
HAL Id: hal-00773172
https://hal.science/hal-00773172v1

Submitted on 11 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Livrable D2.2 of the PERSEE project :
Analyse/Synthese de Texture

Josselin Gautier, Christine Guillemot, Vincent Jantet, Olivier Le Meur, Luce
Morin, Mehmet Turkan

To cite this version:
Josselin Gautier, Christine Guillemot, Vincent Jantet, Olivier Le Meur, Luce Morin, et al.. Livrable
D2.2 of the PERSEE project : Analyse/Synthese de Texture. 2011, pp.57. �hal-00773172�

https://hal.science/hal-00773172v1
https://hal.archives-ouvertes.fr

Projet PERSEE
Texture analysis and synthesis

n ANR-09-BLAN-0170

Livrable D2.2 1/11/2011

Del 2.2: Analyse/Synthese de Texture

Josselin GAUTIER INRIA
Christine GUILLEMOT INRIA
Vincent JANTET INRIA
Olivier LE MEUR INRIA
Luce MORIN INSA

Mehmet TURKAN INRIA

Contents

1 Executive Summary 3

2 Texture synthesis for image prediction 5
2.1 Neighbor embedding techniques . 7

2.1.1 Template Matching . 8
2.1.2 Average Template Matching (ATM) . 9
2.1.3 Locally Linear Embedding . 9
2.1.4 Non-negative Matrix Factorization . 11

2.2 Performance illustration for still image coding . 14
2.2.1 Encoder Structure . 14
2.2.2 Impact of Sparsity Constraint and Quantization Noise 15
2.2.3 Experimental Setup . 16
2.2.4 Prediction performance with MSE criterion 16
2.2.5 Compression performance with RD criterion 18

3 Texture synthesis for 2D/3D image inpainting 21
3.1 Overview of examplar-based inpainting . 21
3.2 New Priority computation . 22

3.2.1 Tensor-based priority computation . 23
3.2.2 Hierarchical tensor-based priority computation 24
3.2.3 Edge-based priority computation . 25

3.3 Propagating texture and structure information 25
3.3.1 Template Matching along the Isophote direction 26
3.3.2 Hole filling based on neighbor embedding techniques 27

3.4 Performance illustration of tensor-based priority and isophote constrained TM . 28
3.5 Performance illustration of the neighbor embedding techniques 29

4 Texture synthesis for 3D inpainting in virtual view synthesis 33
4.1 Algorithm . 33

4.1.1 Depth-aided and direction-aided priority 34
4.1.2 Patch matching . 35

4.2 Implementation . 35
4.3 Results . 36

1

5 Joint projection/inpainting method 38
5.1 Background work . 40
5.2 Projection-based disocclusion handling . 42

5.2.1 Disocclusion detection . 42
5.2.2 Disocclusion filling . 45
5.2.3 Results . 46

5.3 Virtual view rendering . 46
5.3.1 View extrapolation with full-Z depth-aided inpainting 47
5.3.2 Proposed full-Z depth-aided inpainting . 47

5.4 Rendering Results . 47

2

Chapter 1

Executive Summary

This document describes texture analysis tools developed in the framework of the PERSEE
project to be used both for prediction in 2D and 3D video codecs as well as in the rendering step of
the 3D coding/transmission/rendering chain. Texture synthesis and image inpainting techniques
have shown remarkable progresses over the past years and appear to be promising directions
for a number of image processing problems: compression, loss concealment, and hanlding of
disocclusions in the context of virtual view synthesis for free viewpoint navigation.

Existing methods include parametric techniques based on a parameterized texture model,
non parametric methods, or graph-cut techniques which aim at preserving structural continuity.
In parametric and non-parametric synthesis techniques, the Probability Density Function (PDF)
of a given texture example is approximated and sampled to generate similar texture samples.
Parametric synthesis approaches approximate the PDF of the texture using a compact model.
Non-parametric approaches typically formulate the texture synthesis problem based on Markov
Random Fields (MRF). Another family of techniques based on sparse approximations has also
apperaed recently for texture synthesis in contexts of prediction and inpainting.

In this deliverable, new methods of prediction and inpainting inspired from examplar-
based techniques which have been developed in the PERSEE project are described. The key
contributions underlying these new methods concern the introduction of new priority terms for
processing the patches to be completed as well as the approximation methods which are based
on neighbor embedding techniques rather than simple template matching. These methods have
been used both for prediction and inpainting. The resulting prediction technique (described
in Chapter 2) has been integrated and evaluated in a still image codec. A solution based on
a particular neighbor embedding, which can be seen as an average of template mathcing, has
also been integrated as in an HEVC-based video codec, and assessed in this context. A new
examplar-based inpainting method has been developed and is presented in Chapter 3.

These solutions have then been used for handling disocclusions which occur when extrap-
olating virtual view from one single 2D+depth input view or when interpolating virtual views
from multiple input video plus depth views. Towards this goal, the priority computation has
been extended in prder to take into account the depth information available in a 3D (multi-view
plus depth) application. The resulting depth-aided inpainting technique, with the renedering
results obtained, is described in Chapter 3Dinpainting.

In virtual view synthesis, these methods for disocclusion handling in general follow a
step which consists in projecting the input view unto the virtual view point. Both processes -
inpainting and projection - can thus benefit from a coupling of the two steps. This was the scope of

3

another direction axis of the project. This led to the introduction of a joint projection/inpainting
technique which is described in Chapter 5.

These results have been published in international journals [1], [2] and in international
conferences [3], [4], [5].

4

Chapter 2

Texture synthesis for image
prediction

Closed-loop intra prediction is a key component of image compression algorithms. For example,
in H.264/AVC, there are two intra-frame prediction types called Intra-16x16 and Intra-4x4 [6].
Each 4x4 block is predicted from prior encoded pixels of spatially neighboring blocks. In addition
to the so-called “DC” mode which consists in predicting the entire 4x4 block from the mean of
neighboring pixels, eight directional prediction modes have been specified. The prediction is
done by simply “propagating (interpolating)” the pixel values along the specified direction. This
approach is suitable in the presence of contours when the directional mode chosen corresponds
to the orientation of the contour. However, it fails in more complex textured areas.

An alternative spatial prediction algorithm based on template matching (TM) has
been described in [7]. A so-called template is formed by previously encoded pixels in the close
neighborhood of the block to be predicted. The best match between the template of the block
to be predicted and candidate texture patches of same shape as the template, within a causal
search window, allows finding the predictor of the block to be predicted. The approach in [7] has
later been improved in [8] by averaging multiple template matching predictors, including larger
and directional templates, resulting in up to 15% rate saving when included into H.264/AVC
intra-prediction.

A prediction algorithm based on sparse approximation techniques has been introduced
in [9]. The goal of sparse approximation techniques (e.g., matching pursuit (MP) [10] or orthog-
onal matching pursuit (OMP) [11]) is to look for a linear expansion approximating the analyzed
signal in terms of functions chosen from a large and redundant set (dictionary). In [9], image
prediction is regarded as a problem of signal extension from noisy data taken from a causal
neighborhood. The sparse signal approximation is run with a set of masked basis functions, the
masked samples correspond to the location of the pixels to be predicted. The basic principle
of the approach is to first search for a linear combination of masked basis functions which best
approximates known sample values in a causal neighborhood (template), and keep the same lin-
ear combination of basis functions to approximate the unknown sample values in the block to
be predicted. The stopping criterion (which is the energy of the residue signal) is computed on
the known region. To compute it on the causal neighborhood would lead to a residue of small
energy, however, this residue might take large values in the block to be predicted. The number
of atoms (basis functions) selected in order to minimize a given criterion (i.e., the energy of the
residue or a rate-distortion cost function) on the block to be predicted is transmitted to the

5

decoder. The decoder similarly runs the algorithm with the masked basis functions by taking
the previously decoded neighborhood as the known support. The number of atoms selected by
the encoder can thus be used by the decoder as a stopping criterion.

Dictionaries formed by pre-defined DCT or DFT waveforms are used in [9]. These dic-
tionaries are particularly well suited for predicting periodic texture patches. However, the pre-
diction fails for more complex non-periodic structures with discontinuities. The authors in [12]
have considered instead dynamic and locally adaptive dictionaries formed by atoms derived
from texture patches present in a causal neighborhood of the block to be predicted. The princi-
ple of the approach is thus to first search for a linear combination of image patches (stacked as
columns in a matrix A called the dictionary) which best approximates the template, and then
keep the same linear combination of co-locoted pixel values to approximate the unknown sample
values in the block to be predicted. The use of several templates selected by the prediction or
compression algorithm according to either a mean squared error (MSE) or a rate-distorion (RD)
criterion allows improving the prediction or compression performance. This method can be seen
as a generalization of template matching. The TM is indeed a special case when only one iter-
ation is used with a weighting coefficient equal to 1. This method is referred to here as sparse
prediction (SP).

In [13], the image prediction problem is placed in a context of data dimensionality re-
duction using the non-negative matrix factorization (NMF) [14] algorithm. Given a fixed non-
negative dictionary (or basis functions), the underlying main idea is to first obtain an NMF
representation of the support region (template) and keep the same representation parameters to
approximate the unknown pixel values in the block to be predicted. This approach leads to very
good compression performance (a PSNR gain of up to 3 dB when compared with the TM and
the SP methods). Furthermore, it does not require sending extra information (as the iteration
number in the SP method) but on the other hand, its high computational complexity, because
of the update equations and the size of the fixed dictionary, makes difficult the use of several
candidate templates.

In PERSEE, we have pushed further the study of image prediction based on dimen-
sionality reduction algorithms by considering the two methods: NMF and locally linear embed-
ding (LLE) [15]. We first introduce a sparsity constraint, which has already been included in the
LLE algorithm implicitly, into the NMF based prediction method. In the classical method [16],
the sparseness constraints in the NMF algorithm has been achieved by keeping the `2 norm un-
changed and setting the corresponding `1 norm to the desired sparsity. Here, we propose an `0
norm sparsity constraint by initially selecting k, k = 1...K, patches to be used in the prediction
algorithm. The main idea explored here is again to search for a linear combination to approx-
imate the known pixel values in the template, and then keep the same weighting coefficient to
estimate the pixels to be predicted as a linear combination of the co-located pixels in the k
neareast neigbouring (k-NN) patches (for both the NMF and the LLE based methods). The
parameter k controls the sparsity of the data approximation.

The proposed image prediction methods have been evaluated in a complete image codec,
both strict and relaxed sparsity constraints (controlled by the parameter k). A detailed analysis
has been carried out on the prediction quality and the encoding efficiency in comparison to the
sparse approximation based method [12] and also H.264/AVC intra image prediction. The results
obtained show a significant improvement in terms of the rate-distotion gain of the reconstructed
image, after coding and decoding the prediction residue (up to 2 dB and up to 1 dB) when
compared to H.264/AVC intra prediction and to the sparse prediction respectively. Further RD

6

Figure 2.1: C is the approximation support, B is the current block to be predicted, W is the
window from which texture patches are taken to construct the dictionary to be used for the
prediction of B, and S , C ∪B.

gains have been achieved with LLE based prediction method by relaxing the sparsity constraints
and setting the parameter k to 100, or more, at the expense however of extra complexity.

2.1 Neighbor embedding techniques

Let S denote a region in the image containing a blockB of n×n pixels and its causal neighborhood
C used as approximation support (template) as shown in Fig. 2.1. In Fig. 2.1, the region S
contains 4 blocks, hence is of size N = 4n2 pixels, for running the prediction algorithm. However,
we will see later (see Fig. 2.2) that different forms of template C can be considered. In any case,
in the region S, there are known samples (the template C) and unknown samples (the values
of the pixels of the block B to be predicted). The principle of the prediction approach is to
first search for a good approximation for the known pixels in C and keep the same procedure to
approximate the unknown pixel values in B.

Let A denote a so-called dictionary represented by a matrix of dimension N×M, where
N ≤ M. In all prediction methods presented below (template matching, sparse prediction, NMF,
and LLE), the dictionary A is constructed by stacking the luminance values of all patches (having
the same geometric shape as S) in a given causal search window W in the reconstructed image
region as shown in Fig. 2.1. The use of a causal window guarantees that the decoder can construct
exactly the same dictionary.

We denote Ac as the compacted dictionary matrix obtained by masking the rows of the
matrix A which correspond to the spatial location of the pixels of the area B. The compacted
matrix Ac is of size 3n2 ×M. The N sample values of the region S are stacked in a vector b
(by assuming the unknown values in B are equal to zero). The vector b is also compacted in
the vector bc of 3n

2 values, the vector bc thus corresponds to the support region (template) C
organized in a vector form. Let us define another matrix At (of size n

2×M) as the corresponding
spatial dictionary obtained by masking the rows of A with respect to the spatial location of the
pixels of the area C, and assume that bt and b̂t represent the actual and the predicted pixel
values of the block B respectively.

7

2.1.1 Template Matching

The TM algorithm searches for the best match between the template bc and possible candidate
patches (of the same shape as the template) stored in the columns of Ac which are taken from
the causal search window. The problem of template matching can thus be formulated as the
search for the index j of the atom acj in the dictionary Ac (i.e., that is stacked in the jth column
of the matrix Ac) which will minimize the distance dj as

jopt = argmin
j∈{1...M}

{dj} where dj = ||bc − acj ||
2
2, j = 1...M. (2.1)

The signal bt is then simply predicted by copying the pixel values of the candidate atjopt (i.e.,

that is stacked in the jth column of the matrix At) as b̂t = atjopt .

Sparse Prediction (SP)

The principle of the sparse prediction approach is to first search for a linear combination of
basis functions (atoms, or texture patches) taken from the compacted dictionary Ac, which best
approximates the template C, and then keep the same linear combination (the same indexes of
atoms atj in At and the same weights) to approximate the unknown pixel values in B. Sparse
representation algorithm aims at solving the approximate minimization as

xopt = min
x
‖bc −Acx‖

2
2 subject to min ‖x‖0. (2.2)

In practice, one actually seeks an approximate solution which satisfies

min
{
‖x‖0 : ‖bc −Acx‖

2
2 ≤ ρ

}
, (2.3)

for some ρ ≥ 0 characterizing an admissible reconstruction error. Matching pursuit (MP) [10] and
orthogonal matching pursuit (OMP) [11] algorithms have been introduced as heuristic methods
to find approximate solutions to the above problem with tractable complexity.

In the sequel, the OMP algorithm is used and it proceeds as follows. At the first iteration
x0 = 0 and an initial residual vector r0 = bc − Acx0 = bc is computed. At iteration k, the
algorithm identifies the atom acjk in Ac having the maximum correlation with the approximation

error. Let Ak
c denote the compacted matrix containing all the atoms selected in the previous

iterations. One then projects bc onto the subspace spanned by the columns of Ak
c , i.e., one solves

min
xk

‖bc −Ak
cxk‖

2
2, (2.4)

and the coefficient vector at the kth iteration is given as

xk = (Ak
c
T
Ak
c)

−1Ak
c
T
bc = Ak

c
+
bc, (2.5)

where Ak
c
+

represents the pseudo-inverse of Ak
c . Notice that here xk is a vector of coefficients.

All the coefficients assigned to the selected atoms are recomputed at each iteration.
The algorithm at the encoder runs until a pre-specified iteration number K is reached by

keeping track of the MSE or the RD cost function values obtained for the block to be predicted bt,
and finally selects the number of atoms (i.e., image patches used) which minimizes the considered
criterion, leading to an “optimum” sparse vector denoted xopt. The value of the number of atoms

8

Table 2.1: Sparse Approximation based Image Prediction using OMP.
Input: Ac, At, bc, bt, K
Output: Predicted values of unknowns b̂t
Initialization: k = 0, x0 = 0, r0 = bc, A

0
c = [], A0

t = []
do until k = K
k = k + 1;
jk = argmax

j

∣∣AT
c rk−1

∣∣ ;

Ak
c = Ak−1

c ∪ {acjk } and Ak
t = Ak−1

t ∪ {atjk };

xk = Ak
c
+
bc;

rk = bc −Ak
cxk;

pk = Ak
t xk;

end do
Select the optimum k∗ minimizing the selected criterion;
Set b̂t = pk∗

used is then transmitted to the decoder which can similarly search for the sparse approximation of
the template (support region) with the signalled number of atoms. Note that template matching
can be seen as a particular case of the sparse approximation where only one iteration is used and
the weighting coefficient is equal to 1.

The prediction signal b̂t is then calculated by multiplying the matrix At by xopt as

b̂t = Atxopt. Note here that the columns (atoms) of At are first to be normalized with the
norm of corresponding columns of Ac, i.e., atm = atm/‖acm‖2 ∀m, and then the atoms of Ac are
normalized in `2 norm. The complete sparse approximaton based image prediction algorithm is
summarized in Table 2.1.

2.1.2 Average Template Matching (ATM)

ATM can be seen as a simple extension of TM where several patches are combined with uniform
weights. The patch selection process generally proceeds by choosing K number of most similar
patches to the template in the source image. After obtaining K nearest neighboring patches
Ψq̂k , k = 1...K, one uniformly combines colocated pixels of these patches in order to estimate the
fill-in region values as follows

Ψu
p̂ =

1

K

K∑

k=1

Ψu
q̂k
. (2.6)

2.1.3 Locally Linear Embedding

LLE [15] is a constrained optimization algorithm which solves the nonlinear data dimensionality
reduction problem. LLE tries to find a global transformation of the high-dimensional coordinates
into low-dimensional ones by exploiting the locally-linear characteristics of the high-dimensional
data. It aims at preserving the local linear structure of the high-dimensional data in the lower-
dimensional space.

Formally, given M high-dimansional data points consisting of N-real valued vectors Xi,
the LLE method consists of the following steps:

9

1. It first identifies K nearest neighbors Xj per data point Xi for all i, i 6= j. The usual
measure is the Euclidean distance;

2. It then searches for the weights Wi,j, so that each data point is approximated by its
neighbors. The algorithm thus aims at minimizing the cost function,

E (W) =
∑

i

∥∥∥∥∥∥
Xi −

∑

j

Wi,jXj

∥∥∥∥∥∥

2

2

. (2.7)

The weights Wi,j represent the contribution of the jth data point to the reconstruction of
the ith point, and they are constrained to sum to one, i.e.,

∑
jWi,j = 1,∀i. Each data

point Xi can only be reconstructed from its neighbors (i.e., Wi,j = 0 if the data point Xj

does not belong to the neighbors of Xi). The optimal weights satisfying these constraints
are obtained by solving the constrained least squares problem per data point Xi as

Ei (Wj) =

∥∥∥∥∥∥

∑

j

Wj (Xi −Xj)

∥∥∥∥∥∥

2

2

subject to
∑

j

Wj = 1; (2.8)

3. Finally, an embedding cost function is minimized in order to obtain the low-dimensional
global internal coordinates Yi by fixing the weights Wi,j as

ζ (Y) =
∑

i

∥∥∥∥∥∥
Yi −

∑

j

Wi,jYj

∥∥∥∥∥∥

2

2

. (2.9)

Please see [15] for more information.

The LLE method (steps 1 and 2) is here first applied on the template C. One thus
searches for an approximation of the template by a linear combination of its k-NN (k = 1...K)
patches within the search window and then keeps the same weighting coefficients in the linear
combination of the co-located pixels in order to estimate the unknown values of the block to be
predicted. In terms of LLE based method, (2.2) can be re-written as

xopt = min
x
‖bc −Acx‖

2
2 subject to

∑

m

xm = 1 and min ‖x‖0. (2.10)

A sparsity constraint has been imposed (also implicitly by the LLE) onto the problem
by choosing k closest patches to bc in Euclidean space. At iteration k, suppose that Ak

c denotes
the submatrix which contains the selected k atoms (texture patches) in Ac. The algorithm thus
tries to solve the constrained minimization as

min
xk

∥∥∥bc −Ak
cxk

∥∥∥
2

2
subject to

∑

m

xkm = 1. (2.11)

and the optimal weighting coefficients in xk are computed as

xk =
D−1
k 1

1TD−1
k 1

(2.12)

10

Table 2.2: Locally Linear Embedding based Image Prediction.
Input: Ac, At, bc, bt, K
Output: Predicted values of unknowns b̂t
Initialization: k = 0, A0

c = [], A0
t = []

do until k = K
k = k + 1;

jk = argmin
j
{dj} where dj =

∥∥bc − acj
∥∥2
2
;

Ak
c = Ak−1

c ∪ {acjk } and Ak
t = Ak−1

t ∪ {atjk };
Ac ← Ac\{acjk } and At ← At\{atjk };

Calculate local covariance matrix Dk of Ak
c ;

Solve Dkxk = 1 for xk;
xk = xk/sum(xk);
pk = Ak

t xk;
end do

Select the optimum k∗ minimizing the selected criterion;
Set b̂t = pk∗

where Dk denotes the local covariance matrix (i.e., in reference to bc) of the selected k patches
in Ak

c , and 1 is the column vector of ones. In practice, instead of an explicit inversion of the
matrix Dk, the linear system of equations Dkxk = 1 is solved, then the weights are rescaled so
that they sum to one.

Here also, the algorithm at the encoder keeps track of the MSE or the RD cost function
values obtained for the block to be predicted and finally selects the number k of used patches
which minimizes the considered criterion, leading to an “optimum” sparse vector denoted xopt.
The value of the number k is then transmitted to the decoder which can similarly search for the
same LLE approximation of the template with the signalled number. The predicted signal b̂t
is then calculated by multiplying the dictionary At by xopt as b̂t = Atxopt. The complete LLE
based image prediction algorithm is summarized in Table 2.2.

2.1.4 Non-negative Matrix Factorization

NMF is a subspace approximation algorithm which finds a suitable low-rank representation of
the high-dimensional data. In many data analysis tasks the data to be analysed is non-negative,
and classical tools, e.g., principle component analysis (PCA) [17], can not guarantee to maintain
the non-negativity property of the original data in the low-dimensional space. NMF is a recent
method for obtaining such a non-negative representation, which is indeed helpful for physical
interpretation of the results in many data analysis tools such as dimensionality reduction, data
mining, and noise removal.

Formally, given a non-negative matrix Φ ∈ R
N×L and a positive integer M < min {N,L},

the aim is to find non-negative matrix factors A ∈ R
N×M and Ψ ∈ R

M×L, such that Φ ≈ AΨ
where the reconstruction error between Φ and AΨ is minimized. The most widely used cost
function is the squared Euclidean distance, i.e.,

min
A,Ψ

[
1

2
‖Φ−AΨ‖2F

]
subject to A ≥ 0 and Ψ ≥ 0, (2.13)

and NMF algorithm is optimized with the multiplicative update equations as

11

Ψaµ ← Ψaµ

(
ATΦ

)
aµ

(ATAΨ)aµ + ε
, Aia ← Aia

(
ΦΨT

)
ia

(AΨΨT)ia + ε
, (2.14)

where ε is a small constant equal to 10−9 to avoid divide by zero in the update equations. Here,
aµ (or ia) represents the ath (or ith) row and µth (or ath) column elements of the corresponding
matrices respectively. In the standard algorithm, the matrices A and Ψ are initialized with
random non-negative values, and the Euclidean distance ||Φ − AΨ||2F is decreasing under the
above alternating update rules as proven in [14].

The product AΨ is called an NMF of Φ, and the underlying features of Φ are extracted
as basis vectors in A, which can then be used in data analysis tools instead of Φ. Note that Φ
≈ AΨ can be rewritten as b ≈ Ax where b and x represent the corresponding columns of Φ
and Ψ respectively. One can interpret that a column vector b of Φ is approximated by a linear
combination of the columns of dictionary A, weighted by the column vector x of Ψ.

Let us now come back to the problem of image prediction. Given a fixed non-negative
dictionary A ∈ R

N×M formed by texture patches as explained above, and the (non-negative)
data vector b ∈ R

N, the underlying basic idea is to first obtain an NMF representation x of the
support region C and keep the same representation parameters (i.e., weighting coefficients in x)
to approximate the unknown pixel values in the block to be predicted B. The non-negativity
constraints are satisfied for both A and b, similarly for Ac and bc, since the values in the spatial
domain range between 0 and 255.

Assuming the compacted dictionary Ac is fixed for the data vector bc, the NMF formu-
lation for the representation vector x of bc can be written as

min
x

[
1

2
‖bc −Acx‖

2
2

]
subject to x ≥ 0, (2.15)

and the multiplicative update equation for x becomes

xa ← xa

(
AT
c bc

)
a

(AT
c Acx)a + ε

, a = 1...M. (2.16)

Here again, a sparsity constraint can be imposed onto the prediction problem as in (2.2)
by limiting the number of non-zero coefficients in x as

xopt = min
x

[
1

2
‖bc −Acx‖

2
2

]
subject to x ≥ 0 and min ‖x‖0. (2.17)

The selection is done by choosing k-NN (k = 1...K) patches which are close to bc in

Euclidean distance. At iteration k, the algorithm identifies k atoms
[
acj1 , ...,acjk

]
in Ac which

are close to bc, and let Ak
c denote the compacted matrix containing all the atoms selected in the

kth iteration. One then solves,

min
xk

[
1

2

∥∥∥bc −Ak
cxk

∥∥∥
2

2

]
subject to xk ≥ 0 (2.18)

by updating the non-negative and randomly initialized elements of xk as

xka ← xka

(
Ak
c
T
bc

)
a(

Ak
c
T
Ak
cxk

)
a
+ ε

, a = 1...k. (2.19)

12

Table 2.3: Non-negative Matrix Factorization based Image Prediction.
Input: Ac, At, bc, bt, K, T
Output: Predicted values of unknowns b̂t
Initialization: k = 0, A0

c = [], A0
t = []

do until k = K
k = k + 1;

jk = argmin
j
{dj} where dj =

∥∥bc − acj
∥∥2
2
;

Ak
c = Ak−1

c ∪ {acjk } and Ak
t = Ak−1

t ∪ {atjk };
Ac ← Ac\{acjk } and At ← At\{atjk };
initialize xk and t = 0;
iterate until t = T , or change in xk is small

t = t+ 1;

xk ← xk ⊗
(
Ak
c
T
bc

)
�

(
Ak
c
T
Ak
cxk + 10−9

)
;

end iterate
pk = Ak

t xk;
end do

Select the optimum k∗ minimizing the selected criterion;
Set b̂t = pk∗

Figure 2.2: Nine possible modes for the MSE/RD optimized support (template) selection.

The algorithm at the encoder, as in the prediction approach based on sparse approxi-
mations, keeps track of the MSE or the RD cost function values obtained for the block to be
predicted and finally selects the number k of texture patches which minimizes the considered
criterion, leading to an “optimum” sparse vector denoted xopt. The value of the number k is
then transmitted to the decoder which can similarly search for the same NMF approximation
of the template with the signalled number of atoms. In order to obtain the optimum weighting
vector xopt, the update equation is iterated until a pre-defined iteration number T is reached, or
the total change in the elements of the vector x is very small between two consecutive iterations
t − 1 and t, t = 1...T . The predicted signal b̂t is then calculated by multiplying the dictionary
At by xopt as b̂t = Atxopt. The complete NMF based image prediction algorithm is summarized
in Table 2.3.

13

2.2 Performance illustration for still image coding

2.2.1 Encoder Structure

The proposed NMF and LLE based spatial image prediction methods have been assessed in a
still image (or intra frame) coding/compression scheme by comparing it to the TM and sparse
prediction, on one hand as well as to the intra prediction approach based on H.264/AVC on
the other hand. The performance assessment is done both in terms of prediction quality and
PSNR/bit-rate efficiency.

In order to initialize the prediction process, the top 4 rows and left 4 columns of blocks of
size 4x4 are predicted with H.264/AVC intra modes. Once a block has been predicted with the
respective prediction method, the DCT transformed residue is quantized, zig-zag scanned, and
encoded with an algorithm similar to JPEG. In this coding structure, a uniform quantization
matrix with ∆ = 16 is weighted by a quality factor. The quality factor (qf) is increased from
10 to 90 with a step size of 10, and the corresponding weight wqf is calculated by means of the
following equation

wqf =

{
50/qf if qf ≤ 50

2− 0.02qf if qf > 50
. (2.20)

Image blocks are processed in a raster scan order, and the reconstructed image is obtained
by adding the quantized residue to the prediction. A skip mode (the corresponding flag is
arithmetically encoded) has also been included to the encoder to avoid coding the blocks of
prediction residue in which all the transformed and quantized coefficients are zero.

Several forms of support regions (templates) are considered as shown in Fig. 2.2. The
optimum template is selected among nine possible modes. The best mode, as well as the iteration
number k for SP, and the number of used patches (also referred to here as k) for LLE and NMF,
is selected according to two criteria:

• Minimization of the prediction MSE on the unknown block bt in order to observe the
impact on the prediction quality;

• Minimization of an RD cost function of the form JRD = D + λR when the prediction is
used in the coding scheme in order to observe the impact on the encoding efficiency. Here,
D is the distortion (i.e., the sum of squared error (SSE)) of the reconstructed block (after
adding the quantized residue to the prediction), and R is the residue encoding cost which
is estimated as R = γ0M

′ for low bit-rate compression [18] with M′ being defined as the
number of non-zero quantized DCT coefficients, and for DCT basis γ0 = 6.5. By considering
a uniform scalar quantizer with a quantization step ∆ (where the deadzone is equal to 2∆),
the relation between the optimum Lagrange multiplier λopt and the quantization step ∆ is
given by [19]

λopt =
3∆2

4γ0
. (2.21)

The optimization is done in two steps, i.e., first for the selection of iteration number k
in the case of SP, or the optimal number of used patches, k, in the case of the NMF and LLE
method, and then for the selection of template mode type. In terms of encoding, one needs
to add the coding cost of side information, here it is the k value and the template type. This
information is signalled to the decoder using Huffman codes.

14

Figure 2.3: Mean approximation PSNR versus sparsity performance of (left) low (qf = 90),
(middle) medium (qf = 50), and (right) high (qf = 10) quantization noise corrupted (top-row)
Barbara (512x512) and (bottom-row) Foreman (CIF) images using SP, NMF, and LLE based
image prediction algorithms with 4x4 block size. Template mode 1 is used as shown in Fig. 2.2
and k ∈ [1, 50].

2.2.2 Impact of Sparsity Constraint and Quantization Noise

In the prediction methods decsribed above, the dictionary A is constructed by stacking the
luminance values of all patches (having the same geometric shape as S) in a given causal search
region W in the reconstructed image region. When using those methods which are mainly based
on the approximations of a template, a good approximation of the template does not necessarily
lead to a good approximation of the unknown pixel values as the template and the unknown
region pixels may have different characteristics. Furthermore, in an image coding context, at the
decoder side the template information C, as well as the patches stored in the dictionary A, may
not be clean depending on the prediction quality and the residue signal quantization. Therefore,
it is crucial to analyse and to optimize the prediction quality of the unknown pixel values as a
function of sparsity and the quantization noise. This sub-section briefly analyses the effect of
the sparsity constraint on SP, LLE, and NMF based prediction methods in the case where the
image signals are corrupted by various levels of quantization noise.

15

Fig. 2.3 shows the mean prediction PSNR obtained for Barbara (512x512) and Fore-
man (CIF) images with varying sparsity contraints in the case where the image signals (i.e.,
blocks) are simply corrupted by a low (qf = 90), a medium (qf = 50), and a high (qf = 10)
quantization noise with the quantization scheme as described in Sec. 2.2.1. The quality of pre-
dicted signal, in terms of mean PSNR, is significantly improved (up to 1.3 dB) with the NMF
based prediction method when compared to TM and SP, even in the presence of a high quan-
tization noise. In the LLE and SP based prediction methods, the mean prediction PSNR has
its maximum when k ∈ [1, 10] whereas NMF based prediction has its maximum PSNR when
k ∈ [1, 20]. Note here that the mean performance curves of NMF based method look noisy be-
cause of the randomization of the weighting coefficients. For each simulation point k, k = 1...50,
the vector xk is initialized with the same seed of Mersenne twister random number generator.

Another interesting point might be further relaxing the sparsity constraint, which will
increase the computational complexity however, for the sake of a complete analysis of the pro-
posed prediction methods’ global characteristics as a function of sparsity and the quantization
noise. Fig. 2.4 shows the mean prediction PSNR obtained for Barbara and Foreman images for
k ∈ [51, 100]. The mean prediction performance for the LLE based method increases with the
number of atoms (patches) used in the algorithm. However, adding more elements into the NMF
model has negative effect on the performance as in the SP method. Here SP based method stops
iterating for k > 48 since the template mode 1 has 48 known pixels in C for 4x4 block size.
At iteration k = 48, the OMP algorithm constructs a complete orthogonal basis for the known
values in C and the algorithm stops.

2.2.3 Experimental Setup

Three test images are chosen for the simulations as shown in Fig. 2.5. Foreman (the first frame
in the CIF sequence) can be seen as the image which has mainly diagonal edges and smooth
regions. Barbara (512 × 512) contains a combination of smooth and textural regions as well as
the edges. Finally, Roof (512×512) contains highly textural regions. Two sets of tests have been
carried out. The first one makes use of approximations with sparsity constraints. The number of
iterations k, or equally the number of used patches considered in the k-NN search, is varied from
1 to 8, i.e., K = 8. The optimal k value in terms of the selected criterion (i.e., either the MSE
or the RD) is then signalled to the decoder. The second set of experiments relax the sparsity
constraint and take k = K = 100.

In the NMF based prediction method, the maximum iteration number for update equation
(2.19) is set to 100, i.e., T = 100, (see also Table 2.3). However, we have experimentally observed
that the total change in the elements of xk gets very small for t > 5 in the smooth areas, and for
t > 50 in the edgel areas. In the highly textural areas the algorithm iterates upto 100 iterations.

Fig. 2.6 shows the configuration of the search window for 4x4 block size that is used in
the simulations reported in this paper. All possible unique image patches in the search region
are extracted to construct the dictionary matrix A.

2.2.4 Prediction performance with MSE criterion

Fig. 2.7 and Fig. 2.8 demonstrate visually the prediction performance for the test images, a
textural region in Barbara and an edgel region in Foreman images respectively. The optimization
criterion is the minimization of the prediction MSE, and qf = 10 (i.e., at low bit-rates). The
sparsity constraint has been used for these experiments, k is varied from 1 to 8 for SP, NMF and

16

Figure 2.4: Mean approximation PSNR versus sparsity performance of (left) low (qf = 90),
(middle) medium (qf = 50), and (right) high (qf = 10) quantization noise corrupted (top-row)
Barbara (512x512) and (bottom-row) Foreman (CIF) images using SP, NMF, and LLE based
image prediction algorithms with 4x4 block size. Template mode 1 is used as shown in Fig. 2.2
and k ∈ [51, 100].

Figure 2.5: The test images. (a) Foreman (CIF), (b) Barbara (512x512), and (c) Roof (512x512).

LLE based methods.
The quality of the predicted signal, in terms of visual quality, is significantly improved by

the LLE, and even further by the NMF based methods when compared to the SP and H.264/AVC

17

Figure 2.6: The configuration of the search region for 4x4 block size. All possible unique image
patches are extracted from the search region in order to construct dictionary A.

Figure 2.7: Prediction results for a textural region of Barbara image at low bit-rates (qf = 10).
(a) Original image, (b) H.264 intra modes, (c) SP, (d) LLE, and (e) NMF based prediction
methods with MSE criterion and sparsity constraints (k ∈ [1, 8]).

based intra prediction especially for the image regions which contain complex textural structures
and edges. Note here that the performance images shown here do not take the encoding cost of
residue and the side information into account but only the prediction quality in terms of MSE.
Therefore, it is informative rather than conclusive in terms of rate-distortion performance.

2.2.5 Compression performance with RD criterion

Fig. 2.9 shows the total encoding PSNR/bit-rate performance for the test images where the
optimization criterion is the minimization of the RD cost function. One can observe that the
proposed prediciton methods with NMF and LLE improve the encoding performance of the
images especially containing textural regions when compared to the SP and H.264/AVC intra
prediction. A gain up to 2 dB has been achieved by the NMF based method when compared
to H.264/AVC, and up to 1 dB in comparison with the sparse prediction method. Furthermore,

18

Figure 2.8: Prediction results for an edgel region of Foreman image at low bit-rates (qf = 10).
(a) Original image, (b) H.264 intra modes, (c) SP, (d) LLE, and (e) NMF based prediction
methods with MSE criterion and sparsity constraints (k ∈ [1, 8]).

Figure 2.9: PSNR/bit-rate performance for (a) Barbara, (b) Roof, and (c) Foreman images.

the LLE based method outperforms the prediction methods including the SP and H.264/AVC.
Notice that for H.264/AVC intra prediction, only the selected prediction mode number is

19

Figure 2.10: Reconstruction results for a textural region of Barbara image. (a) Original image,
(b) H.264 intra modes (27.56 dB at 0.50 bpp), (c) SP (28.69 dB at 0.48 bpp), (d) LLE (28.68 dB
at 0.49 bpp), and (e) NMF (29.14 dB at 0.48 bpp) based image prediction methods with sparsity
constraints (k ∈ [1, 8]).

signalled to the decoder, however, for the other methods (i.e., SP, LLE, and NMF) the optimum
number of used patches k (equally the iteration number in SP) is signalled in addition to the
optimal template type. Thus, the gain in prediction might not compensate the coding cost of
an extra side information for the images (as Foreman) which contain mostly smooth regions,
and especially directional contours which are higly alligned with the H.264/AVC intra predic-
tion modes. H.264/AVC intra prediction works relatively well for this particular image but is
outperfomed by the other methods for the other test images.

Fig. 2.10 demonstrates a reconstructed textural region of Barbara image with H.264/AVC
intra, SP, LLE, and NMF based image prediction methods.

20

Chapter 3

Texture synthesis for 2D/3D image
inpainting

Image inpainting refers to methods which consist in filling-in missing regions (holes) in an image
[20]. Inpainting techniques find applications in a number of image processing problems: image
editing (e.g. object removal), image restoration, object disocclusion in image based rendering,
image coding, loss concealment after impaired transmission. Existing methods can be classified
into two main categories. The first category concerns diffusion-based approaches which propagate
level lines or linear structures (so-called isophotes) via diffusion based on partial differential
equations [20], [21] and variational methods [22]. In other words, they tend to prolong isophotes
arriving at the border of the region to be filled. The diffusion-based methods tend to introduce
some blur when the hole to be filled in is large.

The second type of approach concerns examplar-based methods which sample and copy
best match texture patches from the known image neighborhood [23], [24], [25], [26], [27], [28],
[29]. These methods have been inspired from texture synthesis techniques [30] and are known
to work well in cases of regular textures. The first attempt to use exemplar-based techniques
for object removal has been reported in [26]. The authors in [25], improve the search for similar
patches by introducing an a priori rough estimate of the inpainted values using a multi-scale
approach which then results in an iterative approximation of the missing regions from coarse to
fine levels. In addition, the candidate patches for the match also include rotated, scaled and
mirrored version of texture patches taken from the image.

In this section, we describe novel inpainting algorithms based on the examplar-based
solution of [24]. The approach is extended along two directions: the first one consists in proposing
new methods for defining the patch filling order. Indeed, as in [24], the proposed methods involve
two steps: first, a filling order is defined to favor the propagation of structure contained in the
patch to be filled in. Second, an approximation of the known samples in the patch to be filled is
performed via template matching or with the help of more elaborate approaches (using neighbor
embedding techniques) is performed in order to find the best candidates to fill in the hole.

3.1 Overview of examplar-based inpainting

Let I be the image and Ω the region to be filled in. Let δOmega be the border of the region
to be filled in. Given a patch Ψp centered at the point p (unknown pixel) located near the
front line, the filling order (also called priority) is defined as the product of three terms: P(p) =

21

C(p)D(p)E(p). The first term, called confidenece term is given by [24]:

C(p) =

∑
q∈Ψp∩(I−Ω) C(q)

|Ψp|
(3.1)

It gives the ratio between the number of known pixels with respect to the total number of pixels
in the patch to be filled in. The term D(p), called the data term, is given by [24]

D(p) =
|∇I⊥p np|

α
(3.2)

where np is a unit vector orthogonal (⊥) to the filling front δΩ in the point p. This second term
increases the priority of the patch having isophotes perpendicular to the filling front. However,
it does not really reflect the predominance of an edge within the patch. Therefore, we introduce
here a third term E(p) which is the ratio of the amount of kwown pixels of the patch which
belong to an edge with respect to the total number of pixels in the patch. Thus E(p) is given by

E(p) =

∑
q∈Ψp∩(I−Ω) δ(q ∈ E)

|Ψp|
(3.3)

where delta() is a binary function which returns 1 when its argument if true and 0 otherwise. E
is the set of edge pixels which is determined by using a canny edge detector.

Figure 3.1 compares the inpainted images with simple template matching (as in [24])
when using the priority function augmented with the “edge” term with respect to the original
priority function.

Figure 3.1: Effect of the edge term in the priority function: Mask of the inpainted region (left);
Inpainting with priority function of [24](middle); Inpainting with the augmented priority function
(right).

3.2 New Priority computation

Two new approaches for computing the priority of the patches to be filled have been conceived.

22

3.2.1 Tensor-based priority computation

Given a patch ψp centered at the point p (unknown pixel) located near the front line, the filling
order (also called priority) is defined as the product of two terms: P (p) = C(p)D(p).
The first term, called the confidence, is the same as in [24]. It is given by:

C(p) =

∑
q∈ψp∩(I−Ω) C(q)

|ψp|
(3.4)

where |ψp| is the area of ψp. This term is used to favor patches having the highest number of
known pixels (At the first iteration, C(p) = 1 ∀p ∈ Ω and C(p) = 0 ∀p ∈ I − Ω).
The second term, called the data term, is different from [24]. The definition of this term is
inspired by PDE regularization methods acting on multivalued images [31]. The most efficient
PDE-based schemes rely on the use of a structure tensor from which the local geometry can be
computed. As the input is a multivalued image, the structure tensor, also called Di Zenzo matrix
[32], is given by:

J =
n∑

i=1

∇Ii∇I
T
i (3.5)

J is the sum of the scalar structure tensors ∇Ii∇I
T
i of each image channel Ii (R,G,B). The

structure tensor gives information on orientation and magnitudes of structures of the image, as
the gradient would do. However, as stated by Brox et al. [33], there are several advantages to
use a structure tensor field rather than a gradient field. The tensor can be smoothed without

cancellation effects : Jσ = J ∗ Gσ where Gσ = 1
2πσ2

exp(−x2+y2

2σ2
), with standard deviation σ. In

this paper, the standard deviation of the Gaussian distribution is equal to 1.0.
The Gaussian convolution of the structure tensor provides more coherent local vector geometry.
This smoothing improves the robustness to noise and local orientation singularities. Another
benefit of using a structure tensor is that a structure coherence indicator can be deduced from
its eigenvalues. Based on the discrepancy of the eigenvalues, this kind of measure indicates the
degree of anisotropy of a local region. The local vector geometry is computed from the structure
tensor Jσ. Its eigenvectors v1,2 (vi ∈ R

n) define an oriented orthogonal basis and its eigenvalues
λ1,2 define the amount of structure variation. v1 is the orientation with the highest fluctuations
(orthogonal to the image contours), and v2 gives the preferred local orientation. This eigenvector
(having the smallest eigenvalue) indicates the isophote orientation. A data term D is then defined
as [34]:

D(p) = α+ (1− α)exp(−
C

(λ1 − λ2)2
) (3.6)

where C is a positive value and α ∈ [0, 1] (C = 8 and α = 0.01). On flat regions (λ1 ≈ λ2), any
direction is favored for the propagation (isotropic filling order). The data term is important in
presence of edges (λ1 >> λ2).
Figure 3.2 shows the isophote directions (a) and the value of the coherence norm (λ1−λ2λ1+λ2

)2 (b).
Black areas correspond to areas for which there is no dominant direction.

23

(a) (b)

(c) (d)

Figure 3.2: (a) direction of the isophotes;(b) coherence norm: black areas correspond to areas
for which there is no dominant direction; (c) Filling with the best candidate (K=1); (d) Filling
with the best 10 candidates.

3.2.2 Hierarchical tensor-based priority computation

The computation of the gradient ∇I as explained above to define the structure tensor presents
some limitations. Indeed, as the pixels belonging to the hole to fill are initialized to a given
value (0 for instance), it is required to compute the gradient only on the known part of the patch
ψp. This constraint can undermine the final quality. To overcome this limitation, a hierarchical
decomposition is used in order to propagate throughout the pyramid levels an approximation of
the structure tensor. A Gaussian pyramid is then built with successive low-pass filtering and
downsampling by 2 in each dimension leading to nL levels. At the coarsest level L0, the algorithm
described in the previous section is applied. For a next pyramid level Ln, a linear combination
between the structure tensors of level Ln and Ln−1(after upsampling) is performed:

JLn

h = ν × JLn + (1− ν)× ↑ 2(JLn−1) (3.7)

where Jh is a structure tensor computed from a hierarchical approach. ↑ 2 is the upsampling
operator. In our implementation, ν is fixed and set to 0.6. This hierarchical approach makes
the inpainting algorithm more robust. At the coarsest level, the local structure tensor is a good
approximation of the local dominant direction. Propagating such information throughout the
pyramid decreases the sensitivity to local orientation singularities and noise. By default, nL is
set to 3.

24

3.2.3 Edge-based priority computation

Given a patch Ψp centered at the point p (known pixel) located near the front line, the filling
order (also called priority) is defined as the product of three terms: P (p) = C(p)D(p)E(p). The
first term, called confidence term is given by [24]:

C(p) =

∑
q∈Ψp∩(I−Ω) C(q)

|Ψp|
(3.8)

It gives the ratio between the number of known pixels with respect to the total number of pixels
in the patch to be filled-in. The term D(p), called the data term, is given by [24] as

D(p) =
|∇I⊥p np|

α
(3.9)

where α is a normalization factor and np is a unit vector orthogonal (⊥) to the filling front δΩ in
the point p. This second term increases the priority of the patch having isophotes perpendicular
to the filling front. However, it does not really reflect the predominance of an edge within the
patch. Therefore, we introduce here a third term E(p): this is the ratio of the amount of known
pixels of the patch which belong to an edge with respect to the total number of known pixels in
the patch. Thus E(p) is defined as

E(p) =

∑
q∈Ψp∩(I−Ω) δ(q ∈ E)

|Ψp ∩ (I − Ω)|
(3.10)

where δ() is a binary function which returns 1 when its argument is true and 0 otherwise. E is
the set of edge pixels which is determined by using a Canny edge detector.

Figure 3.2.3 compares the inpainted images with simple template matching (as in [24])
when using the priority function augmented with the “edge” term with respect to the original
priority function. The proposed priority function with edge term changes the filling order by
giving more priority to structural blocks containing edge information. As it can also be seen
from Figure 3.2.3, after 100 iteration steps, the shape of the mask is different from the original
priority function. Thus, the structures are propagated first to prevent introducing any annoying
visible artifacts in the continuation of the edgel areas in the image.

3.3 Propagating texture and structure information

Once the priority P has been computed for all unknown pixels p located near the front line,
pixels are processed in decreasing order of priority. This filling order is called percentile priority-
based concentric filling (PPCF). PPCF order is different from Criminisi’s approach. Criminisi et
al. [24] updated the priority term after filling a patch and systematically used the pixel having
the highest priority. The advantage is to propagate the structure throughout the hole to fill.
However, this advantage is in a number of cases a weakness. Indeed, the risk, especially when
the hole to fill is rather big, is to propagate too much the image structures. The PPCF approach
allows us to start filling by the L% pixels having the highest priority. The propagation of image
structures in the isophote direction is still preserved but to a lesser extent than in [24].

25

Figure 3.3: Effect of the edge term in the priority function. From left-to-right: The mask for the
inpainting algorithm; the inpainting process after 100 patches with priority function of [24] and
the final inpainted image; the inpainting process after 100 patches with the augmented priority
function and the final inpainted image.

3.3.1 Template Matching along the Isophote direction

Once the pixel having the highest priority is found, a template matching based on the sum of
squared differences (SSD) is applied to find a plausible candidate. SSD is computed between
this candidate (entirely contained in φ) and the already filled or known pixels of ψp. Finally, the
best candidate is chosen by the following formula:

ψq̂ = arg min
ψq∈W

d(ψp̂, ψq) (3.11)

where d(., .) is the SSD. Note that a search window W centered on p is used to perform the
matching.
Finding the best candidate is fundamental for different reasons. The filling process must ensure
that there is a good matching between the known parts of ψp and a similar patch in φ in order
to fill the unknown parts of ψp. The metric used to evaluate the similarity between patches is
then important to propagate the texture and the structure in a coherent manner. Moreover, as
the algorithm is iterative, the chosen candidate will influence significantly the result that will
be obtained at the next iteration. An error leading to the apparition of a new structure can be
propagated throughout the image. In order to improve the search for the best candidate, the

26

previous strategy is modified as follows:

ψq̂ = arg min
ψq∈φ

d(ψp̂, ψq) + (
λ1 − λ2
λ1 + λ2

)2 × f(p, q) (3.12)

where the first term d(., .) is still the SSD and the second term is used to favor candidates in the
isophote direction, if any. Indeed, the term (λ1−λ2λ1+λ2

)2 is a measure of the anisotropy at a given
position. On flat areas, this term tends to 0. The function f(p, q) is given by:

f(p, q) =
1

ε+
|v2·vpq|
‖vpq‖

(3.13)

where vpq is the vector between the centre p of patch ψp and the centre q of a candidate patch
ψq. ε is a small constant value, set to 0.001. If the vector vpq is not collinear to the isophote
direction (assessed by computing the scalar product v2 · vpq), this candidate is penalized. In
the worst case (the two vectors are orthogonal), the penalization is equal to 1/ε. When the two
directions are collinear, the function f(p, q) tends to one.

3.3.2 Hole filling based on neighbor embedding techniques

A K nearest neighbour search algorithm can also be used to compute the final candidate to
improve the robustness. We follow Wexler et al.’s proposition [35] by taking into account that
all candidate patches are not equally reliable (see equation 3 of [35]). An inpainting pixel ĉ is
given by (ci are the pixels of the selected candidates):

ĉ =

∑
i sici∑
i si

(3.14)

where si is the similarity measure deduced from the distance (see equation 2 of [35]). Most of
the time, the number of candidates K is fixed. This solution is not well adapted. Indeed, on
stochastic or fine textured regions, as soon as K is greater than one, the linear combination
systematically induces blur. One solution to deal with that is to locally adapt the value K. In
this approach we compute the variance σ2W on the window search. K is given by the function
a + b

1+σ2
W
/T

(in our implementation we use a = 1, b = 9 and T = 100. It means that we can

use up to 10 candidates to fill in the holes). Figure 3.2 (c) and (b) shows the rendering of a fine
texture with the best and the best ten candidates. For this example, good rendering quality is
achieved by taking into account only the best candidate.

Once the K-NN patches are found, the embedding which essentially searches for the best
linear combination of these K-NN patches can be done in different ways.

Locally Linear Embedding

A method called locally linear embedding has been introduced in [15] for data dimensionality
reduction. It aims at preserving the local linear structure of the high-dimensional data in the
lower-dimensional space. The LLE method consists of the following steps:

1. It first identifies K nearest neighbors Xj per data point Xi. The usual measure is the
Euclidean distance;

27

2. It then searches for the weights Wi,j, so that each data point is approximated by its
neighbors. The algorithm thus aims at minimizing the cost function,

E(W) =
∑

i

|Xi −
∑

j

Wi,jX
j |2. (3.15)

The weights Wi,j represent the contribution of the jth data point to the reconstruction of
the ith point and are constrained to sum to one (

∑
jWi,j = 1). Each data point Xi can

only be reconstructed from its neighbors (i.e., Wi,j = 0 if the data point Xj does not belong
to the neighbors of Xi). The optimal weights satisfying these constraints are obtained by
solving a standard least square problem;

3. Finally, an embedding cost function is minimized in order to obtain the low-dimensional
global internal coordinates by fixing the weights Wi,j calculated in the previous step.
(Please see [15] for more information.)

The LLE method (steps 1 and 2) is here directly applied on texture patches. One thus
searches to approximate the known pixels of the patch Ψp̂ to be filled-in by a linear combination of
the colocated pixels in the K-NN patches Ψj, j = 1 . . . K, and keep the same linear combination
to inpaint the unknown pixels of the patch.

Figure 3 compares the inpainting results obtained by using an LLE based approximation
of the patch to be filled-in rather than using a simple template matching with both the priority
function of [24] and the augmented priority function with E(p). The LLE based approach
using K patches instead of one (as in template matching) leads to a more realistic inpainted
image. E.g., in Figure 3, one can see that the bushes are propagated into the sea with template
matching whereas the LLE based method prevents this propagation. Furthermore, the quality
of the inpainting of the roof is also improved visually. (K is fixed to 10, and patch size is 9× 9.)

3.4 Performance illustration of tensor-based priority and isophote
constrained TM

Figures 3.5 and 3.6 show the performance of the proposed method. The approach in [36]preserves
quite well the images structures but the apparition of blur is annoying when filling large areas.
Regarding Criminisi’s approach, results of both approaches are similar on the first picture. On
the latter two, the proposed approach outperforms it. For instance, the roof as well as the steps
of the third picture are much more natural than those obtained by Criminisi’s method. The
use of tensor and hierarchical approach brings a considerable gain. Figure 3.6 shows results
on pictures belonging to Kawai et al.’s database [37]. Compared to previous assessment, these
pictures have a smaller resolution (200× 200 pixels) than those used previously (512× 384). As
illustrated by the figure, the unknown regions have been coherently reconstructed. Except for
the last picture, structures are well propagated without loss of texture information.
Next studies will focus on stochastic or inhomogeneous textures, for which repetitions of structure
are absent. In this case, template matching fails to replicate this kind of texture in a coherent
manner. Instead of using an exemplar-based method, it would be probably better to synthesise
such texture by using stochastic-based texture models.

28

Figure 3.4: Inpainting with template matching as in [24] (left-top row); Inpainting with template
matching with augmented priority (right-top row); Inpainting with LLE without edge-based
priority (left-bottom row); Inpainting with LLE with edge-based priority (right-bottom row).

3.5 Performance illustration of the neighbor embedding tech-

niques

The performance of the entire inpainting algorithm using the new patch priority computation,
LLE and the learned mapping has been assessed on several test images, and compared with state-
of-the-art diffusion-based approaches [38, 31] and exemplar-based methods [24, 39]. Figure 3.5
illustrates some of the results obtained for the test images. We selected natural images with
large holes to be filled-in in order to test our proposed inpainting algorithm for object removal.
Since the holes to be filled-in are quite large, diffusion-based approaches introduce blur into the
image. When we compare our method with the other exemplar-based methods including [24]
and [39], we see the natural looking and structure preserving capacity of the proposed method
in this paper.

29

(a) Mask (b) Proposed (c) Tschumperle (d) Criminisi

(a) Mask (b) Proposed (c) Tschumperle (d) Criminisi

(a) Mask (b) Proposed (c) Tschumperle (d) Criminisi

Figure 3.5: Comparison of the proposed approach with the approaches [36, 24].

30

(a) Mask (b) Proposed (a) Mask (b) Proposed

(a) Mask (b) Proposed (a) Mask (b) Proposed

Figure 3.6: Results of the proposed approach on pictures proposed by [37].

31

Figure 3.7: Inpainting results for natural test images. From left-to-right top-to-bottom per image:
Inpainting mask, our method, method in [24], method in [39], method in [38], and method in [31].

32

Chapter 4

Texture synthesis for 3D inpainting
in virtual view synthesis

3DTV and FTV are promising technologies for the next generation of home and entertainment
services. Depth Image Based Rendering (DIBR) are key-solutions for virtual view synthesis on
multistereoscopic display from any subset of stereo or multiview plus depth (MVD) videos. Clas-
sical methods use depth image based representations (MVD, LDV) to synthesize intermediate
views by mutual projection of two views. Then, disoccluded areas due to the projection of the
first view to the new one could be filled in with the remaining one. However, in freeviewpoint
video (FVV) applications, larger baseline (distance or angle between cameras) involves larger
disoccluded areas. Traditional inpainting methods are not sufficient to complete these gaps. To
face this issue the depth information can help to guide the completion process. The use of depth
to aid the inpainting process has already been considered in the literature. Oh et al. [40] based
their method on depth thresholds and boundary region inversion. The foreground boundaries
are replaced by the background one located on the opposite side of the hole. Despite the use of
two image projections, their algorithm relies on an assumption of connexity between disoccluded
and foreground regions, which may not be verified for high camera baseline configurations. In-
deed, upon a certain angle and depth, the foreground object does not border the disoccluded
part anymore. Daribo et al. [41] proposed an extension to the Criminisi’s [24] algorithm by
including the depth in a regularization term for priority and patch distance calculation. A prior
inpainting of the depth map was performed. Our approach relies on the same idea. However, our
contributions are threefold. The relevance of patch prioritization is improved by first using the
depth as a coherence cue through a 3D tensor, and then by using a directional term preventing
the propagation from the foreground. A combination of the K-nearest neighbor candidates is
finally performed to fill in the target patch.

4.1 Algorithm

The motivation to use a Criminisi-based algorithm resides in its capacity to organize the filling
process in a deterministic way. As seen in fig.4.1, this technique propagates similar texture
elements Ψq̂ to complete patches Ψp along the structure directions, namely the isophotes. Their
algorithm basically works in two steps. The first step defines the higher order patch priorities
along the borders δΩ. The idea is to start from where the structure is the strongest (in term of

33

Figure 4.1: Illustration of principle. On (a) a warped view, (b) a zoom on the disoccluded area
behind the person on the right, with the different elements overlaid.

local intensity, withD(p)) and from patches containing the highest number of known pixels, C(p).
The priority is then expressed as P (p) = D(p)×C(p). The second step consists in searching for
the best candidate in the remaining known image in decreasing priority order.

In the context of view synthesis, some constraints can be added to perform the inpainting
and improve the natural aspect of the final rendering. The projection in one view will be along the
horizontal direction. For a toward-right camera movement the disoccluded parts will appear on
the right of their previously occluding foreground (Figure 4.1a), and oppositely for a toward-left
camera movement.

Whatever camera’s movement, these disoccluded areas should always be filled in with
pixels from the background rather than the foreground. Based on this a priori knowledge, we
propose a depth-based image completion method for view synthesis based on robust structure
propagation. In the following, D(p) is described.

4.1.1 Depth-aided and direction-aided priority

The priority computation has been further improved by exploiting the depth information, first by
defining a 3D tensor product, secondly by constraining the side from where to start inpainting.

3D tensor

The 3D tensor allows the diffusion of structure not only along color but also along depth infor-
mation. It is critical to jointly favor color structure as well as geometric structure. The classical
structure tensor defined in section 3.2.1 is extended with the depth map taken as an additional
image component Z:

J =
∑

l=R,G,B,Z

∇Il∇I
T
l

One side only priority

The second improvement calculates the traditional priority term along the contour in only one
direction. Intuitively, for a camera moving to the right, the disocclusion holes will appear to the
right of foreground objects, while out-of-field area will be on the left of the former left border
(in orange in Figure 4.1a). We then want to prevent structure propagation from foreground by

34

supporting the directional background propagation, as illustrated in Figure 4.1b with the blue
arrows.

The patch priority is calculated along this border, the rest of the top, bottom and left
patches being set to zero. Then for disocclused areas, the left border possibly connex to fore-
ground will be filled at the very end of the process. For out-of-field areas, even if left borders
are unknown, we will ensure to begin from the right border rather than possible top and bottom
ones. These two proposals have been included in the prioritization step.

4.1.2 Patch matching

Once we precisely know from where to start in a given projected image, it is important to favor the
best matching candidates in the background only. Nevertheless, starting from a non-foreground
patch does not prevent it from choosing a candidate among the foreground, whatever the distance
metric used. Thus, it is crucial to restrict the search to the same depth level in a local window:
the background. We simply favor candidates in the same depth range by integrating the depth
information in the commonly used similarity metric, the SSD (Square Sum of Differences):

Ψq̂ = arg min
Ψq∈Φ

d(Ψp̂,Ψq) with d =
∑

p,q∈Ψp,q∩Φ

αl ‖Ψp̂ −Ψq‖
2

The depth channel is chosen to be as important as the color one (l ∈ R,G,B,Z with
αR,G,B = 1 and αZ = 3). Then it will not prevent the search in foreground patches, but
will seriously penalize and unrank the ones having a depth difference above, i.e in front of the
background target patch. As proposed by [35], a combination of the best candidates to fill in the
target patch shows more robustness than just duplicating one. We use a weighted combination of
the K-best patches depending on their exponential SSD distances to the original patch. (K = 5
in our experiments).

4.2 Implementation

Experiments are performed on an unrectified Multiview Video-plus-Depth (MVD) sequence “Bal-
let” from Microsoft [42]. The depth maps are estimated through a color segmentation algorithm
[42] and are supplied with their camera parameters. The choice of this sequence is motivated by
the wide baseline unrectified camera configuration as well as its highly depth-and-color contrast
resulting in distinct foreground-background. This makes the completion even more visible and
the issue even more challenging.

First, the central view 5 is warped in different views. Standard cracks (unique vacant
pixels) are filled in with an average filter. We then suppress certain ghosting effects present on
the borders of disoccluded area in the background: the background ghosting. Indeed, as we start
the filling process by searching from the border, it is of importance to delete ghostings containing
inadequate foreground color values. A Canny edge detection on the original depth map, followed
by a deletion of color pixels located behind that dilated border successfully removes this ghosting.

Finally, our inpainting method is applied on each warped image, using the depth of the
final view. The depth inpainting issue is out of the scope of this paper, but encouraging methods
are proposed in the literature [41]. In the context of MVD applications, it is realistic to consider
a separate transmission of depth information through geometric representation (currently under
investigation).

35

4.3 Results

Figure 4.2 illustrates the results obtained with the proposed method, comparatively with methods
from the literature [24], [41], when rendering views located at varying distances from the reference
viewpoint. The three versions take in input the same color and depth information, except for
the approach in [24] using color only. Our method not only preserves the contour of foreground
persons, but also successfully reconstructs the structure of missing elements of the disoccluded
area (i.e. edges of the curtains and bars behind the person on the right, background wall behind
the left one).

Thanks to our combination term, we can even extend the synthesis to very distant views,
without suffering of aliasing effects. As illustrated, the view 5 is projected to view 2 (V5→2) and
the out-of-field blank areas occupying one quarter width of the warped image are reconstructed.
The counterpart of the patch combination is the smoothing effect appearing on the bottom part
of this area. By taking different numbers of patches for combination, it is possible to limit
this effect. We encourage people to refer to additional results available on our webpage1 with
videos illustrating the priority-based progressive inpainting principle. The results can indeed be
essentially address visually, as argued by [43].

1http://www.irisa.fr/temics/staff/gautier/inpainting

36

(a) V5→4 after warping and back-
ground antighosting

(b) V5→2 after warping and back-
ground antighosting

(c) V5→4 inpainted with Criminisi’s
method

(d) V5→2 inpainted with Criminisi’s
method

(e) V5→4 inpainted with Daribo’s
method

(f) V5→2 inpainted with Daribo’s
method

(g) V5→4 inpainted with our method (h) V5→2 inpainted with our method
Figure 4.2: Illustration of different methods of inpainting. Our approach relying on 3D tensor
and directional prioritization shows efficient filling.

37

Chapter 5

Joint projection/inpainting method

One classical problem in computer vision applications is the synthesis of virtual views from a
single video sequence, accompanied by the corresponding depth map. This problem is encoun-
tered in applications such as robot navigation, object recognition, intermediate view rendering in
free-viewpoint navigation, or scene visualization with stereoscopic or auto-stereoscopic displays
for 3DTV.

Many rendering algorithms have been developed and are classified rather as Image-Based
Rendering (IBR) techniques or Geometry-Based Rendering (GBR) techniques, according to the
amount of 3D information they use. IBR techniques use multi-view video sequences and some
limited geometric information to synthesize intermediate views. These methods allow the gen-
eration of photo-realistic virtual views at the expense of virtual camera freedom [44]. GBR
techniques require detailed 3D models of the scene to synthesize arbitrary viewpoints (points of
view). GBR techniques are sensitive to the accuracy of the 3D model, which is difficult to esti-
mate from real multi-view videos. GBR techniques are thus more suitable for rendering synthetic
data.

Depth-Image-Based Rendering (DIBR) techniques [45] include hybrid rendering methods
between IBR and GBR techniques. DIBR methods are based on warping equations, which
project a reference view onto a virtual viewpoint. Each input view is defined by a ”color” (or
”texture”) map and a ”depth” map, which associate a depth value to each image pixel. These
depth maps are assumed to be known, or can be estimated from multi-video sequences by using
a disparity estimation algorithm [46, 47].

The classical DIBR scheme for virtual view extrapolation from single input view plus
depth video sequences is shown in Figure 5.1. The process in classical DIBR schemes is divided
in several distinct steps, each one designed to solve a specific problem. First, the input depth map
is warped onto the virtual viewpoint. The obtained warped depth map contains disocclusions,
cracks and ghosting artifacts (these artifacts are detailed in section 5.1). Second, this virtual
depth map is filtered a first time with a median filter, in order to remove the cracks, then
a second time to dilate disocclusion areas on the background side, in order to avoid ghosting
artifacts during view synthesis. Third, the filtered depth map is involved in a backward warping
to compute the color of each pixel of the virtual view. Fourth, this resulting depth map is
inpainted, to fill in disocclusion areas. Finally, this complete depth map is used by a depth-aided
inpainting algorithm to fill in disocclusions in the color map.

All these steps are inter-dependent, and errors introduced by each one are amplified by
the following one. Connectivity information is lost during the first projection step, as shown

38

Figure 5.1: Classical scheme for virtual view extrapolation from a single input view plus depth
video sequence. First, the input depth map is projected onto the virtual viewpoint. Second,
the resulting depth map is filtered to avoid cracks and ghosting artifacts. Third, the filtered
depth map is projected back onto the reference viewpoint to find the color of each pixel. Fourth,
the depth map is inpainted to fill in disocclusions. Finally, the inpainted depth map is used to
conduct disocclusions filling of the color map (synthesized view).

Figure 5.2: Virtual depth map synthesized by three forward projection methods. The point-based
projection method generates cracks and disocclusions (left). Median filtering and directional
inpainting [48] fills some holes with foreground depth (middle). The proposed JPF method fills
cracks and disocclusions with realistic background (right).

in figure 5.2. Without this connectivity information, every inpainting method fails to fill in
background disocclusions if the disoccluded area is surrounded by foreground objects. This
case may happen each time a foreground object is not convex, and contains holes, as shown in
figure 5.2. As a result, depth-aided inpainting uses wrong foreground patches to fill in background
disocclusions, producing annoying artifacts, as shown in figure 5.2.

This chapter describes a new DIBR technique based on a novel forward projection tech-
nique, called the Joint Projection Filling (JPF) method. The JPF method performs forward
projection, using connectivity information to fill in disocclusions in a single step. The JPF
method is designed to handle disocclusions in virtual view synthesis, from one or many inputs
view plus depth video sequences. The proposed DIBR method, depicted in Fig.5.3 is designed
to extrapolate virtual views from a single input view plus depth video sequence. The method
differs from the classical scheme by two points: the virtual depth map is synthesized by the
JPF method, avoiding the use of dedicated filtering and inpainting processes; the depth-aided
inpainting method is revised to take into account the high quality of the synthesized depth map.

The JPF method fills in disocclusion areas during the projection, to ensure that geomet-

39

Figure 5.3: Virtual depth map synthesized by three forward projection methods. The point-based
projection method generates cracks and disocclusions (left). Median filtering and directional
inpainting [48] fills some holes with foreground depth (middle). The proposed JPF method fills
cracks and disocclusions with realistic background (right).

rical structures are well preserved. The method uses the occlusion-compatible ordering presented
by McMillan in [49], which uses epipolar geometry to select a pixel scanning order. The algo-
rithm was initially introduced to perform the painter’s algorithm during the projection without
the need of a Z-buffer. Here, not using a Z-buffer is not our purpose (by the way, the constructed
depth map is a Z-buffer). The occlusion-compatible ordering is instead used to handle disocclu-
sions gracefully. Cracks are filled in by interpolation of neighboring pixels, whereas disocclusions
are only filled in by background pixels. This technique can be used with non-rectified views,
avoiding prior creation of parallax maps as done in [50].

In summary, the technique described here improves upon state-of-the-art DIBR methods
as described in [51], by introducing the following key contributions:

• A novel forward projection method for DIBR, using occlusion compatible ordering [49]
for detecting cracks and disocclusions, for which the unknown depth values are estimated
while performing the warping. The resulting projection method thus allows us to handle
both depth maps warping and disocclusion filling simultaneously. Small cracks and large
disocclusions are handled gracefully, with similar computational cost as simple forward
projection, avoiding the use of the filtering step as done in the classical approach.

• A ghost removal method to avoid ghosting artifacts in the rendered views, relying on a
depth-based pixel confidence measure.

• A depth-aided inpainting method which takes into account all information given by the
depth map to fill in disocclusions with textures at the correct depth.

• A method to handle inaccuracies of cameras calibration and depth map estimation by the
use of the Floating Texture approach.

5.1 Background work

DIBR methods are based on warping techniques which project a reference view onto a virtual
viewpoint. Directly applying warping equations may cause some visual artifacts in the synthe-
sized view, like disocclusions, cracks and ghosting artifacts. Disocclusions are areas occluded in
the reference viewpoint and which become visible in the virtual viewpoint, due to parallax effect.

40

Cracks are small disocclusions, mostly due to texture re-sampling. Ghosts are artifacts due to
projection of pixels that have background depth and mixed foreground/background color. Vari-
ous methods have been proposed in the literature to avoid these artifacts. This section presents
state-of-the-art solutions to avoid each one of these three usual artifacts.

Ghosting artifacts are often avoided by detecting depth discontinuities on the depth map,
in order to separate the boundary layer (containing pixels near a boundary) from the main layer
(containing pixels far from a boundary) [42]. The main layer is first projected into the virtual
viewpoint, then the boundary layer is added everywhere it is visible (i.e. where its depth value
is smaller than the main layer’s one). In [51], the authors propose to split again the boundary
layer into foreground and background boundary layers. The main layer is first projected, the
foreground boundaries layer is then added everywhere it is visible, and the background boundaries
layer is finally used to fill in remaining holes. Ghosting artifacts can be further avoided by
estimating the background and foreground contributions in the rendered view with the help of
advanced matting techniques [52, 53, 54].

Cracks and other sampling artifacts are frequently avoided by performing a backward
projection [55], which works in three steps. At first, the depth map is warped with a forward
projection, resulting in some cracks and disocclusions. Then, this virtual depth map is median
filtered to fill cracks, and bilateral filtered to smoothen the depth map while preserving edges.
Finally, the filtered depth map is warped back into the reference viewpoint to find the color of the
synthesized views. In [56], the authors propose to reduce the complexity by performing backward
projection only for pixels labeled as cracks, i.e. pixels whose depth values are significantly
modified by the filtering step. In [48], the authors propose an improved occlusion removal
algorithm, followed by a depth-color bilateral filtering, in order to handle disocclusions on the
depth map. Other improved rendering methods based on surface splatting have been proposed
for avoiding cracks and texture re-sampling artifacts [57, 58].

Disocclusions are often filled in with information from some extra views, when they are
available. The classical scheme is to synthesize the virtual view from each input view indepen-
dently, then to blend the resulting synthesized views. In [59], the authors propose to compute
an optical flow on intermediate rendered views, and then, with the help of the optical flow, to
perform a registration step before the blending step, in order to avoid blurring in the final view
due to blending mis-registered views. Note that specific representations such as Layered Depth
Videos (LDV) can also be helpful for addressing the problem of occlusion handling since they
allow storing texture information seen by other cameras [60, 61, 62, 63].

When extra views are not available, the frequent solution for disocclusion handling is
image interpolation with inpainting techniques. Unfortunately, most inpainting techniques use
neighboring pixels solely based upon colorimetric distance, while a disocclusion hole should be
filled in with background pixels, rather than foreground ones [21, 38, 24]. In [56], the authors
estimate each pixel value inside a disocclusion area from nearest known pixels along the eight car-
dinal directions, after nullifying the weight of foreground pixels. In [40], the authors temporarily
replace foreground textures by background texture before inpainting, so that disocclusions are
filled in only with background texture.

Advanced depth-aided inpainting methods assume that the depth map of the virtual
viewpoint to be rendered is available. In [64], the authors enhance the inpainting method in [24]
by reducing the priority of patches containing a depth discontinuity, and by adding a depth com-
parison in the search for best matches. In [65], the authors use a similar approach but estimate
isophotes directions with a more robust tensor computation and constrain the propagation in

41

the direction of the epipole.
The full depth map from the virtual view is most of the time not available, and must be

estimated from the input depth map. In [64], the authors perform a diffusion-based inpainting [21]
on the projected depth map, but both foreground and background are diffused to fill disocclusions.
In [48], the authors constrain the depth map inpainting in the direction of the epipole, in order
that only the background is diffused, but this method fails when a disocclusion is surrounded by
foreground depth, as shown in figure 5.2.

As a conclusion, state-of-the-art DIBR methods need a complete depth map at the ren-
dered viewpoint (for backward projection and depth-aided inpainting). However, no fully satisfy-
ing method yet exists to obtain a complete and correct depth map, avoiding artifacts generation
when used for DIBR. Moreover, most of disocclusions handling methods proposed in the litera-
ture work as a post treatment on the projected view. Connectivity information is not preserved
during the projection, and inpainting methods fail to fill in background disocclusions when they
are surrounded by foreground objects. The proposed JPF method aims at suppressing such
drawbacks. As shown in figure 5.2, the JPF method enables to recover correct depth information
in critical areas. We also propose a full-Z depth-aided inpainting technique which takes into
account the high quality of the computed depth map to fill disocclusions with texture from the
correct depth.

5.2 Projection-based disocclusion handling

This section introduces the Joint Projection Filling (JPF) method, which simultaneously handles
warping and disocclusion filling, in order to preserve connectivity and fill in disocclusions with
background textures.

During warping, there might happen overlapping (several pixels projected at the same
position) or disocclusion (no pixels projected at a position). In [49], a pixel scanning order is
introduced to perform the painter’s algorithm during the projection. In case of overlapping, this
pixel scanning order ensures the pixel just projected at a position to be the foreground pixel so
that the z-buffer is not needed. A second property, resulting from the first one, is more helpful
to handle disocclusions. If two successive pixels are not adjacent, there is a disocclusion, and the
pixel just projected is the background pixel. This second property is exploited to ensure only
background pixels are used to fill in disocclusion areas.

The JPF algorithm is described in section 5.2.1. It is first introduced for rectified cameras
and then generalized for non-rectified cameras. Section 5.2.2 presents a ghosting removal method,
based on pixels confidence measure. Finally, section 5.2.3 presents some synthesized textures and
depth map, obtained by the JPF method.

5.2.1 Disocclusion detection

In the following, we assume that the epipolar geometry is such that the pixels from the reference
image are processed sequentially, from top-left to bottom-right, according to McMillan scanning
order [49].

Figure 5.6 presents the principle of the Joint Projection Filling (JPF) method, in the
particular case of rectified cameras. Each row is thus independent of the others, reducing the
problem to one dimension. Consider a row of pixels from the reference view, and a pixel p =
(px, py) on that row. The pixel p is projected on position p′ = (p′x, py) in the synthesized view.

42

After having processed pixel p, the next pixel to be processed is q = (px + 1, py). Its projected
position q′ = (q′x, py) verifies one out of the three following equations:

q′x = p′x + 1 Pixels p′ and q′ are adjacent.

q′x < p′x + 1 There is an overlap.

q′x > p′x + 1 There is a crack or a disocclusion.

(5.1)

The first and the second cases do not generate artifacts. In the last case, p′ and q′ are in same
order as p and q, but there is a gap between them. In the proposed method, contrary to classical
point-based projection, this gap is filled in immediately, before processing the projection of the
next pixel. The method to fill the gap is adapted to its size. If the gap is small enough, it is
considered as a crack. p′ and q′ are thus assumed to be on same layer, and the gap is filled in by
interpolating the two pixels p′ and q′. If the gap is too large, it is considered as a disocclusion. p′

and q′ are thus assumed to be on two distinct depth layer and the gap is filled in by background
pixel. The McMillan pixel ordering ensures that q′ is the background pixel, which is stretched
from position p′ to q′. The value of each pixel m between p′ and q′ is thus estimated as follows:

m =

{
(1− α)p′ + αq′ if d ≤ K

q′ if d > K
where

{
d = q′x − p

′
x

α = 1
d(mx − p

′
x)

(5.2)

In the simulation results reported in the paper, the threshold K has been fixed to 5 pixels, to
handle cracks and small disocclusions.

The algorithm is generalized for non-rectified cameras, as illustrated in figure 5.6. Pixels
p′ and q′ may no longer be on the same row, thus we define pixel P q

′

as the last pixel projected
on row q′y. Equation (5.1) is revised, replacing p′ with P q

′

, thus q′ and P q
′

are on the same row.

{
q′x ≤ P

q′
x + 1 There is no artifact.

q′x > P q
′

x + 1 There is a disocclusion.
(5.3)

As previously, the disocclusion handling method depends on the distance between q′x and P q
′

x .
The value of each pixel m between P q

′

and q′ is thus estimated as follows:

m =

{
(1− α)P q

′

+ αq′ if d ≤ K

q′ if d > K
where

{
d = q′x − P

q′
x

α = 1
d(mx − P

q′
x)

(5.4)

Figure 5.5 presents the synthesized depth maps obtained with the JPF method, without
any ghosting removal technique. Our JPF method has removed all cracks and has filled in the
disocclusions with only background pixels. Depth maps from the ”Ballet” sequence contain sharp
discontinuities, which are preserved by the JPF method (figure 5.5). Depth maps from other
sequences contain some blur along depth discontinuities, due to DCT-based compression. This
blur produces some sparse pixels inside the disocclusion area, which are stretched to fill the
disocclusion, resulting in an annoying ghosting artifact.

This occlusion-compatible ordering is helpful to detect cracks and disocclusions. Next
section explains how to fill in disocclusions while preserving edges sharpness and avoiding ghosting
artifacts.

43

Figure 5.4: JPF method scheme for rectified and non rectified cameras. q′ is a background pixel
which is used to fill in the highlighted disocclusion.

44

Figure 5.5: Comparison between synthesized depth maps from a forward point-based projection
(first row) and from the JPF method (second row). Blurred depth discontinuities in the original
depth map produces stretching effects on the synthesized depth maps.

5.2.2 Disocclusion filling

Pixels along objects boundaries are considered unreliable, because they often contain mixed fore-
ground/background information for texture and depth value. Their projection may thus create
ghosting artifacts in the synthesized views. The JPF method fills in each row of a disoccluded
region using a single pixel. When applied on such a ”blended” boundary pixel, this method may
result in annoying pixel stretching artifacts, as can be seen in figure 5.5. However, these arti-
facts can be minimized by adapting the pixel stretching length, according to a pixel confidence
measure. The algorithm used to avoid stretching and ghosting artifacts thus proceeds with the
following two steps:

In a first step, a confidence measure λq ∈ [0; 1] is computed for each pixel q by convolving
the depth map (Z) with a Difference-Of-Gaussians (DOG) operator as follows:

λq = 1− (DOG ∗Z)(q) (5.5)

The DOG operator is built as the difference of two gaussians: the gaussian G of variance σ2, and
the 2D Dirac delta function δ2.

DOG = G− δ2

G(u, v) =
1

σ2
· φ

(u
σ

)
· φ

(v
σ

) (5.6)

where φ is the standard normal distribution. The value of σ, in the experiments described below,
has been fixed to 3.

In a second step, the confidence measure is used during the JPF method, to confine pixel
stretching. Reusing the notations introduced in section 5.2.1, suppose that a wide disocclusion
is discovered during the projection of pixel q. Instead of filling the whole gap between P q

′

and
q′, with color and depth values of q′, only a part of the gap is filled in. The rest will be filled
with the next pixel which will be projected on that same row j.

45

Figure 5.6: Warping results with the JPF method.

Assume M is a point between P q
′

and q′, defined with the following equation:

M = (1− λ2q)P
q′ + λ2qq

′ (5.7)

The gap between P q
′

and M is filled in by pixel q′, thus pixels on foreground/background
boundaries which have low confidence measures are used to fill the disocclusion only for a couple
of pixels next to the foreground, where blended pixels are expected to be in the synthesized view.

5.2.3 Results

This confidence-based interpolation method shifts back unreliable pixels near the discontinuities
and only uses reliable pixels to fill in disocclusions. Figure 5.6 presents the rendering results
of the JPF method with confidence-based interpolation. The projected depth maps, shown on
the first row, are to be compared with those presented in figure 5.5. One can see that depth
discontinuities are sharpened, producing realistic depth maps. The second row presents the
results obtained with the same algorithm applied on texture. Disocclusions are gracefully filled
in when the background is uniform, but annoying stretching artifacts appear in case of textured
background. This JPF method can be used as a part of a virtual view synthesis algorithm,
depending on the application. Two use cases are addressed in section 5.3, either for virtual view
extrapolation when only one input view is available, or for intermediate view interpolation when
multiple input views are available.

5.3 Virtual view rendering

The JPF method is designed to synthesize virtual views from one or many input view plus
depth video sequences, depending on the final application. Section 5.3.1 describes a virtual view
extrapolation algorithm, which is used when only one input view plus depth video sequence
is available. Section 5.3.2 presents an interpolation algorithm to synthesize intermediate views
when multiple video plus depth video sequences are available.

46

5.3.1 View extrapolation with full-Z depth-aided inpainting

In order to synthesize a virtual view from only one input view plus depth sequence, the developed
algorithm proceeds as follows. First, the depth map for the virtual view is synthesized by our
JPF method, handling ghosting, cracks and disocclusions. Then, the texture of the virtual view is
obtained by a classical backward warping followed by the proposed full-Z depth-aided inpainting
algorithm.

Our proposed full-Z depth-aided inpainting algorithm is a modification of the depth-aided
inpainting method described in [64], itself based on the exemplar-based inpainting approach,
introduced in [24]. Section 5.3.2 describes our proposed modification which takes into account
the high quality of the virtual depth map. The importance of the synthesized depth map quality
is discussed in section 5.4, for three different depth-aided inpainting methods.

5.3.2 Proposed full-Z depth-aided inpainting

The synthesized depth map does not contain holes, thanks to the JPF method which projects
the input depth map onto the virtual viewpoint while filling cracks and disocclusions. The patch
Ψp̂ to be filled in contains thus a depth value for each pixel, even for pixels in the hole region
Ω. These depth values are close to the ground truth, because disocclusions are only filled in
with background depth. The proposed modification is to use the depth value of all pixels in the
patch, including those whose color is not known, i.e., the distance between patches is computed
as follows:

Ψq̂ = arg minΨq∈Φ {SSDΦ(Ψp̂,Ψq) + α SSDΦ∪Ω(Zp̂, Zq)} (5.8)

5.4 Rendering Results

This section compares virtual view synthesis results obtained when using three depth-aided
inpainting techniques for occlusion handling. For each inpainting techniques, the virtual depth
maps are synthesized either by the classical scheme, shown in figure 5.1, or by the JPF method.

Figure 5.7 shows inpainting results of the algorithm presented in [64]. Figure 5.8 shows
inpainting results of the algorithm presented in [65]. Figure 5.9 shows inpainting results of the
proposed full-Z depth-aided inpainting algorithm. In each figure, the first column shows a virtual
view synthesized by the backward projection, where disocclusions appear in white. The second
column shows the virtual depth map where disocclusions are filled in with a Navier-strokes
inpainting algorithm [21], whereas the fourth column shows the depth map synthesized with our
JPF method. The third and the fifth columns show the results of the depth-aided inpainting
method, led by the depth map respectively presented in column 2 and 4.

One can observe that the depth maps shown in column 2 are not realistic because depth
discontinuities do not fit with object boundaries. This is due to the depth map inpainting
method, which fills disocclusions with both background and foreground values. On the contrary,
depth maps presented in column 4 are closer to the ground truth, thanks to the JPF method.
Small details are well preserved by the projection, as fingers on row 3 or blades of grass on row
4.

The influence of the virtual depth map can be observed by comparing column 3 and 5 of
each figure. Errors in depth map from column 2 are amplified by every depth-aided inpainting
method, because some foreground patches are selected to fill in disocclusions. The resulting

47

images, shown in column 3, contain more artifacts than the ones obtained with a correct depth
map.

Depth-aided inpainting methods can be compared with each other by analyzing the fifth
column of each figure. Rendering results shown in figures 5.7 and 5.8 still contains blur artifacts
along boundaries, even if the correct depth map is used to conduct the inpainting process. The
proposed full-Z depth-aided inpainting method preserves small details, as fingers on row 3 or
blades of grass on row 4.

As a conclusion, the quality of the rendered view is strongly dependent on the quality of
the virtual depth map, no matter the depth-aided inpainting method. Synthesizing high quality
virtual depth map is thus an interesting challenge for DIBR techniques. The JPF method is well
suited for this purpose, because connectivity information is used during the forward projection.
Moreover, the proposed full-Z depth-aided inpainting method improves upon state-of-the-art
methods by taking into account the correctness of the synthesized depth map.

48

Figure 5.7: Results for Daribo depth-aided inpainting [64]. The first column shows a synthesized
view with disocclusions. Columns 2 and 4 present the synthesized depth maps, obtained respec-
tively with a Navier-strokes inpainting algorithm and with our JPF method. Columns 3 and 5
exhibit the results of the inpainting of the texture shown in column 1, guided by the depth map
respectively presented in columns 2 and 4.

49

Figure 5.8: Results for Gautier depth-aided inpainting [65]. The first column shows a synthe-
sized view with disocclusions. Columns 2 and 4 present the synthesized depth maps, obtained
respectively with a Navier-strokes inpainting algorithm and with our JPF method. Columns 3
and 5 exhibit the results of the inpainting of the texture shown in column 1, guided by the depth
map respectively presented in columns 2 and 4.

50

Figure 5.9: Results for proposed full-Z depth-aided inpainting. The first column shows a synthe-
sized view with disocclusions. Columns 2 and 4 present the synthesized depth maps, obtained
respectively with a Navier-strokes inpainting algorithm and with our JPF method. Columns 3
and 5 exhibit the results of the inpainting of the texture shown in column 1, guided by the depth
map respectively presented in columns 2 and 4.

51

Bibliography

[1] M. Turkan and C. Guillemot, “Image prediction based on neighbor embedding methods,”
IEEE Trans. On Image Processing, 2011, accepted.

[2] V. Jantet, C. Guillemot, and L. Morin, “Joint projection filling method for occlusion han-
dling in depth-image-based rendering,” International journal on 3D research, special issue
on ”3DTV”, 2011, accepted.

[3] J. Gautier, O. Le Meur, and C. Guillemot, “DEPTH-BASED IMAGE COMPLETION FOR
VIEW SYNTHESIS,” in 3DTVConf, ANTALYA, Turquie, 2011.

[4] O. Le Meur, J. Gautier, and C. Guillemot, “EXAMPLAR-BASED INPAINTING BASED
ON LOCAL GEOMETRY,” in ICIP, Brussel, Belgique, 2011.

[5] M. Turkan and C. Guillemot, “Image prediction based on non-negative matrix factorization,”
in IEEE Int. Conf. on Acous. Speech and Signal Process. (ICASSP), Prague, May 2011.

[6] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC
video coding standard,” IEEE Trans. on Circuits and Systems for Video technology, vol. 13,
no. 7, pp. 560–576, Jul. 2003.

[7] T. K. Tan, C. S. Boon, and Y. Suzuki, “Intra prediction by template matching,” in Proc.
IEEE Int. Conf. Image Process., 2006, pp. 1693–1696.

[8] ——, “Intra prediction by averaged template matching predictors,” in Proc. IEEE Consumer
Comm. Network. Conf., 2007, pp. 405–409.

[9] A. Martin, J.-J. Fuchs, C. Guillemot, and D. Thoreau, “Sparse representation for image
prediction,” in European Signal Process. Conf., 2007.

[10] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictionaries,” IEEE Trans.
on Signal Processing, vol. 41, no. 12, pp. 3397–3415, Dec. 1993.

[11] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition,” in Proc. Asimolar
Conf. Signals Systems Compt., 1993, pp. 40–44.

[12] M. Turkan and C. Guillemot, “Sparse approximation with adaptive dictionary for image
prediction,” in Proc. IEEE Int. Conf. Image Process., 2009, pp. 25–28.

[13] ——, “Image prediction based on non-negative matrix factorization,” in Proc. IEEE Int.
Conf. Acous. Speech Signal Process., 2011, accepted for publication.

52

[14] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” Advances
in Neural Information Process. Syst. (NIPS), 2000.

[15] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear embedding,”
Science, vol. 290, pp. 2323–2326, 2000.

[16] P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” J. Machine
Learning Research, vol. 5, pp. 1457–1469, 2004.

[17] I. T. Jolliffe, Principle Component Analysis, 2nd ed. Springer, 2002.

[18] S. Mallat and F. Falzon, “Analysis of low bit rate image transform coding,” IEEE Trans.
on Signal Processing, vol. 46, no. 4, pp. 1027–1042, Apr. 1998.

[19] E. L. Pennec and S. Mallat, “Sparse geometric image representations with bandelets,” IEEE
Trans. on Image Processing, vol. 14, no. 4, pp. 423–438, Apr. 2005.

[20] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in SIGGRPAH
2000, 2000.

[21] M. Bertalmio, A. Bertozzi, and G. Sapiro, “Navier-stokes, fluid dynamics, and image and
video inpainting,” in Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society Conference on, vol. 1, Los Alamitos, CA, USA, Dec. 2001, pp. 355–362.

[22] T. Chan and J. Shen, “Local inpainting models and tv inpainting,” SIAM J. Appl. Math.,
vol. 62, no. 3, pp. 1019–1043, 2001.

[23] R. Bornard, E. Lecan, L. Laborelli, and J. Chenot, “Missing data correction in still images
and image sequences,” in ACM Int. Conf. Multimedia, Dec. 2002.

[24] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object removal by exam-
plar(based image inpainting,” IEEE Trans. On Image Processing, vol. 13, pp. 1200–1212,
2004.

[25] I. Drori, D. Cohen-Or, and H. Yeshurun, “Fragment-based image completion,” ACM Trans.
Graphics, vol. 22, no. 2003, pp. 303–312, 2005.

[26] P. Harrison, “A non-hierarchical procedure for re-synthesis of complex texture,” in Proc.
Int. Conf. Central Europe Comp. Graphics, Visua. and Comp. Vis., Feb. 2001.

[27] J. Jia and C. Tang, “Image repairing: Robust image synthesis by adaptive tensor voting,”
in Proc. CVPR, Jun. 2003, pp. 643–650.

[28] Y. Zhang, J. Xiao, and M. Shah, “Region completion in a single image,” in EUROGRAPH-
ICS, 2004.

[29] J. Sun, L. Yuan, J. Jia, and H. Shum, “Image completion with structure propagation,” ACM
Trans. Graphics, vol. 24, no. 3, pp. 861–868, 2005.

[30] A. Efros and T. Leung, “Texture synthesis by non-parametric sampling,” in Proc. ICCV,
Sep. 1999.

53

[31] D. Tschumperlé, “Fast anisotropic smoothing of multi-valued images using curvature-
preserving pde’s,” Int. Jounral of Comp. Vision, vol. 68, no. 1, pp. 65–82, 2006.

[32] S. Di Zenzo, “A note on the gradient of a multi-image,” Computer Vision, Graphics, and
Image Processing, vol. 33, pp. 116–125, 1986.

[33] T. Brox, J. Weickert, B. Burgeth, and P. Mrázk, “Nonlinear structure tensors,” Image and
Vision Computing, vol. 24, pp. 41–55, 2006.

[34] J. Weickert, “Coherence-enhancing diffusion filtering,” International Journal of Computer
Vision, vol. 32, pp. 111–127, 1999.

[35] Y. Wexler, E. Shechtman, and E. Irani, “Space-time completion of video,” IEEE Trans. On
PAMI, vol. 29, no. 3, pp. 463–476, 2007.

[36] D. Tschumperlé and R. Deriche, “Vector-valued image regularization with pdes: a common
framework for different applications,” IEEE Trans. on PAMI, vol. 27, no. 4, pp. 506–517,
April 2005.

[37] N. Kawai, T. Sato, and N. Yokoya, “Image inpainting considering brightness change and
spatial locality of textures and its evaluation,” in PSIVT2009, 2009, pp. 271–282.

[38] A. Telea, “An image inpainting technique based on the fast marching method,” Journal of
Graphics, GPU, and Game Tools, vol. 9, no. 1, pp. 23–34, 2004.

[39] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patchmatch: A randomized
correspondence algorithm for structural image editing,” ACM Transactions on Graphics
(Proc. SIGGRAPH), vol. 28, no. 3, 2009.

[40] K.-J. Oh, S. Yea, and Y.-S. Ho, “Hole filling method using depth based in-painting for view
synthesis in free viewpoint television and 3-d video,” in Picture Coding Symposium (PCS),
Piscataway, NJ, USA, May 2009, pp. 233–236.

[41] I. Daribo and P.-P. B., “Depth-aided image inpainting for novel view synthesis,” 2010.

[42] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High-quality video
view interpolation using a layered representation,” ACM Trans. Graph., vol. 23, no. 3, pp.
600–608, Aug. 2004.

[43] N. Kawai, T. Sato, and N. Yokoya, “Image inpainting considering brightness change and
spatial locality of textures,” in Proc. Int. Conf. on Computer Vision Theory and Applications
(VISAPP), vol. 1, 2008, pp. 66–73.

[44] S. Chan, H.-Y. Shum, and K.-T. Ng, “Image-based rendering and synthesis,” Signal Pro-
cessing Magazine, IEEE, vol. 24, no. 6, pp. 22–33, Nov. 2007.

[45] C. Zhang and T. Chen, “A survey on image-based rendering–representation, sampling and
compression,” Signal Processing: Image Communication, vol. 19, no. 1, pp. 1–28, Jan. 2004.

[46] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.
Cambridge University Press, ISBN: 0521540518, Mar. 2004.

54

[47] G. Sourimant, “Depth maps estimation and use for 3dtv,” INRIA Rennes Bretagne Atlan-
tique, Rennes, France, Technical Report 0379, Feb. 2010.

[48] Q. H. Nguyen, M. N. Do, and S. J. Patel, “Depth image-based rendering from multiple cam-
eras with 3d propagation algorithm,” in Proceedings of the 2nd International Conference on
Immersive Telecommunications, ser. IMMERSCOM ’09, vol. 6. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2009, pp. 1–6.

[49] L. McMillan, “A list-priority rendering algorithm for redisplaying projected surfaces,” Uni-
versity of North Carolina at Chapel Hill, Chapel Hill, NC, USA, Tech. Rep. 95-005, 1995.

[50] P. Kauff, N. Atzpadin, C. Fehn, M. Müller, O. Schreer, A. Smolic, and R. Tanger, “Depth
map creation and image-based rendering for advanced 3dtv services providing interoperabil-
ity and scalability,” Signal Processing: Image Communication, vol. 22, pp. 217–234, Feb.
2007.

[51] K. Müller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand, “View synthesis for
advanced 3d video systems,” EURASIP Journal on Image and Video Processing, p. 11, Nov.
2008.

[52] S. W. Hasinoff, S. B. Kang, and R. Szeliski, “Boundary matting for view synthesis,” Comput.
Vis. Image Underst., vol. 103, pp. 22–32, Jul. 2006.

[53] M. Sarim, A. Hilton, and J.-Y. Guillemaut, “Wide-baseline matte propagation for indoor
scenes,” in Conference Visual Media Production (CVMP), Proceedings of, ser. CVMP ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 195–204.

[54] J. Wang and M. F. Cohen, “Image and video matting: a survey,” Found. Trends. Comput.
Graph. Vis., vol. 3, pp. 97–175, Jan. 2007.

[55] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3d
warping using depth information for ftv,” Image Commun., vol. 24, pp. 65–72, Jan. 2009.

[56] L. Do, S. Zinger, Y. Morvan, and P. H. N. de With, “Quality improving techniques in dibr
for free-viewpoint video,” in 3DTV Conference: The True Vision - Capture, Transmission
and Display of 3D Video, May 2009, pp. 1 –4.

[57] S. Rusinkiewicz and M. Levoy, “Qsplat: a multiresolution point rendering system for large
meshes,” in Proceedings of the 27th annual conference on Computer graphics and interac-
tive techniques, ser. SIGGRAPH ’00. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., Jul. 2000, pp. 343–352.

[58] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Ewa splatting,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 8, pp. 223–238, Jul. 2002.

[59] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. de Aguiar, N. Ahmed, C. Theobalt,
and A. Sellent, “Floating textures,” Computer Graphics Forum (Proc. of Eurographics),
vol. 27, no. 2, pp. 409–418, 2008, received the Best Student Paper Award at Eurographics
2008.

55

[60] J. Shade, S. Gortler, L.-w. He, and R. Szeliski, “Layered depth images,” in SIGGRAPH ’98:
Proceedings of the 25th annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM, Jul. 1998, pp. 231–242.

[61] S.-U. Yoon, E.-K. Lee, S.-Y. Kim, and Y.-S. Ho, “A framework for representation and
processing of multi-view video using the concept of layered depth image,” Journal of VLSI
Signal Processing Systems for Signal Image and Video Technology, vol. 46, pp. 87–102, Mar.
2007.

[62] K. Müller, A. Smolic, K. Dix, P. Kauff, and T. Wiegand, “Reliability-based generation
and view synthesis in layered depth video,” Multimedia Signal Processing (MMSP), IEEE
International 10th Workshop on, pp. 34–39, Oct. 2008.

[63] V. Jantet, L. Morin, and C. Guillemot, “Incremental-ldi for multi-view coding,” in 3DTV
Conference: The True Vision - Capture, Transmission and Display of 3D Video, Potsdam,
Germany, May 2009, pp. 1–4.

[64] I. Daribo and B. Pesquet, “Depth-aided image inpainting for novel view synthesis,” Mul-
timedia Signal Processing (MMSP), IEEE International Workshop on, pp. 167–170, Oct.
2010.

[65] J. Gautier, O. Le Meur, and C. Guillemot, “Depth-based image completion for view syn-
thesis,” in 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D
Video, May 2011.

56

