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Abstract

In this paper we derive an extension of the Marc̆enko-Pastur theorem to a large class of
weak dependent sequences of real random variables having only moment of order 2. Under
a mild dependence condition that is easily verifiable in many situations, we derive that the
limiting spectral distribution of the associated sample covariance matrix is characterised
by an explicit equation for its Stieltjes transform, depending on the spectral density of the
underlying process. Applications to linear processes, functions of linear processes and ARCH
models are given.
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1 Introduction

A typical object of interest in many fields is the sample covariance matrix Bn = n−1
∑n

j=1 XT
j Xj

where (Xj), j = 1, . . . , n, is a sequence of N = N(n)-dimensional real-valued row random vec-
tors. The interest in studying the spectral properties of such matrices has emerged from multi-
variate statistical inference since many test statistics can be expressed in terms of functionals of
their eigenvalues. The study of the empirical distribution function (e.d.f.) FBn of the eigenvalues
of Bn goes back to Wishart 1920’s, and the spectral analysis of large-dimensional sample covari-
ance matrices has been actively developed since the remarkable work of Marc̆enko and Pastur
(1967) stating that if limn→∞N/n = c ∈ (0,∞), and all the coordinates of all the vectors Xj ’s
are i.i.d. (independent identically distributed), centered and in L2, then, with probability one,
FBn converges in distribution to a non-random distribution (the original Marc̆enko-Pastur’s the-
orem is stated for random variables having moment of order four, for the proof under moment
of order two only, we refer to Yin (1986)).

Since the Marc̆enko-Pastur’s pioneering paper, there has been a large amount of work aiming
at relaxing the independence structure between the coordinates of the Xj ’s. Yin (1986) and
Silverstein (1995) considered a linear transformation of independent random variables which
leads to the study of the empirical spectral distribution of random matrices of the form Bn =

n−1
∑n

j=1 Γ
1/2
N YT

j YjΓ
1/2
N where ΓN is an N×N non-negative definite Hermitian random matrix,

independent of the Yj ’s which are i.i.d and such that all their coordinates are i.i.d. In the later
paper, it is shown that if limn→∞N/n = c ∈ (0,∞), ΓN is bounded in spectral norm, and
FΓN converges almost surely in distribution to a non-random probability distribution function
(p.d.f.) H on [0,∞), then, almost surely, FBn converges in distribution to a (non-random) p.d.f.
F that is characterized in terms of its Stieltjes transform which satisfies a certain equation. Some
further investigations on the model above mentioned can be found Silverstein and Bai (1995)
and Pan (2010).

A natural question is then to wonder if other possible correlation patterns of coordinates
can be considered, in such a way that, almost surely (or in probability), FBn still converges
in distribution to a non-random p.d.f. The recent work by Bai and Zhou (2008) is in this
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direction. Assuming that the the Xj ’s are i.i.d. and a very general dependence structure of their
coordinates, they derive the limiting spectral distribution (LSD) of Bn. Their result has various
applications. In particular, in case where the Xj ’s are independent copies of X = (X1, . . . , XN )
where (Xk)k∈Z is a stationary linear process with centered i.i.d. innovations, applying their
Theorem 1.1, they prove that, almost surely, FBn converges in distribution to a non-random
p.d.f. F , provided that limn→∞N/n = c ∈ (0,∞), the coefficients of the linear process are
absolutely summable and the innovations have a moment of order four (see their Theorem 2.5).
For this linear model, let us mention that in a recent paper, Yao (2012) shows that the Stieltjes
transform of the limiting p.d.f. F satisfies an explicit equation that depends on c and on the
spectral density of the underlying linear process. Still in the context of the linear model described
above but, relaxing the equidistribution assumption on the innovations, and using a different
approach than the one considered in the papers by Bai and Zhou (2008) and by Yao (2012),
Pfaffel and Schlemm (2011) also derive the LSD of Bn still assuming moments of order four for
the innovations plus a polynomial decay of the coefficients of the underlying linear process.

In this work, we extend such Marc̆enko-Pastur type theorems along another direction. We
shall assume that the Xj ’s are independent copies of X = (X1, . . . , XN ) where (Xk)k∈Z is a
stationary process of the form Xk = g(· · · , εk−1, εk) where the εk’s are i.i.d. real valued random
variables and g : RZ → R is a measurable function such that Xk is a proper centered random
variable. Assuming that X0 has a moment of order two only, and imposing a dependence condi-
tion expressed in terms of conditional expectation, we prove that if limn→∞N/n = c ∈ (0,∞),
then almost surely, FBn converges in distribution to a non-random p.d.f. F whose Stieltjes
transform satisfies an explicit equation that depends on c and on the spectral density of the un-
derlying stationary process (Xk)k∈Z (see our Theorem 2.1). The imposed dependence condition
is directly related to the physical mechanisms of the underlying process, and is easy verifiable
in many situations. For instance, when (Xk)k∈Z is a linear process with i.i.d. innovations, our
dependence condition is satisfied, and then our Theorem 2.1 applies, as soon as the coefficients
of the linear process are absolutely summable and the innovations have a moment of order two
only, which improves Theorem 2.5 in Bai and Zhou (2008) and Theorem 1.1 in Yao (2012).
Other models, such as functions of linear processes and ARCH models, for which our Theorem
2.1 applies, are given in Section 3.

Let us now give an outline of the method used to prove our Theorem 2.1. Since the Xj ’s are
independent, the result will follow if we can prove that the expectation of the Stieltjes transform
of FBn , say SFBn (z), converges to the Stieltjes transform of F , say S(z), for any complex
number z with positive imaginary part. With this aim, we shall consider a sample covariance
matrix Gn = n−1

∑n
j=1 ZTj Zj where the Zj ’s are independent copies of Z = (Z1, . . . ZN ) where

(Zk)k∈Z is a sequence of Gaussian random variables having the same covariance structure as the
underlying process (Xk)k∈Z. The Zj ’s will be assumed to be independent of the Xj ’s. Using the
Gaussian structure of Gn, the convergence of E

(
SFGn (z)

)
to S(z) will follow by Theorem 1.1 in

Silverstein (1995). The main step of the proof is then to show that the difference between the
expectations of the Stieltjes transform of FBn and that of FGn converges to zero. This will be
achieved by approximating first (Xk)k∈Z by an m-dependent sequence of random variables that
are bounded. This leads to a new sample covariance matrix B̄n. We then handle the difference
between E

(
SF B̄n (z)

)
and E

(
SFGn (z)

)
with the help of the so-called Lindeberg method used in

the multidimensional case. Lindeberg method is known to be an efficient tool to derive limit
theorems and, from our knowledge, it has been used for the first time in the context of random
matrices by Chatterjee (2006). With the help of this method, he proved the LSD of Wigner
matrices associated to exchangeable random variables.

The paper is organized as follows: in Section 2, we precise the model and state the LSD
result for the sample covariance matrix associated to the underlying process. Applications to
linear processes, functions of linear processes and ARCH models are given in Section 3. Section
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4 is devoted to the proof of the main result, whereas some technical tools are stated and proved
in Appendix.

Here is some notation used all along the paper. The notation [x] is used to denote the integer
part of any real x. For any non-negative integer q, the notation 0q means a row vector of size q.
For a matrix A, we denote by AT its transpose matrix, by Tr(A) its trace, by ‖A‖ its spectral
norm, and by ‖A‖2 its Hilbert-Schmidt norm (also called the Frobenius norm). We shall also
use the notation ‖X‖r for the Lr-norm (r ≥ 1) of a real valued random variable X. For any
square matrix A of order N with only real eigenvalues, the empirical spectral distribution of A
is defined as

FA(x) =
1

N

N∑
k=1

1{λk≤x} ,

where λ1, . . . , λN are the eigenvalues of A. The Stieltjes transform of FA is given by

SFA(z) =

∫
1

x− z
dFA(x) =

1

N
Tr(A− zI)−1 ,

where z = u+ iv ∈ C+ (the set of complex numbers with positive imaginary part), and I is the
identity matrix.

2 Main result

We consider a stationary causal process (Xk)k∈Z defined as follows: let (εk)k∈Z be a sequence of
i.i.d. real-valued random variables and let g : RZ → R be a measurable function such that, for
any k ∈ Z,

Xk = g(ξk) with ξk := (. . . , εk−1, εk) (2.1)

is a proper random variable, E(g(ξk)) = 0 and ‖g(ξk)‖2 <∞.
The framework (2.1) is very general and it includes many widely used linear and nonlinear

processes. We refer to the papers by Wu (2005, 2011) for many examples of stationary processes
that are of form (2.1). Following Priestley (1988) and Wu (2005), (Xk)k∈Z can be viewed as a
physical system with ξk (respectively Xk) being the input (respectively output) and g being the
transform or data-generating mechanism.

For n a positive integer, we consider n independent copies of the sequence (εk)k∈Z that we

denote by (ε
(i)
k )k∈Z for i = 1, . . . , n. Setting ξ

(i)
k =

(
. . . , ε

(i)
k−1, ε

(i)
k

)
and X

(i)
k = g(ξ

(i)
k ), it follows

that (X
(1)
k )k∈Z, . . . , (X

(n)
k )k∈Z are n independent copies of (Xk)k∈Z. Let now N = N(n) be a

sequence of positive integers, and define for any i ∈ {1, . . . , n}, Xi =
(
X

(i)
1 , . . . , X

(i)
N

)
. Let

Xn = (XT
1 | . . . |XT

n ) and Bn =
1

n
XnX Tn . (2.2)

Bn will be referred as the sample covariance matrix associated to (Xk)k∈Z. To derive the limiting
spectral distribution of Bn, we need to impose some dependence structure on (Xk)k∈Z. With
this aim, we introduce the projection operator: for any k and j belonging to Z, let

Pj(Xk) = E(Xk|ξj)− E(Xk|ξj−1) .

We state now our main result.

Theorem 2.1 Let (Xk)k∈Z be defined in (2.1) and Bn by (2.2). Assume that∑
k≥0

‖P0(Xk)‖2 <∞ , (2.3)
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and that c(n) = N/n → c ∈ (0,∞). Then, with probability one, FBn tends to a probability
distribution, whose Stieltjes transform S = S(z) (z ∈ C+) satisfies the equation

z = − 1

S
+

c

2π

∫ 2π

0

1

S +
(
2πf(λ)

)−1dλ , (2.4)

where S(z) := −(1− c)/z + cS(z) and f(·) is the spectral density of (Xk)k∈Z.

Remark 2.2 Under the condition (2.3), the series
∑

k≥0

∣∣Cov(X0, Xk)
∣∣ is finite (see for in-

stance the inequality (4.59)). Therefore (2.3) implies that the spectral density f(·) of (Xk)k∈Z
exists, is continuous and bounded on [0, 2π).

Let us mention that the condition (2.3) is referred in the literature as the Hannan-Heyde con-
dition and is known to be sufficient for the validity of the central limit theorem for the partial
sums (normalized by

√
n) associated to an adapted regular stationary process in L2. As we shall

see in the next section, the quantity ‖P0(Xk)‖2 can be computed in many situations including
non linear models. We would like to mention that the condition (2.3) is weaker that the 2-strong
stability condition introduced by Wu (2005, Definition 3) that involves a coupling coefficient.

3 Applications

In this section, we give two different classes of models for which the condition (2.3) is satisfied
and then for which our Theorem 2.1 applies. Other classes of models, including non linear time
series such as iterative Lipschitz models, that are of the form (2.1) and for which the quantity
‖P0(Xk)‖2 can be computed may be found in Wu (2011).

3.1 Functions of linear processes

In this section, we shall focus on functions of real-valued linear processes. Define

Xk = h
(∑
i≥0

aiεk−i

)
− E

(
h
(∑
i≥0

aiεk−i

))
, (3.1)

where (ai)i∈Z be a sequence of real numbers in `1 and (εi)i∈Z is a sequence of i.i.d. real-valued
random variables in L1. We shall give sufficient conditions in terms of the regularity of the
function h, for the condition (2.3) to be satisfied.

Denote by wh(·) the modulus of continuity of the function h on R, that is:

wh(t) = sup
|x−y|≤t

|h(x)− h(y)| .

Corollary 3.1 Assume that ∑
k≥0

‖wh(|akε0|)‖2 <∞ , (3.2)

or ∑
k≥1

∥∥wh(∑`≥0 |ak+`||ε−`|
)∥∥

2

k1/2
<∞ . (3.3)

Then, provided that c(n) = N/n → c ∈ (0,∞), the conclusion of Theorem 2.1 holds for FBn

where Bn is the sample covariance matrix of dimension N defined by (2.2) and associated to
(Xk)k∈Z defined by (3.1).
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Example 1. Assume that h is γ-Hölder with γ ∈]0, 1], that is: there is a positive constant C
such that wh(t) ≤ C|t|γ . Assume that∑

k≥0

|ak|γ <∞ and E(|ε0|(2γ)∨1) <∞ ,

then the condition (3.2) is satisfied and the conclusion of Corollary 3.1 holds. In particular,
when h is the identity, which corresponds to the fact that Xk is a causal linear process, the
conclusion of Corollary 3.1 holds as soon as

∑
k≥0 |ak| <∞ and ε0 belongs to L2. This improves

Theorem 2.5 in Bai and Zhou (2008) and Theorem 1 in Yao (2012) that require ε0 to be in L4.

Example 2. Assume ‖ε0‖∞ ≤M where M is a finite positive constant, and that ak = ρk where
ρ ∈ (0, 1), then the condition (3.3) is satisfied and the conclusion of Corollary 3.1 holds as soon
as ∑

k≥1

wh
(
ρkM(1− ρ)−1

)
k1/2

<∞ . (3.4)

In particular the result applies to the case of the Bernoulli shift, that is ai = 2−i and ε0 is such
that P(ε0 = 1) = P(ε0 = 0) = 1/2. In such a case, the condition (3.4) is equivalent to:∫ 1

0

wh(t)

t
√
| log t|

dt <∞ .

For instance if wh(t) ≤ C| log t|−α with α > 1/2 near zero, then the above condition is satisfied.

Proof of Corollary 3.1. To prove the corollary, it suffices to show that the condition (2.3) is
satisfied as soon as (3.2) or (3.3) holds. Let (ε∗k)k∈Z be an independent copy of (εk)k∈Z. Denoting
by Eε(·) the conditional expectation with respect to ε = (εk)k∈Z, we have that, for any k ≥ 0,

‖P0(Xk)‖2 =
∥∥∥Eε(h( k−1∑

i=0

aiε
∗
k−i +

∑
i≥k

aiεk−i

)
− h
( k∑
i=0

aiε
∗
k−i +

∑
i≥k+1

aiεk−i

)))∥∥∥
2
.

≤ ‖wh
(∣∣ak(ε0 − ε∗0)

∣∣)‖2
Next, by the subadditivity of wh(·), wh(|ak(ε0 − ε∗0)|) ≤ wh(|akε0|) + wh(|akε∗0|). Whence,
‖P0(Xk)‖2 ≤ 2‖wh(|akε0|)‖2. This proves that the condition (2.3) is satisfied under (3.2).

We prove now that if (3.3) holds then so does the condition (2.3). By the computations page
1615 in Peligrad and Utev (2006),∑

k≥1

‖P0(Xk)‖2 ≤ 3
∑
`≥1

`−1/2‖E(X`|ξ0)‖2 . (3.5)

With the same notations as before, we have that, for any ` ≥ 0,

E(X`|ξ0) = Eε
(
h
( `−1∑
i=0

aiε
∗
`−i +

∑
i≥`

aiε`−i

)
− h
(∑
i≥0

aiε
∗
`−i

))
.

Hence, for any non-negative integer `,

‖E(X`|ξ0)‖2 ≤
∥∥∥wh(∑

i≥`
|ai(ε`−i − ε∗`−i)|

)∥∥∥
2
≤ 2
∥∥∥wh(∑

i≥`
|ai||ε`−i|

)∥∥∥
2
,

where we have used the subadditivity of wh(·) for the last inequality. Therefore, starting from
(3.5) and considering the last inequality, we derive that

∑
k≥1

‖P0(Xk)‖2 ≤ 6
∑
`≥1

∥∥∥wh(∑i≥` |ai||ε`−i|
)∥∥∥

2

`1/2
,

which shows that (2.3) holds as soon as (3.3) does. �
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3.2 ARCH models

Let (εk)k∈Z be an i.i.d. sequence of zero mean real-valued random variables such that ‖ε0‖2 = 1.
We consider the following ARCH(∞) model described by Giraitis et al. (2000):

Yk = σkεk where σ2
k = c+

∑
j≥1

cjY
2
k−j , (3.6)

where c ≥ 0, cj ≥ 0 and
∑

j≥1 cj < 1. Such models are encountered when the volatility (σ2
k)k∈Z

is unobserved. In that case, the process of interest is (Y 2
k )k∈Z and, in what follows, we consider

the process (Xk)k∈Z defined, for any k ∈ Z, by:

Xk = Y 2
k − E(Y 2

k ) where Yk is defined in (3.6). (3.7)

Notice that, under the above conditions, there exists a unique stationary solution to (3.6) that
satisfies (see Giraitis et al. (2000)):

σ2
k = c+ c

∞∑
`=1

∞∑
j1,...,j`=1

cj1 . . . cj`ε
2
k−j1 . . . ε

2
k−(j1+···+j`) . (3.8)

Corollary 3.2 Assume that ε0 belongs to L4 and that

‖ε0‖24
∑
j≥1

cj < 1 and
∑
j≥n

cj = O(n−b) for b > 1/2 . (3.9)

Then, provided that c(n) = N/n → c ∈ (0,∞), the conclusion of Theorem 2.1 holds for FBn

where Bn is the sample covariance matrix of dimension N defined by (2.2) and associated to
(Xk)k∈Z defined by (3.7).

Proof of Corollary 3.2. To prove the corollary, it suffices to show that the condition (2.3) is
satisfied as soon as (3.9) is. With this aim, let us notice that, for any integer n ≥ 1,

‖E(Xn|ξ0)‖2 = ‖ε0‖24‖E(σ2
n|ξ0)− E(σ2

n)‖2

≤ 2c‖ε0‖24
∥∥∥ ∞∑
`=1

∞∑
j1,...,j`=1

cj1 . . . cj`ε
2
n−j1 . . . ε

2
n−(j1+···+j`)1j1+···+j`≥n

∥∥∥
2

≤ 2c‖ε0‖24
∞∑
`=1

∞∑
j1,...,j`=1

∑̀
k=1

cj1 . . . cj`1jk≥[n/`]‖ε0‖2`4 ≤ 2c‖ε0‖24
∞∑
`=1

`κ`−1
∞∑

k=[n/`]

ck ,

where κ = ‖ε0‖24
∑

j≥1 cj . So, under (3.9), ‖E(Xn|ξ0)‖2 � n−b which combined with (3.5)
implies that the condition (2.3) holds as soon as b > 1/2. �

Remark 3.3 Notice that if we consider the sample covariance matrix associated to (Yk)k∈Z
defined in (3.6), then its LSD follows directly by Theorem 2.1 since P0(Yk) = 0, for k ≥ 1.

4 Proof of Theorem 2.1

To prove the theorem it suffices to show that for any z ∈ C+,

SFBn (z)→ S(z) almost surely. (4.1)
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Since the columns of Xn are independent, by Step 1 of the proof of Theorem 1.1 in Bai and
Zhou (2008), to prove (4.1), it suffices to show that, for any z ∈ C+,

lim
n→∞

E
(
SFBn (z)

)
= S(z) , (4.2)

where S(z) satisfies the equation (2.4).
The proof of (4.2) being very technical, for reader convenience, let us describe the different

steps leading to it. We shall consider a sample covariance matrix Gn := 1
nZnZ

T
n (see (4.32))

such that the columns of Zn are independent and the random variables in each column of Zn
form a sequence of Gaussian random variables whose covariance structure is the same as that
of the sequence (Xk)k∈Z (see Section 4.2). The aim will be then to prove that, for any z ∈ C+,

lim
n→∞

∣∣E(SFBn (z)− E
(
SFGn (z)

)∣∣ = 0 , (4.3)

and
lim
n→∞

E
(
SFGn (z)

)
= S(z) . (4.4)

The proof of (4.4) will be achieved in Section 4.4 with the help of Theorem 1.1 in Silverstein
(1995) combined with arguments developed in the proof of Theorem 1 in Yao (2012). The proof
of (4.3) will be divided in several steps. First, to “break” the dependence structure, we introduce
a parameter m, and approximate Bn by a sample covariance matrix B̄n := 1

n X̄nX̄
T
n (see (4.16))

such that the columns of X̄n are independent and the random variables in each column of X̄n
form of an m-dependent sequence of random variables bounded by 2M , with M a positive real
(see Section 4.1). This approximation will be done in such a way that, for any z ∈ C+,

lim
m→∞

lim sup
M→∞

lim sup
n→∞

∣∣∣E(SFBn (z)
)
− E

(
SF B̄n (z)

)∣∣∣ = 0 . (4.5)

Next, the sample Gaussian covariance matrix Gn is approximated by another sample Gaus-
sian covariance matrix G̃n (see (4.34)), depending on the parameter m and constructed from
Gn by replacing some of the variables in each column of Zn by zeros (see Section 4.2). This
approximation will be done in such a way that, for any z ∈ C+,

lim
m→∞

lim sup
n→∞

∣∣∣E(SFGn (z)
)
− E

(
S
F G̃n

(z)
)∣∣∣ = 0 . (4.6)

In view of (4.5) and (4.6), the convergence (4.3) will then follow if we can prove that, for any
z ∈ C+,

lim
m→∞

lim sup
M→∞

lim sup
n→∞

∣∣∣E(SF B̄n (z)
)
− E

(
S
F G̃n

(z)
)∣∣∣ = 0 . (4.7)

This will be achieved in Section 4.3 with the help of the Lindeberg method. The rest of this
section is devoted to the proofs of the convergences (4.3)-(4.7).

In what follows, we shall use the notation a � b to mean that there exists a finite positive
constant C, not depending on n, m and M , and such that a ≤ Cb.

4.1 Approximation by a sample covariance matrix associated to an
m-dependent sequence.

Let N ≥ 3 and m be a fixed positive integer less than N/2. Set

p = pN,m = [N1/8m−1/8] and kN,m =

[
N

p+m

]
, (4.8)
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where we recall that [ · ] denotes the integer part. Let M be a fixed positive number that depends
neither on N , nor on n, nor on m. Let ϕM be the function defined by ϕM (x) = (x∧M)∨ (−M).
Now for any k ∈ Z and i ∈ {1, . . . , n} let

X̃
(i)
k,M,m = E

(
ϕM (X

(i)
k )|ε(i)

k , . . . , ε
(i)
k−m

)
and X̄

(i)
k,M,m = X̃

(i)
k,M,m − E

(
X̃

(i)
k,M,m

)
. (4.9)

In what follows, to soothe the notations, we shall write X̃
(i)
k,m and X̄

(i)
k,m instead of respectively

X̃
(i)
k,M,m and X̄

(i)
k,M,m, when no confusion is allowed. Notice that

(
X̄

(1)
k,m

)
k∈Z, . . . ,

(
X̄

(n)
k,m

)
k∈Z are

n independent copies of the centered and stationary sequence
(
X̄k,m

)
k∈Z defined by

X̃k,m = E
(
ϕM (Xk)|εk, . . . , εk−m

)
and X̄k,m = X̃k,m − E

(
X̃k,m

)
, k ∈ Z . (4.10)

This implies in particular that: for any i ∈ {1, . . . , n} and any k ∈ Z,

‖X̄(i)
k,m‖∞ = ‖X̄k,m‖∞ ≤ 2M . (4.11)

For any i ∈ {1, . . . , n}, note that
(
X̄

(i)
k,m

)
k∈Z forms a m-dependent sequence, in the sense

that X̄
(i)
k,m and X̄

(i)
k′,m are independent if |k − k′| > m. We write now the interval [1, N ] ∩N as a

union of disjoint sets as follows:

[1, N ] ∩ N =

kN,m+1⋃
`=1

I` ∪ J` ,

where, for ` ∈ {1, . . . , kN,m},

I` :=
[
(`− 1)(p+m) + 1 , (`− 1)(p+m) + p

]
∩ N, (4.12)

J` :=
[
(`− 1)(p+m) + p+ 1 , `(p+m)

]
∩ N ,

and, for ` = kN,m + 1,
IkN,m+1 =

[
kN,m(p+m) + 1 , N

]
∩ N ,

and JkN,m+1 = ∅. Note that IkN,m+1 = ∅ if kN,m(p+m) = N .

Let now
(
u

(i)
`

)
`∈{1,...,kN,m}

be the random vectors defined as follows. For any ` belonging to

{1, . . . , kN,m − 1},
u

(i)
` =

((
X̄

(i)
k,m

)
k∈I`

,0m

)
. (4.13)

Hence, the dimension of the random vectors defined above is equal to p+m. Now, for ` = kN,m,
we set

u
(i)
kN,m

=
((
X̄

(i)
k,m

)
k∈IkN,m

,0r

)
, (4.14)

where r = m+N − kN,m(p+m). This last vector is then of dimension N − (kN,m − 1)(p+m).

Notice that the random vectors
(
u

(i)
`

)
1≤i≤n,1≤`≤kN,m

are mutually independent.

For any i ∈ {1, . . . , n}, we define now row random vectors X̄(i) of dimension N by setting

X̄(i) =
(
u

(i)
j,` , ` = 1, . . . , kN,m

)
, (4.15)

where the u
(i)
` ’s are defined in (4.13) and (4.14). Let

X̄n =
(
X̄(1)T | . . . |X̄(n)T

)
and B̄n =

1

n
X̄nX̄ Tn . (4.16)

In what follows, we shall prove the following proposition.
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Proposition 4.1 For any z ∈ C+, the convergence (4.5) holds true with Bn and B̄n as defined
in (2.2) and (4.16) respectively.

To prove the proposition above, we start by noticing that, by integration by parts, for any
z = u+ iv ∈ C+,∣∣∣E(SFBn (z)

)
− E

(
SF B̄n (z)

)∣∣∣ ≤ E
∣∣∣ ∫ 1

x− z
dFBn(x)−

∫
1

x− z
dF B̄n(x)

∣∣∣
= E

∣∣∣ ∫ FBn(x)− F B̄n(x)

(x− z)2
dx
∣∣∣ ≤ 1

v2
E
∫ ∣∣FBn(x)− F B̄n(x)

∣∣dx . (4.17)

Now,
∫ ∣∣FBn(x) − F B̄n(x)

∣∣dx is nothing else but the Wasserstein distance of order 1 between
the empirical measure of Bn and that of B̄n. To be more precise, if λ1, . . . , λN denote the
eigenvalues of Bn in the non-increasing order, and λ̄1, . . . , λ̄N the ones of B̄n, also in the non-
increasing order, then, setting ηn = 1

N

∑N
k=1 δλk and η̄n = 1

N

∑N
k=1 δλ̄k , we have that∫ ∣∣FBn(x)− F B̄n(x)

∣∣dx = W1(ηn, η̄n) = inf E|X − Y | ,

where the infimum runs over the set of couples of random variables (X,Y ) on R× R such that
X ∼ ηn and Y ∼ η̄n. Arguing as in Remark 4.2.6 in Chafäı, Guédon, Lecué and Pajor (2012),
we have that

W1(ηn, η̄n) =
1

N
min
π∈SN

N∧n∑
k=1

|λk − λ̄π(k)| ,

where π is a permutation belonging to the symmetric group SN of {1, . . . , N}. By standard
arguments, involving the fact that if x, y, u, v are real numbers such that x ≤ y and u > v, then
|x− u|+ |y − v| ≥ |x− v|+ |y − u|, we get that minπ∈SN

∑N∧n
k=1 |λk − λ̄π(k)| =

∑N∧n
k=1 |λk − λ̄k|.

Therefore,

W1(ηn, η̄n) =

∫ ∣∣FBn(x)− F B̄n(x)
∣∣dx =

1

N

N∧n∑
k=1

|λk − λ̄k| . (4.18)

Notice that λk = s2
k and λ̄k = s̄2

k where the sk’s (respectively the s̄k’s) are the singular values of
the matrix n−1/2Xn (respectively of n−1/2X̄n). Hence, by Cauchy-Schwarz’s inequality,

N∧n∑
k=1

|λk − λ̄k| ≤
(N∧n∑
k=1

∣∣sk + s̄k
∣∣2)1/2(N∧n∑

k=1

∣∣sk − s̄k∣∣2)1/2

≤ 21/2
(N∧n∑
k=1

(
s2
k+s̄2

k

))1/2(N∧n∑
k=1

∣∣sk−s̄k∣∣2)1/2
≤ 21/2

(
Tr(Bn)+Tr(B̄n)

)1/2(N∧n∑
k=1

∣∣sk−s̄k∣∣2)1/2
.

Next, by Hoffman-Wielandt’s inequality (see e.g. Corollary 7.3.8 in Horn and Johnson (1985)),

N∧n∑
k=1

∣∣sk − s̄k∣∣2 ≤ n−1Tr
((
Xn − X̄n

)(
Xn − X̄n

)T )
.

Therefore,

N∧n∑
k=1

|λk − λ̄k| ≤ 21/2n−1/2
(

Tr(Bn) + Tr(B̄n)
)1/2(

Tr
((
Xn − X̄n

)(
Xn − X̄n

)T ))1/2
. (4.19)
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Starting from (4.17), considering (4.18) and (4.19), and using Cauchy-Schwarz’s inequality, it
follows that∣∣∣E(SFBn (z)

)
− E

(
SF B̄n (z)

)∣∣∣
≤ 21/2

v2

1

Nn1/2
‖Tr(Bn) + Tr(B̄n)‖1/21 ‖Tr

((
Xn − X̄n

)(
Xn − X̄n

)T )‖1/21 . (4.20)

By the definition of Bn,

1

N
E
(
|Tr(Bn)|

)
=

1

nN

n∑
i=1

N∑
k=1

∥∥X(i)
k

∥∥2

2
= ‖X0‖22 , (4.21)

where we have used that for each i,
(
X

(i)
k

)
k∈Z is a copy of the stationary sequence (Xk)k∈Z.

Now, setting

IN,m =

kN,m⋃
`=1

I` and RN,m = {1, . . . , N}\IN,m , (4.22)

recalling the definition (4.16) of B̄n, using the stationarity of the sequence (X̄
(i)
k,m)k∈Z, and the

fact that card(IN,m) = pkN,m ≤ N , we get that

1

N
E
(
|Tr(B̄n)|

)
=

1

nN

n∑
i=1

∑
k∈IN,m

∥∥X̄(i)
k,m

∥∥2

2
≤ ‖X̄0,m‖22 .

Next,
‖X̄0,m‖2 ≤ 2‖X̃0,m‖2 ≤ 2‖ϕM (X0)‖2 ≤ 2‖X0‖2 . (4.23)

Therefore,
1

N
E
(
|Tr(B̄n)|

)
≤ 4‖X0‖22 . (4.24)

Now, by definition of Xn and X̄n,

1

Nn
E
(
|Tr
(
Xn − X̄n

)(
Xn − X̄n

)T |)
=

1

nN

n∑
i=1

∑
k∈IN,m

∥∥X(i)
k − X̄

(i)
k,m

∥∥2

2
+

1

nN

n∑
i=1

∑
k∈RN,m

∥∥X(i)
k

∥∥2

2
.

Using stationarity, the fact that card(IN,m) ≤ N and

card(RN,m) = N − pkN,m ≤
Nm

p+m
+ p , (4.25)

we get that

1

Nn
E
(
|Tr
(
Xn − X̄n

)(
Xn − X̄n

)T |) ≤ ‖X0 − X̄0,m‖22 + (mp−1 + pN−1)‖X0‖22 . (4.26)

Starting from (4.20), considering the upper bounds (4.21), (4.24) and (4.26), and since p =
[N1/8m−1/8], we derive that

lim sup
n→∞

∣∣∣E(SFBn (z)
)
− E

(
SF B̄n (z)

)∣∣∣� 1

v2
‖X0 − X̄0,m‖2 .
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Therefore, Proposition 4.1 will follow if we can prove that

lim
m→∞

lim sup
M→∞

‖X0 − X̄0,m‖2 = 0 . (4.27)

Let us introduce now the sequence (Xk,m)k∈Z defined as follows: for any k ∈ Z,

Xk,m = E
(
Xk|εk, . . . , εk−m

)
. (4.28)

With the above notation, we write that

‖X0 − X̄0,m‖2 ≤ ‖X0 −X0,m‖2 + ‖X0,m − X̄0,m‖2 .

Since X0 is centered, so is X0,m. Then ‖X0,m−X̄0,m‖2 = ‖X0,m−E(X0,m)−X̄0,m‖2. Therefore,
recalling the definition (4.10) of X̄0,m, it follows that

‖X0,m − X̄0,m‖2 ≤ 2‖X0,m − X̃0,m‖2 ≤ 2‖X0 − ϕM (X0)‖2 ≤ 2‖
(
|X0| −M)+‖2 . (4.29)

Since X0 belongs to L2, limM→∞ ‖
(
|X0| −M)+‖2 = 0. Therefore, to prove (4.27) (and then

Proposition 4.1), it suffices to prove that

lim
m→∞

‖X0 −X0,m‖2 = 0 . (4.30)

Since (X0,m)m≥0 is a martingale with respect to the increasing filtration (Gm)m≥0 defined by
Gm = σ(ε−m, . . . , ε0), and is such that supm≥0 ‖X0,m‖2 ≤ ‖X0‖2 < ∞, (4.30) follows by the
martingale convergence theorem in L2 (see for instance Corollary 2.2 in Hall and Heyde (1980)).
This ends the proof of Proposition 4.1. �

4.2 Construction of approximating sample covariance matrices associated to
Gaussian random variables.

Let (Zk)k∈Z be a centered Gaussian process with real values, whose covariance function is given
for any k, ` ∈ Z by

Cov(Zk, Z`) = Cov(Xk, X`) . (4.31)

For n a positive integer, we consider n independent copies of the Gaussian process (Zk)k∈Z that

are in addition independent of (X
(i)
k )k∈Z,i∈{1,...,n}. We shall denote these copies by (Z

(i)
k )k∈Z for

i = 1, . . . , n. For any i ∈ {1, . . . , n}, define Zi =
(
Z

(i)
1 , . . . , Z

(i)
N

)
. Let Zn = (ZT1 | . . . |ZTn ) be the

matrix whose columns are the ZTi ’s and consider its associated sample covariance matrix

Gn =
1

n
ZnZTn . (4.32)

For kN,m given in (4.8), we define now random vectors
(
v

(i)
`

)
`∈{1,...,kN,m}

as follows. They are

defined as the random vectors
(
u

(i)
`

)
`∈{1,...,kN,m}

defined in (4.13) and (4.14), but by replacing

each X̄
(i)
k,m by Z

(i)
k . For any i ∈ {1, . . . , n}, we then define the random vectors Z̃(i) of dimension

N , as follows:

Z̃(i) =
(
v

(i)
` , ` = 1, . . . , kN,m

)
. (4.33)

Let now

Z̃n =
(
Z̃(1)T | . . . |Z̃(n)T

)
and G̃n =

1

n
Z̃nZ̃Tn . (4.34)

In what follows, we shall prove the following proposition.
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Proposition 4.2 For any z ∈ C+, the convergence (4.6) holds true with Gn and G̃n as defined
in (4.32) and (4.34) respectively.

To prove the proposition above, we start by noticing that, for any z = u+ iv ∈ C+,∣∣∣E(SFGn (z)
)
− E

(
S
F G̃n

(z)
)∣∣∣ ≤ E

∣∣∣ ∫ 1

x− z
dFGn(x)−

∫
1

x− z
dF G̃n(x)

∣∣∣
≤ E

∣∣∣ ∫ FGn(x)− F G̃n

(x− z)2
dx
∣∣∣ ≤ π

∥∥FGn − F G̃n
∥∥
∞

v
.

Hence, by Theorem A.44 in Bai and Silverstein (2010),∣∣∣E(SFGn (z)
)
− E

(
S
F G̃n

(z)
)∣∣∣ ≤ π

vN
rank

(
Zn − Z̃n

)
.

By definition of Zn and Z̃n, rank
(
Zn − Z̃n

)
≤ card(RN,m), where RN,m is defined in (4.22).

Therefore, using (4.25), we get that, for any z = u+ iv ∈ C+,∣∣∣E(SFGn (z)
)
− E

(
S
F G̃n

(z)
)∣∣∣ ≤ π

vN

( mN

p+m
+ p
)
,

which converges to zero as n → ∞, since p = [N1/8m−1/8]. This ends the proof of Proposition
4.2. �

4.3 Approximation of E
(
SF B̄n (z)

)
by E

(
S
F G̃n (z)

)
.

In this section, we shall prove the following proposition.

Proposition 4.3 Under the assumptions of Theorem 2.1, for any z ∈ C+, the convergence
(4.7) holds true with B̄n and G̃n as defined in (4.16) and (4.34) respectively.

With this aim, we shall use the Lindeberg method that is based on telescoping sums. In order
to develop it, we first give the following definition:

Definition 4.1 Let x be a vector of RN×n with coordinates

x =
(
x(1), . . . , x(n)

)
where for any i ∈ {1, . . . , n}, x(i) =

(
x

(i)
k , k ∈ {1, . . . , N}

)
.

Let z ∈ C+ and f := fz be the function defined from RN×n to C by

f(x) =
1

N
Tr
(
A(x)− zI

)−1
where A(x) =

1

n

n∑
k=1

(x(k))Tx(k) , (4.35)

and I is the identity matrix.

The function f , as defined above, admits partial derivatives of all orders. Indeed, let u be one
of the coordinates of the vector x and Au = A(x) the matrix-valued function of the scalar u.

Then, setting Gu =
(
Au − zI

)−1
and differentiating both sides of the equality Gu(Au − zI) = I,

it follows that
dG

du
= −GdA

du
G , (4.36)

(see the equality (17) in Chatterjee (2006)). Higher-order derivatives may be computed by
applying repeatedly the above formula. Upper bounds for some partial derivarives up to the
fourth order are given in Appendix.
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Now, using Definition 4.1 and the notations (4.15) and (4.33), we get that, for any z ∈ C+,

E
(
SF B̄n (z)

)
− E

(
S
F G̃n

(z)
)

= Ef
(
X̄(1) , . . . , X̄(n)

)
− Ef

(
Z̃(1) , . . . , Z̃(n)

)
. (4.37)

To continue the development of the Lindeberg method, we introduce additional notations. For

any i ∈ {1, . . . , n} and kN,m given in (4.8), we define random vectors
(
U

(i)
`

)
`∈{1,...,kN,m}

of

dimension N × n as follows. For any ` ∈ {1, . . . , kN,m},

U
(i)
` =

(
0(i−1)N , 0(`−1)(p+m) , u

(i)
` , 0r` ,0(n−i)N

)
, (4.38)

where the u
(i)
` ’s are defined in (4.13) and (4.14), and

r` = N − `(p+m) for ` ∈ {1, . . . , kN,m − 1}, and rkN,m
= 0 . (4.39)

Note that the vectors
(
U

(i)
`

)
1≤i≤n,1≤`≤kN,m

are mutually independent. Moreover, with the no-

tations (4.38) and (4.15), the following relations hold. For any i ∈ {1, . . . , n},

kN,m∑
`=1

U
(i)
` =

(
0N(i−1) , X̄(i) , 0(n−i)N

)
and

n∑
i=1

kN,m∑
`=1

U
(i)
` =

(
X̄(1) , . . . , X̄(n)

)
, (4.40)

where the X̄(i)’s are defined in (4.15).

Now, for any i ∈ {1, . . . , n}, we define random vectors
(
V

(i)
`

)
`∈{1,...,kN,m}

of dimension N×n,

as follows: for any ` ∈ {1, . . . , kN,m},

V
(i)
` =

(
0(i−1)N , 0(`−1)(p+m) , v

(i)
` , 0r` ,0(n−i)N

)
, (4.41)

where r` is defined in (4.39) and the v
(i)
` ’s are defined in Section 4.2. With the notations (4.41)

and (4.33), the following relations hold: for any i ∈ {1, . . . , n},

kN,m∑
`=1

V
(i)
` =

(
0N(i−1) , Z̃(i) , 0N(n−i)

)
and

n∑
i=1

kN,m∑
`=1

V
(i)
` =

(
Z̃(1) , . . . , Z̃(n)

)
, (4.42)

where the Z̃(i)’s are defined in (4.33). We define now, for any i ∈ {1, . . . , n},

Si =
i∑

s=1

kN,m∑
`=1

U
(s)
` and Ti =

n∑
s=i

kN,m∑
`=1

V
(s)
` , (4.43)

and any s ∈ {1, . . . , kN,m},

S(i)
s =

s∑
`=1

U
(i)
` and T(i)

s =

kN,m∑
`=s

V
(i)
` . (4.44)

In all the notations above, we use the convention that
∑s

k=r = 0 if r > s. Therefore, starting
from (4.37), considering the relations (4.40) and (4.42), and using the notations (4.43) and
(4.44), we successively get

E
(
SF B̄n (z)

)
− E

(
S
F G̃n

(z)
)

=

n∑
i=1

(
Ef
(
Si + Ti+1

)
− Ef

(
Si−1 + Ti

))

=
n∑
i=1

kN,m∑
s=1

(
Ef
(
Si−1 + S(i)

s + T
(i)
s+1 + Ti+1

)
− Ef

(
Si−1 + S

(i)
s−1 + T(i)

s + Ti+1

))
.
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Therefore, setting for any i ∈ {1, . . . , n} and any s ∈ {1, . . . , kN,m},

W(i)
s = Si−1 + S(i)

s + T
(i)
s+1 + Ti+1 , (4.45)

and
W̃(i)

s = Si−1 + S
(i)
s−1 + T

(i)
s+1 + Ti+1 , (4.46)

we are lead to

E
(
SF B̄n (z)

)
− E

(
S
F G̃n

(z)
)

=

n∑
i=1

kN,m∑
s=1

(
E
(
∆(i)
s (f)

)
− E

(
∆̃(i)
s (f)

))
, (4.47)

where
∆(i)
s (f) = f

(
W(i)

s

)
− f

(
W̃(i)

s

)
and ∆̃(i)

s (f) = f
(
W

(i)
s−1

)
− f

(
W̃(i)

s

)
.

In order to continue the multidimensional Lindeberg method, it is useful to introduce the fol-
lowing notations.

Definition 4.2 Let d1 and d2 be two positive integers. Let A = (a1, . . . , ad1) and B = (b1, . . . , bd2)
be two real valued row vectors of respective dimensions d1 and d2. We define A⊗B as being the
transpose of the Kronecker product of A by B. Therefore

A⊗B =

 a1B
T

...
ad1B

T

 ∈ Rd1×d2 .

For any positive integer k, the k-th transpose Kronecker power A⊗k is then defined inductively

by: A⊗1 = AT and A⊗k = A
⊗(

A⊗(k−1)
)T

.

Notice that, here, A ⊗ B is not exactly the usual Kronecker product (or Tensor product) of A
by B that rather produces a row vector. However, for later notation convenience, the notation
below is useful.

Definition 4.3 Let d be a positive integer. If ∇ denotes the differentiation operator given by
∇ =

(
∂
∂x1

, . . . , ∂
∂xd

)
acting on the differentiable functions h : Rd → R, we define, for any positive

integer k, ∇⊗k in the same way as in Definition 4.2. If h : Rd → R is k-times differentiable, for
any x ∈ Rd, let Dkh(x) = ∇⊗kh(x), and for any row vector Y of Rd, we define Dkh(x).Y ⊗k as

the usual scalar product in Rdk between Dkh(x) and Y ⊗k. We write Dh for D1h.

Let z = u+ iv ∈ C+. We start by analyzing the term E
(
∆

(i)
s (f)

)
in (4.47). By Taylor’s integral

formula,∣∣∣E(∆(i)
s (f)

)
− E

(
Df
(
W̃(i)

s

)
.U(i)⊗1

s

)
− 1

2
E
(
D2f

(
W̃(i)

s

)
.U(i)⊗2

s

)∣∣∣
≤
∣∣∣E∫ 1

0

(1− t)2

2
D3f

(
W̃(i)

s + tU(i)
s

)
.U(i)⊗3

s dt
∣∣∣ . (4.48)

Let us analyze the right-hand term of (4.48). Recalling the definition (4.38) of the U
(i)
s ’s, for

any t ∈ [0, 1],

E
∣∣D3f

(
W̃(i)

s + tU(i)
s

)
.U(i)⊗3

s

∣∣
≤
∑
k∈Is

∑
`∈Is

∑
j∈Is

E
(∣∣∣ ∂3f

∂x
(i)
k ∂x

(i)
` ∂x

(i)
j

(
W̃(i)

s + tU(i)
s

)
X̄

(i)
k,mX̄

(i)
`,mX̄

(i)
j,m

∣∣∣)
≤
∑
k∈Is

∑
`∈Is

∑
j∈Is

∥∥∥ ∂3f

∂x
(i)
k ∂x

(i)
` ∂x

(i)
j

(
W̃(i)

s + tU(i)
s

)∥∥∥
2

∥∥X̄(i)
k,mX̄

(i)
`,mX̄

(i)
j,m

∥∥
2
,
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where Is is defined in (4.12). Therefore, using (4.11), stationarity and (4.23), it follows that, for
any t ∈ [0, 1],

E
∣∣D3f

(
W̃(i)

s + tU(i)
s

)
.U(i)⊗3

s

∣∣
≤ 8M2

∑
k∈Is

∑
`∈Is

∑
j∈Is

∥∥∥ ∂3f

∂x
(i)
k ∂x

(i)
` ∂x

(i)
j

(
W̃(i)

s + tU(i)
s

)∥∥∥
2

∥∥X0

∥∥
2
.

Notice that by (4.43) and (4.44),

W̃(i)
s + tU(i)

s =
(
X̄(1) , . . . , X̄(i−1), w(i)(t), Z̃(i+1) , . . . , Z̃(n)

)
, (4.49)

where w(i)(t) is the row vector of dimension N defined by

w(i)(t) = S
(i)
s−1 + tU(i)

s + T
(i)
s+1 =

(
u

(i)
1 , . . . ,u

(i)
s−1, tu

(i)
s ,v

(i)
s+1, . . . ,v

(i)
kN,m

)
, (4.50)

where the u
(i)
` ’s are defined in (4.13) and (4.14) whereas the v

(i)
` ’s are defined in Section 4.2.

Therefore, by Lemma 5.1 of the Appendix, (4.11), and since (Z
(i)
k )k∈Z is distributed as the

stationary sequence (Zk)k∈Z, we infer that, for any t ∈ [0, 1],∥∥∥ ∂3f

∂x
(i)
k ∂x

(i)
` ∂x

(i)
j

(
W̃(i)

s + tU(i)
s

)∥∥∥
2
� M + ‖Z0‖2

v3N1/2n2
+
N1/2(M3 + ‖Z0‖36)

v4n3
.

Now, since Z0 is a Gaussian random variable, ‖Z0‖66 = 15‖Z0‖62. Hence, by (4.31), ‖Z0‖2 =
‖X0‖2. Therefore, for any t ∈ [0, 1], we get that

E
∣∣D3f

(
W̃(i)

s + tU(i)
s

)
.U(i)⊗3

s

∣∣� p3(1 +M3)

v3(1 ∧ v)N1/2n2
. (4.51)

On an other hand, since for any i ∈ {1, . . . , n} and any s ∈ {1, . . . , kN,m}, U
(i)
s is a centered

random vector independent of W̃
(i)
s , it follows that

E
(
Df
(
W̃(i)

s

)
.U(i)⊗1

s

)
= 0 and E

(
D2f

(
W̃(i)

s

)
.U(i)⊗2

s

)
= E

(
D2f

(
W̃(i)

s

))
.E
(
U(i)⊗2
s

)
. (4.52)

Hence starting from (4.48), using (4.51), (4.52) and the fact that pkN,m ≤ N , we derive that

n∑
i=1

kN,m∑
s=1

∣∣∣E(∆(i)
s (f)

)
− 1

2
E
(
D2f

(
W̃(i)

s

))
.E
(
U(i)⊗2
s

)∣∣∣� (1 +M5)N1/2p2

v3(1 ∧ v)n
. (4.53)

We analyze now the “Gaussian part” in (4.47), namely: E
(
∆̃

(i)
s (f)

)
. By Taylor’s integral formula,∣∣∣E(∆̃(i)

s (f)
)
− E

(
Df
(
W̃(i)

s

)
.V(i)⊗1

s

)
− 1

2
E
(
D2f

(
W̃(i)

s

)
.V(i)⊗2

s

)∣∣∣
≤
∣∣∣E∫ 1

0

(1− t)2

2
D3f

(
W̃(i)

s + tV(i)
s

)
.V(i)⊗3

s dt
∣∣∣ .

Proceeding as to get (4.53), we then infer that

n∑
i=1

kN,m∑
s=1

∣∣∣E(∆̃(i)
s (f)

)
− E

(
Df
(
W̃(i)

s

)
.V(i)⊗1

s

)
− 1

2
E
(
D2f

(
W̃(i)

s

)
.V(i)⊗2

s

)∣∣∣
� (1 +M3)N1/2p2

v3(1 ∧ v)n
. (4.54)
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We analyze now the terms E
(
Df
(
W̃

(i)
s

)
.V

(i)⊗1
s

)
in (4.54). Recalling the definition (4.41) of the

V
(i)
s ’s, we write that

E
(
Df
(
W̃(i)

s

)
.V(i)⊗1

s

)
=
∑
j∈Is

E

(
∂f

∂x
(i)
j

(
W̃(i)

s

)
Z

(i)
j

)
,

where Is is defined in (4.12). To handle the terms in the right-hand side, we shall use the so-
called Stein’s identity for Gaussian vectors (see, for instance, Lemma 1 in Liu (1994)), as done
by Neumann (2011) in the context of dependent real random variables: for G = (G1, . . . , Gd) a
centered Gaussian vector of Rd and any function h : Rd → R such that its partial derivatives
exist almost everywhere and E

∣∣ ∂h
∂xi

(G)
∣∣ < ∞ for any i = 1, . . . , d, the following identity holds

true:

E
(
Gi h(G)

)
=

d∑
`=1

E
(
GiG`

)
E
( ∂h
∂x`

(G)
)

for any i ∈ {1, . . . , d} . (4.55)

Using (4.55) with G =
(
T

(i)
s+1, Z

(i)
j

)
∈ Rn×N ×R, h : Rn×N ×R→ R satisfying h(x, y) = ∂f

∂x
(i)
j

(x)

for any (x, y) ∈ Rn×N × R, and noticing that G is independent of W̃
(i)
s − T

(i)
s+1, we infer that,

for any j ∈ Is,

E

(
∂f

∂x
(i)
j

(
W̃(i)

s

)
Z

(i)
j

)
=

kN,m∑
`=s+1

∑
k∈I`

E

(
∂2f

∂x
(i)
k ∂x

(i)
j

(
W̃(i)

s

))
Cov(Z

(i)
k , Z

(i)
j ) .

Therefore,

E
(
Df
(
W̃(i)

s

)
.V(i)⊗1

s

)
=

kN,m∑
`=s+1

∑
k∈I`

∑
j∈Is

E

(
∂2f

∂x
(i)
k ∂x

(i)
j

(
W̃(i)

s

))
Cov(Z

(i)
k , Z

(i)
j ) .

From (4.49), (4.50) and Lemma 5.1 of the Appendix, we infer that, for any k ∈ I` and any
j ∈ Is,

E

(
∂2f

∂x
(i)
k ∂x

(i)
j

(
W̃(i)

s

))
� 1

Nnv2
+

1

n2v3

(
‖X0‖22 + ‖Z0‖22)� 1

Nnv2(1 ∧ v)
. (4.56)

Hence, using the fact that Cov(Z
(i)
k , Z

(i)
j ) = Cov(Zk, Zj) together with (4.31), we then derive

that

E
(
Df
(
W̃(i)

s

)
.V(i)⊗1

s

)
� 1

Nnv2(1 ∧ v)

kN,m∑
`=s+1

∑
k∈I`

∑
j∈Is

∣∣Cov(Xk, Xj)
∣∣ . (4.57)

By stationarity,

∑
k∈I`

∑
j∈Is

∣∣Cov(Xk, Xj)
∣∣ =

p∑
j=1

p∑
k=1

∣∣Cov(X0, Xk−j+(`−s)(p+m))
∣∣ ≤ p ∑

k∈Ep,`

∣∣Cov(X0, Xk)
∣∣ ,

where Ep,` := {1 − p + (` − s)(p + m), . . . , p − 1 + (` − s)(p + m)}. Notice that since m ≥ 1,
Ep,` ∩ Ep,`+2 = ∅. Then, summing on `, and using the fact that kN,m(p+m) ≤ N , we get that,
for any s ≥ 1,

kN,m∑
`=s+1

∑
k∈Ep,`

∣∣Cov(X0, Xk)
∣∣ ≤ 2

p+N−1∑
k=m+1

∣∣Cov(X0, Xk)
∣∣ .
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So, overall,
kN,m∑
`=s+1

∑
k∈I`

∑
j∈Is

∣∣Cov(Xk, Xj)
∣∣ ≤ 2p

∑
k≥m+1

∣∣Cov(X0, Xk)
∣∣ . (4.58)

Since F−∞ =
⋂
k∈Z σ(ξk) is trivial, for any k ∈ Z, E(Xk|F−∞) = E(Xk) = 0 a.s. Therefore, the

following decomposition is valid: Xk =
∑k

r=−∞ Pr(Xk). Next, since E
(
Pi(X0)Pj(Xk)

)
= 0 if

i 6= j, we get, by stationarity, that for any integer k ≥ 0,

∣∣Cov(X0, Xk)
∣∣ =

∣∣∣ 0∑
r=−∞

E
(
Pr(X0)Pr(Xk)

)∣∣∣ ≤ ∞∑
r=0

‖P0(Xr)‖2‖P0(Xk+r)‖2 . (4.59)

Therefore, starting from (4.58) and using (4.59), we get that, for any s ≥ 1,

kN,m∑
`=s+1

∑
k∈I`

∑
j∈Is

∣∣Cov(Xk, Xj)
∣∣ ≤ 2p

∑
r≥0

‖P0(Xr)‖2
∑

k≥m+1

‖P0(Xk)‖2 . (4.60)

Therefore, starting from (4.57), considering (4.60) together with the condition (2.3) and the fact
that pkN,m ≤ N , we derive that

n∑
i=1

kN,m∑
s=1

∣∣E(Df(W̃(i)
s

)
.V(i)⊗1

s

)∣∣� 1

v2(1 ∧ v)

∑
k≥m+1

‖P0(Xk)‖2 . (4.61)

We analyze now the terms of second order in (4.54), namely: E
(
D2f

(
W̃

(i)
s

)
.V

(i)⊗2
s

)
. Re-

calling the definition (4.41) of the V
(i)
s ’s, we first write that

E
(
D2f

(
W̃(i)

s

)
.V(i)⊗2

s

)
=
∑
j1∈Is

∑
j2∈Is

E

(
∂2f

∂x
(i)
j1
∂x

(i)
j2

(
W̃(i)

s

)
Z

(i)
j1
Z

(i)
j2

)
, (4.62)

where Is is defined in (4.12). Using now (4.55) with G =
(
T

(i)
s+1, Z

(i)
j1
, Z

(i)
j2

)
∈ Rn×N × R2,

h : Rn×N × R2 → R satisfying h(x, y, z) = y ∂2f

∂x
(i)
j1
∂x

(i)
j2

(x) for any (x, y, z) ∈ Rn×N × R2, and

noticing that G is independent of W̃
(i)
s −T

(i)
s+1, we infer that, for any j1, j2 belonging to Is,

E

(
∂2f

∂x
(i)
j1
∂x

(i)
j2

(
W̃(i)

s

)
Z

(i)
j1
Z

(i)
j2

)
= E

(
∂2f

∂x
(i)
j1
∂x

(i)
j2

(
W̃(i)

s

))
E
(
Z

(i)
j1
Z

(i)
j2

)
+

kN,m∑
k=s+1

∑
j3∈Ik

E

(
∂3f

∂x
(i)
j3
∂x

(i)
j1
∂x

(i)
j2

(
W̃(i)

s

)
Z

(i)
j1

)
E
(
Z

(i)
j3
Z

(i)
j2

)
. (4.63)

Therefore, starting from (4.62) and using (4.63) combined with the definitions 4.2 and 4.3, it
follows that

E
(
D2f

(
W̃(i)

s

)
.V(i)⊗2

s

)
= E

(
D2f

(
W̃(i)

s

))
.E
(
V(i)⊗2
s

)
+

kN,m∑
k=s+1

E
(
D3f

(
W̃(i)

s

)
.V(i)

s ⊗ E
(
V

(i)
k ⊗V(i)

s

))
. (4.64)
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Next, with similar arguments, we infer that

kN,m∑
k=s+1

E
(
D3f

(
W̃(i)

s

)
.V(i)

s ⊗ E
(
V

(i)
k ⊗V(i)

s

))
=

kN,m∑
k=s+1

kN,m∑
`=s+1

E
(
D4f

(
W̃(i)

s

))
.E
(
V

(i)
` ⊗V(i)

s

)
⊗ E

(
V

(i)
k ⊗V(i)

s

)
. (4.65)

By the definition (4.41) of the V
(i)
` ’s, we first write that

E
(
D4f

(
W̃(i)

s

))
.E
(
V

(i)
` ⊗V(i)

s

)
⊗ E

(
V

(i)
k ⊗V(i)

s

)
=
∑
j1∈I`

∑
j2∈Is

∑
j3∈Ik

∑
j4∈Is

E

(
∂4f

∂x
(i)
j1
∂x

(i)
j2
∂x

(i)
j3
∂x

(i)
j4

(
W̃(i)

s

))
Cov

(
Z

(i)
j1
, Z

(i)
j2

)
Cov

(
Z

(i)
j3
, Z

(i)
j4

)
=
∑
j1∈I`

∑
j2∈Is

∑
j3∈Ik

∑
j4∈Is

E

(
∂4f

∂x
(i)
j1
∂x

(i)
j2
∂x

(i)
j3
∂x

(i)
j4

(
W̃(i)

s

))
Cov

(
Xj1 , Xj2

)
Cov

(
Xj3 , Xj4

)
, (4.66)

where for the last line, we have used that (Z
(i)
k )k∈Z is distributed as (Zk)k∈Z together with

(4.31). From (4.49), (4.50), Lemma 5.1 of the Appendix, and the stationarity of the sequences

(X̄
(i)
k,m)k∈Z and (Z

(i)
k )k∈Z, we infer that

E

(
∂4f

∂x
(i)
j1
∂x

(i)
j2
∂x

(i)
j3
∂x

(i)
j4

(
W̃(i)

s

))
� 1

Nn2v3
+

1

Nn3v4

( N∑
k=1

‖X̄(i)
k,m‖

2
2 +

N∑
k=1

‖Z(i)
k ‖

2
2

)

+
1

Nn4v5

(∥∥∥ N∑
k=1

(
X̄

(i)
k,m

)2∥∥∥2

2
+
∥∥∥ N∑
k=1

(
Z

(i)
k

)2∥∥∥2

2

)
� 1

n2Nv3(1 ∧ v2)

(
1 +

N
(
‖X̄0,m‖22 + ‖Z0‖22

)
n

+
N2
(
‖X̄0,m‖44 + ‖Z0‖44

)
n2

)
.

By (4.11) and (4.23), ‖X̄0,m‖44 ≤ (2M)2‖X̄0,m‖22 ≤ 16M2‖X0‖22. Moreover, Z0 being a Gaussian
random variable, ‖Z0‖44 = 3‖Z0‖42. Hence, by (4.31), ‖Z0‖44 = 3‖X0‖42 and ‖Z0‖22 = ‖X0‖22.
Therefore,

E

(
∂4f

∂x
(i)
j1
∂x

(i)
j2
∂x

(i)
j3
∂x

(i)
j4

(
W̃(i)

s

))
� (1 +M2)

n2Nv3(1 ∧ v2)
. (4.67)

On the other hand, by using (4.60), we get that

kN,m∑
k=s+1

kN,m∑
`=s+1

∑
j1∈I`

∑
j2∈Is

∑
j3∈Ik

∑
j4∈Is

∣∣Cov
(
Xj1 , Xj2

)
Cov

(
Xj3 , Xj4

)∣∣
≤ 4p2

(∑
r≥0

‖P0(Xr)‖2
)2( ∑

k≥m+1

‖P0(Xk)‖2
)2
. (4.68)

Whence, starting from (4.65), using (4.66), and considering the upper bounds (4.67) and (4.68)
together with the condition (2.3), we derive that

kN,m∑
k=s+1

E
(
D3f

(
W̃(i)

s

)
.V(i)

s ⊗ E
(
V

(i)
k ⊗V(i)

s

))
� (1 +M2)p2

n2Nv3(1 ∧ v2)

( ∑
k≥m+1

‖P0(Xk)‖2
)2
. (4.69)
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So, overall, starting from (4.64), considering (4.69) and using the fact that pkN,m ≤ N , we derive
that

∣∣∣ n∑
i=1

kN,m∑
s=1

E
(
D2f

(
W̃(i)

s

)
.V(i)⊗2

s

)
−

n∑
i=1

kN,m∑
s=1

E
(
D2f

(
W̃(i)

s

))
.E
(
V(i)⊗2
s

)∣∣∣
� (1 +M2)p

nv3(1 ∧ v2)

( ∑
k≥m+1

‖P0(Xk)‖2
)2
. (4.70)

Then starting from (4.47), and considering the upper bounds (4.53), (4.54), (4.61) and (4.70),
we get that

∣∣∣E(SF B̄n (z)
)
− E

(
S
F G̃n

(z)
)∣∣∣� 1

2

n∑
i=1

kN,m∑
s=1

∣∣∣E(D2f
(
W̃(i)

s

))
.
(
E
(
U(i)⊗2
s

)
− E

(
V(i)⊗2
s

))∣∣∣
+

(1 +M5)N1/2p2

v3(1 ∧ v)n
+

1

v2(1 ∧ v)

∑
k≥m+1

‖P0(Xk)‖2 +
(1 +M2)p

nv3(1 ∧ v2)

( ∑
k≥m+1

‖P0(Xk)‖2
)2
. (4.71)

Since p ≤ N1/8 and c(n) = N/n→ c ∈ (0,∞), it follows that

lim
n→∞

(1 +M5)N1/2p2

n
= 0 and lim

n→∞

(1 +M2) p

n
= 0 .

On an other hand, by the condition (2.3), limm→∞
∑

k≥m+1 ‖P0(Xk)‖2 = 0. Therefore, Propo-
sition 4.3 will follow if we can prove that, for any z ∈ C+,

lim
m→∞

lim sup
M→∞

lim sup
n→∞

n∑
i=1

kN,m∑
s=1

∣∣∣E(D2f
(
W̃(i)

s

))
.
(
E
(
U(i)⊗2
s

)
− E

(
V(i)⊗2
s

))∣∣∣ = 0 . (4.72)

Using the fact that (Z
(i)
k )k∈Z is distributed as (Zk)k∈Z together with (4.31) and that (X̄

(i)
k,m)k∈Z

is distributed as (X̄k,m)k∈Z, we first write that

E
(
D2f

(
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s
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.
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E
(
U(i)⊗2
s

)
− E

(
V(i)⊗2
s

))
=
∑
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∑
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(
∂2f

∂x
(i)
k ∂x

(i)
`

(
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s

))(
Cov

(
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)
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(
Xk, X`
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.

Hence, by using (4.56) and stationarity, we get that∣∣∣E(D2f
(
W̃(i)

s

))
.
(
E
(
U(i)⊗2
s

)
− E

(
V(i)⊗2
s

))∣∣∣
� 1

Nnv2(1 ∧ v)

p∑
`=1

p−∑̀
k=0

∣∣Cov
(
X̄0,m, X̄k,m

)
− Cov

(
X0, Xk

)∣∣ . (4.73)

To handle the right-hand side term, we first write that

p∑
`=1

p−∑̀
k=0

∣∣Cov
(
X̄0,m, X̄k,m

)
− Cov

(
X0, Xk

)∣∣ ≤ p p∑
k=0

∣∣Cov
(
X̄0,m, X̄k,m

)
− Cov

(
X0,m, Xk,m

)∣∣
+ p

p∑
k=0

∣∣Cov
(
X0,m, Xk,m

)
− Cov

(
X0, Xk

)∣∣ , (4.74)
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whereX0,m andXk,m are defined in (4.28). Notice now that Cov
(
X̄0,m, X̄k,m

)
= Cov

(
X0,m, Xk,m

)
=

0 if k > m. Therefore,

p∑
k=0

∣∣Cov
(
X̄0,m, X̄k,m

)
− Cov

(
X0,m, Xk,m

)∣∣ =

m∧p∑
k=0

∣∣Cov
(
X̄0,m, X̄k,m

)
− Cov

(
X0,m, Xk,m

)∣∣ .
Next, using stationarity, the fact that the random variables are centered, (4.11) and (4.29), we
get that∣∣Cov

(
X̄0,m, X̄k,m

)
− Cov

(
X0,m, Xk,m

)∣∣
=
∣∣Cov

(
X̄0,m −X0,m, X̄k,m

)
+ Cov

(
X0,m − X̄0,m, X̄k,m −Xk,m

)
+ Cov

(
X̄0,m, X̄k,m −Xk,m

)∣∣
≤ 4M‖X0,m − X̄0,m‖1 + 4‖

(
|X0| −M)+‖22 .

As to get (4.29), notice that ‖X0,m − X̄0,m‖1 ≤ 2‖
(
|X0| −M)+‖1. Moreover,

(
|x| −M)+ ≤

2|x|1|x|≥M which in turn implies that M
(
|x| −M)+ ≤ 2|x|21|x|≥M . So, overall,

p∑
k=0

∣∣Cov
(
X̄0,m, X̄k,m

)
− Cov

(
X0,m, Xk,m

)∣∣ ≤ 32mE
(
X2

01|X0|≥M
)
. (4.75)

We handle now the second term in the right-hand side of (4.74). Let b(m) be an increasing
sequence of positive integers such that b(m)→∞, b(m) ≤ [m/2], and

lim
m→∞

b(m)
∥∥X0 −X0,[m/2]

∥∥2

2
= 0 . (4.76)

Notice that since (4.30) holds true, it is always possible to find such a sequence. Now, using
(4.59),

p∑
k=b(m)

∣∣Cov
(
X0,m, Xk,m

)
− Cov

(
X0, Xk

)∣∣
≤

p∑
k=b(m)

∞∑
r=0

‖P0(Xr,m)‖2‖P0(Xk+r,m)‖2 +

p∑
k=b(m)

∞∑
r=0

‖P0(Xr)‖2‖P0(Xk+r)‖2 . (4.77)

Recalling the definition (4.28) of the Xj,m’s, we notice that P0(Xj,m) = 0 if j ≥ m+ 1. Now, for
any j ∈ {0, . . . ,m},

E(Xj,m|ξ0) = E(E(Xj |εj , . . . , εj−m)|ξ0) = E(E(Xj |εj , . . . , εj−m)|ε0, . . . , εj−m)

= E(Xj |ε0, . . . , εj−m) = E(E(Xj |ξ0)|ε0, . . . , εj−m) a.s.

Indeed, the two last equalities follow from the tower lemma, whereas, for the second one, we
have used the following well known fact with G1 = σ(ε0, . . . , εj−m), G2 = σ(εk, k ≤ j −m − 1)
and Y = Xj,m: if Y is an integrable random variable, and G1 and G2 are two σ-algebras such
that σ(Y ) ∨ G1 is independent of G2, then

E(Y |G1 ∨ G2) = E(Y |G1) a.s. (4.78)

Similarly, for any j ∈ {0, . . . ,m− 1},

E(Xj,m|ξ−1) = E(Xj |ε−1, . . . , εj−m) = E(E(Xj |ξ−1)|ε−1, . . . , εj−m) a.s.

Then using the equality (4.78) with G1 = σ(ε−1, . . . , εj−m) and G2 = σ(ε0), we get that, for any
j ∈ {1, . . . ,m− 1},

E(Xj,m|ξ−1) = E(E(Xj |ξ−1)|ε0, . . . , εj−m) a.s.
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whereas E(Xm,m|ξ−1) = 0 a.s. So, finally, ‖P0(Xm,m)‖2 = ‖E(Xm|ε0)‖2, ‖P0(Xj,m)‖2 = 0 if
j ≥ m+ 1, and, for any j ∈ {1, . . . ,m− 1},

‖P0(Xj,m)‖2 = ‖E(Xj,m|ξ0)− E(Xj,m|ξ−1)‖2
= ‖E

(
E(Xj |ξ0)− E(Xj |ξ−1)|ε0, . . . , εj−m

)
‖2 ≤ ‖P0(Xj)‖2 .

Therefore, starting from (4.77), we infer that

p∑
k=b(m)

∣∣Cov
(
X0,m, Xk,m

)
− Cov

(
X0, Xk

)∣∣
≤ 2‖X0‖2‖E(Xm|ε0)‖2 + 2

∞∑
r=0

‖P0(Xr)‖2
∑

k≥b(m)

‖P0(Xk)‖2 . (4.79)

On the other hand,

b(m)∑
k=0

∣∣Cov
(
X0,m, Xk,m

)
− Cov

(
X0, Xk

)∣∣
≤

b(m)∑
k=0

∣∣Cov
(
X0 −X0,m, Xk,m

)∣∣+

b(m)∑
k=0

∣∣Cov
(
X0, Xk −Xk,m

)∣∣ . (4.80)

Since the random variables are centered, Cov
(
X0 −X0,m, Xk,m

)
= E

(
Xk,m(X0 −X0,m)

)
. Since

Xk,m is σ(εk−m, . . . , εk)-measurable.

E
(
Xk,m(X0 −X0,m)

)
= E

(
Xk,m

(
E(X0|εk, . . . , εk−m)− E(X0,m|εk, . . . , εk−m

))
.

But, for any k ∈ {0, . . . ,m}, by using the equality (4.78) with G1 = σ(ε0, . . . , εk−m) and G2 =
σ(εk, . . . , ε1), it follows that

E(X0,m|εk, . . . , εk−m
)

= E(X0|ε0, . . . , εk−m) a.s. (4.81)

and
E(X0|εk, . . . , εk−m

)
= E(X0|ε0, . . . , εk−m) a.s.

Whence,
b(m)∑
k=0

∣∣Cov
(
X0 −X0,m, Xk,m

)∣∣ = 0 . (4.82)

To handle the second term in the right-hand side of (4.80), we start by writing that

Cov
(
X0, Xk −Xk,m

)
= Cov

(
X0 −X0,m, Xk −Xk,m

)
+ Cov

(
X0,m, Xk −Xk,m

)
. (4.83)

Using the fact that the random variables are centered together with stationarity, we get that∣∣Cov
(
X0 −X0,m, Xk −Xk,m

)∣∣ ≤ ‖X0 −X0,m‖22 . (4.84)

On the other hand, noticing that E(Xk − Xk,m|εk, . . . , εk−m) = 0, and using the fact that the
random variables are centered, and stationarity, it follows that∣∣Cov

(
X0,m, Xk −Xk,m

)∣∣ =
∣∣E((X0,m − E(X0,m|εk, . . . , εk−m)

)(
Xk −Xk,m

))∣∣
≤ ‖X0,m − E(X0,m|εk, . . . , εk−m)‖2‖X0 −X0,m‖2 . (4.85)
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Next, using (4.81), we get that, for any k ∈ {0, . . . ,m},

‖X0,m − E(X0,m|εk, . . . , εk−m)‖2 = ‖X0,m − E(X0|ε0, . . . , εk−m)‖2
= ‖E

(
X0 − E(X0|ε0, . . . , εk−m)|ε0, . . . , ε−m

)
‖2 ≤ ‖X0 − E(X0|ε0, . . . , εk−m)‖2 . (4.86)

Therefore, starting from (4.85), taking into account (4.86) and the fact that

max
0≤k≤[m/2]

‖X0 − E(X0|ε0, . . . , εk−m)‖2 ≤ 2‖X0 − E(X0|ε0, . . . , ε−[m/2])‖2 ,

we get that
max

0≤k≤[m/2]

∣∣Cov
(
X0,m, Xk −Xk,m

)∣∣ ≤ 4‖X0 −X0,[m/2]‖22 . (4.87)

Starting from (4.83), gathering (4.84) and (4.87), and using the fact that b(m) ≤ [m/2], we then
derive that

b(m)∑
k=0

∣∣Cov
(
X0, Xk −Xk,m

))∣∣ ≤ 4 b(m)‖X0 −X0,[m/2]‖22 ,

which combined with (4.80) and (4.82) implies that

b(m)∑
k=0

∣∣Cov
(
X0,m, Xk,m

)
− Cov

(
X0, Xk

)∣∣ ≤ 4 b(m)‖X0 −X0,[m/2]‖22 . (4.88)

So, overall, starting from (4.74), gathering the upper bounds (4.75), (4.79) and (4.88), and
taking into account the condition (2.3), we get that

p∑
`=1

p−∑̀
k=0

∣∣Cov
(
X̄0,m, X̄k,m

)
− Cov

(
X0, Xk

)∣∣
� pmE

(
X2

01|X0|≥M
)

+ p‖E(Xm|ε0)‖2 + p
∑

k≥b(m)

‖P0(Xk)‖2 + 4p b(m)‖X0 −X0,[m/2]‖22 .

(4.89)

Therefore, starting from (4.73), considering the upper bound (4.89) and using the fact that
pkN,m ≤ N , we finally obtain that

n∑
i=1

kN,m∑
s=1

∣∣∣E(D2f
(
W̃(i)

s

))
.
(
E
(
U(i)⊗2
s

)
− E

(
V(i)⊗2
s

))∣∣∣
� 1

v2(1 ∧ v)

(
mE
(
X2

01|X0|≥M
)

+ ‖E(Xm|ε0)‖2 +
∑

k≥b(m)

‖P0(Xk)‖2 + b(m)‖X0 −X0,[m/2]‖22
)
.

(4.90)

Letting first M tend to infinity and using the fact that X0 belongs to L2, the first term in
the right-hand side is going to zero. Letting now m tend to infinity the third term vanishes
by the condition (2.3), whereas the last one goes to zero by taking into account (4.76). To
show that the second term goes to zero as m tends to infinity, we notice that, by stationarity,
‖E(Xm|ε0)‖2 ≤ ‖E(Xm|ξ0)‖2 = ‖E(X0|ξ−m)‖2. By the reverse martingale convergence theorem,
setting F−∞ =

⋂
k∈Z σ(ξk), limm→∞ E(X0|ξ−m) = E(X0|F−∞) = 0 a.s. (since F−∞ is trivial

and E(X0) = 0). So, since X0 belongs to L2, limm→∞ ‖E(Xm|ε0)‖2 = 0. This ends the proof of
(4.72) and then of Proposition 4.3. �
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4.4 End of the proof of Theorem 2.1

According to Propositions 4.1, 4.2 and 4.3, the convergence (4.3) follows. Therefore, to end
the proof of Theorem 2.1, it remains to show that (4.4) holds true with Gn defined in Section
4.2. This can be achieved by using Theorem 1.1 in Silverstein (1995) combined with arguments
developed in the proof of Theorem 1 in Yao (2012) (see also Wang et al. (2011)). With this aim,
we consider (yk)k∈Z a sequence of i.i.d. real valued random variables with law N (0, 1), and n

independent copies of (yk)k∈Z that we denote by (y
(1)
k )k∈Z, . . . , (y

(n)
k )k∈Z. For any i ∈ {1, . . . , n},

define yi =
(
y

(i)
1 , . . . , y

(i)
N

)
. Let Yn = (yT1 | . . . |yTn ) be the matrix whose columns are the yTi ’s and

consider its associated sample covariance matrix Yn = 1
nYnY

T
n . Let γ(k) = Cov(X0, Xk) and

note that, by (4.31), γ(k) is also equal to Cov(Z0, Zk) = Cov(Z
(i)
0 , Z

(i)
k ) for any i ∈ {1, . . . , n}.

Set

ΓN :=
(
γj,k
)

=


γ(0) γ(1) · · · γ(N − 1)
γ(1) γ(0) γ(N − 2)

...
...

...
...

γ(N − 1) γ(N − 2) · · · γ(0)

 .

Note that (ΓN ) is bounded in spectral norm. Indeed, by the Gerschgorin theorem, the largest
eigenvalue of ΓN is not larger than γ(0)+2

∑
k≥1 |γ(k)| which, according to Remark 2.2, is finite.

Note also that, the vector (Z1, . . . ,Zn) has the same distribution as
(
y1Γ

1/2
N , . . . ,ynΓ

1/2
N

)
where

Γ
1/2
N is the symmetric non-negative square root of ΓN and the Zi’s are defined in Section 4.2.

Therefore, for any z ∈ C+, E
(
SFGn (z)

)
= E

(
SFAn (z)

)
where An = Γ

1/2
N YnΓ

1/2
N . The proof of

(4.4) is then reduced to prove that, for any z ∈ C+,

lim
n→∞

E
(
SFAn (z)

)
= S(z) , (4.91)

where S is defined in (2.4). According to Theorem 1.1 in Silverstein (1995), if one can show that

FΓN converges to a probability distribution H, (4.92)

then (4.91) holds with S satisfying the equation (1.4) in Silverstein (1995). Due to the Toeplitz
form of ΓN and to the fact that

∑
k≥0 |γ(k)| < ∞ (see Remark 2.2), the convergence (4.92)

can be proved by taking into account the arguments developed in the proof of Theorem 1 of
Yao (2012). Indeed, the fundamental eigenvalue distribution theorem of Szegö for Toeplitz forms
allows to assert that the empirical spectral distribution of ΓN converges weakly to a non random
distribution H that is defined via the spectral density of (Xk)k∈Z (see Relations (12) and (13) in
Yao (2012)). To end the proof, it suffices to notice that the relation (1.4) in Silverstein (1995)
combined with the relation (13) in Yao (2012) leads to (2.4). �

5 Appendix

In this section, we give some upper bounds for the partial derivatives of f defined in (4.35).

Lemma 5.1 Let x be a vector of RN×n with coordinates

x =
(
x(1), . . . , x(n)

)
where for any i ∈ {1, . . . , n}, x(i) =

(
x

(i)
k , k ∈ {1, . . . , N}

)
.

Let z = u +
√
−1v ∈ C+ and f := fz be the function defined in (4.35). Then, for any i ∈

{1, . . . , n} and any j, k, `,m ∈ {1, . . . , N}, the following inequalities hold true:∣∣∣∣∣ ∂2f

∂x
(i)
m ∂x

(i)
j

(x)

∣∣∣∣∣ ≤ 8

v3n2N

N∑
r=1

∣∣x(i)
r

∣∣2 +
2

v2nN
,

23



∣∣∣∣∣ ∂3f

∂x
(i)
` ∂x

(i)
m ∂x

(i)
j

(x)

∣∣∣∣∣ ≤ 48

v4n3N

(
N∑
r=1

∣∣x(i)
r

∣∣2)3/2

+
24

v3n2N

(
N∑
r=1

∣∣x(i)
r

∣∣2)1/2

,

and ∣∣∣∣∣ ∂4f

∂x
(i)
k ∂x

(i)
` ∂x

(i)
m ∂x

(i)
j

(x)

∣∣∣∣∣ ≤ 24× 16

v5n4N

(
N∑
r=1

∣∣x(i)
r

∣∣2)2

+
36× 8

v4n3N

N∑
r=1

∣∣x(i)
r

∣∣2 +
24

v3n2N
.

Proof. Recall that f(x) = 1
NTr

(
A(x) − zI

)−1
where A(x) = 1

n

∑n
k=1(x(k))Tx(k). To prove the

lemma, we shall proceed as in Chatterjee (2006) (see the proof of its Theorem 1.3) but with
some modifications since his computations are made in case where A(x) is a Wigner matrix of
order N .

Let i ∈ {1, . . . , n} and consider for any j, k ∈ {1, . . . , N}, the notations ∂j instead of ∂/∂x
(i)
j ,

∂2
jk instead of ∂2/∂x

(i)
j ∂x

(i)
k and so on. We shall also write A instead of A(x), f instead of f(x),

and define G =
(
A− zI

)−1
.

Note that ∂jA is the matrix with n−1
(
x

(i)
1 , . . . , x

(i)
j−1, 2x

(i)
j , x

(i)
j+1, . . . , x

(i)
N

)
as the jth row, its

transpose as the jth column, and zero otherwise. Thus, the Hilbert-Schmidt norm of ∂jA is
bounded as follows:

‖∂jA‖2 =
1

n

(
2

N∑
k=1 ,k 6=j

|x(i)
k |

2 + 4|x(i)
j |

2
)1/2

≤ 2

n

( N∑
k=1

|x(i)
k |

2
)1/2

. (5.1)

Now, for any m, j ∈ {1, . . . , N} such that m 6= j, ∂2
mjA has only two non-zero entries which are

equal to 1/n, whereas if m = j, it has only one non-zero entry which is equal to 2/n. Hence,

‖∂2
mjA‖2 ≤

2

n
. (5.2)

Finally, note that ∂3
lmjA ≡ 0 for any j,m, l ∈ {1, . . . , N}.

Now, by using (4.36), it follows that, for any j ∈ {1, . . . , N},

∂jf = − 1

N
Tr(G(∂jA)G) . (5.3)

In what follows, the notations
∑
{j′,m′}={j,m},

∑
{j′,m′,`′}={j,m,`} and

∑
{j′,m′,`′k′}={j,m,`,k} mean

respectively the sum over all permutations of {j,m}, of {j,m, `} and of {j,m, `, k}. Therefore
the first sum consists of 2 terms, the second one of 6 terms and the last one of 24 terms. Starting
from (5.3) and applying repeatedly (4.36), we then derive the following cumbersome formulas
for the partial derivatives up to the order four: for any j,m, `, k ∈ {1, . . . , N},

∂2
mjf =

1

N

∑
{j′,m′}={j,m}

Tr
(
G(∂j′A)G(∂m′A)G

)
− 1

N
Tr
(
G(∂2

mjA)G
)
, (5.4)

∂3
`mjf = − 1

N

∑
{j′,m′,`′}={j,m,`}

Tr
(
G(∂j′A)G(∂m′A)G(∂`′A)G

)
+

1

N

∑
{j′,m′}={j,m}

Tr
(
G(∂2

`j′A)G(∂m′A)G+G(∂j′A)G(∂2
`m′A)G

)
+

1

N
Tr
(
G(∂`A)G(∂2

mjA)G
)

+
1

N
Tr
(
G(∂2

mjA)G(∂`A)G
)
, (5.5)
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and
∂4
k`mjf := I1 + I2 + I3 + I4 + I5 + I6 , (5.6)

where

I1 =
1

N

∑
{j′,m′,`′,k′}={j,m,`,k}

Tr
(
G(∂j′A)G(∂m′A)G(∂`′A)G(∂k′A)G

)
,

I2 = − 1

N

∑
{j′,m′,`′}={j,m,`}

(
Tr
(
G(∂2

kj′A)G(∂m′A)G(∂`′A)G
)

+ Tr
(
G(∂j′A)G(∂2

km′A)G(∂`′A)G
)

+ Tr
(
G(∂j′A)G(∂m′A)G(∂2

k`′A)G
))
,

I3 = − 1

N

∑
{j′,m′}={j,m}

(
Tr
(
G(∂2

`j′A)G(∂kA)G(∂m′A)G
)

+ Tr
(
G(∂2

`j′A)G(∂m′A)G(∂kA)G
))

− 1

N

∑
{j′,m′}={j,m}

(
Tr
(
G(∂kA)G(∂2

`j′A)G(∂m′A)G
)

+ Tr
(
G(∂j′A)G(∂2

`m′A)G(∂kA)G
))

− 1

N

∑
{j′,m′}={j,m}

(
Tr
(
G(∂kA)G(∂j′A)G(∂2

`m′A)G
)

+ Tr
(
G(∂j′A)G(∂kA)G(∂2

`m′A)G
))
,

I4 = − 1

N

∑
{k′,`′}={k,`}

(
Tr
(
G(∂2

mjA)G(∂k′A)G(∂`′A)G
)

+ Tr
(
G(∂k′A)G(∂2

mjA)G(∂`′A)G
)

+ Tr
(
G(∂k′A)G(∂`′A)G(∂2

mjA)G
))
,

I5 =
1

N

∑
{k′,`′}={k,`}

∑
{j′,m′}={j,m}

Tr
(
G(∂2

`′j′A)G(∂2
k′m′A)G

)
,

and

I6 =
1

N
Tr
(
G(∂2

mjA)G(∂2
k`A)G

)
+

1

N
Tr
(
G(∂2

k`A)G(∂2
mjA)G

)
.

We start by giving an upper bound for ∂2
mjf . Since the eigenvalues of G2 are all bounded by

v−2, then so are its entries. Then, as Tr(G(∂2
mjA)G) = Tr((∂2

mjA)G2), it follows that

|Tr(G(∂2
mjA)G)| = |Tr((∂2

mjA)G2)| ≤ 2v−2n−1 . (5.7)

Next, to give an upper bound for |Tr
(
G(∂jA)G(∂mA)G

)
|, it is useful to recall some properties

of the Hilbert-Schmidt norm: Let B = (bij)1≤i,j≤N and C = (cij)1≤i,j≤N be two N ×N complex
matrices in L2, the set of Hilbert-Schmidt operators. Then
(a)- |Tr(BC)| ≤ ‖B‖2‖C‖2,
(b)- If B admits a spectral decomposition, then max{‖BC‖2, ‖CB‖2} ≤ ‖B‖.‖C‖2,
(see e.g. Wilkinson (1965) pages 55-58, for a proof of these facts).

Using the properties of the Hilbert-Schmidt norm recalled above, the fact that the eigenvalues
of G are all bounded by v−1, and (5.1), we then derive that

|Tr(G(∂jA)G(∂mA)G)| ≤ ‖G(∂jA)G‖2.‖(∂mA)G‖2 ≤ ‖G‖.‖(∂jA)G‖2.‖∂mA‖2.‖G‖

≤ ‖G‖3.‖∂jA‖2.‖∂mA‖2 ≤
4

v3n2

N∑
k=1

∣∣x(i)
k

∣∣2 . (5.8)
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Starting from (5.4) and considering (5.7) and (5.8), the first inequality of Lemma 5.1 follows.
Next, using again the above properties (a) and (b), the fact that the eigenvalues of G are all

bounded by v−1, (5.1) and (5.2), we get that

|Tr(G(∂jA)G(∂mA)G(∂`A)G)| ≤ ‖G(∂jA)G(∂mA)G‖2.‖(∂`A)G‖2
≤ ‖G(∂jA)G(∂mA)‖2.‖G‖2.‖∂`A‖2 ≤ ‖G(∂jA)‖2.‖G(∂mA)‖2.‖G‖2.‖∂`A‖2

≤ ‖G‖4.‖∂jA‖2.‖∂mA‖2.‖∂`A‖2 ≤
8

v4n3

( N∑
k=1

∣∣x(i)
k

∣∣2)3/2
, (5.9)

and

|Tr(G(∂2
`jA)G(∂mA)G)| ≤ ‖G(∂2

`jA)G‖2.‖(∂mA)G‖2 ≤ ‖G‖2‖G(∂2
`jA)‖2.‖∂mA‖2

≤ ‖G‖3.‖∂2
`jA‖2.‖∂mA‖2 ≤

4

v3n2

( N∑
k=1

∣∣x(i)
k

∣∣2)1/2
. (5.10)

The same last bound is obviously valid for |Tr(G(∂mA)G(∂2
`jA)G)|. Hence, starting from (5.5)

and considering (5.9) and (5.10), the second inequality of Lemma 5.1 follows.
It remains to prove the third inequality of Lemma 5.1. Using again the above properties (a)

and (b), the fact that the eigenvalues of G are all bounded by v−1, (5.1) and (5.2), we infer that

|Tr(G(∂jA)G(∂mA)G(∂`A)G(∂kA)G)| ≤ 16

v5n4

( N∑
k=1

∣∣x(i)
k

∣∣2)2
, (5.11)

|Tr(G(∂2
`jA)G(∂mA)G(∂kA)G)| ≤ 8

v4n3

N∑
k=1

∣∣x(i)
k

∣∣2 , (5.12)

and

|Tr(G(∂2
`jA)G(∂2

mkA)G)| ≤ 4

v3n2
. (5.13)

Clearly the bound (5.12) is also valid for the quantities |Tr(G(∂mA)G(∂2
`jA)G(∂kA)G)| and

|Tr(G(∂mA)G(∂kA)G(∂2
`jA)G)|. So, overall, starting from (5.6) and considering (5.11), (5.12)

and (5.13), the third inequality of Lemma 5.1 follows. �
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