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Abstract 

The mechanical response of Polyethylene Terephthalate (PET) in elongation is strongly 

dependent on temperature, strain and strain rate. Near the glass transition temperature Tg, the 

stress-strain curve presents a strain softening effect vs strain rate but a strain hardening effect 

vs strain under conditions of large deformations. The main goal of this work is to propose a 

viscoelastic model to predict the PET behaviour when subjected to large deformations and to 

determine the material properties from the experimental data. To represent the non–linear 

effects, an elastic part depending on the elastic equivalent strain and a non-Newtonian viscous 

part depending on both viscous equivalent strain rate and cumulated viscous strain are tested. 

The model parameters can then be accurately obtained trough a comparison with the 

experimental uniaxial and biaxial tests.  
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On Visco-elastic Modelling of Poly Ethylene Terephthalate 

Behaviour during Multiaxial Elongations Slightly over the 

Glass Transition Temperature 

1. Introduction: polyethylene terephthalte behaviour under 

conditions close to the stretch blow moulding process 

During the injection stretch blow molding process (ISBM), polyethylene terephthalate 

material (PET) is subjected to, high strain rate, multiaxial large deformations at temperatures 

just above the glass transition temperature, Tg and just below the temperature for cold 

crystalisation, Tcc.Under these conditions, the mechanical response exhibits: (i) a strong 

viscous dependency, illustrated by the tension speed sensitivity ; (ii) an elasticity illustrated 

by the partial stress relaxation visible as soon as elongation stops ; (iii) a very visible strain 

hardening effect for restricted ranges of temperature and tension speed, starting when a 

critical elongation is reached (depending on temperature and tension speed). It is of great 

interest to capture this mechanical behaviour within a mathematical model for the purposes of 

having an accurate material model within process simulations and to have a better 

understanding of the thermal and strain history effects on microstructure evolution.  Uniaxial 

deformation can provide information for model identification and validation but, due to the 

high anisotropy of molecular chains and because of the complex strain paths experienced by 

the polymer during manufacturing, it is obvious there is a need to investigate the mechanical 

response at testing conditions relevant to the manufacturing process. As a result special 

purpose equipment has been built to perform experiments which can subject the polymer to 

more representative modes of deformation, which involve stretching the polymer in biaxial or 

plane strain and and recording the corresponding stress strain behaviour. 
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Since PET behaviour exhibits a strong strain hardening effect, Marckmann et al. [1] 

proposed to use a hyperelastic modelling approach. This is not satisfactory because it fails to 

represent the strain rate effect. Gorlier et al. [2] did take into account the effect of strain rate 

through a phenomenological approach of making parameters within a hyperelastic model 

dependent on strain rate. On the other hand, considering the continuously increasing evolution 

of the strain during the blowing process and the quick cooling of the material when coming in 

contact with the mould, Chevalier and Marco [3] proposed a simple viscoplastic model with 

parameters identified via uniaxial and biaxial tension tests to simulate free inflation of the 

perform. This model has been used by Bordival et al. [4] in a numerical procedure based on 

simulations of the heating and blowing phases performed to optimise the stretch blow 

moulding process. This simple model of the PET behaviour that generalizes the G‟Sell-Jonas 

constitutive law in 3D, takes into account the strain-hardening effect and the influence of the 

strain rate. Recently, Cosson et al. [5], proposed an anisotropic version of this viscoplastic 

model. The identification of the material characteristics can be managed easily from the 

experimental data of uniaxial and biaxial tensile tests managed on a PET specimen at a 

temperature slightly higher than the glass transition temperature, Tg. The strain hardening 

effect observed during tension can be related with the strain induced modifications of the 

microstructure of PET but this viscoplastic model approach fails to represent the relaxation 

stage after tension. 

A visco-elastic behaviour should be more accurate to reproduce the experimental response.  

Shepherd et al. [6] proposed a model that combines statistical mechanics and 

thermodynamic aspects which are capable of modelling both the morphology evolution and 

the mechanical behaviour of a semi-crystalline polymer at temperatures just above Tg. In the 

proposed model, the evolution of morphology upon deformation is captured via the 

implementation of internal state variables (ISVs) which represent the thermodynamics. It is a 



direct representation of semi crystallite structure in terms of number density and average size, 

entanglement density, and the orientation distribution of the crystalline and amorphous phases 

at any point during deformation. Successful results were obtained for the prediction of 

mechanical behaviour as well as morphology development (orientation distribution and 

crystallinity level) for uniaxial tension and compression of PET. The model has only been 

validated on experiments involving uniaxial deformation which is not the dominant 

deformation mode in most manufacturing processes. Moreover the deformation rate 

conducted in the validation experiments is much lower (less than 1/s) than in the real 

processes. The accuracy and effectiveness of the proposed model needs to be validated 

further. 

Schmidt et al. [7] for example, ran stretch blow moulding simulations using a viscoelastic 

constitutive law. Even if the Maxwell like model was extended to a high level of strain by the 

use of an Oldroyd time derivation, the behaviour did not model the strain hardening effect and 

did not reproduce the shape evolution of the perform during blowing. More, classical 

viscoelastic models such as the Upper Convected Maxwell model [8] or the Giesekus model 

shows limitations when the strain rate becomes high as in ISBM (typically > 50s-1; this 

generates stability problems for numerical simulation. Most of models derived from Maxwell 

write: 

 , 2
S

f S D D
t

    ,  with  G                                                                                     (1) 

where S  is the extra Cauchy stress tensor and D  the strain rate tensor. The upper convected 

derivative is defined by: 

 SDDSaSSS
t

S  


 with a = 1.                                            (2) 



G denotes the shear elastic modulus and  is the relaxation time. For example, when the f 

function is limited to the extra-stress tensor, the upper convected Maxwell is obtained:  

DS
t

S 
 2               (3) 

For  uniaxial elongation, the elongational viscosity (i.e, uniaxial stress/uniaxial strain rate ) 

when steady state is reached has the expression of Eq. 4: 

  
 

121

3
              (4) 

This model becomes unstable when the true strain rate  passes the limit value given by 1/2.  

Moreover, this model highlights a rheo thickening effect that is in contradiction with 

experimental results but no strain hardening effect. Considering Giesekus modelling: 

DS
G

S
t

S 

 22    dimensionless parameter         (5) 

The elongational viscosity at steady state is: 

   2 2
3 1 2 8 1 4

3 6

    
 

               (6) 

If one chooses an  value less than 1, no condition appears and strain rate values can raise up 

to high values with no mathematical instability. A review of visco-elastic modelling of highly 

elastic flows of amorphous thermoplastics proposed by Figiel and Buckley [9] shows the way 

to improve such modelling by fixing a frame to build a visco-elastic model. In special cases  

their proposition leads to the Giesekus model with parameter  = 1.  

Here, the assumption of an additive decomposition of the elastic and viscous strain rate 

tensors (D = De + Dv) is adopted to describe the kinematic structure of the constitutive 

models. This choice, together with the assumption of zero viscous spin, leads to the Leonov 



equation [10] and does not generate singularities when the strain rate increases for uniaxial or 

biaxial tension. The particular case of plane tension (the first step of a sequential biaxial test) 

is presented in the linear case (i.e. constant values of shear modulus G and viscosity ) and 

show that viscous strain rate and elastic strain are not proportional to the global strain and 

strain rates as in the previous cases. The basis of this viscoelastic approach is presented in 

section 2. 

In section 3, we present and discuss the experimental results of multiaxial tension tests 

managed on PET specimens under strain rate and temperature close to the ISBM conditions. 

Numerous technical solutions have been proposed to achieve bi-axial tension tests and data 

for polymers. A first kind is based on industrial machines or use experimental set-up very 

close to the industrial process: film stretching in two directions, using industrial machines 

(Faisant de Champchesnel [11], Vigny [12], W. Michaeli et al. [13]) and combining constant 

speed or constant force tension tests; blowing of initially flat (and usually circular) polymer 

sheet using hydraulic or pneumatic pressure. In this kind of testing, the polar zone is usually 

observed because it exhibits nearly equi-biaxial elongations. These set-ups are quite common 

and easy to use. See, for example, Treloar [14], Hart-Smith [15], Ogden [16] and more 

recently Feng [17] and Verron [18] for elastomeric and thermoplastic materials. In the case of 

stretching and blowing a cylinder, original tests have been achieved by Alexander [19] on 

latex, and this principle was used more recently by Benjeddou et al. [20] to characterize 

numerous rubbers. More specifically, some stretching and blowing tests have been achieved, 

on industrial machines (Schmidt [21], Rodriguez-Villa [22]), or on laboratory set-up (Cakmak 

et al. [23], Haessly and Ryan [24], Gorlier [25]. This kind of testing can be realized in a 

mould or letting the bubble inflate freely. The main advantage of these tests is that data is 

obtained at conditions that are close to the industrial process. The major drawback however is 

that it can be difficult to obtain reliable data due to the complexity of the strain field on the 



specimen and it is not easy to control and measure important input parameters such as 

temperature and strain rate.  

Other test methods involve stretching a test specimen in a special built machine that mimic 

the mode of deformation found in the industrial process. The plane specimen can be stretched 

in one or another of the two principal directions, with independent forces and speeds. The 

specimen can be thick (Obata et al. [26], Meissner [27], Sweeney et al. [28], Marco [29]) or 

thin (film like) (Chandran and Jabarin [30], Chang et al. [31], Buckley et al. [32], Mathews et 

al. [33]). These test facilities are rare because it is difficult to insure homogeneous strains and 

because the grips are complex to design and to use. The main advantage of this type of test is 

that data can be generated under good control of process conditions such as temperature and 

strain rate. Plane compression testing has also been performed. The principle is to compress 

along a direction a prismatic specimen, while keeping constant its original length along one of 

the orthogonal directions. These tests have been used for elastomers (Arruda and Boyce [34]) 

but also for PET (Bellare et al. [35], Boyce et al. [36]).  Plane tension (or pure shear) testing is 

widely used and very common for rubbers because it is easy to achieve. The principle is to 

use a specimen with a small height compared to its width and to impose a stretching in the 

height direction. It is commonly supposed that the solicitation is close to plane strain (or pure 

shear), even if this assumption becomes quickly false for too high elongations (Chevalier and 

Marco [37]).  

Menary et al. [38], have recently developed a multiaxial testing machine that enables 

biaxial (equibiaxial or sequential) tension tests under high strain rates (up to 32s-1) with 

homogeneous temperature and strain fields. These tests are then used in section 4 to upgrade 

the model presented in section 2 and to manage the identification of the strain hardening 

effect. Nonlinear forms of elastic and viscous characteristics G(e) and ( ,v v   ) are proposed 



and identified. We also have modelled and identified the temperature effect on PET behaviour 

thus enabling the model to be suitable for simulating the the stretch blow molding process. 

2. A viscoelastic modelling for high elastic polymer behaviour 

2.1 Model presentation 

In [9] Figiel and Buckley suggest building a visco-elastic model adapted to highly elastic 

polymers as an extension of the hyper elastic approach used for rubber like materials coupled 

with a viscous part. In their proposition the viscous part is supposed to be incompressible, the 

volume variation under pressure is assumed to be purely elastic. In the following, considering 

the difficulty to provide data to identify the volume variation, we differ slightly considering 

both parts as incompressible. In the linear case (i.e., the shear modulus G and the shear 

viscosity  are constants), both relations can be written: 

2

2

e e

v v

G p I

D p I

 
 
 
                (7) 

 is the Cauchy stress tensor, vD  is the symmetric part of the viscous velocity gradient, and 

e  is the elastic part of the Eulerian strain measure defined by: 

 1

2e eB I                 (8) 

where eB  is the elastic part of the left Cauchy-Green tensor. Considering that the Oldroyd 

derivative is often used in viscoelastic modelling of polymer flow, the choice of this particular 

strain is justified in appendix A. pe and pv are pressures associated with the incompressibility 

conditions of both parts: 

det 1

0

e

v v

B

divV traceD


                (9)   



Two approaches can be used for dealing with the split between the elastic and viscous strains. 

(i) additivity of the elastic and viscous strain rates or (ii) multiplicative decomposition of the 

deformation gradient  

( )      ( )e v e vi D D D ii F F F             (10) 

In the following, we will focus on approach (i). In the case of the linear behaviour laws, one 

can modify Eq.7 into the following form: 

ˆˆ 2
ˆ     and   

ˆ 2

e

v

G
pI

D

    
   

          (11) 

The subscript “^” denotes the deviatoric part of the tensor and p is the previous pv pressure. 

Combining equations, 10(i) and 11 in the Oldroyd derivation of the elastic left Cauchy-Green 

tensor leads to a Leonov like equation [39]: 

1 ˆ. 0
e

e e

B
B B

t


               (12) 

where  is the relaxation time, the ratio of the viscosity  and elastic shear modulus G.(see 

Appendix B for details).  

2.2 Uniaxial and equibiaxial elongations under uniform nominal strain 

rate 

Considering the homogeneous and plane stress cases of uniaxial and equibiaxial elongations, 

one can solve Eq. 12 and then, substituting in Eq. 11 obtain the elongation stresses 

respectively, U and B versus time or global elongation as shown in Fig. 1. In order to be 

coherent with the biaxial tension experiments presented later, the nominal strain rate  is 

considered to be constant. Therefore, the true strain rate   is equal to: 



t
 

1
                (13) 
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It worth noting that Be and Dv are not necessarily proportional to the global B and D tensors so 

that in both cases we look for:  

 
2

2

2 2

0 0 0 0
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e e

B D

 
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      (15) 

e and e are respectively the elastic elongations in directions X and Y. v  and v  are 

respectively the viscous strain rates in directions X and Y. The elastic elongation in direction Z 

is obtained by the incompressibility condition of the elastic part as the viscous strain rate in 

the direction Z from the incompressibility condition of the viscous part: both expressions are 

given in Eq.15. For uniaxial elongation the system to solve leads to e
= 1/e and 2v v    

and the elastic elongation e is given from the differential relation: 

21 1

3
e

e
e e

    
                     (16) 



and the uniaxial stress can then be computed from: 

2 1
U e

e

G  
                                             (17) 

For equibiaxial elongation the system to solve leads to e
= e


 and v v   and the elastic 

elongation e is given from the differential relation: 

2
4
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6
e

e
e e

    
                    (18) 

and the equibiaxial stress can then be computed from: 




  4

2 1

e

eB G                (19) 

The modelling of uniaxial and biaxial elongations does not highlight any singularity when the 

strain rate increases as it is the case for upper convected Maxwell or Giesekus viscoelastic 

model.  

2.3 Particular case of the plane strain elongation test 

In the case of plane tension, the Cauchy stress tensor, the left Cauchy-Green tensor and the 

strain rate tensors write:  
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Where P is the stress in the plane elongation direction and 2 the stress in the fixed direction. 

Once again, we look for Be and Dv that have not the same form  as B and D : 
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Stress can be given by: 

ˆ 2e vGB pI D pI                 (22) 

Which leads to, for this plane stress case: 
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From the viscous part we have: 
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Additivity of the strain rate tensors gives: 
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So: 

eev    , eev                  (25) 

When replacing Eq. 25 in Eq. 24 together with Eq. 23, one obtains: 
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Resolution of Eq. 26, in the simple case G = G0 and  = 0 gives the evolution of e and e 

shown on Fig. 2. One can see that e is not equal to 1 and that the elongation along the third 

axis is different from  1/e.  

This clearly indicates that Be is not proportional to B and Dv is not proportional to D. This 

is not the case in uniaxial and equibiaxial tensions where only one parameter e is enough to 

describe the elastic part. Consequently, the identification of the non linearity's will be easier 

from uniaxial or equibiaxial tests rather from plane tension tests. In case of non linearity's, 

one can extend the behaviour laws presented in Eq. 11 by using two rheological functions 

instead of constant values for G(e) and ( v ) :  
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where e  and v  are respectively the equivalent elastic strain and the equivalent viscous 

strain rate. The following section provides experimental data that will help to build these f and 

g functions. 

3. Simultaneous biaxial elongation of PET over Tg 

3.1 Experimental apparatus 

The development of a multiaxial testing machine (shown in Fig. 3) was aimed at 

duplicating the deformation behaviour of polymeric materials for polymer forming processes 

such as blow moulding and thermoforming under controllable conditions (deformation 



temperature, deformation rate and deformation mode).  Biaxial (simultaneous or sequential) 

tension tests under high strain rates (up to 16s-1) with homogeneous temperature and strain 

fields were performed. 

The PET test specimens were initially injection moulded with a dimensions of 76mm x 

76mm x 1.2mm). The grade of PET TF9 with an IV of 0.74 dl/g, which is commonly used in 

the stretch blow molding industry for still water bottles were used for the samples. Wide angle 

X-rays diffraction (WAXD) analysis was conducted on the PET specimens using the X‟Pert 

Pro Panalytical X-ray diffractometer. Equatorial scans were conducted at room temperature, 

in the range 2 = 5o to 60o with intensity data being collected every 0.017o. No crystalline 

band was observed along the “amorphous halo”, hence indicating that the PET sample was a 

highly amorphous material.   

The specimens are mounted onto a scissor mechanism and are clamped using 24 nitrogen-

driven pneumatic clamps around the perimeter of the sample. Once mounted, the specimens 

are heated by two convection heaters, one mounted above and the other below the test 

specimens. The initial temperature of the specimen is regulated via a thermocouple that is 

placed just above the surface of the sample. The sample is heated for 3 minutes to provide 

sufficient time to give a uniform temperature through the thickness. At the required test 

temperature, the grips are driven apart by two servomotors, which are controlled by computer 

interface. The user supplies information such as stretching speed, deformation mode, and 

required distance to stretch. The deformation mode is fully programmable across the x and y 

planes, and may be varied from simultaneous equal biaxial to constant width drawing.  The 

loading may also be applied sequentially and the maximum stretching speed is 2400 mm s–1 

(average nominal strain rate of 32/s). The maximum stretch ratio achievable is 4.5x4.5. The 

force to stretch the sample is recorded against displacement on each axis by two force 

transducers (maximum load 200 N) mounted on the central grip of each axis. This force and 



displacement data are then converted to true stress–nominal strain. Further details of the 

apparatus description and experimental procedure can be found in a previous publication [40]. 

In this study, the biaxial testing experiments were conducted in the temperature and strain 

rate ranges of 80-110oC and 1-32s-1. The objectives of the test programme were to determine 

the effects of temperature and strain rate on the resulting stress strain response. The 

constitutive behaviour of PET TF9 grade was investigated for three different types of 

deformation mode. These were: simultaneous equal biaxial (EB), constant width (CW), and 

sequential equal biaxial (SQ), where the deformation is applied in two stages. All of these 

modes of deformation are typical of what the material may experience during the stretch blow 

moulding process and are illustrated in Fig. 5, which shows the geometry of the specimens 

before and after testing. 

3.2 Experimental results 

The results of the test programme are shown as a series of graphs of true stress versus 

nominal strain. To ensure a consistent analysis of the samples post stretching, all the samples 

were stretched to as nominal strain of 1.8 (stretch ratio Ȝ 2.8). This was the maximum stretch 

ratio that could be reached consistently across the temperature and strain rage without the 

sample tearing. 

The responses of the TF9 grade specimen under simultaneous equal biaxial (EB) testing, at 

a temperature 90oC, at different nominal strain rates, are shown in Fig. 6. The basic stress–

strain relationship of the material shows a gradual increase in stress with strain. However, it is 

evident that strain hardening is occurring after the nominal strain equals to 1.5. This 

phenomena highlights the necessity of a non linear form of the proprieties. 

Figure 7 shows the effect of temperature changes on the response of TF9 grade under equal 

biaxial deformation, at an average nominal strain rate of 8 s-1. When temperature changes, the 

higher temperatures requires considerably less stress for a given strain. The onset and extent 



of strain hardening varies with the temperature, therefore, emphasising the need to deal with 

the influence of temperature in the model.   

4. Identification from uniaxial and biaxial tension tests 

The comparison between the experimental results of tests managed on PET at a temperature 

slightly over Tg (See Fig. 6 for example) with the model response plotted on Fig. 1 when G 

and  have constant values, is not satisfactory. The two main reasons are : (i) the 

experimental data presents a strain hardening effect (stress increases when elongation is about 

2.5); (ii) the strain rate effect of the model is too strong.  

4.1 Identification procedure from Biaxial tests 

In order to model the strain hardening effect, the first idea is to choose an hyperelastic model 

for the elastic part. Hart-Smith, Ogden or Yeoh models, for example, can be considered 

because their response to uniaxial or biaxial tension produce a strain hardening effect. It is 

necessary but not sufficient: initial trials with these hyperelastic models showed that when 

used with a classical rheo thinning viscous law, the strain hardening cannot be reproduced. On 

the other hand, if the elastic part is modelled with a constant elasticity, some difficulties arise: 

the elastic strain rate reaches higher values than the global rate, which is not realistic and 

leads to negative values of the viscous strain rate. Consequently, the elastic and the viscous 

parts of the model must contribute to the strain rate effect.  

One can first identify the initial shear modulus G0: its value can be estimated from the initial 

slope of the global experimental strain-stress curves because there is no viscous strain at the 

very beginning of the test. Table 1 shows that G0 does not vary much from one strain rate to 

another.  

Here, during the biaxial tests, the global strain rate decreases versus time (Eq.13), if the shear 

modulus G0 is constant, results of the simulations show that the elastic strain rate will exceed 



the global one. In that case, the viscous strain rate becomes negative and produces 

singularities. Therefore, it is necessary to consider that the shear modulus is an increasing 

function of the elastic strain instead of a constant: we choose a Hart-Smith like model for the 

elastic part: 

  2

0 1exp 3G G I   ,  1 eI trace B                                     (28) 

In order to ensure the initial strain is purely elastic and the strain rates are always positive 

during elongations, the values of the parameters G0 and  are chosen as: G0=8 MPa and  

=20.  

We choose to focus on the non-linear viscous part of the model chosen as in Cosson et al. 

[5] that identified a non linear incompressible viscoplastic model which represents 

macroscopically the strain hardening effect observed during tension for high strain. We 

choose the viscous model as the form following: 
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The hardening effect is related to the h function which increases continuously with v  that can 

be obtained by comparison with the experimental tests. ref
 is a reference strain rate that can 

be taken equal to 1 s-1. 0 is analogous to the viscosity and h is a dimensionless function. In 

order to identify the h function, we propose the following approach: 

1. For each strain rate, the stress-strain curve of the equibiaxial test, the evolution of the 

related elastic elongations e can be obtain from Eq. 30: 
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   (30) 



where S is an dimensionless variable: S = B/G.  

2. We can choose the smooth piecewise-polynomial function „spline‟ to present each 

evolution of e. In the case of the strain rate 1 s-1 for example, we can see the best-fit curve is 

shown in figure 8. 

Then, the related elastic elongation rate e  can be given as the derivative of e with respect to 

time t. So we can obtain the elastic strain rate from eee    . 

3. In the case of equibiaxial test, the viscous velocity gradient Dv can be obtained by: 
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As we mentioned in Eq. 14b, the Cauchy stress tensor  and the strain rate tensor D can be 

written by: 
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One can solve Eq. 12, for biaxial elongations, the related elastic elongations e are given from 

the differential relations: 
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With Eq. 29, one can replace the viscosity Ș, so the equation is: 
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In the case of equibiaxial elongation, the equivalent viscous strain rate v , can be obtained 

by: 
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Therefore, we can solve Eq. 34 and Eq. 35, for each strain rate and for different values of the 

exponent m, the h function can be computed from the equation following: 
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- Each tension speed gives a different function h versus v  for each value of exponent m. 

When we fixe the parameter m, we can sum the differences between each h curve from each 

strain rate. The minimal dispersion is obtained for m equal to 0.22 as shown in Fig. 9 which 

illustrates the influence of the parameter m on the dispersion between the h functions. With 

the optimal value of m, we obtain a similar evolution for the 5 curves of h for each strain rate 

as shown in figure 10(a). 

Eq. 36 gives the h evolution versus the equivalent viscous strain v  for each strain rate 

condition. 

4. Once we have the curve h with the optimal value of m, the last step of the identification 

is to propose a model to represent the curve of the function h. We can choose the h function 

with the viscous strain İv in the form of: 
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As shown in Figure 10b vlim is the strain value corresponding to the vertical asymptote of 

the h curve, 0 is related to the level of the function on the "plateau". K is a constant related to 



the initial slope of the curve and N an exponent that fits the "beginning" of the quick increase 

of the curve.
At the very beginning of the curve h equal 0, this is not a theoretical problem because the 

power law part is infinity at the same time and the modelling is consistent but the numerical 

implementation highlights some difficulties. In order to solve them we slightly modify the h 

expression that becomes: 
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The best parameters are:   = 1.25Mpa.s,  = 4.308, h0 = -0.491, vlim = 1.974, N = 0.498. 

4.1 Identification procedure for the temperature dependence 

 Menary et al. [38] had also provided results on biaxial elongation tests at several 

temperatures near the glass transition temperature but for a given strain rate (8s-1) (Fig. 7). 

Because all curves present more or less the same evolution, in the following, we will attempt 

to build a master curve for viscosity. To identify the temperature dependence, we express first 

the properties in terms of a function of the temperature and then choose the best parameters in 

this analytical expression to represent conveniently the experimental data. 

 Using the same procedure previously presented for the identification of the viscous 

model, the function Ș0h(İv,T) can be plotted for each test temperature from Eq. 37b. The best 

parameters have been determined are listed in the table 2. 

Considering the results of Table 2, we notice that variables K and N vary little with 

temperature.  Consequently, the assumption is made that the dependence on temperature can 

be neglected for these two parameters and the values of K and N are constants: K=4.2 and 

N=0.5.  

As mentioned in the Eq. 37b, h0 is a small parameter introduced in order to solve the 

numerical difficulty at the beginning of the curve, so we can fix the h0 value equal to -0.25 for 



each temperature. The last two variables Ș0 and İvlim show a significant dependence on 

temperature: the reference viscosity Ș0 decreases with temperature and the ultimate viscous 

strain İvlim increases with temperature. We propose to focus on the determination of only two 

functions for these two parameters. When we choose the values K, N and h0 as constants: = 

4.2, N = 0.5, h0 = -0.25 and re-identify the optimal parameters for the function Ș0h(İv,T). It 

turns out that the new best parameters Ș0 and İvlim at each temperature are slightly changed, as 

illustrated in table 3. 

The evolution of the parameter Ș0 vs temperature is plotted in the figure 11a: it decreases 

rapidly when the temperature increases. According to this phenomenon, a suitable analytical 

expression can be chosen: The Williams-Landel-Ferry (WLF) model (Williams et al. [41]) 

which has proved to be widely applicable.: 
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where C1 and C2 are the WLF parameters. One selects the reference parameter Tref as: Tref =90 

oC. It appears that the shift aT depending on temperature allows an approximate superposition. 

In this case, this shift can be obtained from the relation between the parameter Ș0(T) for a 

temperature T and the Ș0(90 oC) : 
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1/ln(aT) is listed in Table 4 and is plotted versus 1/(T-Tref) in the figure 11b. It allows the 

determination of the two constants C1 and C2: 1 1.948C  , 2 33.548oC C , when T is 

expressed in the degree centigrade. Values of 1/ln(aT) were calculated from Eq. 38b with the 

selected coefficients C1 and C2, they are given in the last column of table 4. They agree quite 

closely with the experimental values (figure 11b). 



For the other parameter İvlim, we can notice that the influence of temperature is negligible 

near the reference temperature (Tref =90 oC) but much more sensitive when the temperature 

rises (Figure 12). In that case, we propose to model this evolution in the following way: 
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where 
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refT C . Moreover, Eq. 40 can be written as: 
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A plot of  (İvlim - İvlim_ref)/İvlim_ref versus 1/(T-B2) is linear, the coefficient B1 and B2 by a 

least-squares fit of equation 40b: 1 0.07B  , 2 111.88oB C .  

The two functions represent accurately the influence of the temperature on the parameters K 

and v lim.. Therefore, the calculated values for the function Ș0h(İv,T) can be used in 

constructing the non linear viscous part of the viscoelastic modelling of the PET behaviour 

near Tg. 

4.2 Comparison of results 

In this section, we have implemented this set of parameters into the stress-strain curve. Figure 

13 shows that using the visco-hyperelastic model, we can obtain a substantially good 

representation of the strain hardening effect for different strain rates. The main difference 

between experimental data and modelled biaxial behaviour is the beginning of the stress-

strain curve (when the strain is lower than 0.4): the experimental data‟s initial slope seems to 

increase when the strain rate rises, in contradiction with the results of the visco-hyperelastic 

model. A summary quantifying the differences between the predictions for the model and the 

experiments is shown in table 5. 

The differences between the experimental data‟s and the results of this model are shown in 

the Table 5. 



5. Conclusions 

 A viscoelastic model is presented in the first part of the paper by introducing, in a 

Leonov like equation, both an elastic part and a viscous component of stretch. The variational 

formulation for the numerical simulation is written and simulations fit with analytical 

solutions for unaxial and biaxial tension tests. This viscoelastic model doesn‟t highlight 

singularities in the uniaxial or biaxial elongations under conditions of high strain rate.  

 Considering the behaviour of PET near Tg exhibits a strain hardening effect, we 

choose a hyper-elastic model for the elastic part and acting in series a non-linear viscous 

model for the viscous part in order to represent this non-linear behaviour. We obtain a good 

representation of strain hardening effect with this model.  

 We have also modelled and identified the temperature effect on PET behaviour. Two 

functions were chosen to take into account the influence of temperature. We have obtained a 

good representation of the temperature dependence.  

 In further work, we intend to implement the model into commercial FEA code to 

evaluate its performance under arbitrary deformations and strain rates experienced during an 

ISBM simulation.   
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Appendix A: related choice of strain measure and convective 

derivation 

Finite strain measures are numerous, even reduced to the Lagrangian one, the choice remains 

very important. Based on the length variation of a small segment around a material point 

during the deformation, the most famous Lagrangian strain is the Green-Lagrange one that 

writes: 
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where C is the right Cauchy-Green tensor. An entire family can generalise this measure: 
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including the nominal strain when m = 1/2 and the Logarithmic strain when m = 0. Each 

Lagrangian strain measure has its Eulerian corresponding measure. For example, E is related 

to A the Euler-Almansi measure: 
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and the entire family: 
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Euler-Almansi is obtained for m = -1, and values of m equal to -1/2 and 0 give respectively 

the Swainger and Hencky strain measures. More possibilities arise if considering infinitesimal 

area variation or infinitesimal thickness variation around a material point. These approaches 

allow defining other strain measures: 
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respectively for area or thickness variation. It worth noting that the last possibility can also be 

obtained from Eq. (ii) with m = -1. The corresponding Eulerian measures write: 
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This last measure is the one chosen for the expression of the elastic part of the viscoelastic 

behaviour law. It can also be obtained from Eq. (iv) with m = 1 but the generalisation of Euler 

Almansi cannot be interpreted from geometrical considerations.  

On the other hand, when time variations of tensors have to be considered in order to write 

behaviour laws in term of strain rates, one has several possibilities. All of them are objective 

derivations (i.e., they are not influenced by solid displacement of the derivation referential. 

Most famous derivatives are Jaumann which takes into account the spin  of the material 

point neighbourhood in the variation of the tensor: 
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Following derivatives are respectively the upper convected (or Oldroyd) and the lower 

convected ones: 
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where L is the entire velocity gradient from which the spin  is the anti symmetric part and D 

the symmetric one. It can be shown that all these are particular cases of the Jonhson Segalman 

expression when parameter a takes 0, 1 or -1 values: 
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The parameter a generalises the transformation gradient F by the definition: 
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that leads to: 
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A natural way to associate the choice of a strain measure and a derivative is to consider that 

the linear relation between the natural Cauchy extra stress tensor and an Eulerian strain 

measure, to be defined, must give a similar linear relation between the time derivative of the 

Cauchy extra stress and the natural strain rate D:  
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This leads to the condition: 
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that is satisfied if the strain measure writes: 
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It is worth noting that if one chose the Oldroyd derivative (a=1) the obtained strain expression 

is the related to thickness variation strain measure defined by Eq. vi: 
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The choice of the lower convected derivative (a = -1) leads to the Euler Almansi strain 

measure defined in Eq. iii: 
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The choice of the Jaumann derivative leads to a singular strain measure and this may explain 

why this derivative is not often used in the fluid community.  



Appendix B: Leonov like equation 

The Oldroyd derivative of the elastic left Cauchy-Green tensor eB  writes: 
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where L  is the global velocity gradient. Considering the definition of eB , the time derivative 

writes: 
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where eL  is the elastic velocity gradient. Substitution in Eq.(a) leads to: 
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where vL  is the viscous velocity gradient. The approach used for dealing with the split 

between the elastic and viscous strains is the additivity of the elastic and viscous strain rates, 

but as explained in Figiel and Buckley (2009) the spin partition does not make physical sense 

and one can assume it is purely elastic. Consequently:  
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So Eq.(c) writes: 
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In the case of the linear behaviour laws, the deviatoric part of the Cauchy stress tensor can be 

expressed two different ways: 
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   (f) 

where  is the relaxation time, the ratio of the viscosity  and elastic shear modulus G. It is 

easy to show that if the product between vD  and eB  does not necessary permute, the one 

between eB  and ˆ
eB  does. So, combining equations (e) and (f) leads to the Leonov like 

equation: 
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Table (1). The numerical value of G0 

Strain Rate (s-1) 1 2 4 8 16 

G0 (MPa) 7.2 8.1 7.7 7.9 8.9 

Min G0 (MPa) 7.2 

Max G0 (MPa) 8.9 
 
Table (2) The parameters for the function Ș0h(İv,T) 

Parameters Ș0 (MPa.s) K h0 İvlim N 
90 oC 1.25 4.31 -0.49 1.97 0.49 
95 oC 1 4.21 -0.29 2.05 0.48 
100 oC 0.78 4.29 -0.21 2.13 0.5 
105 oC 0.68 4.05 -0.21 2.25 0.5 
110 oC 0.60 4.22 -0.19 3.5 0.51 

 
Table (3) The best parameters for the function Ș0h(İv,T) when K, N and h0 are fixed 

Parameters 90 oC 95 oC 100 oC 105 oC 110 oC 
Ș0 (MPa.s) 1.25 1 0.78 0.68 0.61 

İvlim 1.96 2.05 2.11 2.23 3.4 
 
Table (4) Determination of aT values 

Parameters aT aT(WLF) ln(aT) ln(aT)(WLF) 1/ln(aT) 1/ln(aT) (WLF)    9095 00   0.8 0.777 -0.223 -0.253 -4.481 -3.957    90100 00   0.624 0.639 -0.472 -0.447 -2.12 -2.235    90105 00   0.544 0.548 -0.609 -0.602 -1.643 -1.661    90110 00   0.488 0.483 -0.717 -0.728 -1.394 -1.374 

 
Table 5.  Errors between the experimental and the results of the model 

Strain Rate (/s) Average absolute 
deviation (%) 

Temperature (oC) Average absolute 
deviation (%) 

1 8.03 90 8.86 

2 8.12 95 6.05 

4 5.58 100 8.91 

8 7.7 105 8.48 

16 10.12 110 8.1 
 

Table(s)
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Figure 1: Uniaxial (left) and biaxial (right) responses of the linear form of the viscoelastic 

model. Shear modulus G = 3.29 MPa and Viscosity  = 16.5 MPa.s 

Figure 2: For a plane tension test, the elastic elongations e and e are plotted vs. time for a 

given strain rate. In superposition the 1/e evolution is different from the e evolution.
Figure 3: The multiaxial testing machine 

Figure 4: Test specimen and the deformed sheet with the stretch ratio Ȝ 4×4 

Figure 5:Schematic diagram of the experimental program carried out in the current study. 

Shown are the simultaneous equal biaxial (EB), constant width (CW), and sequential equal 

biaxial (SQ) experiments conducted. 

Figure 6: Equi-biaxial tests at 90oC under different strain rates. 

Figure 7: Equi-biaxial tests at the strain rate 8s-1. The effect of temperature.. 

Figure 8: The evolution of the related elastic elongations e 

Figure 9: Minimization of differences between the h(İv) function. An optimal value is obtained 

for m=0.22 

Figure 10: (a): The h function from Eq. 37;(b):Illustration of the h function 

Figure 11: (a) Evolution of Ș0; (b)  Shift factor aT plotted logarithmically against temperature 

Figure 12 : Evolution of the parameter limv  

Figure 13: The data experimental [38] (the points) and the results of the viscoelastic model 

(the lines): left, at 90°C under different strain rates (1 s-1, 2 s-1, 4 s-1, 8 s-1 and 16 s-1); right, at 

8 s-1 under different temperatures (90°C,95°C,100°C,105°C,110°C) 
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