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Figure 1: 3D video coding architecture.

1 Architecture for 3D representation and coding

The general architecture of the 3D video coding scheme is described in �gure 1. The
goal of this architecture is to evaluate the methods and algorithms developed within
the Persee project, and compare them to state of the art coding schemes. Subjective
evaluations will be performed on the tested methods, to evaluate their pertinence with
regard to rendered visual quality.
In a �rst phase, partners will exchange input/output �les in order to perform eval-

uation of methods without the need for software integration.
Several types of experiments are planed:

• build a reference 3Dvideo coding chain, in order to compare the proposed meth-
ods to state of the art coding schemes. The state of the art codecs for MVD
data are H264 and 3DHTM, which is currently under development by the Mpeg
consortium.

• perform objective/subjective evaluation of depth compression algorithms which
have been developed within the Persée consortium and which are described in
the following sections of the deliverable.

• exploit perceptual data extracted from the video in the coding and rendering
units, such as visual attention or saliency. The scheme presented in �gure 2
exploits such information for introducing blur in videos, both for rate reduction
and visual quality enhancement.

The following sections provide some tools developed by PERSEE contributors, in
order to build and evaluate the 3D video coding scheme.
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2 Disparity map coding by Don't Care Regions

In the image+depth multiview video format, each view n = 1, . . . , N is represented
with a texture and a depth (or, equivalently, disparity) map. Given vn, vn+1 and
dn, dn+1 the texture and disparity maps at views n and n + 1, respectively, it is
possible to synthesize any intermediate view vk, k ∈ [n, n + 1] using a depth image-
based rendering (DIBR) algorithm. Essentially, any DIBR algorithm synthesizes pixel
values in vk by properly translating pixels from views n and n + 1, according to the
disparity information contained in the disparity maps, and by possibly resorting to
some inpainting technique to �ll holes due to occlusions in one of the neighboring
views. In this context, the goal of multiview video coding is maximizing the quality of
the view synthesized at the decoder, provided that the total number of bits required
to encode and transmit vn, dn, vn+1 and dn+1 has to be within a predetermined
bit budget. This is in general a joint coding problem, since the rate-distortion (RD)
performance of texture/disparity at view n will depend on the RD characteristic of
the other three signals � assuming that the DIBR algorithm is given.
Instead, in the following discussion we focus on the simpler task of coding disparity

maps independently. That is, given uncompressed textures vn and vn+1, we want to
encode independently dn and dn+1 only. This simpli�ed perspective is interesting as
it allows as to focus on a basic di�erence between disparity and conventional video
coding. In disparity video coding, the rate to be minimized is the one required to
encode dn and dn+1. However, coding quality is measured on the synthesized view vk.
This leads to two conclusions: 1) the quality metric used in disparity coding should
capture the distortion in disparity compensation produced by coarse quantization of
disparity maps; and 2) it is possible to give up �delity and reduce bit rate in the
reconstructed disparity maps if this does not a�ect too much the synthesized view.

2.1 Test of a geometric distortion metric on synthesized views

As mentioned above, at the basis of DIBR there is disparity compensation, i.e., pixels
in the view vk to be synthesized are obtained by properly displacing pixels in views n
and n+ 1. Therefore, coding errors in the disparity maps correspond to displacement
errors in the synthesized view. Given the di�erent nature of these two source of
distortion, we aim at describing displacement errors through a geometric distortion
measure.
We consider the geometric distortion measure (GM) proposed in [11]. This met-

ric has been originally proposed in the watermarking �eld to quantify the perceptual
impact of geometric manipulations aimed at hindering the extraction of a watermark
embedded into an image. In a nutshell, this approach consists in projecting the dis-
placement vectors (of a dense displacement �eld) along the directions parallel to the
gradients of the local image structures, with the rationale that only this displacement
component is going to be visible to users. The intensity and the direction of local
image structures is obtained through Gabor �lters. By averaging, for several direc-
tions, a combination of local image structure and intensity (in a given direction) of the
displacement vectors, it is possible to predict the mean opinion score (MOS) a human

5



Figure 3: MOS vs. bit rate for coding disparity in the Teddy image. The synthesized
view v̂4 is obtained by DIBR on compressed disparities d̂2 and d̂6. The rate
term here refers to the total bits needed to encoded d2 and d6.

observer would give. When we consider the disparity map coding detailed above, a
natural question arises: can we use the GM metric to predict the visual impairment
introduced by errors in the coding of disparity?
In order to answer this question, we tested the sensitivity of GM to synthesis errors

induced by quantization errors in the disparity maps. To this end, we compressed
disparity maps d2 and d6 of views 2 and 6, respectively, for the Teddy image in the
Middlebury Dataset [1], using JPEG with di�erent quality factors. We denote with
d̂2 and d̂6 the reconstructed noisy disparities at the decoder. Then, we synthesized
v̂4 using d̂2 and d̂6, by means of a simple DIBR algorithm which �lls holes in the
synthesized view by copying the closest pixel value from either view 2 or 6. In order to
single out the contribution to distortion due to compression only, we compared v̂4 with
a groundtruth image v4 generated using uncompressed d2 and d6. We then predict
the distortion between v4 and v̂4 using GM, which yields a prediction of the MOS. A
rate/MOS curve is shown in Figure 3, where it is clearly visible that the GM metric is
absolutely not able to provide meaningful prediction of the MOS for the synthesized
view. Similar results have been obtained also for the Doll image [1].
From these results we can infer that GM is not a suitable metric for synthesis error

produced by noisy disparity maps. In fact, even at the maximum JPEG quality,
the rounding and truncation entailed in the coding process make the reconstructed
disparities being slightly di�erent from the groundtruth. This produces isolated errors
in the synthesized view, which however have a very strong impact on the computation
of GM. Consider also that GM has been designed, tuned and validated with subjective
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Figure 4: De�nition of DCR for a given threshold τ .

tests performed on images corrupted with smooth displacement errors, so there are no
guarantees that it can work in the context of view synthesis.

2.2 Increasing coding e�ciency of disparity maps through Don't
Care Regions

Di�erently from conventional video coding, where the signal to be compressed is the
one that has to be displayed to users, the coding of disparity map video has to be
optimized for the display of synthesized views. This introduces a certain degree of
freedom in the coding of disparity which is not present in texture coding. For example,
in very smooth regions of the frame, having even a relatively large disparity error
would not lead necessarily to a large error in the synthesized view. This concept can
be formalized and embedded into a state-of-the-art video encoder in order to increase
the coding e�ciency of disparity maps.

2.2.1 De�nition of Don't Care Regions (DCR)

A pixel vn(i, j) in texture map n, with associated disparity value dn(i, j), can be
mapped into a corresponding pixel of the view n+1 through a view synthesis function
s(i, j; dn(i, j)). In the simplest case where the views are captured by horizontally
aligned cameras, s(i, j; dn(i, j)) corresponds to a displacement in the x direction by
dn(i, j), that is:

s(i, j; dn(i, j)) = vn(i, j + dn(i, j)). (1)

We de�ne the view synthesis error, ε(i, j), as the absolute error between the synthe-
sized pixel s(i, j; dn(i, j)) and the actual pixel value vn+1(i, j) in vn+1. That is:

ε(i, j; dn(i, j)) = |s(i, j; dn(i, j))− vn+1(i, j)| . (2)

7



If dn is compressed, the reconstructed value d̃n(i, j) employed for view synthesis may
di�er from dn(i, j) by an amount e(i, j) = d̃n(i, j) − dn(i, j), resulting in a (generally
larger) view synthesis error ε(dn(i, j) + e(i, j)). We de�ne the Don't Care Region
DCR(i, j) = [DCRlow(i, j),DCRup(i, j)] as the smallest interval of disparity values
containing the groundtruth disparity dn(i, j), such that the view synthesis error for
any point of the interval is smaller than ε(i, j; dn(i, j))+τ , for a given threshold τ . The
de�nition of DCR is illustrated in Figure 4. Note that DCR intervals are de�ned per
pixel, thus giving a very precise information about how much error can be tolerated in
the disparity maps.

2.3 Use of DCR for increasing coding e�ciency of disparity maps

Having a per pixel DCR enables a higher degree of freedom in the encoding of disparity
maps, which can be compressed with a larger distortion (i.e., lower rate), without actu-
ally compromising too much the quality of the displayed synthesized view. Speci�cally,
DCR can a�ect three aspects of disparity coding:

• Motion estimation;

• Mode decision;

• Coding of residuals.

Motion estimation During motion estimation, the encoder search for each mac-
roblock or sub-block B a corresponding region in a reference frame which minimizes
the Lagrangian cost function

Dmv + λmvRmv, (3)

where Rmv is the bit rate associated to the cost of representing the motion vector and
the prediction residual, and λmv is a Lagrange multiplier. The term Dmv is the sum of
absolute di�erences (SAD) between the pixels in the current block and their predictor.
We can add more degrees of freedom to motion estimation considering that the term D
in (3) can be discounted by the per pixel DCR's. To this end, we manipulate the values
of prediction residuals r(i, j) involved in the computation of SAD in (3) according to
the following soft-thresholding function:

r′ =


r(i, j)− (DCRup − dn(i, j)) if r(i, j) > DCRup − dn(i, j),

r(i, j)− (DCRlow − dn(i, j)) if r(i, j) < DCRlow − dn(i, j),

0 otherwise.

(4)

The discounted SAD is then computed as

D′
mv

=
∑

(i,j)∈B

r′(i, j)) (5)

and substituted to D in (3).
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Mode decision In the mode decision phase, the rate-distortion cost of each coding
mode (Inter with all possible sub-block partitions, Intra with 16× 16, 4× 4 or 8× 8,
Skip) is evaluated in order to select the optimal modes for a given macroblock and for
its partitions. In order to �nd the optimal mode con�guration, the encoder minimizes
a function similar to (3):

Dmd + λmdRmd, (6)

where Dmd is the SAD or SSE (sum of squared di�erences) distortion entailed by each
coding mode, Rmd is the associated bit rate and λmd is a Lagrangian multiplier. As
before, for each coding mode we can change the term Dmd to D′

md
by applying (4) to

the residuals obtained with that coding mode.

Coding of prediction residuals Once motion vectors and coding modes have been
computed, the prediction residuals are transformed and quantized before being entropy
coded and written in the bitstream. According to DCR de�nition, it is not necessary
to reconstruct the true groundtruth disparity at each pixel. Instead, any value that is
inside the DCR would be acceptable in terms of view synthesis distortion. However, in
this case altering the values of prediction residuals r(i, j) to r′(i, j) using equation (4)
is not optimal from the coding point of view, since this soft-thresholding heuristic on
prediction residuals in the pixel domain does not give any guarantees of reducing the
bit rate for disparity coding. A more correct approach (originally proposed in [9] for
the case of still images) would consist in performing transform-domain sparsi�cation
of prediction residuals, subject to the DCR constraints in the pixel domain. This is
left to future work.
We implemented the modi�ed motion estimation and mode decision in the JM refer-

ence software implementation (v. 18) of H.264/AVC. Figure 5 shows the rate-distortion
curve obtained by coding 5 frames of the Kendo video sequence. With τ = 5 we have a
gain in PSNR at low rates of 0.4 dB and a rate saving of almost 60%, while with τ = 7,
∆PSNR = 0.36 and ∆Rate = 67% using Bjontegaard metric. These results are partic-
ularly encouraging since most of the gain is obtained mainly through a higher e�ciency
in mode decision and motion estimation, with e.g. the number of skip macroblocks
almost doubling when using our method. We expect even a larger gain when also the
transform domain sparsi�cation of prediction residuals will be taken into consideration
jointly with mode decision and motion estimation.
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Figure 5: RD performance on 5 frames of the Kendo sequence, with a modi�ed
H.264/AVC encoder to embed DCR, for several values of τ . The bit rate
refers to the total rate required to encode disparity maps of view 3 and 5.
The PSNR is computed between the synthesized view v̂4 and the groundtruth
center view v4.
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3 E�cient Depth Map Compression based on
Lossless Edge Coding and Di�usion

3.1 Introduction

3DTV and FVV are promising technologies for the next generation of 3D entertain-
ment. To this end, the MultiView plus Depth (MVD) format has been developed.
From a collection of multi-view video sequences captured synchronously from di�er-
ent cameras at di�erent locations, a view synthesis or rendering method can generate
new viewpoints. The �rst version of the dedicated MVD sequence encoder, so-called
�MVC�, was based on block transforms of depth maps. As argued by [36], the deblock-
ing of depth maps is today one of the most important pre- and postprocessing task for
the MVD representation.
Depth maps have two main features that must be preserved but can also be relied

on for e�cient compression.The �rst one is the sharpness of edges, depicting the depth
on the exact borders of the scene objects. Distortions on edges during the encoding
step would cause highly visible degradations on the synthesized views, that require
depth map post-processing. The second one comes from the general smooth surface
properties of objects we are measuring the depth on. Based on these observations,
Merkle et al. [23] proposed a �Wedgelet" signal decomposition method (itself based on
�Platelet"). The smooth regions of the depth maps are approximated using piecewise-
linear functions separated by straight lines. A quadtree decomposition divides the
image into variable-size blocks, each of them being approximated by a modeling func-
tion. The re�nement of the quadtree is then optimized in the rate-distortion sense.
In this context, we also observed that these smooth surfaces can be e�ciently ap-

proximated by interpolating the luminance values located at their boundaries, instead
of using models based on piecewise-linear functions where the coe�cients need to be
encoded [23]. To this end, we can observe that depth maps share similarity to cartoon-
images. Mainberger et al. [20] proposed a dedicated cartoon-image encoder, that -in
low bitrate conditions- beats the JPEG-2000 standard. After a Canny edge detection,
the edge locations are encoded with a lossless bi-level encoder, and the adjacent edge
pixel values are lossy quantized and subsampled. At the decoding stage, an homo-
geneous di�usion is used to interpolate the inside unknown areas from lossy decoded
edges. Indeed, the demonstrated performances -while beating state of the art codecs-
reach the limit of 30dB. We revisited this edge-based compression method by proposing
improvements to �t the high quality, low bitrate, and speci�c requirements of depth
maps. Finally, we greatly increase the di�usion-based depth map encoding perfor-
mance, which might be generalized to all kinds of images. In the next section, the
encoding process is described. In section III the new decoding and di�usion methods
are explained. Results, performances and comparison with state-of-the-art methods
are given in Section IV. Conclusions are then drawn in section V.
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3.2 Encoding

The encoding is a 3 step process: �rst is detection of edges, then encoding of the edge
location and �nally encoding of the edge, border and seed pixel values.

3.2.1 Edge detection

Di�erent operators exist to extract the contour of an image. An optimal edge detector
should provide:

• a good detection: the algorithm should �nd as much real edges as possible.

• a good localization: the edges should be marked as edges as close as possible to
the real edges.

• a good robustness: as much as possible, the detector should be insensitive to
noise.

In our context of depth map edge coding, several requirements are added. The quality
of reconstruction by di�usion should be maximized, while minimizing the number of
edges that will be needed for later di�usion. In order to maximize the quality of edges
for di�usion, the localization of contours should be quasi-perfect (see section III for
explanation). The detection of contours should be good but avoiding an over-detection.
Up to a certain limit, weak contours (i.e. with a low gradient) might be useless to the
reconstruction and might unnecessarily increase the edge coding cost. Also, noisily
detected pixels should be avoided for the same reason.
The Marr-Hildreth edge detector combined with Canny like hysteresis thresholding

is used in [20], but su�ers from error of localization at curved edges. The widely
used Canny edge detector has also been benchmarked. It relies on a 5x5 gradient
pre�ltering to cope with noise before local maxima edge detection. This pre�ltering
step also makes this detector vulnerable to contour localization errors, as illustrated
in Fig.6(c), where inexact selection of adjacent edge pixels lead to improper di�usion.
Oppositely Sobel has the advantage of an accurate contour localization as shown in
Fig.6(d) at the cost of noisy detection. Pixels with a bi-dimensional gradient amplitude
larger than a threshold λ are extracted. To cope with the edge noise, contours c shorter
than a certain value (c < 14) are excluded. Used with sharp depth maps, this gives
well-localised contours.

3.2.2 Encoding the contour location

As in [20], a bi-level edge image containing the exact location of previously detected
edges is �rst encoded using the JBIG (Joint Bi-level Image Experts Group) standard.
This is a context-based arithmetic encoder enabling lossless compression of bi-level
images. We use the JBIG-Kit [2], a free C implementation of the JBIG encoder and
decoder. The progressive mode is disabled to reduce the required bitrate.

12



(a) (b)

(c) (d) (e)

Figure 6: (a) A �Breakdancer� depth map, (b) the encoded and decoded Sobel edge and seed
pixels (red selection on (a)), (c) the Canny edges (blue selection), (d) the selection
of pixel values adjacent to Canny edges (c) as in [20], with an intruder edge pixel
in orange that will lead to bad di�usion, (e) the proposed Sobel selection of edge
pixel values, exactly located from both side of the frontier edge
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3.2.3 Encoding the contour values

Once the edge pixel locations have been encoded, the pixel luminance values have also
to be losslessly encoded following our initial requirements. The authors in [20] proposed
to store the pixel values on both sides of the edge, instead of the pixel values lying on
the edge itself. Indeed, for blurry contours, this might be valuable to interpolate the
inner part of the edge and code the luminance values on both sides. However, with
sharp depth maps, the pixel values lying directly on an edge, as illustrated in Fig.6(b),
alternate between one side or another from this edge and couldn't be interpolated
correctly.
With the Sobel edge detection not thinned to a single edge pixel, we ensure to retain

at least one pixel value from each side of the frontier edge (Fig.6(d)).
We keep the idea of storing the pixel values by their order of occurrence along the

edge to minimize signal entropy. A path with �x directional priorities (E, S, W, N,
NE, NE SE, SW and NW) is used. As the intrinsic properties of pixels along an
edge or �isophote� are their small luminance variation, then we propose to compute
the di�erential values of edge pixels in a Di�erential Pulse Code Modulation (DPCM)
way. From this optimized path encoding method, the stream of DPCM values is then
encoded with an arithmetic coder.
Additionally to these edges we also encode two kinds of information. The pixel values

from the image border are stored to initiate the di�usion-based �lling from borders.
Inspired by the work of [4] on �dithering� for �nding optimal data for interpolation, we
propose to sparsely deploy, at regular intervals, some seeds of original depth pixels as
shown in Fig.6(e). While having low overhead, we discovered that this helps accurate
reconstruction by initializing the di�usion in large missing areas. As we will see, it
additionally greatly speeds up the di�usion process.
Thus, these extra border and seed pixels are coded in DPCM and added to the

di�erential edge values. The resulting �le is thus composed of the payload of the JBIG
data and of the arithmetic encoded bitstream of the DPCM edge, border, and seed
pixel values.

3.3 Decoding and di�usion

3.3.1 Decoding contour location and pixel values

Once the edge location from JBIG payload is decoded, the edge pixel values are decoded
and positioned following the same order in which they were encoded: the path along
contour location respecting directional priorities.The border and seed values are also
re-positioned following a prede�ned location.

3.3.2 Reconstructing the missing values by di�usion

We now have a sparse depth map containing only the edge, border and seed pixel
values. An homogeneous di�usion-based inpainting approach is used to interpolate
the missing data. This method is the simplest of the partial di�erential equations
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(PDEs) di�usion method, and has the advantage of low computational complexity. It
directly stems from the heat equation:{

It=0 = Ĩ
δI
δt = ∆I

where Ĩ is the decoded edge image before di�usion that will constitute the Dirich-
let boundaries of the equation. The di�used data then satis�es the Laplace equation
∆I = 0. The di�usion process is run in a hierarchical manner, each di�usion step being
in addition helped with seeds and appropriate initialization. These three improvements
have been introduced in the classical di�usion approach to limit the number of itera-
tions required to converge, hence to speed up the entire process:

Hierarchical di�usion A Gaussian pyramid is built from Ĩ. The di�usion process
is �rst performed on a lower level of the pyramid and the di�used values are then
propagated to a higher level (3 levels are used and shown good performance). The
propagation of the blurred version of the di�used pixel values from an lower level to
an upper one helps to initialize the di�usion in unknown areas.

Middle range initialization On the highest level, instead of starting from unknown
value of Ĩ set at 0, we propose to initialize unknown values to the half of the possible
range: 128 for an 8 bit depth map. This facilitates and speeds up the process of
di�usion by limiting the number of required iterations to converge.

Seeding As explained in section 3.2.3, some seeds are chosen from a regular pattern
both to accelerate the di�usion process and to provide accurately initialized values
in large unknown areas. Indeed, this de�nitely achieves a fast and accurate di�usion
-with a gain of 10 dB- for a quasi-exact reconstruction of the depth map.

3.4 Experiments

3.4.1 Conditions

The performances of the proposed compression method are evaluated on an original
resolution depth map from a Multiview Video-plus-Depth (MVD) sequence �Break-
dancers� from Microsoft [45]. The depth maps were estimated through a color seg-
mentation algorithm. The choice of this sequence is motivated by the presence of sharp
edges of objects on depth maps. Most other raw MVD sequences might be suitable
once they would be �sharpened� i.e. post-processed with a bilateral �lter, as it is often
required in practice [36].

3.4.2 Depth map quality evaluation

The reconstruction quality of our PDE-based method is investigated and compared
with the JPEG and JPEG2000 compressed versions. First, to illustrate the di�erence
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Figure 7: Upper row: zoom on the head of a dancer on original View#3 (V3) depth map (a)
highlights by comparison the ringing artifact on JPEG (b) and JPEG2000 (c). Our
method (d) based on exact edges and homogeneous di�usion prevent this e�ect.
(Depth maps have been sharpened for distortion visibility). Lower row: zoom on
synthesized view V4 without (e) or with JPEG (f), JPEG2000 (g) and our method
(h) compressions at equal PSNR (43dB) referenced to (e).

of quality reconstruction on edges, the three methods are compared at equal Peak-
Signal-to-Noise-Ratio (PSNR),(46 dB, JPEG with a Quality factor Q=75, JPEG2000-
Q=25). A zoom on the head of a character presenting initially sharp edges, highlights
the di�erence of edge quality depending on the compression type (Fig.7). While at
high PSNR, the JPEG (a) and JPEG2000 (b) versions of the depth map tend to blur
the edges. This is commonly referred to as ringing artifacts. It appears on JPEG
because of the lossy quantization of discrete cosine transform coe�cients within 8x8
pixels blocks. The same but less pronounced ringing e�ect appears on JPEG2000 at
equal PSNR, due to lossy quantization following wavelet transformation. In addition,
JPEG and JPEG2000 cannot e�ciently reconstitute the smooth gradient on uniform
areas. At the opposite, our proposed approach stores the exact edges and interpolated
regions between these edges, resulting in a smooth gradient restitution on slanted
surfaces and non distorted edges.
Thus we evaluate the global depth-map rate-distortion performances of the three

encoding methods. Fig.8 shows that our approach outperforms JPEG2000 except in
very low or high bitrate conditions. An adjustment of the number and location of
seeds in these conditions might however improve the performance.

3.4.3 View synthesis quality evaluation

The impact of depth compression methods on rendering is measured by calculating the
PSNR of a synthesized view (from a pair of uncompressed textures and compressed
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Figure 8: Rate-Distortion performance of the V3 depth map for di�erent quality factors of
JPEG and JPEG2000, and di�erent Sobel detection thresholds of our method.

depth maps), with respect to an original synthesized view (from a pair of uncompressed
textures and depth maps). The corresponding synthesized view from two original
depth maps is then the reference. VSRS 3.0 [41] is used for view interpolation from
this 2-view dataset. The R-D synthesis performance, illustrated in Fig.9, justi�es the
edge-coding approach: undistorted edges permits an accurate and e�cient view coding
and rendering. Again, the PSNR measure shows its limitation of objective evaluation
on perceived quality. Even at equal PSNR, our synthesized view (Fig.7h) not only
outperform in term of bitrate the existing methods (Fig.7e, f), but also improved the
view rendering perceived quality.

3.5 Conclusion

We proposed a new method for lossless-edge depth map coding based on optimized path
and fast homogeneous di�usion. Our method, combined with a Sobel edge detection,
provides a simple but e�cient compression of edges that enables perfect restoration
of the contours in depth maps. Also, it outperforms the state of the art JPEG and
JPEG2000 compression methods. Thanks to careful edge selection and seeding, we
also manage to increase the quality reconstruction of previous works based on edge
image coding. Also, this lossless edge coding method could be locally applied to color
image compression, especially on uniform areas. In this case the edge detection method
should probably be optimized depending on edge smoothness. Finally, a depth map
video encoder is in our scope for future research.
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Figure 9: Rate-Distortion performance of synthesized V4 with the bitrate of V3, for di�erent
quality factors of JPEG and JPEG2000, and di�erent Sobel detection thresholds
of our method.
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4 Layered Depth Image Representations for improved
virtual view synthesis in a rate-constrained context.

4.1 Introduction

A multi-view video is a collection of video sequences captured for the same scene,
synchronously by many cameras at di�erent locations. Associated with a view syn-
thesis method, a multi-view video allows the generation of virtual views of the scene
from any viewpoint [7, 45]. This property can be used in a large diversity of appli-
cations [38], including Three-Dimensional TV (3DTV), Free Viewpoint Video (FTV),
security monitoring, tracking and 3D reconstruction. The huge amount of data con-
tained in a multi-view sequence needs an e�cient compression [26].
However, the compression algorithm is strongly linked to the data representation as

well as to the view synthesis methods. View synthesis approaches can be classi�ed in
two classes. Geometry-Based Rendering (GBR) approaches use a detailed 3D model
of the scene. These methods are useful with synthetic video data but they become
inadequate with real multi-view videos, where 3D models are di�cult to estimate.
Image-Based Rendering (IBR) approaches are an attractive alternative to GBR. Using
the acquisition videos accompanied by some low-detailed geometric information, they
allow the generation of photo-realistic virtual views.
The Layer Depth Image (LDI) representation [34,43] is one of these IBR approaches.

In this representation, pixels are no more composed by a single color and a single
depth value, but can contain several colors and associated depth values. It extends
the 2D+Z representation, but instead of representing the scene with an array of depth
pixels (pixel color with associated depth values), each position in the array may store
several depth pixels, organised in layers. This representation is shown in Figure 10.
I-LDI Layers turn out to be more compact, with a less spread pixel distribution, and
thus easier to compress than LDI, while enabling visual rendering of similar quality
as with classical LDI. It e�ciently reduces the multi-view video bitrate while enabling
photo-realistic rendering, even with complex scene geometry.
This representation reduces e�ciently the multi-view video size, and o�ers a fast

photo-realistic rendering, even with complex scene geometry. Various approaches to
LDI compression have been proposed [14, 43, 44], based on classical LDI's layers con-
structions [8, 43]. The problem is that layers generated are still correlated, and some
pixels are redundant between layers.
This paper addresses the problem of LDI construction aiming at improving the

trade-o� between compactness or compression e�ciency and original or virtual view
rendering quality. The �rst construction method is incremental, hence the name incre-
mental LDI (I-LDI). The iterative construction procedure allows reducing the inter-
layer correlation. The number of layers is signi�cantly reduced for an equivalent �nal
rendering quality. Techniques are then described to overcome visual artifacts, like
sampling holes and ghosting artifacts [8,31,45]. The I-LDi construction method allows
reducing the correlation between layers. However, artifacts remain which result from
depth discontinuities, in particular after depth map compression.
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Figure 10: Two �rst layers (color + depth map) of a classical LDI.
Synthesized from �Ballet� [45], views 4�3�5 at t=0, with incremental method [17].

In order to further improve the trade-o� between the compactness of the representa-
tion and the quality of the view synthesis, a novel object-based LDI representation is
then proposed. This representation organises LDI pixels into two separate layers (fore-
ground and background) to enhance depth continuity. The number of layers inside a
LDI is not the same for each pixel position. Some positions may contain only one layer,
whereas some other positions may contain many layers (or depth pixels). If several
depth pixels are located at the same position, the closest belongs to the foreground,
visible from the reference viewpoint, whereas the farthest is assumed to belong to the
background. If there is only one pixel at a position, it is a visible background pixel,
or a foreground pixel in front of an unknown background. The construction method
makes use of a background-foreground segmentation method based on a region grow-
ing algorithm. Once the foreground/background classi�cation is done, the background
layer is most of the time not complete. Some areas of the background may not be
visible from any input view. To reconstruct the corresponding missing background
texture, the construction method then uses inpainting algorithms on both texture and
depth map images. The advantage is that the costly inpainting algorithm is processed
once, during the LDI classi�cation, and not during the synthesis of each view. The
resulting object-based LDI representation leads to good compression e�ciency due to
the fact that depth pixels from a real 3D object belong to the same layer, increasing
the compression e�ciency thanks to higher spatial correlation, hence e�ective spatial
prediction of texture and depth map. Moreover, these continuous layers can be ren-
dered e�ciently (in terms of both speed and reduced artifacts) by using mesh-based
rendering techniques.

4.2 LDI representations: Background

The concept of LDI has �rst been introduced in [34], for complex geometries. An
LDI contains potentially multiple depth pixels at each discrete location in the image.
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(a) (b)

Figure 11: Structure of a Layer Depth Image (LDI).

Instead of a 2D array of depth pixels (a pixel with associated depth information), an
LDI is a 2D array of layered depth pixels. A layered depth pixel stores a set of depth
pixels along one line of sight sorted from front to back order. The front element in
the layered depth pixel samples the �rst surface seen along that line of sight; the next
pixel in the layered depth pixel samples the next surface seen along that line of sight,
etc. Figure 11(a) presents the LDI representation as de�ned in [34].
Various methods have been proposed in the literature to construct LDI representa-

tions. They principally di�er on the type of input data they require to operate which
can be either a 3D model, a set of images, or a set of multiple video plus depth se-
quences. Here we consider multi video plus depth input data sets. An LDI can be
generated from real multi-view + depth video sequences by using a warping algorithm.
The algorithm uses a view and the associated depth map to generate a new viewpoint
of the scene.
More precisely, given a set of viewpoints and one depth map per view, the classical

algorithm for constructing a LDI [8, 43] proceeds in three steps, as summarized in
Figure 12. First, an arbitrary viewpoint is chosen as the reference viewpoint. This
reference viewpoint is usually chosen among input viewpoints, but this is not an obli-
gation. Then, each input view is warped onto this reference viewpoint using a DIBR
method. Finally, all these warped views are merged into a single LDI model, where
each pixel position may contain many layered depth pixels. There are many merging
policies depending on the application. Keeping all depth pixels results in unnecessar-
ily highly redundant layers. It is preferable to keep at each pixel location, only pixels
whose depth value signi�cantly di�ers from that of the others. We use a threshold ∆d

on the depth value to eliminate pixels with very similar depth values.
The size of the representation grows only linearly with the observed depth complexity

in the scene. The number of layers is not limited by the de�nition, and depends on
the complexity of the scene. In practice, an LDI is often limited to a small number
of layers. The �rst three layers of such a LDI are shown in Figure 13. Layered pixels
are ordered according to their depth value. The �rst layer is composed of pixels with
smallest depth, the second layer contains pixels with second smallest depth, and so
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Figure 12: Classical LDI construction scheme.

(a) 1st layer (b) 2nd layer (c) 3rd layer

Figure 13: First layers of an LDI frame. 8 inputs views are used for the generation.
(∆d = 0.1)

on. We observe that, except for the �rst one, layers are partially empty, but non-
empty pixels are sparsely distributed all over the layer. Furthermore, many pixels
are redundant between the layers. These characteristics make it di�cult to e�ciently
compress the LDI.
In [31], the authors propose to project the reference view onto each additional view-

point, in order to recover disoccluded textures, so called residual data. These disoc-
cluded depth-pixels can either be preserved onto their original viewpoint, or projected
onto the reference viewpoint to be included into the LDI. The temporal extension of
LDI is called LDV, for Layered Depth Video.
An alternative construction algorithm, that we call I-LDI (for Incremental LDI), is

described in Section 4.3.1. This incremental algorithm reduces the number of pixels
inside an LDI while enhancing the �nal rendering quality. A layer reorganization al-
gorithm is proposed in Section 4.5, improving synthesized virtual views quality, in a
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rate-constrained context. Pixels from each layer are reorganized to enhance depth con-
tinuity. A compression method is also proposed which exploits temporal correlations
ant inter-layer correlations.

4.3 Incremental Layer Depth Image (I-LDI) Representation

This section introduces the incremental construction scheme, based on extra informa-
tion extraction [31]. The algorithm is incremental, which means that input views are
treated sequentially, in a �xed order. Figure 14 illustrates the incremental construction
scheme.

4.3.1 I-LDI construction algorithm

The algorithm starts with an empty LDI, for which the reference viewpoint is chosen
freely. The reference view is used to create an I-LDI with only one layer (the view
itself). The reference viewpoint is often one of the input viewpoints, but is sometimes
an intermediate viewpoint between two input views. Then, this I-LDI is warped it-
eratively on every other viewpoint (in a �xed order). The synthesized view is then
compared with the original acquired view, and the discovered information is isolated,
using a logical exclusion di�erence between the real view and the warped I-LDI to
compute the residual information. This discovered information is warped back into
the reference viewpoint and inserted in the I-LDI layers. By this method, only required
residual information from side views is inserted, and no pixels from already de�ned
areas are added to the L-LDI. On the other hand, all the information present in the
MVD data is not inserted in the I-LDI.
The �rst three layers of such an I-LDI are presented in Figure 15. Compared to LDI

layers, I-LDI layers contain fewer pixels, and these pixels are grouped in connected
clusters. Indeed, with this method, only required extra (or residual) information from
side views is inserted, and no pixels from already de�ned areas are added to the I-LDI.
On the other hand, all the information present in the MVD data is not inserted in the
I-LDI, reducing the correlation between layers.
The ordering of input views and the rendering method used to synthesize virtual

views from the I-LDI are factors which have an important impact on the compactness
of the representation and on the quality of the synthesized views. The �rst input
view to be used in the I-LDI construction is the one which will contribute the most
to the �nal I-LDI. This view should thus be the one for which the camera viewpoint
is the nearest to the reference viewpoint of the I-LDI. The reference viewpoint is very
often chosen as one of the input cameras, in this case, the �rst layer of the I-LDI is
almost identical to the reference view. The only di�erence is located around depth
discontinuities, where the JPF method uses a con�dence scoring to remove ghosting
artifacts. The other views can then be ordered arbitrarily, but local rendering artifacts
may appear, depending on views insertion order. Best results are obtained when input
views are sorted by increasing distance compared to the reference camera. In that
case, each input view contributes to the LDI construction by bringing a little band of
pixels
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Figure 14: Step of I-LDI construction for view i, with residual information extraction.

(a) 1st layer (b) 2nd layer (c) 3rd layer

Figure 15: First layers of an I-LDI frame. All 8 inputs views are used for the generation,
in a B-hierarchical order.
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(a) Point-based view synthesis.

(b) The JPF method.

Figure 16: Residual information obtained with 16(a) a point based view synthesis and
16(b) the JPF method. The �rst column shows the rendered view of an
intermediate I-LDI and the second column shows the corresponding residual
information which should be inserted into the I-LDI.

The rendering method used at each iteration to synthesize virtual views from I-LDI,
should verify some properties. A classical point based projection generates three kinds
of artifacts: disocclusions, cracks and ghosting artifacts. We use the JPF method to
handle cracks without the need of an additional �ltering step. The JPF method also
�lls in disocclusions.

4.3.2 Warping

In this section, we explicit the equations used in the warping process. Let (X,Y, Z, 1)
be a 3D point in homogeneous coordinates, which is projected onto pixel p1 = (x1, y1, 1)
in view V1 and pixel p2 = (x2, y2, 1) in view V2. Pixel coordinates pi in view Vi are
derived from the projection equations:

ωi ·

xiyi
1

 =

Ci1,1 Ci1,2 Ci1,3 Ci1,4
Ci2,1 Ci2,2 Ci2,3 Ci2,4
Ci3,1 Ci3,2 Ci3,3 Ci3,4

×

X
Y
Z
1

 (7)

where Ci is the 3 × 4 projection matrix depending on the viewpoint i, and ωi is
an arbitrary scale factor. Knowing both camera parameters and the depth map Zp1
associated to view V1, the warping equations provide p2 coordinates as a function of
p1 and Zp1 . Warping algorithm works in two steps. The �rst step uses p1 and Zp1 to
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estimate the 3D point (X,Y, Zp1). The second step uses this estimated 3D point to
evaluate the pixel position p2 in the new viewpoint image.
To solve the �rst step, we need to inverse the projection equation (7). Let (L1),

(L2) and (L3) be the three linear equations corresponding to the matrix notation (7)
which are combined as follows:

(C1
2,2 · 1− C1

3,2 · y1) · (L1)
+ (C1

3,2 · x1 − C1
1,2 · 1) · (L2)

+ (C1
1,2 · y1 − C1

2,2 · x1) · (L3)
(8)

Unknown parameters Y and ω1 can then be eliminated by simplifying equation (8)
giving:

X · det
( [
C1
.,1

∣∣C1
.,2

∣∣p1

] )
+ Zp1 · det

( [
C1
.,3

∣∣C1
.,2

∣∣p1

] )
+ det

( [
C1
.,4

∣∣C1
.,2

∣∣p1

] ) = 0 (9)

where C1
.,i is the i

th column of the C1 matrix. A direct form for the point's abscissa X
is given by equation (9), and the same kind of equation could be written to estimate
Y .
Compared to a classical matrix inversion, some coe�cients of the equation (9) only

depend on p1 and do not change during warping of all layered depth pixels at a same
pixel location. By implementing this optimization, we reduce by 49% the number of
multiplications needed to warp a full LDI, and almost as much for it's time consump-
tion.
Each pixel is warped independently of the others. To avoid the use of a depth bu�er,

we implemented the McMillan's priority order list algorithm [21]. Warping results are
shown in �gure 17(a).

4.3.3 Holes �lling by inpainting

Directly applying warping equations may cause some visual artifacts, due mostly to
disocclusion and sampling [8, 31, 45]. This section describes our simple inpainting
method to �ll sampling holes, visible in �gure 17(a).
Let Vp be the pixel color at the p position, and Wp a neighborhood around p.

Unde�ned pixels p can be interpolated as:

V ′p = 1
k

∑
q∈Wp

Vq (10)

where k is the number of de�ned pixels within Wp.
This inpainting solution is used both during the rendering stage, and during the

I-LDI construction. During the rendering stage, it improves the visual quality by
interpolating all missing pixels. During the I-LDI construction, it is used carefully
to �ll only the sampling holes, and to leave disocclusion areas unchanged. Results
are shown in �gure 17(b). If a pixel is unde�ned due to a sampling e�ect, it should
be surrounded by many de�ned pixels, which mean a high k value. If the pixel is
unde�ned due to a large disocclusion area, it should be surrounded by many unde�ned
pixels, which mean a low k value. The classi�cation is done by comparing k with a
threshold ∆k.

26



(a) Basic Warping (b) Sampling holes �lled

Figure 17: View warping and sampling holes �lling

4.4 Ghosting artifacts removal

In real pictures, pixels along object boundaries receive the contribution from both
foreground and background colors. Using these blended pixels during the rendering
stage results in ghosting artifacts (visible in �gure 18(a)). We remove these blended
pixels from the reference view before I-LDI construction. Their color is thus imported
by side cameras during the I-LDI construction.
Blended pixels in a view can be identi�ed by an edge detector performed on the

associated depth map. Let p be a pixel position, we estimate the depth mean d̄p and
depth variance vp within a neighborhood Wp around p. Pixels near a boundary have
a high variance, but among these pixels, only those from the background side of a
boundary may cause a visible artifact. We then remove pixels p such vp > ∆v and
dp > d̄p where ∆v is a threshold.
The result of our ghosting removal method is visible in �gure 18. The silhouette

behind the person is erased.

4.5 Onject-based Layer Depth Image (O-LDI) Representation

In order to overcome artifacts which result from depth discontinuities, in particular
after depth map compression, a novel object-based LDI representation is proposed.
This representation organises LDI pixels into two separate layers (foreground and
background) to enhance depth continuity. If depth pixels from a real 3D object belong
to the same layer, then compression is more e�cient thanks to higher spatial correlation
which improves e�ective spatial prediction of texture and depth map. Moreover, these
continuous layers can be rendered e�ciently (in terms of both speed and reduced
artifacts) by using mesh-based rendering techniques.
The number of layers inside a LDI is not the same for each pixel position. Some

positions may contain only one layer, whereas some other positions may contain many
layers (or depth pixels). If several depth pixels are located at the same position,
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(a) Without boundaries detection. (b) With boundaries detection.

Figure 18: Ghosting artifacts removal results from rendering view. (Wp is a 11 × 11
window)

(a) Foreground. (b) Background. (c) Unclassi�ed.

Figure 19: Initialising state of the region growing algorithm.

the closest belongs to the foreground, visible from the reference viewpoint, whereas
the farthest is assumed to belong to the background. If there is only one pixel at a
position, it is a visible background pixel, or a foreground pixel in front of an unknown
background.

4.5.1 Background-Foreground segmentation

This section presents a background-foreground segmentation method based on a region
growing algorithm, which allows organising LDI's pixels into two object-based layers.
First, all positions p containing several layers are selected from the input LDI. They

de�ne a region R, shown in Figure 19, where foreground and background pixels are
easily identi�ed. ZFGp denotes foreground depth, and ZBGp denotes background depth
at position p. For each position q outside the region R, the pixel Pq has to be classi�ed
as a foreground or background pixel.
The classi�ed region grows pixel by pixel, until the whole image is classi�ed, as

shown in Figure 20. For each couple of adjacent positions (p, q) around the border of
region R such that p is inside R and q is outside R, the region R is expanded to q by
classifying the pixel Pq according to its depth Zq. For classi�cation, Zq is compared to
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(a) Foreground. (b) Background.

Figure 20: Final layer organisation with the region growing classi�cation method.

background and foreground depths at position p. An extra depth value is then given
to position q, so that q is associated with both a foreground and a background depth
value.

Pq ∈


foreground if (ZBGp − Zq) > (Zq − ZFGp )

so ZFGq = Zq and ZBGq = ZBGp
background if (ZBGp − Zq) < (Zq − ZFGp )

so ZFGq = ZFGp and ZBGq = Zq

Figure 20 shows the result of classi�cation by region growing.

4.6 Background �lling by inpainting

Once the foreground/background classi�cation is done, the background layer is most
of the time not complete (see Figure 20(b)). Some areas of the background may not
be visible from any input view. To reconstruct the corresponding missing background
texture, one has to use inpainting algorithms on both texture and depth map im-
ages. The costly inpainting algorithm is processed once, during the LDI classi�cation,
and not during each view synthesis. Figure 21 shows the inpainted background with
Criminisi's method [10].

4.7 Compression

Both classical LDI, I-LDI and object-based LDI are compressed using the Multi-view
Video Codec (MVC) [40], both for texture layers, and for depth layers. The MVC
codec, an amendment to H.264/MPEG-4 AVC video compression standard, is DCT-
based and exploits temporal, spatial and inter-layer correlations. However, MVC does
not deal with unde�ned regions on LDI layers. To produce complete layers, each
layer is �lled in with pixels from the other layer, at the same position, as shown in
Figure 22. This duplicated information is detected by the MVC algorithm, so that
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(a) Texture. (b) Depth map.

Figure 21: Background layer obtained after texture and depth map inpainting with
the Criminisi's method [10].
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(a) Foreground.
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(b) Object-based background.

Figure 22: Final layers of an object-based LDI.

it is not encoded into the output data �ow and it can be easily removed during the
decoding stage.

4.8 View Synthesis

There exists a number of algorithms to perform view rendering from a LDI. This section
brie�y presents the two methods which have been implemented, focusing respectively
on e�ciency and quality.
The fastest method transforms each continuous layer into a mesh, which is rendered

with a 3D engine, as shown in Figure 23. The foreground mesh is transparent on
background region in order to avoid stretching around objects boundaries. Our �rst
experiments, with this method, have shown the feasibility of real time rendering for
an eight-views auto-stereoscopic display.
The second method improves the visual quality of synthesized views by using a point-
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Figure 23: Fast 3D rendering of a high detailed foreground mesh, onto a low detailed
background mesh.

based projection. It combines the painter's algorithm proposed by McMillan [21], and
di�usion-based inpainting constrained by epipolar geometry. Remaining disocclusions
areas are �lled in with background texture. Figure 24 presents rendering results for
both classical and object-based LDI.

4.9 Experimental results

Experiments have been conducted on Breakdancers and Ballet data sets fromMSR [45].
Parameters of the 8 acquisition cameras and all associated depth maps are already es-
timated and provided within the data. The viewpoint number 4 is considered as the
reference viewpoint. Only frames for time t = 0 are considered.
For the LDI construction, all 8 acquired views are warped into the reference view-

point. A small merging threshold value ∆d = 0.1 is used in following comparisons. For
the I-LDI construction, views are inserted in a B-hierarchical order (4; 0; 7; 2; 6; 1; 5; 3).
Thresholds are set by experiments: ∆v = 20 for boundary detection and ∆k = 60% ·N
for inpainting, where N is the number of pixels within theWp window. Both inpainting
and boundary detection are done within Wp a 11× 11 window.
All 8 input views are used, but all pixels from each view are not inserted in the LDI.

Because of the depth threshold in the LDI construction, and of the exclusion di�erence
in I-LDI construction, some pixels from side views are ignored. Figure 25 presents the
ratio of pixels from each view which is really inserted in the LDI. We can observe that
few pixels are inserted from view 5 to 8, means these views become almost useless with
the I-LDI construction scheme. Using only a subset of acquired views (the reference
and the extreme views) provides almost the same I-LDI layers.
Figure 26 shows the ratio of de�ned pixels in each layers for both LDI and I-LDI

construction schemes. For both constructions, the �rst layer contains 100% of it's
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(a) Classical LDI. (b) Object-based LDI.

Figure 24: Rendering comparison between classical and object-based LDI.

Figure 25: Utilization rate of acquired views during layers construction
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Figure 26: Layers completion rate for LDI and I-LDI

pixels, and di�erences appear for extra layers. For the LDI, extra layers represent
more than 50% of the size (in number of pixels) of the �rst layer, whereas for the I-
LDI, extra layers represent less than 10%. Layers beyond the 3rd one are quite empty
and can be ignored. The visual rendering is of similar quality with both LDI and
I-LDI construction scheme. Local rendering artifacts may appear, depending on views
insertion order.
The rendered quality of object-based LDI is compared with classical LDI on one

side, and state-of-the-art MPEG compression techniques on the other side. Images are
taken from �Ballet� data sets, provided by MSR [45]. Only frames for time t = 0 are
considered.
In the �rst place, a LDI restricted to two layers, is constructed from three input

views: the reference view 4 and side views 3 and 5 alternatively. To deal with un-
recti�ed camera sets and reduce correlation between layers, we use the Incremental
LDI construction algorithm described in [17]. The corresponding object-based LDI is
obtained by applying our region growing classi�cation method on the classical LDI.
Classical LDI and object-based LDI are compressed using the MVC algorithm, as

explained in section 4.7. Several quantization parameters were used, from QP=18 to
QP=54, producing compressed output data �ows with bit-rates going from 1 Mbit/s
to 25 Mbit/s. These compressed data �ows are used to synthesize virtual views onto
viewpoint 6, using the pixel-based projection method.
In the second place, the state-of-the-art method for multi-view video coding is used

with the same input data. Views 1, 3, 5 and 7 are coded with the MVC algorithm
with various quantization parameters, then the compressed views 5 and 7 are used to
synthesize virtual views onto viewpoint 6, using the MPEG/VSRS software [40].
Finally, all synthesized views are compared to the original view 6, using the SSIM

comparison metrics. Figure 27 presents all the results as three rate distortion curves.
For each quantization parameter, object-based LDI can be better compressed than
classical LDI, resulting in a smaller bitrate. The rendering quality is also better,
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Figure 27: Rate distortion curves �rstly for LDI (object-based or not) compressed by
MVC and rendered by our point-based projection, and secondly for multi-
view video compressed by MVC and rendered with VSRS algorithm.

resulting in a higher SSIM for the same quantization parameter. Combining these two
advantages, the rate distortion curve for the object-based LDI is higher than the one
for classical LDI, for every bitrate.

4.10 Conclusions and future work

This paper has presented two methods for constructing layered depth image represen-
tations from natural multi-view images. The �rst method is an incremental procedure
which uses iterative warping. The minimum information to �ll disocclusion areas is
inserted into LDI layers which makes layers easier to compress. They contain 80%
less pixels, and with a more compact distribution. To overcome visible artifacts, some
simple solutions have been proposed. The sampling holes �lling by pixel interpolation
provides good results. The ghosting removal by depth discontinuity detection may
cause some luminosity discontinuity between textures from di�erent views.
In future work, we will investigate an improved disocclusion detection to insert into
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the I-LDI all occluded textures. An alpha merging approach will be used to reduce
luminosity discontinuity artifacts. Finally, the compression stage will be investigated
with a full video sequence.
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5 A content based method for perceptually driven
joint color/depth compression

5.1 Introduction

3D Video applications [37], such as 3D Television (3DTV) or Free Viewpoint Televi-
sion (FTV), require the use of several conventional video sequences to ensure depth
sensation, or to o�er novel views of a scene. For these purposes, the use of color and
geometry information of the scene is the key. MVD data refer to a speci�c represen-
tation of an observed scene and meet this need. They consist in a set of conventional
color video sequences and an associated set of depth video sequences, all acquired at
slightly di�erent viewpoints.
A �rst issue refers to the need for an e�cient MVD compression method, consid-

ering the huge amount of data to be processed. Up to now, there is no standard-
ized compression method for MVD sequences. Most of the proposed compression
methods rely on the extension of state-of-the-art 2D codecs. The most popular is
H264/AVC [39] whose 3D extension (standardized for Multi-View-Video representa-
tion, MVV), namely H.264/MVC for Multi-view Video Coding [24], has been the
subject of many adaptations for MVD compression [30]. However, the exploitations of
the spatial inter-view redundancies in both types of data turn out to be insu�cient in
particular cases. For instance, Merkle et al. [27] observed that in case of large disparity
between the di�erent views of multi-view sequences, the predictions structures did not
result in an improved coding e�ciency.
A second issue refers to the synthesis of novel views from decoded data. New in-

termediate viewpoints can be generated from depth and color data through Depth-
Image-Based-Rendering [15] (DIBR) methods. Previous studies already pointed out
the impact of depth encoding on the synthesized frames. Compression-related arti-
facts that may be imperceptible in depth maps cause important distortion during the
synthesis process [22].
Many methods have been proposed recently in order to address the aforementioned

issues. Various encoding strategies are possible to achieve depth map compression.
Several studies have proposed bit-rate-control methods [12,29] relying on the objective
quality of the resulting synthesized views, or on a distortion model [19]. A popular
and e�cient strategy is the post-processing of depth maps after decoding [13]. Depth-
adapted encoding methods [16, 28, 33] have also been proposed. Section 5.2 gives a
review of these methods. Our work is in line with the depth-adapted encoding strategy
since the method proposed in this paper relies on a content-based representation of
the depth map.
The main purpose of this novel framework is to preserve the consistency between

color and depth data. Our strategy is motivated by previous studies [22] of artifacts
occurring in synthesized views: most annoying distortions are located around strong
depth discontinuities [6] and these distortions are due to misalignment of depth and
color edges in decoded images. Thus the method is meant to preserve edges and to
ensure consistent localization of color edges and depth edges. It is based on a 2D
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still image codec, namely LAR [32] (Locally adapted Resolution). The LAR codec is
based on a quad-tree representation of the images. In this quad-tree, the smaller the
blocks, the higher the probability of the presence of a depth discontinuity. Analogously,
big blocks correspond to smooth areas. The quad-tree representation contributes in
the preservation of depth transitions when target bit-rate decreases. Another original
contribution of the proposed method relies on the use of the decoded color data as an
anchor for the enhancement of the associated decoded depth, together with information
provided by the quad-tree structure. This is meant to ensure consistency in both types
of data after decoding.
This paper is organized as follows: Section 5.2 introduces the compression issues

for MVD data. Section 5.3 presents the proposed method. Section 5.4 de�nes the
experimental protocol and gives the results. Finally Section 5.5 concludes the paper.

5.2 Compression of mvd sequences and quality of synthesized
views

This section presents the main issues related to MVD compression and a review of the
proposed methods addressing these problems in the literature.
Most of the proposed compression methods for MVD data rely on the extension

of state-of-the-art 2D codecs. Sets of color and depth sequences can be separately
encoded through existing 2D methods. This is an evident encoding strategy because
depth maps, being monochromatic signals, are considered as conventional sequences.
However, depth maps are not natural images. They provide structural information of
the scene: large and smooth regions often belong to the same depth plane. The closer
the depth plane is from the acquiring camera, the lighter the region. This leads to
smooth areas with sharp edges. The edges correspond to depth transitions.
Previous studies [5,25,42] have shown that coding artifacts on depth data can dra-

matically in�uence the quality of the synthesized view. Particularly, the sharp edges of
the depth maps are prone to synthesis errors even when depth maps are uncompressed.
As pointed out in a recent study [6], the synthesis process, with DIBR methods, induces
speci�c artifacts located around the edges of objects. These errors are notably due
to depth map inaccuracy, numerical rounding, hole �lling method in DIBR, or both.
Consequently, errors occurring in these speci�c critical areas of the depth maps are
enhanced by coarse compression. The impacts of depth compression on visual quality
of synthesized views can be explained by the fact that 2D codecs are optimized for
human visual perception of color images. Thus, artifacts, that may be imperceptible
when visualizing the depth map, produce distortions because during the synthesis, the
warping process relies on wrong depth values. The impacts of depth compression was
observed in di�erent studies [5, 22].
Consequently, e�orts have been directed in order to propose depth compression

methods more adapted to the special features of depth maps. Morvan et al. [28]
proposed to represent the depth map thanks to platelets (piecewise linear functions).
The depth map is �rst divided through quad-tree decomposition and each block is
approximated by a platelet. The platelet-based compression outperformed JPEG2000
in the study. An additional interesting comparison would be that against H.264/AVC.
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Moreover, in this study, the gain is evaluated with respect to the depth distortion
(in PSNR). This protocol of validation is questionable because since the artifacts in
the two compared methods are di�erent, their impact on the synthesis may also be
di�erent. Yet, the quality of the synthesized views generated from the decoded depth
maps is not presented. Graziosi et al. [16] also proposed a block partioning method
associated to a least-square prediction for depth map compression. In this method,
the validation is also achieved by comparing the depth map distortion from di�erent
compression scheme (JPEG2000 and H.264 intra). The method includes the use of a
dictionary, containing concatenations of scaled versions of previously encoded image
blocks. Sarkis et al. [33] proposed a depth compression method based on a subsampling
in the frequency domain followed by a reconstruction using a non-linear conjugate
gradient minimization scheme. The method also meant to preserve the particular
features of the depth map. The method outperformed JPEG and JPEG2000.
As Morvan et al. and Graziosi et al., our method relies on a block partioning. Con-

trary to the aforementioned methods, we choose to evaluate the performances of our
method against H.264, whose artifacts in the depth map induce less annoying distor-
tions than JPEG2000 (Gibbs e�ect in the depth map induce disastrous distortions in
the synthesized view). The quantization used in our method is also di�erent since
we choose to modify the block partioning of the depth map according to the target
bit-rate. The next section will present our proposed method that is meant to preserve
object edges to maximize the synthesized view quality.

5.3 Proposed method

Since color and depth sequences can be encoded through two di�erent schemes, the
proposed method enables the use of any compression method for the color sequences.
In our case, we use H.264 for color sequence encoding since it has proved its e�ciency
for conventional color media compression. Moreover, encoding color with a standard
codec enables backward compatibility with classical 2D video. This section presents
the depth map encoding strategy.

5.3.1 Depth map encoding method

To address the �rst constraint regarding the preservation of the depth map edges, a
content-based representation and encoding is required. We choose to base our method
on the LAR method because the quad-tree representation of this method matches
the characteristics of the depth maps. The LAR method is based on the assumption
that an image can be considered as the combination of two components: the global
information and the details, which are respectively the �at image and the local texture.
The �at image and the local texture both rely on the same quad-tree representation.
Each pixel in the �at image is assigned the mean value of the pixels of the block it
belongs to. Each pixel in the local texture is then assigned the compensated error.
Figure 28 depicts this principle.
Since depth maps do not contain high frequency areas, the local texture (that is to

say the details) is not essential and represents an avoidable additional cost of compres-
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Figure 28: Assumption of LAR method.

Figure 29: Quad-tree decomposition (Book Arrival).

sion. Thus, only the �at image is considered and encoded in the method we propose.

Quad-tree decomposition The quad-tree decomposition is dependent on the local
gradient of the depth image. Given a threshold Y for the local gradient, the image
is split into blocks: the higher the local activity, the more splits. This leads to small
blocks around object edges and bigger ones in continuous areas.
We denote P [Nmax...Nmin] the quad-tree partition with Nmax and Nmin the maximal

and minimal allowed block sizes, expressed as power of 2. Let I be an image and
I (x, y) a pixel of I with coordinates(x, y). The block bN (i, j) in I is noted I(bN (i, j)),
expressed as:

bN (i, j) =


(x, y) ∈ Nx ×Ny

| N × i ≤ x < N × (i+ 1) ,
N × j ≤ y < N × (j + 1) ,
N ∈ [Nmin . . . Nmax]

(11)

As explained before, the quad-tree partition P [Nmax...Nmin]relies on the analysis of
the local gradient. Then, the decomposition can be expressed as:
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∀I(bN (i, j)), N =


N ′ ∈ [Nmax . . . Nmin[ if max(I(bN

′
(i, j))−min(I(bN

′
(i, j)) ≤ Y,

and if ∃(k,m) ∈ 0, 12

|max(I
(
b
N′
2 (i+ k, j +m)

)
−min(I(b

N′
2 (i+ k, j +m)) > Y

Nmin otherwise
(12)

The value of the threshold Y strongly in�uences the �nal representation of the
image. Figure 29 gives an example of quad-tree decomposition for the �rst frame of
Book Arrival sequence.

Compression scheme The compression scheme in the LAR method is based on a
pyramidal decomposition [3]. The pyramid, built from I, consists of a set of images,
noted as {Ll}l=lmaxl=0 , as a multi-resolution representation of the image, where lmax is
the top of the pyramid and l = 0 is the lowest level, i.e. the full resolution image. At
each level, the image is expressed by:{

l = 0, L0 (x, y) = I(x, y)

l > 0, Ll(x, y) =
⌊
Ll−1(2x,2y)+Ll−1(2x+1,2y+1)

2

⌋ (13)

The LAR method allows the prediction of each level of the pyramid, from top to
bottom. For each level, the associated image of errors, also relying on the quad-tree
decomposition, can be transmitted to compensate the prediction errors. At the decoder
side, from the top to the bottom, the image is reconstructed.
Compression cost is mainly due to the encoding of small blocks. This is why in

our proposed method small blocks are not transmitted (those are blocks whose size is
such as N = Nmin). This is achievable thanks to the pyramidal decomposition. The
encoding of small blocks is related to the image of errors corresponding to the lowest
level, i.e. L0. The lowest level is not encoded in the method we propose, and the image
will be re�ned at the decoder side thanks to the analysis of the values of the nearest
neighbor blocks whose size is such as N > Nmin: they will be predicted, depending
on the values of their closest larger blocks. This allows bit-rate savings. The pseudo
code of this prediction is given in Algorithm 1.

5.3.2 Rate control in depth map

Pasteau et al. [32] suggested applying a quantization step depending on the block sizes,
in the case of conventional images. Our experiments revealed that in the case of depth
map compression, this was not an adequate strategy because the smaller the blocks,
the coarser was the quantization (this allowed bit rate savings because small block
are costly). Yet, small blocks correspond to strong depth discontinuities and errors
occurring in these areas may have disastrous e�ect at the synthesis step. Figure 30
shows the impact of the quantization as suggested in Pasteau et al. [32] (�rst column)
at 0.06 bpp. Depth transitions are highly degraded and will result in errors in the
synthesized frame (third column, crumbling artifacts around the head and around

40



Algorithm 1 Prediction of lowest level of the pyramidal decomposition

Require: L̃l is the estimated representation of the image at the decoder side, for level
l, P [Nmax...Nmin] is the quad-tree partition.
G.init(xinit)
for l = lmax . . . l1 do

Estimate L̃l as in the LAR method
end for

for each block of P such as N = Nmax . . . Nmin do

Given P [Nmax . . . Nmin] , then L̃0(bN (i, j)) = L̃1

end for

for each block of P such as N = Nmin do

L̃0(b(Nmin)(i, j)) = Mean value of the closest block bN of P such as N > Nmin
end for

return L̃0

the legs of the chair). The synthesized frames obtained in Figure 30 are generated
from original color data and decoded depth maps in order to visually assess only the
impact of depth quantization (i.e. not the combined e�ect of both color and depth
compression).
Thus, we propose a quantization achieved through the evolution of the quad-tree

representation of the image. Small blocks are costly and a way to reduce the bit-rate is
to reduce the number of small blocks. This implies that the quad-tree representation
can change according to the target bit-rate. The number of small blocks is directly
related to the value of the threshold Y . Thus, an increasing threshold Y decreases
the bit-rate, so that the representation of the image contains larger blocks. This
corresponds to a spatial quantization that a�ects the values of the depth. It results in
assigning the same depth to object that were not formerly in the same depth plane. The
dynamic range of the depth is reduced but the global structure is preserved. Figure 30
shows that the proposed method (second column) renders sharp depth transitions. The
synthesized frame in Figure 30, fourth column, shows improvements compared to the
previous strategy, third column. Figure 31 gives the quad-tree representations and the
resulting depth maps using two di�erent thresholds for the quad-tree decomposition.
It shows that the semantic information of the image is preserved.
In this study, we empirically determined a model allowing the choice of Y depending

on the target bit-rate. Based on the analysis of the synthesized view quality scores
obtained for various values of Y , and according to the corresponding bit-rate R of the
encoded frames, we opted to an exponential model such as:

Y = aebR (14)

R is the target bit-rate, a and b are two constants. Previous experiments showed
that a = 30 and b = −12 gave good results for the tested sequence. Note that these
values will di�er from one MVD sequence to another, since the representation of the
quad-tree depends on the structure of the sequence, thus Y model depends on the
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Figure 30: Comparison of two decoded depth maps at 0.06bpp, using the LAR method
or the proposed method of rate control.
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Figure 31: Quantization of the depth map.

depth structure of the sequence.

5.3.3 Depth reconstruction at decoder side

To address the second constraint regarding the consistency between color and depth
edges, reconstruction step is included at the depth map decoder side, right after the
�rst estimation of the smallest blocks, as explained in Section 5.3.1. The additional step
described in this section can be considered as a second pass of the depth reconstruction.
It consists of a multi-lateral �ltering aided by the quad-tree representation whose
principles are partially based on the description of Lai et al. method [18]. In our
proposed method, the decoded associated color image is used to enhance only the
blocks smaller or equal to 4 × 4 in the depth map. Small blocks are likely to be
located around depth discontinuities. Thus, it is believed that improving the accuracy
in these regions, according to the decoded associated color, will ensure consistency
between color and depth edges. Let C̃ be the decoded associated color image, and
L̃0 the lowest level image of the depth pyramidal decomposition. Let Ω be the set of
pixels such as:

Ω = L̃0(x, y)
∣∣∣L̃0 (x, y) ∈ L̃0

(
bN (i, j)

)
, N ∈ [Nmin . . . 4] (15)

The reconstruction, noted L̃0r (x, y), of any pixel belonging to Ω is expressed as:
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Figure 32: Overview of the proposed method.

∀ L̃0 (x, y) ∈ Ω,

L̃0r (x, y) = L̃0r (p) =
1

K

∑
q∈Γ

L̃0 (p)e
− ‖p−q‖2σd e−

‖L̃0(p)−L̃0(q)‖
2σs e−

‖Luma(p)−Luma(q)‖
2σc

(16)

K =
∑
q∈Γ

e
− ‖p−q‖2σd e−

‖L̃0(p)−L̃0(q)‖
2σs e−

‖Luma(p)−Luma(q)‖
2σc (17)

Γis the pixel window used for the calculation; Luma is the luminance component of
the decoded color image; Luma(p) and Luma(q) are pixels of the luminance component
of the decoded color image; σd, σs, σcare standard deviations related to the spatial
domain, the depth range domain (similarity of depth values), and the color range
domain, respectively.
Figure 32 gives the overview of the proposed method. In this �gure, at the encoding

step, black blocks correspond to non transmitted blocks.

5.4 Experiments

5.4.1 Protocol

The proposed method is compared to state-of-the-art codec H.264 in intra mode. As
preliminary studies, the experiments concern only still images. First frames of views 6
and 10 from Book Arrival were encoded through both encoding methods. Afterwards,
decoded color and depth maps were used to compute the intermediate view 8, through
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Figure 33: Overview of the experimental protocol

the reference software, VSRS 3.5 [40]. Since view 8 is among the originally acquired
views, it is considered as a ground truth for the quality assessments. In this paper,
the quad-tree decomposition parameters are Nmin = 1 and Nmax = 12. In Equation
14, a = 30 and b = −12. Finally, in Equation 7, σd = 4, σs = 10, σc = 3. The color
images are encoded with a QP varying from 0 to 50. Figure 33 gives an overview of
the experimental protocol.

5.4.2 Results

For the performance comparisons, a pixel-based metric (PSNR) and a more perception-
oriented metric VIF (Visual Information Fidelity [35]) are considered. Figure 34 de-
picts the rate-distortion curve obtained by computing the PSNR scores, and the VIF
scores of the synthesized views, with respect to the original acquired view. At high bit-
rates (higher than 2bpp), the proposed method obtains better PSNR scores. However,
under 2bpp, H.264 performs better.
The curve based on VIF scores shows that H.264 and the proposed method give sim-

ilar results at high bit-rates (higher than 2bpp). However, contrary to the curve based
on PSNR, the curve based on the perception-oriented VIF shows that the proposed
method performs better at low bit-rates.
A visual appreciation is also useful to evaluate the methods. Figure 35 gives snap-

shots of the obtained synthesized views for 0.1bpp and 0.9bpp. Ghosting e�ect is
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Figure 34: Performance comparisons, in terms of PSNR and VIF, between the original
view and the synthesized view.

perceptible with both methods behind the head of the man. However, the quad-tree
based method preserves better the vertical edges: the vertical dark lines of the posters
are better rendered with the data encoded with the proposed method. At low bit-rate
(0.1bpp), Figure 35 gives snapshots of the synthesized views. Although, PSNR score
shows lower performances for the proposed method at low bit-rate, the observation
of Figure 35 shows improvements around the edges of the synthesized objects. The
ghosting e�ect around the head of the man is less strong with the proposed method.
The crumbling artifacts occurring around the leg of the chair at 0.1bpp with H.264
are no longer perceptible with the proposed method.

5.5 Conclusion

We proposed a novel framework whose main purpose is to preserve consistency between
color and depth edges. Depth encoding is based on a 2D still image codec, namely LAR
(Locally Adapted Resolution). It consists in a quad-tree representation of the images.
The quad-tree representation contributes in the preservation of edges in depth data.
The originality of the proposed method relies on the proposed quantization method and
the use of the decoded color data as an anchor for the associated depth enhancement at
the decoder side. The proposed method showed visual performances similar to H.264
at high bit-rates and some improvements at lower bit-rates because it preserves better
the object edges. Future work should focus on the use of a more perception-oriented
criterion for the quad-tree decomposition. A method to choose automatically the Y
model, for any sequence, should also be investigated. Finally, the method should be
extended to exploit temporal redundancies in the whole sequence.
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Figure 35: Snapshots of synthesized views from data encoded with H.264 and from
data encoded with the proposed method.
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