finitary automata over regular trees. More importantly, this implies the decidability of pushdown games with ωB-conditions, a step towards the grand open question.

Second we consider pushdown games with finitary parity along with stack boundedness conditions, and establish that solving these games is EXPTIME-complete.

Technical contributions. Most of the proof techniques for finitary games over finite graphs rely on inductions on the vertex set [14], hence do not apply to infinite graphs. Moreover, several crucial properties that hold over finite graphs are no longer true over infinite graphs (see Examples 1,3,4).

To obtain the results on the strategy complexity, we give (non-effective) characterizations of the winning regions. These characterizations are phrased in terms of fixpoints and countable unions, and obtained through five steps. To this end, we introduce two variants of finitary conditions, the uniform counterparts, where the bound on the number of steps is explicit and the bounded counterparts, where the bound must be enforced from the start of the play.

For pushdown games, we show a collapse result, which roughly speaking states the equivalence between the following quantifications: "for every play, there exists a bound" and "there exists a bound such that for every play". This is obtained by a fine analysis of the regularity of the winning regions for uniform conditions.

To solve pushdown games with finitary parity along with stack boundedness conditions, we combine two ideas, obtaining an equivalent pushdown game with Büchi (instead of finitary parity) and restricted stack boundedness conditions. The first idea is a reduction from finitary to bounded conditions by introducing a restart gadget, allowing to restart the game from scratch finitely often. The second idea is a collapse for finitary Büchi along with stack boundedness conditions to its infinitary counterpart, generalizing the case of finite arenas; roughly speaking, we show that for finitary Büchi, if the stack is bounded along a play, then the pushdown arena behaves as a finite arena.

2 Definitions

Arenas and games. The games we consider are played on an arena $\mathcal{A}=\left(V,\left(V_{E}, V_{A}\right), E\right)$, which consists of a (potentially infinite but countable) graph (V, E) and a partition $\left(V_{E}, V_{A}\right)$ of the vertex set V. A vertex is controlled by Eve and depicted by a circle if it belongs to V_{E} and controlled by Adam and depicted by a square if it belongs to V_{A}. Playing consists in moving a pebble along the edges: initially placed on a vertex v_{0}, the pebble is sent along an edge chosen by the player who controls the vertex. From this infinite interaction results a play π, which is an infinite sequence of vertices v_{0}, v_{1}, \ldots where for all i, we have $\left(v_{i}, v_{i+1}\right) \in E$, i.e π is an infinite path in the graph. We denote by Π the set of all plays, and define conditions for a player by sets of winning plays $\Omega \subseteq \Pi$. The games are zero-sum, which means that if Eve's condition is Ω, then Adam's condition is $\Pi \backslash \Omega$, usually denoted by " $\mathrm{Co} \Omega$ " (the conditions are opposite). Formally, a game is given by a couple $\mathcal{G}=(\mathcal{A}, \Omega)$ where \mathcal{A} is an arena and Ω a condition.

Strategies. A strategy for a player is a function that prescribes, given a finite history of the play, the next move. Formally, a strategy for Eve is a function $\sigma: V^{*} \cdot V_{E} \rightarrow V$ such that for a finite history $w \in V^{*}$ and a current vertex $v \in V_{E}$, the prescribed move is legal, i.e along an edge: $(v, \sigma(w \cdot v)) \in E$. Strategies for Adam are defined similarly, and usually denoted by τ. Once a game $\mathcal{G}=(\mathcal{A}, \Omega)$, a starting vertex v_{0} and strategies σ for Eve and τ for Adam are fixed, there is a unique play denoted by $\pi\left(v_{0}, \sigma, \tau\right)$, which is said to be winning for Eve if it belongs to Ω. The sentence "Eve wins from v_{0} " means that she has a winning strategy from v_{0}, that is a strategy σ such that for all strategies τ for Adam, the play $\pi\left(v_{0}, \sigma, \tau\right)$ is winning. We denote by $\mathcal{W}_{E}(\mathcal{G})$ the set of vertices from where Eve wins, also referred as winning set, or winning region, and analogously $\mathcal{W}_{A}(\mathcal{G})$ for Adam. A very important theorem in game theory, due to Martin [28], states that Borel games (that is, where the condition is Borel) are determined, i.e we have $\mathcal{W}_{E}(\mathcal{G}) \cup \mathcal{W}_{A}(\mathcal{G})=V$: from any vertex, exactly of the two players has a winning strategy. Throughout this paper, we only consider special cases of Borel conditions, hence our games are determined.

Memory structure. We define memory structures and strategies relying on memory structures. A memory structure $\mathcal{M}=\left(M, m_{0}, \mu\right)$ for an arena \mathcal{A} consists of a set M of memory states, an initial memory state $m_{0} \in$ M, and an update function $\mu: M \times E \rightarrow M$. A memory structure is similar to an automaton synchronized with the arena: it starts from m_{0} and reads the sequence of edges produced by the arena. Whenever an edge
is taken, the current memory state is updated using the update function μ. A strategy relying on a memory structure \mathcal{M}, whenever it picks the next move, considers only the current vertex and the current memory state: it is thus given by a next-move function $\nu: V_{E} \times M \rightarrow V$. Formally, given a memory structure \mathcal{M} and a next-move function ν, we can define a strategy σ for Eve by $\sigma(w \cdot v)=\nu\left(v, \mu^{*}(w \cdot v)\right)$. (The update function can be extended to a function $\mu^{*}: V^{+} \rightarrow M$ by defining $\mu^{*}(v)=m_{0}$ and $\mu^{*}(w \cdot u \cdot v)=\mu\left(\mu^{*}(w \cdot u),(u, v)\right)$.) A strategy with memory structure \mathcal{M} has finite memory if M is a finite set. It is memoryless, or positional if M is a singleton: in this case, the choice for the next move only depends on the current vertex. Note that a memoryless strategy can be described as a function $\sigma: V_{E} \rightarrow V$.

We can make the synchronized product explicit: an arena \mathcal{A} and a memory structure \mathcal{M} for \mathcal{A} induce the expanded arena $\mathcal{A} \times \mathcal{M}=\left(V \times M,\left(V_{E} \times M, V_{A} \times M\right), E \times \mu\right)$ where $E \times \mu$ is defined by $\left((v, m),\left(v^{\prime}, m^{\prime}\right)\right) \in E \times \mu$ if $\left(v, v^{\prime}\right) \in E$ and $\mu\left(m,\left(v, v^{\prime}\right)\right)=m^{\prime}$. There is a natural one-to-one mapping between plays in \mathcal{A} and in $\mathcal{A} \times \mathcal{M}$, and also from memoryless strategies in $\mathcal{A} \times \mathcal{M}$ to strategies in \mathcal{A} using \mathcal{M} as memory structure. It follows that if a player has a memoryless winning strategy for the arena $\mathcal{A} \times \mathcal{M}$, then he has a winning strategy using \mathcal{M} as memory structure for the arena \mathcal{A}. This key property will be used throughout the paper.
Omega-regular conditions. We define the Büchi and parity conditions. We equip an arena \mathcal{A} with a coloring function $c: V \rightarrow[d]$ where $[d]=\{0, \ldots, d\}$ is the set of colors or priorities. For a play π, let $\operatorname{Inf}(\pi) \subseteq[d]$ be the set of colors that appear infinitely often in π. The class of parity conditions is defined as follows:

$$
\operatorname{Parity}(c)=\{\pi \mid \min (\operatorname{Inf}(\pi)) \text { is even }\} ;
$$

i.e, the parity condition requires that the lowest color visited infinitely often is even. Here, the color set [d] is interpreted as a set of priorities, even priorities being "good" and odd priorities "bad", and lower priorities preferable to higher ones. The parity conditions are self-dual, meaning that the completement of a parity condition is another parity condition: $\operatorname{CoParity}(c)=\Pi \backslash \operatorname{Parity}(c)=\operatorname{Parity}(c+1)$.

As a special case, the class of Büchi conditions are defined using the color set $[1]=\{0,1\}$. Setting F as $c^{-1}(0) \subseteq V:$

$$
\operatorname{Büchi}(F)=\{\pi \mid 0 \in \operatorname{Inf}(\pi)\} ;
$$

i.e, the Büchi condition $\operatorname{Büchi}(F)$ requires that infinitely many times vertices in F are reached. We usually call F the Büchi set and say that a vertex is Büchi if it belongs to F. The dual is CoBüchi (F) condition, which requires that finitely many times vertices in F are reached.
Finitary conditions. Finitary conditions add bounds requirements over omega-regular conditions [4]. Given a coloring function $c: V \rightarrow[d]$ and a position k, we define:

$$
\operatorname{dist}_{k}(\pi, c)=\inf _{k^{\prime} \geq k}\left\{\begin{array}{cc}
k^{\prime}-k \mid & c\left(\pi_{k^{\prime}}\right) \text { is even, and } \\
c\left(\pi_{k^{\prime}}\right) \leq c\left(\pi_{k}\right)
\end{array}\right\} ;
$$

i.e $\operatorname{dist}_{k}(\pi, c)$ is the "waiting time" by means of number of steps from the $k^{\text {th }}$ vertex to a preferable priority (that is, even and lower). The finitary parity winning condition FinParity (c) was defined as follows in [14]:

$$
\operatorname{FinParity}(c)=\left\{\pi \mid \limsup _{k} \operatorname{dist}_{k}(\pi, c)<\infty\right\}
$$

i.e, the finitary parity condition requires that the supremum limit of the distance sequence is bounded.

In the special case where $C=\{0,1\}$, this defines the finitary Büchi condition: setting $F=c^{-1}(0)$, we denote $\operatorname{dist}_{k}(\pi, F)=\inf \left\{k^{\prime}-k \mid k^{\prime} \geq k, \pi_{k^{\prime}} \in F\right\}$, i.e $\operatorname{dist}_{k}(\pi, F)$ is the number of transitions followed from the $k^{\text {th }}$ vertex before reaching the next vertex in F. (Note that this is consistent with the previous notation $\left.\operatorname{dist}_{k}(\pi, c).\right)$ Then:

$$
\operatorname{FinBüchi}(F)=\left\{\pi \mid \limsup _{k} \operatorname{dist}_{k}(\pi, F)<\infty\right\} .
$$

Example 1. We conclude this section by an example witnessing the difference between playing a Büchi condition and a finitary Büchi condition over an infinite arena. This is in contrast to the case of finite arenas, where winning for Büchi and finitary Büchi conditions are equivalent. The Figure 1 presents an
infinite arena where only Adam has moves; he loses for the condition CoBüchi (F) but wins for the condition CoFinBüchi (F). We give two representations: on the left, as a pushdown game (defined in Section 4), and on the right, explicitly as an infinite-state game.

Figure 1. Adam loses for $\operatorname{CoBüchi}(F)$ but wins for $\operatorname{CoFinBüchi~}(F)$.

A play consists in rounds, each starting whenever the pebble hits the leftmost vertex. Along a round, Adam follows the top path, remaining in Büchi vertices; he may decide at any point to follow an edge down, following the bottom Büchi-free path before geting back to the leftmost vertex.

Whatever Adam does, infinitely many Büchi vertices will be visited, so Adam loses for the condition CoBüchi (F). However, by going further and further to the right, Adam ensures longer and longer paths without Büchi vertices, hence wins for the condition CoFinBüchi (F).

3 Strategy complexity for finitary conditions over infinite-state games

In this section we give characterizations of the winning regions for finitary conditions over infinite arenas, and use them to establish the strategy complexity for both players. We show that memoryless strategies are sufficient for finitary Büchi, and that finite-memory strategies of size d (the number of colors) suffice for finitary parity, whereas the opponent requires infinite memory. To this end, we take five steps, summarized in Figure 2, which involve two variants of finitary conditions: uniform and bounded.

Figure 2. Results implications

Uniform conditions. The bound $B \in \mathbb{N}$ is made explicit; for instance the uniform Büchi condition is:

$$
\operatorname{UniBüchi}(F, B)=\left\{\pi \mid \limsup _{k} \operatorname{dist}_{k}(\pi, F) \leq B\right\} .
$$

Bounded conditions. The requirement is not in the limit, but from the start of the play, i.e the distance function is bounded rather than eventually bounded; for instance the bounded parity condition is:

$$
\operatorname{BndParity}(c)=\left\{\pi \mid \sup _{k} \operatorname{dist}_{k}(\pi, c)<\infty\right\} .
$$

The two variants can be combined, for instance the bounded uniform Büchi condition is:

$$
\text { BndUniBüchi }(F, B)=\left\{\pi \mid \sup _{k} \operatorname{dist}_{k}(\pi, F) \leq B\right\} .
$$

Let us point out that in the special case of Büchi conditions, we have $\operatorname{BndBüchi}(F)=\operatorname{FinBüchi}(F)$, hence we can refer to these conditions either as bounded Büchi or as finitary Büchi.

Attractors. Given $F \subseteq V$, define $\operatorname{Pre}(F)$ as the union of $\left\{u \in V_{E} \mid \exists(u, v) \in E, v \in F\right\}$ and $\left\{u \in V_{A} \mid\right.$ $\forall(u, v) \in E, v \in F\}$. The attractor sequence is the step-by-step computation of the least fixpoint of the monotone function $X \mapsto F \cup \operatorname{Pre}(X)$:

$$
\left\{\begin{array}{l}
\operatorname{Attr}_{0}^{\mathrm{E}}(F)=F \\
\operatorname{Attr}_{k+1}^{\mathrm{E}}(F)=F \cup \operatorname{Pre}\left(\operatorname{Attr}_{k}^{\mathrm{E}}(F)\right)
\end{array}\right.
$$

The sequence $\left(\operatorname{Attr}_{k}^{\mathrm{E}}(F)\right)_{k}$ is increasing with respect to set inclusion, so it has a limit, denoted $\operatorname{Attr}^{\mathrm{E}}(F)$, the attractor to F. An attractor strategy to $F \subseteq V$ for Eve is a memoryless strategy that ensures from $\operatorname{Attr}^{\mathrm{E}}(F)$ to reach F within a finite number of steps. Specifically, an attractor strategy to F from $\operatorname{Attr}_{B}^{\mathrm{E}}(F)$ ensures to reach F within the next B steps.

3.1 Constructing memoryless strategies.

We start with two general techniques to construct memoryless strategies. Both techniques are about composing several memoryless strategies into one. The first lemma deals with union, and states that winning positionally for each condition Ω_{n} implies to win positionally for $\cup_{n \in \mathbb{N}} \Omega_{n}$:

Lemma 1 (Union and memoryless strategies [21]). Let $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ be a family of Borel conditions, and assume $\cup_{n \in \mathbb{N}} \Omega_{n}$ is prefix-independent. If for all $n \in \mathbb{N}$, Eve wins positionally for the condition Ω_{n} from V_{n}, then she wins positionally for the condition $\cup_{n \in \mathbb{N}} \Omega_{n}$ from $\cup_{n \in \mathbb{N}} V_{n}$.

Proof. We denote by Ω the condition $\cup_{n \in \mathbb{N}} \Omega_{n}$.
For all $n \in \mathbb{N}$, let σ_{n} be a memoryless strategy winning from V_{n} for the condition Ω_{n}. We construct σ memoryless strategy on $\cup_{n \in \mathbb{N}} V_{n}$: for $v \in \cup_{n \in \mathbb{N}} V_{n}$, we define $\sigma(v)=\sigma_{k}(v)$ where k is the smallest integer such that $v \in V_{k}$. A play π consistent with σ will ultimately be consistent with some σ_{k} : so $\pi=v_{0}, \ldots, v_{n} \cdot \pi^{\prime}$ where $\pi^{\prime} \in \Omega_{k}$. It follows that $\pi^{\prime} \in \Omega$, and since Ω is prefix-independent, $\pi \in \Omega$. Thus Eve wins for the condition Ω_{k}, hence σ is a memoryless winning strategy from $\cup_{n \in \mathbb{N}} V_{n}$ for the condition Ω.

The second lemma, introduced and proved in a more general framework in [25], is about fixpoint.
Lemma 2 (Fixpoint and memoryless strategies [25]). Let Ω be a Borel prefix-independent condition, and Ω^{\prime} a condition. If the following properties hold for all games:

1. $\mathcal{W}_{E}\left(\Omega^{\prime}\right) \subseteq \mathcal{W}_{E}(\Omega)$,
2. if $\mathcal{W}_{E}\left(\Omega^{\prime}\right)$ is empty then $\mathcal{W}_{E}(\Omega)$ is empty.
then for all games with condition Ω, there exists a memoryless winning strategy for Eve from her winning set.

3.2 Strategy complexity for bounded uniform Büchi games

Our first step is the study of bounded uniform Büchi games. In this subsection, we obtain the following results:

Proposition 1 (Strategy complexity for bounded uniform Büchi games). For all bounded uniform Büchi games with bound B, the following assertions hold:

1. There exists a memoryless winning strategy for Eve from her winning set.
2. There exists a winning strategy for Adam with B memory states from his winning set.
3. In general, winning strategies for Adam require at least $B-1$ memory states, even over finite arenas, for $B \geq 3$.

We start by showing that Eve's winning set can be described using a greatest fixpoint, which allows to define a winning memoryless strategy. We define the following sequence $\left(Z_{k}\right)_{k}$ of subsets of V :

$$
\left\{\begin{array}{l}
Z_{0}=V \\
Z_{k+1}=\operatorname{Attr}_{B}^{\mathrm{E}}\left(F \cap \operatorname{Pre}\left(Z_{k}\right)\right)
\end{array}\right.
$$

This sequence is decreasing with respect to set inclusion, so it has a limit denoted by Z^{1}, equivalently defined as the greatest fixpoint of the monotone function $X \mapsto \operatorname{Attr}_{B}^{\mathrm{E}}(F \cap \operatorname{Pre}(X))$.

Lemma 3.

$$
Z=\mathcal{W}_{E}(\operatorname{BndUniBüchi}(F, B)) .
$$

Proof. We prove both inclusions.

- We first show that $Z \subseteq \mathcal{W}_{E}(\operatorname{BndUniBüchi}(F, B))$. Let σ^{B} be a memoryless strategy that ensures from $\operatorname{Attr}_{B}^{\mathrm{E}}(F \cap \operatorname{Pre}(Z))$ to reach $F \cap \operatorname{Pre}(Z)$ within B transitions. We define a strategy σ on Z by:

$$
\sigma(v)= \begin{cases}\sigma^{B}(v) & \text { if } v \in \operatorname{Attr}_{B}^{\mathrm{E}}(F \cap \operatorname{Pre}(Z)) \backslash F \cap \operatorname{Pre}(Z) \\ v^{\prime} \in Z & \text { if } v \in F \cap \operatorname{Pre}(Z)\end{cases}
$$

Consider $\pi=v_{0} v_{1} \ldots$ a play starting from $v_{0} \in Z$ consistent with σ. By definition of σ^{B} it will reach $F \cap \operatorname{Pre}(Z)$ within B transitions, say at vertex $v_{k_{0}}$ for $0 \leq k_{0} \leq B$. Furthermore the play $v_{k_{0}+1} \ldots$ is consistent with σ and starts from $v_{k_{0}+1} \in Z$, so repeating this reasoning by induction, we show that π visits F infinitely often, and that the distance to the next Büchi vertex remains smaller than B. Thus σ is a memoryless winning strategy for BndUniBüchi (F) from Z.

- We now show that $V \backslash Z \subseteq \mathcal{W}_{A}$ (BndUniBüchi (F, B)). Consider a vertex v not in Z, we define its rank to be the smallest k such that v does not belong to Z_{k}; note that the rank cannot be 0 . A vertex of rang $k+1$ belongs to Z_{k} but not to Z_{k+1}. For each k we define a strategy τ_{k} :
- For $k \neq 0$, the strategy τ_{k} ensures that from $V \backslash \operatorname{Attr}_{B}^{\mathrm{E}}\left(F \cap \operatorname{Pre}\left(Z_{k}\right)\right)$, if a Büchi vertex v is reached within B transitions, then it does not belong to $\operatorname{Pre}\left(Z_{k}\right)$. Moreover, either v belongs to Eve and any successor will be in $V \backslash Z_{k}$, or it belongs to Adam and the strategy τ_{k} chooses a successor in $V \backslash Z_{k}$.
- For $k=0$, the strategy τ_{0} ensures that from $V \backslash \operatorname{Attr}_{B}^{\mathrm{E}}(F)$, no Büchi vertex is reached within B transitions.
We now define a strategy τ from Z : from a vertex of rank $k+1$, play consistently with τ_{k}. If a Büchi vertex v is reached within B transitions, then by definition of τ_{k} the successor v^{\prime} of v will be in $V \backslash Z_{k}$, i.e has a lower rank. From this vertex v^{\prime}, restart from scratch, i.e play consistently with $\tau_{k^{\prime}}$ if v^{\prime} has rank $k^{\prime}+1<k+1$ until the next visit to a Büchi vertex, and so on.
We argue that τ is a winning strategy from $V \backslash Z$. Indeed, consider a play $\pi=v_{0} v_{1} \ldots$ from $V \backslash Z$ consistent with τ. If v_{0} has rank $k+1$, then either within B transitions no Büchi vertices are visited (hence Adam wins) or its successor has a lower rank, and the play starting from this successor is consistent with τ. Since there is no infinite decreasing sequence of integers, the play π cannot satisfy the bounded uniform Büchi condition. Hence τ is a winning strategy from $V \backslash Z$.

So far, we proved that in bounded uniform Büchi games, Eve has a memoryless winning strategy from her winning set.

[^0]It is not clear from this characterization how to implement a winning finite-memory strategy for Adam. To prove the finite-memory determinacy for Adam, we rely on a reduction to safety games, that we present now. Define the memory structure $\mathcal{M}=(\{0, \ldots, B\}, 0, \mu)$ as:

$$
\mu\left(i,\left(v, v^{\prime}\right)\right)= \begin{cases}0 & \text { if } v \in F \text { or } v^{\prime} \in F \\ i+1 & \text { if } i<B \text { and } v, v^{\prime} \notin F \\ B & \text { otherwise }\end{cases}
$$

Intuitively, the memory structure counts the number of steps since the last visit to a Büchi vertex. Then $(\mathcal{G}, \operatorname{BndUniBüchi}(F, B))$ is equivalent to $(\mathcal{G} \times \mathcal{M}, \operatorname{Safety}(V \times\{0, \ldots, B-1\}))$. Since Adam has a memoryless winning strategy for any safety condition from his winning set, we deduce a strategy using \mathcal{M} as memory structure winning from his winning set in \mathcal{G}. Moreover, a winning strategy using \mathcal{M} does not make use of the additional memory state B, hence it actually uses B memory states, and not $B+1$.

Note that the memoryless result for Eve cannot be obtained from this reduction. The following example shows that the upper bound given above is (almost) tight.

Example 2. Figure 3 presents an arena where Adam wins for the condition CoBndUniBüchi $(F, B+1)$ using B memory states and loses with less. Here $B \geq 2$. A play consists in repeating infinitely often the following

Figure 3. An arena where Adam needs B memory states to win
two steps: first, from c Adam chooses an i from $\{1, \ldots, B\}$, then from $v_{\neq i}$ Eve chooses a j different from i, and follows a path of length B where only the $j^{\text {th }}$ vertex belongs to F. Adam wins using B memory states by playing the last choice of Eve: this way, either Eve chooses a j larger than i so no Büchi vertices will be visited within $B+2$ transitions, or she chooses a j smaller than i. The last case cannot occur infinitely often, so the uniform Büchi condition is violated. If Adam uses less than B memory states, then there exists an i that he will never choose: Eve wins BndUniBüchi $(F, B+1)$ by choosing i every time.

3.3 Strategy complexity for uniform Büchi games

Our second step is about uniform Büchi games. In this subsection, we obtain the following results:
Proposition 2 (Strategy complexity for uniform Büchi games). For all uniform Büchi games with bound B, the following assertions hold:

1. There exists a memoryless winning strategy for Eve from her winning set.
2. There exists a winning strategy for Adam with $B+1$ memory states from his winning set.
3. In general, winning strategies for Adam require at least $B-1$ memory states, even over finite arenas, for $B \geq 2$.

The bounded uniform Büchi conditions are the prefix-dependent counterpart of the uniform Büchi conditions:

$$
\operatorname{UniBüchi}(F, B)=V^{*} \cdot \operatorname{BndUniBüchi}(F, B) .
$$

However, this equality does not imply the equality between $\mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))$ and the attractor of \mathcal{W}_{E} (BndUniBüchi (F, B)). One inclusion holds:

$$
\operatorname{Attr}^{\mathrm{E}}\left(\mathcal{W}_{E}(\operatorname{BndUniBüchi}(F, B))\right) \subseteq \mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))
$$

but the other fails, as shown in Figure 4.

Figure 4. $\operatorname{Attr}^{\mathrm{E}}\left(\mathcal{W}_{E}(\operatorname{BndUniBüchi}(F, 0))\right) \subsetneq \mathcal{W}_{E}(\operatorname{UniBüchi}(F, 0))$

This shows that one iteration of the bounded uniform Büchi winning set does not give the whole uniform Büchi winning set. However, the following properties hold:

1. $\mathcal{W}_{E}(\operatorname{BndUniBüchi}(F, B)) \subseteq \mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))$,
2. if $\mathcal{W}_{E}(\operatorname{BndUniBüchi}(F, B))$ is empty then $\mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))$ is empty.

We prove the second item. Assume that $\mathcal{W}_{E}(\operatorname{BndUniBüchi}(F, B))=\emptyset$, then $\mathcal{W}_{A}(\operatorname{BndUniBüchi}(F, B))=V$: from everywhere Adam can fool the bound B once. It is then easy to see that he can fool the bound B infinitely often, i.e that $\mathcal{W}_{A}(\operatorname{UniBüchi}(F, B))=V$, which implies $\mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))=\emptyset$. Thanks to Lemma 2 and Proposition 1, Eve has a memoryless strategy from her winning set.

The proof of the results for Adam follows the same lines as above. We first lift up the reduction, which is now from uniform Büchi games to CoBüchi games. The memory structure is the same as above, and now $(\mathcal{G}, \operatorname{UniBüchi}(F, B))$ is equivalent to $(\mathcal{G} \times \mathcal{M}, \operatorname{CoBüchi}(V \times\{0, \ldots, B-1\}))$. Since Adam has a memoryless winning strategy in any Büchi game from his winning set, we deduce a strategy using \mathcal{M} as memory structure winning from his winning set in \mathcal{G}. Notice that this gives an upper bound of $B+1$ memory states, whereas in the case of bounded uniform Büchi games, we had an upper bound of B memory states.

We now discuss the lower bound: we can easily see that the statements about the game presented in Example 2 hold true for bounded uniform Büchi conditions as well as for uniform Büchi conditions, hence the same lower bound of $B-1$ applies.

3.4 Strategy complexity for finitary Büchi games

Our third step is about finitary Büchi games. In this subsection, we obtain the following results:
Proposition 3 (Strategy complexity for finitary Büchi games). For all finitary Büchi games, the following assertions hold:

1. There exists a memoryless winning strategy for Eve from her winning set.
2. In general winning strategies for Adam require infinite memory, even for pushdown arenas.

We show how to obtain the winning region for finitary Büchi from the winning regions for uniform Büchi. Denote by U the set of vertices $\operatorname{Attr}^{\mathrm{E}}\left(\bigcup_{B} \mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))\right)$.

We first show how to obtain a memoryless strategy that wins for the condition FinBüchi (F) from U. We know from Proposition 2 that Eve wins for the condition $\operatorname{UniBüchi}(F, B)$ using a memoryless strategy from
$\mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))$. Now thanks to Lemma 1 we deduce that Eve wins for the condition $\bigcup_{B} \operatorname{UniBüchi}(F, B)$ (that is, FinBüchi (F)) from $\bigcup_{B} \mathcal{W}_{E}$ (UniBüchi (F, B)) using a memoryless strategy, and from its attractor by coupling this with an attractor strategy.

Intuitively, U is the set of vertices where Eve has a strategy to attract in a region won for some uniform Büchi condition. That is, from some point onwards, Eve can announce a bound B and claim "I will win for the condition UniBüchi (F, B) ". However, it may be that even if Eve wins, she is never able to announce a bound: such a situation happens in Example 3.

Example 3. Figure 5 presents an infinite one-player arena, where Eve wins yet is not able to announce a bound. A loop labeled n denotes a loop of length n, where a Büchi vertex is visited every n steps. In this game, as long as Adam decides to remain in the top path, Eve cannot claim that she will win for some uniform Büchi condition.

Figure 5. An infinite arena where Eve cannot predict the bound.

It follows from this example that in general, the inclusion is strict. However, the following properties hold:

1. $U \subseteq \mathcal{W}_{E}(\operatorname{FinBüchi}(F))$,
2. if U is empty then $\mathcal{W}_{E}(\operatorname{FinBüchi}(F))$ is empty.

We prove the second item. Assume the premise, then for all B, the winning set $\mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))$ is empty, so Adam wins for the condition CoUniBüchi (F, B) from everywhere: let τ_{B} be a winning strategy for Adam. From any vertex, the strategy τ_{B} ensures that at some point, there will be a sequence of B consecutive non-Büchi vertices. Playing in turns τ_{1} until such a sequence occurs, then τ_{2}, and so on, ensures to spoil the condition FinBüchi (F). Hence Adam wins everywhere for the condition $\operatorname{CoFinBüchi}(F)$, which implies $\mathcal{W}_{E}(\operatorname{FinBüchi}(F))=\emptyset$.

Thus the winning region for finitary Büchi is obtained as the least fixpoint of the operator U, implying the memoryless determinacy for finitary Büchi, relying on Lemma 2.

An arena where Adam needs infinite memory to win in a finitary Büchi game was already presented and discussed in Figure 1.

We summarize in the following theorem the winning sets characterizations obtained for the three variants of Büchi conditions, using mu-calculus formulae with infinite disjunction.

Theorem 1 (Characterizations of the winning set).

$$
\begin{gathered}
\mathcal{W}_{E}(\operatorname{BndUniBüchi}(F, B))=\nu Z \cdot \operatorname{Attr}_{B}^{\mathrm{E}}(F \cap \operatorname{Pre}(Z)) \\
\mathcal{W}_{E}(\operatorname{UniBüchi}(F, B))=\mu Y \cdot \nu Z \cdot \operatorname{Attr}_{B}^{\mathrm{E}}((F \cup Y) \cap \operatorname{Pre}(Z)) \\
\mathcal{W}_{E}(\operatorname{FinBüchi}(F))=\mu X \cdot\left(\bigcup_{B \in \mathbb{N}} \mu Y \cdot \nu Z \cdot \operatorname{Attr}_{B}^{\mathrm{E}}((F \cup Y \cup X) \cap \operatorname{Pre}(Z))\right)
\end{gathered}
$$

3.5 Strategy complexity for bounded parity games

Our fourth step is about bouded parity games. In this subsection, we obtain the following results:
Proposition 4 (Strategy complexity for bounded parity games). For all bounded parity games, the following assertions hold:

1. There exists a winning strategy for Eve from her winning set that uses at most $d / 2+1$ memory states, where d is the number of colors.
2. In general, winning strategies for Eve from her winning set require two memory states (i.e, memoryless strategies do not suffice for winning).

Note that the upper bound and the lower bound presented in this proposition do not match; we were not able to generalize Example 4 to improve the lower bound from 2 to $d / 2+1$.

We present a reduction from bounded parity games to bounded Büchi games. We consider a coloring function $c: V \rightarrow[d]$, and assume d is even. Define the memory structure $\mathcal{M}=\left(\{1,3, \ldots, d-1\} \cup\{d\}, m_{0}, \mu\right)$, where:

$$
\begin{aligned}
\mu\left(m,\left(v, v^{\prime}\right)\right) & = \begin{cases}m & \text { if } c\left(v^{\prime}\right) \geq m \\
c\left(v^{\prime}\right) & \text { if } c\left(v^{\prime}\right)<m \text { and } c\left(v^{\prime}\right) \text { is odd } \\
d & \text { if } c\left(v^{\prime}\right)<m \text { and } c\left(v^{\prime}\right) \text { is even }\end{cases} \\
m_{0} & = \begin{cases}c\left(v_{0}\right) & \text { if } c\left(v_{0}\right) \text { is odd } \\
d & \text { otherwise }\end{cases}
\end{aligned}
$$

Intuitively, this memory structure keeps track of the most urgent pending request.
Let $F=\{(v, d) \mid c(v)$ is even $\}$. We argue that $\mathcal{G}=(\mathcal{A}, \operatorname{BndParity}(c))$ is equivalent to $\mathcal{G} \times \mathcal{M}=(\mathcal{A} \times$ $\mathcal{M}, \operatorname{BndBüchi}(F))$. This follows from the equivalence:

$$
\pi \in \operatorname{BndParity}(c) \quad \text { if and only if } \tilde{\pi} \in \operatorname{BndBüchi}(F),
$$

where $\widetilde{\pi}$ is the play in $\mathcal{G} \times \mathcal{M}$ corresponding to π.
Thanks to Proposition 3, Eve has a memoryless winning strategy in any bounded Büchi game from her winning set, which implies that she has a strategy using \mathcal{M} as memory structure winning from her winning set in the original bounded parity game \mathcal{G}.

Note that this does not give a reduction from finitary parity games to finitary Büchi games: the above equivalence does not hold for the prefix-independent conditions. For instance, $\pi=1 \cdot 2^{\omega}$ satisfies the finitary parity condition but $\widetilde{\pi}=(1,1) \cdot(2,1)^{\omega}$ does not satisfy the finitary Büchi condition (the memory state remains equal to 1 forever).

We now consider the lower bounds on memory. The fact the Eve needs memory is illustrated in Example 4. Note that from the special case of bounded Büchi conditions we already know an infinite lower bound for Adam.

Example 4. Figure 6 presents an infinite arena, where for condition BndParity (c), Eve needs two memory states to win. This is in contrast with finite arenas, where she has memoryless winning strategies [14]. The label n on an edge indicates that the length of the path is n. A play is divided in rounds, and a round is as follows: first Adam makes a request, either 1 or 3, and then Eve either answers both requests and proceeds to the next round, or stops the play visiting color 2. Assume Eve uses a memoryless strategy, and consider two cases: either she chooses always 0 , then Adam wins by choosing always 3, ensuring that the response time grows unbounded, or at some round she chooses 2, then Adam wins by choosing 1 at this particular round, ensuring that this last request will never be responded. However, if Eve answers correctly - that is choosing color 0 for the request 1 , and color 2 for the request 3 - the bounded parity condition is satisfied, and this requires two memory states.

Figure 6. An infinite arena where Eve needs memory to win BndParity (c).

Before proceeding to the fifth and last step, let us discuss why the fourth step was about bounded parity conditions rather than uniform ones. In both uniform parity games and bounded parity games, Eve needs memory to win; this is shown in Example 4 for bounded parity conditions, and in Example 5 for uniform parity conditions. It follows that using any of the two routes would not give memoryless winning strategies for our final goal, finitary parity conditions. Furthermore, extending the techniques for bounded Büchi games to bounded parity games is quite technical, as characterizing the winning regions requires nesting least and greatest fixpoints, whereas the reduction we described from bounded parity games to bounded Büchi games is both conceptually simple and effective.

Example 5. Figure 7 presents a finite arena, where for condition UniParity ($p, 2$), Eve needs two memory states to win. First Adam makes a request, either 1 or 3, and then Eve chooses between 0 and 2. If Eve answers correctly - that is choosing color 0 for the request 3, and color 2 for the request 1 - the bound requirement is satisfied, and this requires two memory states. Otherwise, either the bound requirement is too large (if she chooses color 0 while Adam chose color 3) or the answer is not appropriate (if she chooses color 2 while Adam chose color 1). This example is easily generalized to the case of $2 d+1$ colors, and there Eve needs $d+1$ memory states to answer the requests appropriately.

Figure 7. An arena where Eve needs memory to win $\operatorname{UniParity}(p, 2)$.

3.6 Strategy complexity for finitary parity games

Our last step is about finitary parity games. In this subsection, we obtain the following results:
Proposition 5 (Strategy complexity for finitary parity games). For all finitary parity games, there exists a winning strategy for Eve from her winning set that uses at most $d / 2+1$ memory states, where d is the number of colors.

Once again, we rely on Lemma 2 to prove this result. Specifically, we have:

1. $\mathcal{W}_{E}(\operatorname{BndParity}(c)) \subseteq \mathcal{W}_{E}(\operatorname{FinParity}(c))$,
2. if $\mathcal{W}_{E}(\operatorname{BndParity}(c))=\emptyset$ then $\mathcal{W}_{E}(\operatorname{FinParity}(c))=\emptyset$.

The proof is easy and follows the same lines as for the previous use of Lemma 2. Note however that a small technical issue arises here: one has to apply the induction construction not directly to the arena \mathcal{A}, but to $\mathcal{A} \times \mathcal{M}$, where \mathcal{M} is the memory structure, in order to combine positional strategies.

We now summarize the main results for finitary Büchi and parity conditions in the following theorem.

Theorem 2 (Strategy complexity for finitary games). The following assertions hold:

1. For all finitary Büchi games, there exists a memoryless winning strategy for Eve from her winning set.
2. For all finitary parity games, there exists a winning strategy for Eve from her winning set that uses at most $d / 2+1$ memory states, where d is the number of colors.
3. For all finitary Büchi and parity games, winning strategies for Adam require infinite memory in general, even for pushdown arenas.

This theorem gives the almost complete picture: the notable exception is the gap for finitary parity games, where we prove that $d / 2+1$ memory states are sufficient for Eve, yet without showing that any memory is required at all. Although we think that memoryless strategies always exist, we were not able to prove it. Our techniques through bounded parity games cannot be improved for this purpose, as we showed that for these games Eve requires memory.

4 Pushdown games with finitary conditions

In this section we consider pushdown games with finitary conditions, and prove a collapse result which, along with a recent result from Blumensath, Colcombet, Kuperberg and Vanden Boom [7], imply that determining the winner in such games is decidable.

Pushdown arenas. A pushdown process is a finite-state machine which features a stack: it is described as (Q, Γ, Δ) where Q is a finite set of control states, Γ is the stack alphabet and Δ is the transition relation. There is a special stack symbol denoted \perp which does not belong to Γ, we denote by Γ_{\perp} the alphabet $\Gamma \cup\{\perp\}$. A configuration is a pair $(q, u \perp)$ (the top stack symbol is the leftmost symbol of u). There are three kinds of transitions in Δ :

- $(p, a, \operatorname{push}(b), q)$: allowed if the top stack element is $a \in \Gamma_{\perp}$, the symbol $b \in \Gamma$ is pushed onto the stack.
- $(p, \operatorname{pop}(a), q)$: the top stack symbol a is popped from the stack, for $a \in \Gamma$.
- $(p, a$, skip, $q)$: allowed if the top stack element is $a \in \Gamma_{\perp}$, the stack remains unchanged.

The symbol \perp is never pushed onto, nor popped from the stack. The pushdown arena of a pushdown process is defined as $\left(Q \times \Gamma^{*} \perp,\left(Q_{E} \times \Gamma^{*} \perp, Q_{A} \times \Gamma^{*} \perp\right), E\right)$, where $\left(Q_{E}, Q_{A}\right)$ is a partition of Q and E is given by the transition relation Δ. For instance if $(p, a, \operatorname{push}(b), q) \in \Delta$, then $((p, a w \perp),(q, b a w \perp)) \in E$, for all words w in Γ^{*}.

Conditions. The conditions for pushdown arenas are specified over the control states, i.e do not depend on the stack content: the coloring function assigns to any state a color. In other words, a coloring function is given by $c: Q \rightarrow[d]$, and extended to $c: Q \times \Gamma^{*} \perp \rightarrow[d]$ by $c(q, u \perp)=c(q)$.

We begin this section by giving two examples witnessing interesting phenomena of pushdown games with finitary conditions.

Example 6. Figure 8 presents a pushdown game where Eve wins the uniform Büchi condition with the bound 0 , as any play eventually remains in a self-loop around a Büchi state. However, it may take an arbitrary number of steps before this stabilization happens, depending on Adam. Let us first look at the two bottom states: in the left-hand state at the bottom, Adam can push as many b 's as he wishes, and moves the token to the state to its right, where all those b 's are popped one at a time. In other words, each visit of the two bottom states allows Adam to announce a number N and to prove that he can ensure not to visit any Büchi states for N steps. We now look at the states on the top line: the initial state is the leftmost one, where Adam can push an arbitrary number of a 's. We see those a 's as credits: from the central state, Adam can use one credit (i.e pop an a) to pay a visit to the two bottom states. When he runs out of credit, which will eventually happen, he moves the token to the rightmost state, where nothing happens anymore.

Figure 8. A pushdown game with finitary Büchi conditions.

Example 7. Figure 9 presents a pushdown Büchi game where Eve wins the uniform Büchi condition with the bound 2, but to do this she has to maintain a small stack. A play in this game divides into infinitely many rounds, which start by a visit to q. As in the previous example, each letter a on the stack is a "credit". A round consists in the following actions: first Eve chooses whether she wants to pop some a 's from the stack (self-loop around q), and then moves the token to the Büchi state, second Adam decides either to push an a and start the next round or to go to the rightmost state p to pop some a 's. The latter action should be understood as using credits (a 's on the stack) to remain away from the Büchi state; using N credits, he can stay in p for N steps. It follows that Eve should everytime keep the stack low to avoid long stays in p. This rules out the greedy (attractor) strategy for her which would rush to the Büchi state without considering the stack; a wiser strategy ensuring the bound 2 is to start every round by popping the a pushed during the previous round.

Figure 9. A pushdown game with finitary Büchi conditions.

4.1 Regular sets of configurations and \mathcal{P}-automata

We will use \mathcal{P}-automata to recognize sets of configurations: a \mathcal{P}-automaton $\mathcal{B}=(S, \delta, F)$ for the pushdown process $\mathcal{P}=(Q, \Gamma, \Delta)$ is a classical automaton over finite words: S is a finite set of control states, $\delta: S \times \Gamma \rightarrow S$ is the transition function and F is the subset of S of final states. We assume that the set of states S contains Q. A configuration $(q, u \perp)$ is accepted by \mathcal{B} if it is accepted using $q \in Q \subseteq S$ as initial state. A set of configuration is said regular if it is accepted by a \mathcal{P}-automaton.

A \mathcal{P}-automaton can be alternating, with the standard semantics: the transition function is $\delta: S \times \Gamma \rightarrow$ $\mathcal{B}^{+}(S)$, where $\mathcal{B}^{+}(S)$ is the set of positive boolean formulae over S. We denote by 0 and 1 the constants "false" and "true".

The following theorem states that for very general conditions, the winning region is regular [32,33].
Theorem 3 ([33]). For all pushdown games, for all winning conditions $\Omega \subseteq Q^{\omega}$ that are Borel and prefixindependent, the set $\mathcal{W}_{E}(\Omega)$ is a regular set of configurations recognized by an alternating \mathcal{P}-automaton of size $|Q|$.

4.2 The collapse result

Proposition 6 (The forgetful property). For all pushdown finitary parity games, there exists N such that

$$
\mathcal{W}_{E}(\operatorname{FinParity}(c))=\mathcal{W}_{E}(\operatorname{UniParity}(c, N))
$$

The intuition behind the name forgetful property is the following: even if a configuration carries an unbounded amount of information (since the stack may be arbitrarily large), this information cannot be forever transmitted along a play. Indeed, if Adam wants to produce arbitrarily long paths without Büchi states, he has to use the stack, consuming or forgetting its original information.

The Example 6 shows that the content of the stack can be used as "credit" for Adam to prove that he can remain away from a Büchi state for a long time, but also that if Eve wins then from some point onwards this credit vanishes.

Let \mathcal{A} be a pushdown arena defined by the pushdown process $\mathcal{P}=(Q, \Gamma, \Delta)$. Thanks to Theorem 3 , for every B there exists \mathcal{B}_{B} an alternating \mathcal{P}-automaton of size $|Q|$ recognizing $\mathcal{W}_{E}(\operatorname{UniParity}(c, B))$. As a first step, we show by a careful analysis of the construction from [33] that the automata \mathcal{B}_{B} are increasing with respect to a simulation-based ordering.

The definition of \mathcal{B}_{B} relies on the notion of conditional games [32,35]. Given a pushdown game $\mathcal{G}=(\mathcal{A}, \Omega)$ and a subset $R \subseteq Q$, we define the pushdown game $\mathcal{G}(R)$ over the pushdown process \mathcal{P} with the condition $\Omega(R)$, defined by the union of:

- plays in Ω where the stack is never emptied;
- plays whose first configuration with empty stack is (q, \perp) where $q \in R$.

Then we define:

$$
\mathcal{R}(p, a)=\left\{R \subseteq Q \mid(p, a \perp) \in \mathcal{W}_{E}(\mathcal{G}(R))\right\}
$$

To define the automaton \mathcal{B}_{B}, we rely on $\mathcal{R}_{B}(p, a)$ for the conditional games of the condition UniParity (c, B). \mathcal{B}_{B} is defined by (Q, δ, F), where:

- the transition function δ is given by:

$$
\begin{gathered}
\delta(p, a)=\bigvee_{R \in \mathcal{R}_{B}(p, a)} \bigwedge_{r \in R} r \quad \text { for } a \neq \perp \\
\begin{cases}\delta(p, \perp)=1 & \text { if Eve wins from }(p, \perp) \text { for } \operatorname{UniParity}(c, B) \\
\delta(p, \perp)=0 & \text { if Adam wins from }(p, \perp) \text { for } \operatorname{UniParity}(c, B)\end{cases}
\end{gathered}
$$

- the set of final states is empty: $F=\emptyset$.

Note that the fact that the set of final states is empty does not imply that no configuration is accepted; indeed, the transitions from the empty stack are either directly accepting or rejecting.

Let $\mathcal{B}, \mathcal{B}^{\prime}$ be two alternating \mathcal{P}-automata with the same set of states Q and empty set of final states. Say $\mathcal{B} \preceq \mathcal{B}^{\prime}$, read \mathcal{B} is simulated by \mathcal{B}^{\prime}, if for all $p \in Q$ and $a \in \Gamma_{\perp}$, we have $\delta_{\mathcal{B}}(p, a) \Rightarrow \delta_{\mathcal{B}^{\prime}}(p, a)$. Note that this implies that \mathcal{B}^{\prime} accepts more configurations than \mathcal{B}.

The following lemma implies that $\mathcal{B}_{B} \preceq \mathcal{B}_{B+1}$.

Lemma 4.

$$
\mathcal{R}_{B}(p, a) \subseteq \mathcal{R}_{B+1}(p, a)
$$

Proof. Let $R \in \mathcal{R}_{B}(p, a)$: Eve wins from $(p, a \perp)$ the conditional game for R for the condition UniParity (c, B). A fortiori, she wins in the same situation for the condition UniParity $(c, B+1)$, so $R \in \mathcal{R}_{B+1}(p, a)$.

Since there are finitely many alternating \mathcal{P}-automata of size $|Q|$, the increasing sequence $\left(\mathcal{B}_{B}\right)_{B \in \mathbb{N}}$ is ultimately constant, i.e there exists N such that $\mathcal{B}_{N}=\mathcal{B}_{N+1}=\ldots$. In other words, we have:

$$
\mathcal{W}_{E}(\operatorname{UniParity}(c, N))=\mathcal{W}_{E}(\operatorname{UniParity}(c, N+1))=\ldots
$$

We argue that:

$$
\mathcal{W}_{E}(\operatorname{FinParity}(c))=\mathcal{W}_{E}(\operatorname{UniParity}(c, N)) .
$$

Indeed, from the complement of $\mathcal{W}_{E}(\operatorname{UniParity}(c, N))$, Adam can ensure to fool the bound N, but also $N+1$, and so on, yet remaining there. Iterating such strategies ensures to spoil the finitary parity condition, which concludes the proof.

Remark 1. The above proof does not give a bound on N; indeed, the sequence $\left(\mathcal{B}_{B}\right)_{B \in \mathbb{N}}$ is ultimately constant, but the fact that two consecutive automata are equal, i.e $\mathcal{B}_{B}=\mathcal{B}_{B+1}$, does not imply that from there on the sequence is constant. It follows that N can be a priori arbitrarily large.

4.3 Decidability of pushdown finitary games

Following [26], we reduce the problem of determining the winner in a pushdown game to the membership problem for two-way alternating automata over regular trees.

We start from a pushdown process $\mathcal{P}=(Q, \Gamma, \Delta)$, a partition $\left(Q_{E}, Q_{A}\right)$ of the control states, and a condition Ω. We define the pushdown game induced by $\mathcal{G}=(\mathcal{A}, \Omega)$, and fix an initial configuration $\left(q_{0}, \perp\right)$ for the game.

We denote by $\operatorname{Act}(\Gamma)$ the following set of actions on the stack: $\{\operatorname{push}(a) \mid a \in \Gamma\} \cup\{\operatorname{pop}, \operatorname{skip}\}$, where push (a) should be understood as "going down in the direction a ", pop as "going up" and skip as "no move".

We define a two-way alternating automaton with condition Ω; let $\mathcal{A}=\left(Q, \Gamma_{\perp}, \delta, q_{0}, \Omega\right)$, where the transition relation $\delta: Q \times \Gamma_{\perp} \rightarrow \mathcal{B}^{+}(\operatorname{Act}(\Gamma) \times Q)$ is defined as follows: $\delta(p, a)$ is the disjunction of all possible transitions from (p, a) if $p \in Q_{E}$, and the conjunction of all possible transitions from (p, a) if $p \in Q_{A}$.

We run the automaton \mathcal{A} on the Γ-tree, which represents the stack contents. We assume without loss of generality that $\Gamma=\{1, \ldots, k\}$; the Γ-tree is the infinite k-ary tree where the label of the node u is the last letter of u if $u \neq \varepsilon$, and \perp otherwise.

Lemma 5 ([26]). Eve wins \mathcal{G} from $\left(q_{0}, \perp\right)$ if and only if the Γ-tree is accepted by \mathcal{A}.
We thus consider a two-way alternating automaton \mathcal{A} with finitary conditions, and a regular tree t. By definition, t is accepted by \mathcal{A} if Eve wins the acceptance game for \mathcal{A} over t :

$$
\exists \sigma, \forall \pi, \exists B, \pi \in \operatorname{UniParity}(c, B)
$$

i.e there exists a strategy σ for Eve such that for all plays π, there exists a bound B such that π satisfies the condition UniParity (c, B). The above collapse result, Proposition 6, implies a quantifier switch:

$$
\exists B, \exists \sigma, \forall \pi, \pi \in \operatorname{UniParity}(c, B) .
$$

In other words, the bound B is now uniform over all plays. It follows that an equivalent formulation of this membership problem is to see \mathcal{A} as a two-way alternating cost-automaton. This allows to use the following recent result:

Proposition 7 ([7]). The membership problem for two-way alternating cost-automata over regular trees is decidable.

This result is obtained by generalizing the simulation technique from [34], which transforms a two-way automaton into a one-way automaton, merging several runs into one. A key ingredient in this simulation is that the bound is uniform over all paths, allowing to keep track of only one value; this technique seems hard to adapt to the finitary case, where the bound depends on the path.

It is standard to solve pushdown games by reduction to the membership problem of two-way alternating automata over regular trees. Conversely, one can reduce the second problem to the first; indeed, the acceptance game of a two-way alternating automaton over a regular tree is a pushdown game, up to syntactic transformations. This simple observation combined with Proposition 6 allows to strengthen Proposition 7:

Proposition 8. The membership problem for two-way alternating finitary automata over regular trees is decidable.

The main result of this section follows:
Theorem 4. Determining the winner in a pushdown finitary parity game is decidable.

All the results in this section hold for the whole class of ωB-conditions [9], but were presented here only for the subclass of finitary conditions for the sake of readability. The same proof applies by replacing finitary conditions by ωB-conditions, the only difference being what means "fooling the bound N ": in the case of finitary conditions, it means that a request is pending for N steps, and in the case of ωB-conditions, it means that some counter's value exceeds N.

The general statement is:
Theorem 5. Determining the winner in a pushdown ωB-game is decidable.

4.4 Lower bound on the collapse

A careful analysis of Proposition 7 reveals that the collapse bound N of Proposition 6 is computable. We show that this bound is at least doubly-exponential in the number of states and exponential in the stack alphabet.

The relevant parameters for pushdown arenas are $n=|Q|$, the number of states, and $k=|\Gamma|$, the size of the stack alphabet.

The collapse bound for deterministic pushdown systems We start by considering deterministic pushdown systems, which is the very restricted case of pushdown games where from every configuration, there is only one transition, so no player has choice.

Standard pumping arguments shows that the collapse bound is at most exponential in both the number of states and the stack alphabet.

Lemma 6. For all deterministic pushdown systems, we have:

$$
\mathcal{W}_{E}(\operatorname{FinBüchi}(F))=\mathcal{W}_{E}(\operatorname{UniBüchi}(F, N)),
$$

for $N=n^{2} \cdot k^{n \cdot k+1}$.
Proof. We prove the left-to-right inclusion. Consider a path π, and assume it satisfies the finitary Büchi condition FinBüchi (F). We will show that it also satisfies the uniform Büchi condition for the bound $N=$ $n^{2} \cdot k^{n \cdot k+1}$. This collapse result is similar in fashion to the one obtained from the study of finitary games over finite arenas. It is clear that in this setting, if a path in a deterministic arena satisfies the finitary Büchi condition, then it satisfies the uniform Büchi condition for the bound $n-1$ (n being the number of vertices). Indeed, such a path is ultimately periodic, and the simple cycle it describes has length at most n. The content of this proof is to exhibit such a periodic pattern in π. Using a case distinction, we prove that either π ultimately repeats a cycle of length at most $n \cdot k^{n \cdot k}$, or ultimately repeats a cycle of increasing height (with respect to the stack) of length at most $n^{2} \cdot k^{n \cdot k+1}$. The two cases we consider are the following, they are illustrated in Figure 11:

1. there is some configuration that appears twice;
2. no configuration appears twice.

Before going through these two cases, we state an observation that will be used several times in the proof: a simple path (that is, where each configuration appears at most once) whose maximal stack height difference is less than H has length at most $n \cdot k^{H}$.

We start with the first case. It is clear that π is ultimately periodic; let C be the simple cycle described by π. We can see that the maximal stack height difference in the cycle C is less than $n \cdot k$, relying on a vertical pumping argument. It follows, relying on the earlier observation, that the cycle has length at most $n \cdot k^{n \cdot k}$.

We now focus on the second case. Here π is not ultimately periodic, but we will show that it repeats a cycle of increasing height. Define a step to be a configuration ($q, u \perp$) in π whose stack height is minimal among the configurations that are visited after $(q, u \perp)$ in π. Since no configuration appears twice, it is clear

Figure 10. The case distinction for Lemma 6.
that π has infinitely many steps. We say that two steps are consecutive in π if there are no steps inbetween in π. We first observe that two consecutive steps are separated by at most $n \cdot k^{n \cdot k}$ transitions: indeed the stack height, which remains higher than the height of the first step, must remain within the $n \cdot k$ intervall above the first step. Consider now the $n \cdot k$ first steps; two of them share the same state and top stack content, let us denote them $(q, a u \perp)$ and (q,avau \perp). The path π ultimately repeats a cycle of increasing height, as follows:

$$
(q, a u \perp) \rightarrow(q, a v a u \perp) \rightarrow \ldots \rightarrow\left(q,(a v)^{p} a u \perp\right)
$$

whose length is bounded by $n^{2} \cdot k^{n \cdot k+1}$. This concludes.
The collapse bound proved in this lemma seems a priori quite large for such an easy case, as it is exponential in both n and k. However, Example 8 shows that is it asymptotically tight.

Example 8. Figure 11 presents a deterministic pushdown game, where the only path from (F, \perp) satisfies the condition UniBüchi (F, N) for $N=O\left(2^{n}\right)$ but not for asymptotically less. This system encodes a number in binary in the stack with the least significant bit on the top of the stack. It has two phases: an initialization phase and an increment phase.

The initialization phase has n states and consists in pushing n times the symbol 0 . The increment phase consists in adding one to the number encoded in the stack, i.e $1^{k} 0 u \perp \xrightarrow{*} 0^{k} 1 u \perp$. This phase goes on until it reaches the stack content $1^{n} \perp$, which is emptied to reach the only Büchi state F, and start from scratch. This pushdown process has $O(n)$ states and the collapse bound is $O\left(2^{n}\right)$.

An easy generalization consists in encoding in base k instead of 2 , which would give an arena of size $O(k \cdot n)$ and a collapse bound asymptotically in k^{n}, i.e with an exponential bound in the number of states but not in the stack alphabet.

To obtain an arena where the collapse bound is exponential in both parameters, we perform slight modifications, as follows. In the latter arena, the numbers are encoded with n bits; we improve this by encoding the numbers using $k \cdot n$ bits. The increment phase remains the same. The initialization phase is not optimal; an ideal initialization phase would use $O(n)$ states to push $0^{k \cdot n}$ on the stack, but this is not possible, so we use a weaker initialization phase with n states that pushes:

$$
\underbrace{(k-1) \ldots(k-1)}_{n} \cdot \underbrace{(k-2) \ldots(k-2)}_{n} \cdot \cdots \cdot \underbrace{1 \ldots 1}_{n} \cdot \underbrace{0 \ldots 0}_{n} .
$$

The modified gadget is represented in Figure 12.
Since the counter does not start from 0 but from the number encoded in the latter stack, this new arena performs at bit less than $k^{k \cdot n}$ increment phases, but more than half this number, so its collapse bound is $O\left(k^{k \cdot n}\right)$, exponential in both n and k, and not asymptotically less.

Figure 11. A deterministic pushdown system with an exponential collapse bound.

Figure 12. The improved initialization gadget.

The collapse bound for pushdown games For the following three examples, we denote by p_{1}, p_{2}, \ldots the sequence of prime numbers, and by q_{n} the product of the first n prime numbers. We first start with the case where the stack alphabet has size one, i.e the subclass of one-counter pushdown games. Example 9 shows that in this case the bound is exponential in the number of states.

Example 9. Figure 13 presents a one-counter pushdown game, where for the condition UniBüchi (F, N), Eve wins for $N=q_{n}$ but not for $N-1$. Eve first pushes a sequence of a 's on the stack, then Adam chooses a prime number up to p_{n} and checks that the size of this sequence is divisible by this number. For this, Adam goes to a loop of size p_{k}, going deterministically through it while popping one a at a time. If the empty stack is encountered in the beginning of the loop, then the size of the stack is divisible by p_{k}, and the game starts from scratch, visiting a Büchi state on the way.

Since Eve does not know in advance which prime number Adam is going to choose among p_{1}, \ldots, p_{n}, she has to push a non-empty sequence of size divisible by $q_{n}=\Pi_{1 \leq i \leq n} p_{i}$. The size of the arena is $O\left(\sum_{1 \leq i \leq n} p_{i}\right)=$ $O\left(n \cdot p_{n}\right)$, whereas the smallest bound Eve can secure is q_{n}. An easy calculation shows that q_{n} is exponential in $O\left(n \cdot p_{n}\right)$.

Figure 13. A one-counter pushdown game with an exponential bound.

We now consider a stack alphabet of size two, and combine the two ideas underlying Example 8 and Example 9, that is:

- Eve needs to push a sequence of exponential size;
- this sequence, seen as a binary decomposition of the number 0 , is incremented by one until it reaches the sequence of 1's, where the game empties the stack, starts from scratch and visits a Büchi state along the way.

Example 10 implements this idea, showing that the collapse bound is at least doubly-exponential in the number of states.

Example 10. Figure 14 presents a pushdown game, where Eve wins for the condition $\operatorname{UniBüchi}(F, N)$ for $N=O\left(2^{q_{n}}\right)$, but not for $N=o\left(2^{q_{n}}\right)$. In the figure, "sh" stands for stack-height: we saw in Example 9 how Adam can check that the size of the stack is a multiple of q_{n}, product of the n first prime numbers, using only $O\left(n \cdot p_{n}\right)$ states. As in the previous example, Eve first pushes a sequence of 0 's on the stack, whose length must be a multiple of q_{n}, otherwise Adam wins by checking it. From s starts a binary increment similar to the one presented in Example 8; however in this example, the number of bits allowed was linear in the size of the arena, and we are now lifting this up to an exponential number of bits. So, we have to rely on the
players' interactions to ensure that the binary increment is correctly executed. The action performed in the stack should be:

$$
\left(s, 1^{k} 0 u \perp\right) \xrightarrow{*}\left(s, 0^{k} 1 u \perp\right) .
$$

The first part is deterministic:

$$
\left(s, 1^{k} 0 u \perp\right) \xrightarrow{*}(c, 1 u \perp) .
$$

From c, Eve pushes some 0 on the stack. If she pushes less than k symbols, then Adam wins by checking, so she has to push at least k. Note, however, that she could push k plus any multiple of q_{n}, but she would only do herself a disservice.

The arena has size $O\left(n \cdot p_{n}\right)$, so N is doubly-exponential in the number of states.

Figure 14. A pushdown game with a doubly exponential bound.

We now turn to a stack alphabet of size $2 k+1$, and roughly "nest" Example 10 .
Let $\Gamma=\left\{a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right\} \cup\{\sharp\}$. The stack configurations we consider belong to the regular language:

$$
L=\bigcup_{1 \leq i \leq k}\left(\left\{a_{i}, b_{i}\right\}^{q_{n}}\right)^{+} \cdot \sharp \cdot\left(\left\{a_{i-1}, b_{i-1}\right\}^{q_{n}}\right)^{+} \cdot \sharp \ldots \sharp \cdot\left(\left\{a_{1}, b_{1}\right\}^{q_{n}}\right)^{+} .
$$

Each block $\left(\left\{a_{i}, b_{i}\right\}^{q_{n}}\right)^{+}$is seen as a number encoded in binary, where a_{i} is 0 and b_{i} is 1 , which is initialized to $a_{i}^{q_{n}}$ and incremented by one step by step. However, the incrementation policy requires that to increment in the $i^{\text {th }}$ block for $i<k$, one must increment in the $(i+1)^{\text {th }}$ block. Hence two increment phases in the $i^{\text {th }}$ block are separated by $2^{q_{n}}$ increment phases in the $(i+1)^{\text {th }}$ block, which implies that two increment phases in the first block are separated by $2^{(k-1) \cdot q_{n}}$ transitions. Hence the $2^{q_{n}}$ increment phases required in the first block are executed within $2^{k \cdot q_{n}}$ steps. Example 11 constructs such a game.

Example 11. We sketch the construction of a pushdown game, where Eve wins UniBüchi (F, N) for $N=$ $O\left(2^{k \cdot q_{n}}\right)$, but not for asymptotically less.

First, following an easy adaptation of Example 9 we construct a game where Eve wins if and only if the stack content belongs to the language L. It has k components, each in charge of checking a block $\left\{a_{i}, b_{i}\right\}^{q_{n}}$. Eve first chooses i, and then Adam chooses a prime number to check that the size of the block is a multiple of the chosen prime number. Once $a \sharp$ symbol is reached, it is popped and the run goes on with the $(i-1)^{\text {th }}$ component, until the stack is empty. The size of this game is $O\left(k \cdot n \cdot p_{n}\right)$.

As before, Eve first pushes a sequence of a_{1} 's on the stack, whose length must be a multiple of q_{n}, otherwise Adam wins by checking it. If he sends the pebble to d, then Eve chooses an i and starts a binary increment from v_{i}, similar to the one presented in Example 10. There are some differences, which appear at the end of an increment phase. If the block contained no a_{i} 's, then the following case distinction occurs:

- If $1<i \leq k$, then the symbol \sharp is popped from the stack, and another increment phase starts from v_{i-1}.
- If $i=1$, then the game starts from scratch after paying a visit to a Büchi state.

Otherwise, the first a_{i} is turned into a b_{i}, and then Eve pushes some a_{i} 's before sending the pebble to a state controlled by Adam. There, he can check that the stack content belongs to L, but he also has another option, following the case distinction:

- If $1 \leq i<k$, then Adam can send the pebble back to the initial state, pushing a \sharp symbol along the way.
- If $i=k$, then Adam can send the pebble to v_{k}.

Whenever Adam sends the pebble back to the initial state after an increment phase of the $i^{\text {th }}$ block, Eve has no choice but to push a sequence of a_{i+1} 's on the stack, whose length must be a multiple of q_{n}, otherwise Adam wins since the stack content would not belong to L.

The arena obtained has size $O\left(k \cdot n \cdot p_{n}\right)+O(k)=O\left(k \cdot n \cdot p_{n}\right)$, so the bound required for Eve to win the uniform Büchi condition is doubly-exponential in the number of states and exponential in the stack alphabet.

5 Pushdown games with finitary and stack boundedness conditions

In this section, we consider pushdown games with finitary parity along with stack boundedness conditions. We prove that solving such games is EXPTIME-complete.

We describe the two ideas separately; the first is a reduction from finitary parity to bounded parity, and the second a collapse result for finitary Büchi along with stack boundedness conditions. We then show how to combine them to obtain a complete reduction, with an optimal complexity.

We denote by BndSt the stack boundedness condition, defined as

$$
\text { BndSt }=\left\{\pi \mid \exists N, \quad \begin{array}{c}
\text { all configurations in } \pi \text { have } \\
\text { stack height less than } N
\end{array}\right\} .
$$

5.1 A reduction from finitary parity to bounded parity

The reduction relies on a restart gadget. We consider a pushdown game with finitary parity conditions, given by the coloring function $c: Q \rightarrow[d]$, where we assume d to be odd. Between every edge of the game we add a restart gadget, where Eve can choose either to follow the edge, or to "restart": this entails that first a vertex with priority 0 is visited, where Adam can stay as long as he wants by pushing on the stack a new symbol \sharp, and then Eve takes over, staying in a vertex with priority d until all the \sharp symbols are popped away from the stack, before following the original edge. The intuition is the following: whenever Eve chooses to restart, visiting the vertex with priority 0 answers all previous requests, but this comes with the cost that Adam will be able to let a request unanswered for a long time. Therefore, Eve can restart only finitely many times. The gadget is represented in Figure 15.

Figure 15. The restart gadget.

Lemma 7. Eve wins the finitary parity game if and only if she wins in the reduced game with the bounded parity condition.

Proof. We prove both implications.

- Assume Eve wins the finitary parity game, and let σ be a winning strategy. We construct a strategy σ_{R} in the reduced bounded parity game. It maintains a counter, initially set to 1 , whose value is denoted by B. The strategy σ_{R} plays consistently with σ. It restarts if there exists a request made before the last B transitions that has not been serviced, and if so increments the counter by one. We argue that σ_{R} is winning for the bounded parity condition. Consider π_{R} a play consistent with σ_{R} : if it remains in the restart gadget forever (Adam pushes \sharp forever), it is winning. Otherwise, if a restart occurs for a value B of the counter, then there is a pending request not serviced within B transitions, which got serviced through the restart. Let π be the corresponding play in the parity game, where we skip the restarts: π is consistent with σ, so it satisfies the finitary parity condition. Now, it is clear that π_{R} contains only finitely many restarts, otherwise it would include requests that are not serviced within B transitions, for arbitrary B, which contradicts the fact that π satisfies the finitary parity condition. It follows that π_{R} and π coincide from some point onwards, so π_{R} satisfies the bounded parity condition, and σ_{R} is a winning strategy in the reduced bounded parity game.
- Conversely, assume that Adam wins the finitary parity game, and let τ be a winning strategy. We construct a strategy τ_{R} in the reduced bounded parity game. As for the case of Eve, it features a counter, initialized to 1 and whose value is denoted by B. Outside the restart gadget, τ_{R} plays consistently with τ, and inside the restart gadget, τ_{R} pushes exactly B times the symbol \sharp, and then increments the counter by one. Consider π_{R} a play consistent with τ_{R}, there are two cases: either it includes finitely many uses of the restart gadgets, or infinitely many. In the first case, π_{R} coincides from some point onwards with a play π consistent with τ, so it spoils the bounded parity condition. In the second case, the request made in the last vertex of the restart gadget remains unserviced for an unbounded time, so the bounded parity condition is fooled as well. It follows that π_{R} spoils the bounded parity condition, thus τ_{R} is a winning strategy in the reduced bounded parity game.

5.2 The special case of Büchi conditions

In the study of finitary games over finite graphs [14], the following observation is made: finitary Büchi coincide with Büchi, while finitary parity differs from parity as soon as three colors are involved. Over pushdown arenas, even finitary Büchi differs from Büchi, as noted in Example 1. Yet when intersected with the stack boundedness condition, the case of finitary Büchi specializes again and collapses to Büchi.

Lemma 8. For all pushdown games,

$$
\mathcal{W}_{E}(\operatorname{FinBüchi}(F) \cap \operatorname{BndSt})=\mathcal{W}_{E}(\operatorname{Büchi}(F) \cap \operatorname{BndSt}) .
$$

The left-to-right inclusion is clear, since $\operatorname{FinBüchi}(F) \subset \operatorname{Büchi}(F)$. The converse inclusion follows from memoryless determinacy for the condition $\operatorname{Büchi}(F) \cap \operatorname{BndSt}$ [10]: assume σ is a memoryless strategy ensuring $\operatorname{Büchi}(F) \cap$ BndSt, and let π be a play consistent with σ. First note that between two visits of the same configuration, there must be a Büchi configuration, otherwise iterating this loop would be a play consistent with σ yet losing. The second observation is that since the stack height remains smaller than a bound N, the number of different configurations visited in π is finite and bounded by a function of N. The combination of these two arguments imply that π satisfies FinBüchi (F).

5.3 The complete reduction

We show how to use both ideas to handle pushdown games with finitary parity and stack boundedness conditions. We present a three-step reduction, illustrated in Figure 16.

The first step is to adapt the reduction from finitary parity to bounded parity, now intersected with the stack boundedness condition. To this end, we need to modify the stack boundedness condition so that it

Figure 16. Sequence of reductions
ignores the configurations in the restart gadget; we define its restriction to Q :

$$
\operatorname{BndSt}(Q)=\left\{\pi \mid \exists N, \quad \begin{array}{c}
\text { all configurations in } \pi \\
\text { with control state in } Q \\
\text { have stack height less than } N
\end{array}\right\}
$$

Now the reduction is from finitary parity and stack boundedness to bounded parity and restricted stack boundedness.

The second step is the reduction from bounded parity to finitary Büchi by composing with the memory structure from Proposition 4, keeping track of the most urgent pending request. We are now left with a pushdown game with the condition finitary Büchi and restricted stack boundedness.

The third step is the collapse of finitary Büchi to Büchi. Note that the collapse stated in Lemma 8 deals with stack boundedness, not restricted to a subset Q. Indeed, the result does not hold in general for this modified stack boundedness condition, but it does hold here due to the special form of the restart gadget, that can be used only finitely many times.

Formally, we first need to extend the memoryless determinacy for the condition Büchi and restricted stack boundedness.

Lemma 9. For all pushdown games with condition Büchi and restricted stack boundedness, Eve has a memoryless winning strategy from her winning set.

Proof. The proof is a straightforward adaptation of Proposition 1 from [21].

Now, consider σ a memoryless strategy ensuring the condition Büchi and restricted stack boundedness in the pushdown game obtained through the above reductions; we prove that σ ensures finitary Büchi. Let π be a play consistent with σ, there are two cases: either the play remains forever in the restart gadget, or from some point onwards the restart gadget is not used anymore. In the first case, the finitary Büchi condition is clearly satisfied. In the other case, the play satisfies the general stack boundedness condition, and the same reasoning as for Lemma 8 concludes that the finitary Büchi condition is satisfied.

This three-step reduction produces in linear time an equivalent pushdown game with the condition Büchi and stack boundedness restricted to Q. It has been shown in $[10,21]$ that deciding the winner in a pushdown game with condition Büchi and stack boundedness is EXPTIME-complete; a slight modification of their techniques extends this to the restricted definition of stack boundedness.

Theorem 6. Determining the winner in a pushdown game with finitary parity and stack boundedness conditions is EXPTIME-complete.

Acknowledgments. We thank Denis Kuperberg and Thomas Colcombet for sharing and explaining [7], and Damian Niwinski for questions related to pushdown finitary games. The second author is grateful to Olivier Serre for many inspiring discussions, and Florian Horn for interesting comments.

References

1. Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d'Orso. Monotonic and downward closed games. J. Log. Comput., 18(1):153-169, 2008.
2. Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors. ICALP 2010, Bordeaux, France, volume 6199 of LNCS. Springer, 2010.
3. Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181-185, 1985.
4. Rajeev Alur and Thomas A. Henzinger. Finitary fairness. ACM Trans. Program. Lang. Syst., 20(6):1171-1194, 1998.
5. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. J. ACM, 49(5):672713, 2002.
6. Rajeev Alur, Salvatore La Torre, and P. Madhusudan. Modular strategies for recursive game graphs. Theor. Comput. Sci., 354(2):230-249, 2006.
7. Achim Blumensath, Thomas Colcombet, Denis Kuperberg, and Michael Vanden Boom, 2013. Personal communication.
8. Mikołaj Bojańczyk. A bounding quantifier. In Marcinkowski and Tarlecki [27], pages 41-55.
9. Mikołaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS, pages 285-296. IEEE Computer Society, 2006.
10. Alexis-Julien Bouquet, Olivier Serre, and Igor Walukiewicz. Pushdown games with unboundedness and regular conditions. In Paritosh K. Pandya and Jaikumar Radhakrishnan, editors, FSTTCS, volume 2914 of LNCS, pages 88-99. Springer, 2003.
11. Tomás Brázdil, Petr Jancar, and Antonín Kucera. Reachability games on extended vector addition systems with states. In Abramsky et al. [2], pages 478-489.
12. J. Richard Büchi and Lawrence H. Landweber. Definability in the monadic second-order theory of successor. J. Symb. Log., 34(2):166-170, 1969.
13. Krishnendu Chatterjee and Nathanaël Fijalkow. Finitary languages. In Adrian Horia Dediu, Shunsuke Inenaga, and Carlos Martín-Vide, editors, LATA, volume 6638 of LNCS, pages 216-226. Springer, 2011.
14. Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in omega-regular games. ACM Trans. Comput. Log., 11(1), 2009.
15. Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, ICALP (2), volume 5556 of LNCS, pages 139-150. Springer, 2009.
16. Thomas Colcombet, Denis Kuperberg, and Sylvain Lombardy. Regular temporal cost functions. In Abramsky et al. [2], pages 563-574.
17. Thomas Colcombet and Christof Löding. The non-deterministic mostowski hierarchy and distance-parity automata. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 398-409. Springer, 2008.
18. Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In LICS, pages 70-79. IEEE Computer Society, 2010.
19. E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of programs (extended abstract). In FOCS, pages 328-337. IEEE Computer Society, 1988.
20. E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy (extended abstract). In FOCS, pages 368-377. IEEE Computer Society, 1991.
21. Hugo Gimbert. Parity and exploration games on infinite graphs. In Marcinkowski and Tarlecki [27], pages 56-70.
22. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.
23. Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, STOC, pages 60-65. ACM, 1982.
24. Daniel Kirsten. Desert automata and the finite substitution problem. In Volker Diekert and Michel Habib, editors, STACS, volume 2996 of $L N C S$, pages 305-316. Springer, 2004.
25. Eryk Kopczyński. Half-positional determinacy of infinite games. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP (2), volume 4052 of $L N C S$, pages 336-347. Springer, 2006.
26. Orna Kupferman and Moshe Y. Vardi. An automata-theoretic approach to reasoning about infinite-state systems. In E. Allen Emerson and A. Prasad Sistla, editors, CAV, volume 1855 of LNCS, pages 36-52. Springer, 2000.
27. Jerzy Marcinkowski and Andrzej Tarlecki, editors. CSL 2004, Karpacz, Poland, volume 3210 of LNCS. Springer, 2004.
28. Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363-371, 1975.
29. Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149-184, 1993.
30. Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages 179-190. ACM Press, 1989.
31. Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the AMS, 141:1-23, 1969.
32. Olivier Serre. Note on winning positions on pushdown games with ω-regular conditions. Inf. Process. Lett., 85(6):285-291, 2003.
33. Olivier Serre. Contribution à l'étude des jeux sur des graphes de processus à pile. PhD thesis, Université Paris 7 - Denis Diderot, 2006.
34. Moshe Y. Vardi. Reasoning about the past with two-way automata. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors, ICALP, volume 1443 of $L N C S$, pages 628-641. Springer, 1998.
35. Igor Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput., 164(2):234-263, 2001.
36. Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998.

[^0]: ${ }^{1}$ This follows from our assumption that the arenas have a countable set of vertices. Here we could drop this assumption and define the sequence indexed by ordinals, which we avoided for the sake of readability.

