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Abstract

In this paper we derive an extension of the Marcenko-Pastur theorem to a large class of
weak dependent sequences of real random variables having only moment of order 2. Under
a mild dependence condition that is easily verifiable in many situations, we derive that the
limiting spectral distribution of the associated sample covariance matrix is characterised
by an explicit equation for its Stieltjes transform, depending on the spectral density of the
underlying process. Applications to linear processes, functions of linear processes and ARCH
models are given.
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1 Introduction

A typical object of interest in many fields is the sample covariance matrix B,, = n~! Z?:l XjTXj
where (X;), j =1,...,n, is a sequence of N = N(n)-dimensional real-valued row random vec-
tors. The interest in studying the spectral properties of such matrices has emerged from multi-
variate statistical inference since many test statistics can be expressed in terms of functionals of
their eigenvalues. The study of the empirical distribution function (e.d.f.) FB» of the eigenvalues
of B,, goes back to Wishart 1920’s, and the spectral analysis of large-dimensional sample covari-
ance matrices has been actively developed since the remarkable work of Marcenko and Pastur
(1967) stating that if lim,,_,o, N/n = ¢ € (0,00), and all the coordinates of all the vectors X;’s
are i.i.d. (independent identically distributed), centered and in L2, then, with probability one,
FBn converges in distribution to a non-random distribution (the original Maréenko-Pastur’s the-
orem is stated for random variables having moment of order four, for the proof under moment
of order two only, we refer to Yin (1986)).

Since the Marcenko-Pastur’s pioneering paper, there has been a large amount of work aiming
at relaxing the independence structure between the coordinates of the X;’s. Yin (1986) and
Silverstein (1995) considered a linear transformation of independent random variables which
leads to the study of the empirical spectral distribution of random matrices of the form B,, =
n~t Z;L:1 FJI\PY;‘-FYJT}f where I'y is an N x N non-negative definite Hermitian random matrix,
independent of the Y ;’s which are i.i.d and such that all their coordinates are i.i.d. In the later
paper, it is shown that if lim, ,oc N/n = ¢ € (0,00), 'y is bounded in spectral norm, and
FT'N converges almost surely in distribution to a non-random probability distribution function
(p.d.f.) H on [0,00), then, almost surely, FB» converges in distribution to a (non-random) p.d.f.
F that is characterized in terms of its Stieltjes transform which satisfies a certain equation. Some
further investigations on the model above mentioned can be found Silverstein and Bai (1995)
and Pan (2010).

A natural question is then to wonder if other possible correlation patterns of coordinates
can be considered, in such a way that, almost surely (or in probability), FB» still converges
in distribution to a non-random p.d.f. The recent work by Bai and Zhou (2008) is in this



direction. Assuming that the the X;’s are i.i.d. and a very general dependence structure of their
coordinates, they derive the limiting spectral distribution (LSD) of B,,. Their result has various
applications. In particular, in case where the X;’s are independent copies of X = (X1,..., Xy)
where (Xj)kez is a stationary linear process with centered i.i.d. innovations, applying their
Theorem 1.1, they prove that, almost surely, FB» converges in distribution to a non-random
p.d.f. F, provided that lim, ,o N/n = ¢ € (0,00), the coefficients of the linear process are
absolutely summable and the innovations have a moment of order four (see their Theorem 2.5).
For this linear model, let us mention that in a recent paper, Yao (2012) shows that the Stieltjes
transform of the limiting p.d.f. F' satisfies an explicit equation that depends on ¢ and on the
spectral density of the underlying linear process. Still in the context of the linear model described
above but, relaxing the equidistribution assumption on the innovations, and using a different
approach than the one considered in the papers by Bai and Zhou (2008) and by Yao (2012),
Pfaffel and Schlemm (2011) also derive the LSD of B,, still assuming moments of order four for
the innovations plus a polynomial decay of the coefficients of the underlying linear process.

In this work, we extend such Maréenko-Pastur type theorems along another direction. We
shall assume that the X;’s are independent copies of X = (Xi,...,Xy) where (Xj)rez is a
stationary process of the form Xy = g(--- ,ex_1, k) where the g;’s are i.i.d. real valued random
variables and ¢ : R — R is a measurable function such that Xj, is a proper centered random
variable. Assuming that Xy has a moment of order two only, and imposing a dependence condi-
tion expressed in terms of conditional expectation, we prove that if lim,, oo N/n = ¢ € (0, 00),
then almost surely, FB» converges in distribution to a non-random p.d.f. F whose Stieltjes
transform satisfies an explicit equation that depends on ¢ and on the spectral density of the un-
derlying stationary process (Xx)rez (see our Theorem 2.1). The imposed dependence condition
is directly related to the physical mechanisms of the underlying process, and is easy verifiable
in many situations. For instance, when (Xj)rez is a linear process with i.i.d. innovations, our
dependence condition is satisfied, and then our Theorem 2.1 applies, as soon as the coefficients
of the linear process are absolutely summable and the innovations have a moment of order two
only, which improves Theorem 2.5 in Bai and Zhou (2008) and Theorem 1.1 in Yao (2012).
Other models, such as functions of linear processes and ARCH models, for which our Theorem
2.1 applies, are given in Section 3.

Let us now give an outline of the method used to prove our Theorem 2.1. Since the X;’s are
independent, the result will follow if we can prove that the expectation of the Stieltjes transform
of FBn say Sps,(z), converges to the Stieltjes transform of F, say S(z), for any complex
number z with positive imaginary part. With this aim, we shall consider a sample covariance
matrix G, = n~! 2?21 Z?Zj where the Z;’s are independent copies of Z = (Z1,...Zy) where
(Zk)kez is a sequence of Gaussian random variables having the same covariance structure as the
underlying process (Xi)rez. The Z;’s will be assumed to be independent of the X;’s. Using the
Gaussian structure of Gy, the convergence of E(Spe, (z)) to S(z) will follow by Theorem 1.1 in
Silverstein (1995). The main step of the proof is then to show that the difference between the
expectations of the Stieltjes transform of FB» and that of FG» converges to zero. This will be
achieved by approximating first (Xx)xez by an m-dependent sequence of random variables that
are bounded. This leads to a new sample covariance matrix B,,. We then handle the difference
between E(Sys, () and E(Spe, (z)) with the help of the so-called Lindeberg method used in
the multidimensional case. Lindeberg method is known to be an efficient tool to derive limit
theorems and, from our knowledge, it has been used for the first time in the context of random
matrices by Chatterjee (2006). With the help of this method, he proved the LSD of Wigner
matrices associated to exchangeable random variables.

The paper is organized as follows: in Section 2, we precise the model and state the LSD

result for the sample covariance matrix associated to the underlying process. Applications to
linear processes, functions of linear processes and ARCH models are given in Section 3. Section



4 is devoted to the proof of the main result, whereas some technical tools are stated and proved
in Appendix.

Here is some notation used all along the paper. The notation [z] is used to denote the integer
part of any real x. For any non-negative integer ¢, the notation 0, means a row vector of size gq.
For a matrix A, we denote by AT its transpose matrix, by Tr(A) its trace, by || A|| its spectral
norm, and by ||Al|2 its Hilbert-Schmidt norm (also called the Frobenius norm). We shall also
use the notation || X ||, for the L"-norm (r > 1) of a real valued random variable X. For any
square matrix A of order N with only real eigenvalues, the empirical spectral distribution of A
is defined as

N
1
F(2) = 5 > Tino) -
k=1

where A1, ..., Ay are the eigenvalues of A. The Stieltjes transform of F'4 is given by

r—z

Spa(z) = / L apA(y) = %Tr(A—zI)_l,

where z = u + iv € C* (the set of complex numbers with positive imaginary part), and I is the
identity matrix.

2 Main result

We consider a stationary causal process (X )rez defined as follows: let (ex)kez be a sequence of
i.i.d. real-valued random variables and let ¢ : RZ — R be a measurable function such that, for
any k € Z,

X = g(fk) with & := ( .. ,Ek,1,6k> (21)

is a proper random variable, E(g(&;)) = 0 and ||g(&x)|l2 < oc.

The framework (2.1) is very general and it includes many widely used linear and nonlinear
processes. We refer to the papers by Wu (2005, 2011) for many examples of stationary processes
that are of form (2.1). Following Priestley (1988) and Wu (2005), (X%)rez can be viewed as a
physical system with & (respectively Xj) being the input (respectively output) and g being the
transform or data-generating mechanism.

For n a positive integer, we consider n independent copies of the sequence (e)rez that we

denote by (Q@)kez for i = 1,...,n. Setting 5,(3) = (...,5,(21,5](5)) and X,gi) = g(f,(j)), it follows
that (X,il))kez, cee (X,gn))kez are n independent copies of (X)rez. Let now N = N(n) be a
sequence of positive integers, and define for any ¢ € {1,...,n}, X; = (XY’), e ,XJ(\Z,)). Let

1
X, = (XT|... )Xy and B, = -X,X. (2.2)
n

B,, will be referred as the sample covariance matrix associated to (Xy)xez. To derive the limiting
spectral distribution of B,,, we need to impose some dependence structure on (Xy)xez. With
this aim, we introduce the projection operator: for any k£ and j belonging to Z, let

Pj(Xy) = E(Xk[&5) — E(Xk[§-1) -
We state now our main result.

Theorem 2.1 Let (Xy)rez be defined in (2.1) and B, by (2.2). Assume that

> I Po(Xp)l2 < o0, (2.3)

k>0



and that c(n) = N/n — ¢ € (0,00). Then, with probability one, FB tends to a probability
distribution, whose Stieltjes transform S = S(z) (z € C*) satisfies the equation

1 ¢ [* 1
z = —— —_— d)\ .
S * 27 /0 S+ (27Tf()\))_1 ’ #4)

where S(z) := —(1 —¢)/z + ¢cS(z) and f(-) is the spectral density of (Xi)rez-

Remark 2.2 Under the condition (2.3), the series ) ;. |Cov(Xo, Xi)| is finite (see for in-
stance the inequality (4.59)). Therefore (2.3) implies that the spectral density f(-) of (Xk)kez
exists, is continuous and bounded on [0, 2m).

Let us mention that the condition (2.3) is referred in the literature as the Hannan-Heyde con-
dition and is known to be sufficient for the validity of the central limit theorem for the partial
sums (normalized by /n) associated to an adapted regular stationary process in 2. As we shall
see in the next section, the quantity ||Py(X%)|2 can be computed in many situations including
non linear models. We would like to mention that the condition (2.3) is weaker that the 2-strong
stability condition introduced by Wu (2005, Definition 3) that involves a coupling coefficient.

3 Applications

In this section, we give two different classes of models for which the condition (2.3) is satisfied
and then for which our Theorem 2.1 applies. Other classes of models, including non linear time
series such as iterative Lipschitz models, that are of the form (2.1) and for which the quantity
|Po(Xk)||2 can be computed may be found in Wu (2011).

3.1 Functions of linear processes

In this section, we shall focus on functions of real-valued linear processes. Define
Xk = h(Zaiak_Z) —E(h(Zaisk_i)> y (31)
i>0 i>0

where (a;);cz be a sequence of real numbers in /! and (g;);ez is a sequence of i.i.d. real-valued
random variables in I.'. We shall give sufficient conditions in terms of the regularity of the
function h, for the condition (2.3) to be satisfied.

Denote by wy(+) the modulus of continuity of the function h on R, that is:

wp(t) = sup |h(z) —h(y)|.
lz—y|<t

Corollary 3.1 Assume that
> llwn(lareo)) 2 < oo, (3.2)

k>0
or

(3.3)

Z Hwh(ZQo ‘akHH&A)Hz < o0

1/2
k>1 k/

Then, provided that c(n) = N/n — ¢ € (0,00), the conclusion of Theorem 2.1 holds for FB»
where By, is the sample covariance matriz of dimension N defined by (2.2) and associated to

(Xk)kez defined by (3.1).



Example 1. Assume that h is v-Holder with « €]0, 1], that is: there is a positive constant C'
such that wy(t) < C|t|7. Assume that

Z lag|” < oo and E(|eg)?V) < o0,
k>0

then the condition (3.2) is satisfied and the conclusion of Corollary 3.1 holds. In particular,
when h is the identity, which corresponds to the fact that X is a causal linear process, the
conclusion of Corollary 3.1 holds as soon as Y, |ax| < oo and &g belongs to L2, This improves
Theorem 2.5 in Bai and Zhou (2008) and Theorem 1 in Yao (2012) that require ¢ to be in L*.

Example 2. Assume ||gg||c < M where M is a finite positive constant, and that aj = p* where
p € (0,1), then the condition (3.3) is satisfied and the conclusion of Corollary 3.1 holds as soon
as

3 on(ptMA—p)7) (3.4)

1/2
k>1 kY

In particular the result applies to the case of the Bernoulli shift, that is a; = 27% and ¢g is such
that P(eg = 1) = P(eg = 0) = 1/2. In such a case, the condition (3.4) is equivalent to:

1
wi(t)
———dt < .
/0 t/|logt|

For instance if wy,(t) < C|logt|™® with o > 1/2 near zero, then the above condition is satisfied.

Proof of Corollary 3.1. To prove the corollary, it suffices to show that the condition (2.3) is
satisfied as soon as (3.2) or (3.3) holds. Let (€} )rez be an independent copy of (ex)rez. Denoting
by Ec(-) the conditional expectation with respect to € = (¢ )rez, we have that, for any k > 0,

k—1 k
E. (h ( Z ais’,;_i + Z aisk_i) - ]’L( Z (11‘6;;_2- + Z aisk_i) )) H2 .
=0 i>k =0 i>k+1

< JJwn (|ar(e0 — €5)])Il2

Next, by the subadditivity of wp(-), wp(|lax(eo — €§)]) < wn(lakeo|) + wn(|lages]). Whence,
|1 Po(X%)|l2 < 2||wn(|akeo|)||2. This proves that the condition (2.3) is satisfied under (3.2).

We prove now that if (3.3) holds then so does the condition (2.3). By the computations page
1615 in Peligrad and Utev (2006),

D IPo(Xk)lla <302 IE(Xel€0) 2 - (3.5)

k>1 >1

IRy (X2 = |

With the same notations as before, we have that, for any £ > 0,

E(X/|¢)) = E. (h ( ei agi_i+ Y aiag_Z') —h ( 3 aiezf_Z)) .
=0

i>0 i>0

Hence, for any non-negative integer £,

1Bl < [wn (D las(ees = i-)l) |, < 2J|wn (D ladlle—i )|

12 1=

)
2

where we have used the subadditivity of wy(-) for the last inequality. Therefore, starting from
(3.5) and considering the last inequality, we derive that

D IP(Xp)ll2 <6 wh<ziz;1’/c:\|€”’> H2 7

E>1 >1

which shows that (2.3) holds as soon as (3.3) does. O




3.2 ARCH models

Let (ex)rez be an i.i.d. sequence of zero mean real-valued random variables such that ||o|l2 = 1.
We consider the following ARCH(c0) model described by Giraitis et al. (2000):

YY) = orer, where a,% =c+ Z chkQ_]- , (3.6)
j>1

where ¢ > 0, ¢; > 0 and Zj>1 ¢j < 1. Such models are encountered when the volatility (07 )kez

is unobserved. In that case, the process of interest is (Y,f) rez and, in what follows, we consider
the process (X )kez defined, for any k € Z, by:

X, =Y? —E(Y?) where Y}, is defined in (3.6). (3.7)

Notice that, under the above conditions, there exists a unique stationary solution to (3.6) that
satisfies (see Giraitis et al. (2000)):

_ 2
ok =c+ CZ Z ngfk 1 Che (1) (3.8)
=1 j1,....Je=1

Corollary 3.2 Assume that g belongs to L* and that

leol?> ;<1 and Y ej = O forb>1/2. (3.9)

7>1 j>n

Then, provided that c¢(n) = N/n — ¢ € (0,00), the conclusion of Theorem 2.1 holds for FBr
where By, is the sample covariance matriz of dimension N defined by (2.2) and associated to

(Xk)kez defined by (3.7).

Proof of Corollary 3.2. To prove the corollary, it suffices to show that the condition (2.3) is
satisfied as soon as (3.9) is. With this aim, let us notice that, for any integer n > 1,

IE(Xnlé0)ll2 = lleolIFIE( ?Llé*o)* E(o7)ll2

2
ST DD S RTINS TR |
£=1 j1,....Je=1

9] 0 l 00 9
2 20 2 /—1
<2eollid DY D e e Lsmgleold < 2elleolli D ek >,
(=1 j1,ojo=1 k=1 =1 k=[n/¢]

where k = ”50“?12]'21 ¢j. So, under (3.9), |E(X,|é)|l2 < n~° which combined with (3.5)
implies that the condition (2.3) holds as soon as b > 1/2. O

Remark 3.3 Notice that if we consider the sample covariance matriz associated to (Yi)rez
defined in (3.6), then its LSD follows directly by Theorem 2.1 since Py(Yy) =0, for k > 1.

4 Proof of Theorem 2.1

To prove the theorem it suffices to show that for any z € CT,

SpB,(z) = S(z) almost surely. (4.1)



Since the columns of &), are independent, by Step 1 of the proof of Theorem 1.1 in Bai and
Zhou (2008), to prove (4.1), it suffices to show that, for any z € C*,

lim E(Spe.(2)) = S(z), (4.2)

n—oo
where S(z) satisfies the equation (2.4).

The proof of (4.2) being very technical, for reader convenience, let us describe the different
steps leading to it. We shall consider a sample covariance matrix G, = 1Z,ZT" (see (4.32))
such that the columns of Z,, are independent and the random variables in each column of Z,
form a sequence of Gaussian random variables whose covariance structure is the same as that

of the sequence (Xi)krez (see Section 4.2). The aim will be then to prove that, for any z € C™,

lim IE(SpBa(2) —E(Spen(2))]| =0, (4.3)
and
lim E(Span(2)) = S(2). (4.4)

The proof of (4.4) will be achieved in Section 4.4 with the help of Theorem 1.1 in Silverstein
(1995) combined with arguments developed in the proof of Theorem 1 in Yao (2012). The proof
of (4.3) will be divided in several steps. First, to “break” the dependence structure, we introduce
a parameter m, and approximate B,, by a sample covariance matrix B,, := 1, X7 (see (4.16))
such that the columns of X, are independent and the random variables in each column of A},
form of an m-dependent sequence of random variables bounded by 2M, with M a positive real

(see Section 4.1). This approximation will be done in such a way that, for any z € CT,

lim limsuplimsup (E(Sgs.(2)) — E(San(z))‘ =0. (4.5)
m—=00 A 300 n—00

Next, the sample Gaussian covariance matrix Gy, is approximated by another sample Gaus-

sian covariance matrix Gy, (see (4.34)), depending on the parameter m and constructed from

G,, by replacing some of the variables in each column of Z,, by zeros (see Section 4.2). This

approximation will be done in such a way that, for any z € CT,

lim limsup (E(Spe.(2)) — E(SFén (z))‘ =0. (4.6)

m—=00 n—oo

In view of (4.5) and (4.6), the convergence (4.3) will then follow if we can prove that, for any
z2€CT,
lim limsuplimsup |E(Sys, (2)) —E(S,a, (z))‘ =0. (4.7)

Mm—=00 N v N—00

This will be achieved in Section 4.3 with the help of the Lindeberg method. The rest of this
section is devoted to the proofs of the convergences (4.3)-(4.7).

In what follows, we shall use the notation a < b to mean that there exists a finite positive
constant C, not depending on n, m and M, and such that a < Cb.

4.1 Approximation by a sample covariance matrix associated to an
m-dependent sequence.

Let N > 3 and m be a fixed positive integer less than N/2. Set

N
— Dy = [N/ ~1/8 d knym=|—— 4.8
p=pNm=[N""m /] and ky, el B (4.8)



where we recall that [ -] denotes the integer part. Let M be a fixed positive number that depends
neither on N, nor on n, nor on m. Let ¢y be the function defined by ¢p(x) = (zAM)V (—M).
Now for any k € Z and ¢ € {1,...,n} let

X m = E(gaM(X,gi’)|s,§i’, o s,(jlm) and X\ = X — E(X ) - (4.9)

In what follows, to soothe the notations, we shall write X%

and X ,Ef) instead of respectively

k,m m
X}%/[m and X,gfgw’m, when no confusion is allowed. Notice that_ (Xlg:,lr)n)kezv e (Xlgtln)z)kez are
n independent copies of the centered and stationary sequence (X hm)k ez defined by
)A(ik’m = E(SOM(Xk)’gky N 76k7m> and Xk,m = )?’ﬁm — E()?k,m) y k < 7. (410)
This implies in particular that: for any i € {1,...,n} and any k € Z,
1% lloo = [ X mlloo < 20 (4.11)
For any i € {1,...,n}, note that (X ,glzn)k cZ forms a m-dependent sequence, in the sense
that X’,@n and X,gi)m are independent if |k — k| > m. We write now the interval [1, N| NN as a
union of disjoint sets as follows:
kN,m"Fl
[1,N]NN = U IyUdJyg,
/=1

where, for £ € {1,...,knm},
L= [(l-1D(p+m)+1, ((—1)(p+m)+p] NN, (4.12)
Jei= (= D(p+m)+p+1, €p+m)| NN,

and, for £ = ky , + 1,
Iiy 41 = [knm(p+m)+1, N]NN,

and Jyy .41 = (. Note that Ty pt1 = 0 if kxm(p+m) = N.
Let now (ugi)) be the random vectors defined as follows. For any ¢ belonging to

{1,...,knm — 1},

Ee{l7ka,m}

= (K0 ser,r Om) (4.13)

k,m kG]g’ m

Hence, the dimension of the random vectors defined above is equal to p4+m. Now, for £ = ky ,,
we set

o) = (%0

N.m k7m)keIkN’m ’ 07‘) d (4.14)

where 7 = m + N — kn m(p + m). This last vector is then of dimension N — (knm — 1)(p +m).

Notice that the random vectors (ul(f) are mutually independent.

)1§i§n,1§egk1v,m

For any ¢ € {1,...,n}, we define now row random vectors X @ of dimension N by setting
X0 = (), 0=1,... knm), (4.15)

where the ug)’s are defined in (4.13) and (4.14). Let

X, = (X7 XOT) and B, = XA . (4.16)

SRS

In what follows, we shall prove the following proposition.



Proposition 4.1 For any z € CT, the convergence (4.5) holds true with B, and B,, as defined
in (2.2) and (4.16) respectively.

To prove the proposition above, we start by noticing that, by integration by parts, for any
z=u+iveCT,

(S (2)) — E(Spn ()| < B| [ ar® (@) - [ Lar®)

r—z

E]/FB" FB”( dr < ;E/‘FB”(x)—FB"(:E)‘d:c. (4.17)

J,'—Z

Now, [ ‘F Bn(z) — FBn (:c)‘da: is nothing else but the Wasserstein distance of order 1 between
the empirical measure of B,, and that of B,,. To be more precise, if Aq,..., Ay denote the
eigenvalues of B, in the non-increasing order, and A1,..., Ay the ones of By, also in the non-

increasing order, then, setting 1, = % chvzl dy, and 7, = % Zgil dy,» we have that

[ 155 @) = £ (@) ds = Wi, ) = inf BJX - ¥,
where the infimum runs over the set of couples of random variables (X,Y) on R x R such that

X ~n, and Y ~ 7j,. Arguing as in Remark 4.2.6 in Chafai, Guédon, Lecué and Pajor (2012),
we have that

NAn
1% , = — min A —
1(7777, 77n N nesy Z | k
where 7 is a permutation belonging to the symmetric group Sy of {1,...,N}. By standard

arguments, involving the fact that if x, y, u, v are real numbers such that x < y and u > v, then
. N N N 3
|z —u| + |y —v| > |z —v| + |y — ul|, we get that min,es, Zk:/\fl M — Arey| = Zk:/\fL Ak — k-

Therefore,
NAn

Wi (s ) = / |FB (2) — FB(2)|de = % PRV (4.18)
k=1

Notice that A\, = s% and N\, = 5% where the sp’s (respectively the s;’s) are the singular values of
the matrix n=1/2X, (respectively of n=1/2X,,). Hence, by Cauchy-Schwarz’s inequality,

Nan ) Nan o 1/2  NAn _ 2\ /2
S = () ()
k=1 k=1 h=1
NAn NAn NAn
<223 i) (X bl < 2 (nB+180) (X )
k=1 k=1 =

Next, by Hoffman-Wielandt’s inequality (see e.g. Corollary 7.3.8 in Horn and Johnson (1985)),

f‘f sk — 5k> < n T (X — X)) (X — 2T

Therefore,

NAn ~ s 1o _ 1/2 _ _ o\ 1/2
> k= Al £ 22072 (Te(By) + Te(Ba) ) (Tr((X = &) (K = 2)7)) T (419)
k=1



Starting from (4.17), considering (4.18) and (4.19), and using Cauchy-Schwarz’s inequality, it
follows that

E(Spm. (2)) ~ E(Spa, (2))
< 2 LB + BT () (% — B (420)
— 02 Nnpl/2 " e ' .

By the definition of B,,,

1 n N
NE(TB) = 53> X7 = 1%l (421)
i=1 k=1
where we have used that for each 1, (X ,gl))k ¢z 18 a copy of the stationary sequence (Xj)gez.
Now, setting
kN,m
Inm = |J Ir and Ry ={1,..., N\Inm, (4.22)
(=1

recalling the definition (4.16) of B,,, using the stationarity of the sequence (X ,gzn) kez, and the
fact that card(Zy,m) = pknm < N, we get that

~E(Tr(B 72 S XELI < 1 Xoml3

i=1 ]CEINm
Next, _
[ Xo0.mll2 < 2| Xomll2 < 2[len (Xo)ll2 < 2 Xol|2 - (4.23)
Therefore,
~E(ITe(B,)]) < 4/ Xoll5- (4.24)

Now, by definition of X, and X,,,

LR (x, - ) (2 - 2)T)

Nn Lo 0 o 2 T W2
(A st (A
:mz Z HXk: _Xk,mH2+mZ Z HXk H2
i=1 k€IN m i=1 kERN,m

Using stationarity, the fact that card(Zn,,) < N and

Nm
ARy m) = knm < — 4, 4.25
card(Rn,m) TPRNm S o P (4.25)
we get that
1 - ST = _ _
7 B(Tr (X = X) (X = X)) < [[Xo = Xomll3 + (mp™" +pN || Xol3 (4.26)

Starting from (4.20), considering the upper bounds (4.21), (4.24) and (4.26), and since p =
[NV/8m=1/8] we derive that

limsup (E(Sge, (2)) — E(Sps, (2 ))’ < 7HX0 Xomll2-

n—oo
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Therefore, Proposition 4.1 will follow if we can prove that

lim limsup || Xo — Xoml|l2=0. (4.27)

m— 00 M—00

Let us introduce now the sequence (X, )rcz defined as follows: for any k € Z,
Xim = E(Xkler, .-, eh-m) - (4.28)
With the above notation, we write that
1 X0 = Xomll2 < [ X0 — Xomll2 + [ Xom — Xomll2-

Since X is centered, so is Xo . Then [|Xo,m — Xomll2 = [ Xo.m —E(Xom) — Xomll2. Therefore,
recalling the definition (4.10) of Xg ,, it follows that

| Xo,m — Xomll2 < 2| Xom — Xomll2 < 2/ X0 — onm(Xo) 2 < 2/|(|Xo| — M)+ (4.29)

Since Xo belongs to L%, limp/—co || (| Xo| — M)+ |2 = 0. Therefore, to prove (4.27) (and then
Proposition 4.1), it suffices to prove that

lim | Xo — Xomll2 = 0. (4.30)

Since (Xom)m>0 is a martingale with respect to the increasing filtration (G, )m>0 defined by
Gm = 0(e—m,...,€0), and is such that sup,,~q || Xomll2 < || Xoll2 < oo, (4.30) follows by the
martingale convergence theorem in I (see for instance Corollary 2.2 in Hall and Heyde (1980)).
This ends the proof of Proposition 4.1. Il

4.2 Construction of approximating sample covariance matrices associated to
Gaussian random variables.

Let (Zx)rez be a centered Gaussian process with real values, whose covariance function is given
for any k, ¢ € Z by
COV(Zk, Zg) = COV(Xk, Xg) . (4.31)

For n a positive integer, we consider n independent copies of the Gaussian process (Zy)rez that
are in addition independent of (X,iz))kez’ie{l,__’n}. We shall denote these copies by (Z,iz))kez for
i=1,...,n. Forany ¢ € {1,...,n}, define Z; = (Zgl),...,ZI(\Z,)). Let Z, = (ZT|...|ZL) be the
matrix whose columns are the Z;fp’s and consider its associated sample covariance matrix

1
G,=-2,2T. (4.32)
n

n

For kn ., given in (4.8), we define now random vectors (véi)) Ce{t k) S follows. They are

defined as the random vectors (uy))ﬂe{l ] defined in (4.13) and (4.14), but by replacing

each X ,glzn by Z ,gi). For any i € {1,...,n}, we then define the random vectors Z® of dimension
N, as follows: .
Z0 = (v =1, knm) - (4.33)
Let now 1
Z, = (ZWT]..ZzWT) and G, = ~Z,Z2!. (4.34)
n

In what follows, we shall prove the following proposition.
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Proposition 4.2 For any z € CT, the convergence (4.6) holds true with Gy, and én as defined
in (4.32) and (4.34) respectively.

To prove the proposition above, we start by noticing that, for any z = u +iv € CT,

’E(SFGn (2)) —E(SF@n(z))’ < E’/ ! dFCn (z) —/ ! dFé"(x)‘

r—z r—z

gE‘/FG“@)—Fé”dx‘ o TIFS = PO,
(x —2)? v

Hence, by Theorem A.44 in Bai and Silverstein (2010),

[E(Spon(2)) = E(Spc, ()| < —rank(Z, - Z,).

FGn

By definition of Z, and gn, rank(Zn — ZNn) < card(Rn,m), where Ry, is defined in (4.22).
Therefore, using (4.25), we get that, for any z = u +iv € CT,

T mN

[E(Spen(2) ~ E(Spa, ()] < - (m +p),

which converges to zero as n — oo, since p = [NY/8m~1/8]. This ends the proof of Proposition
4.2. O

4.3 Approximation of E(Sys,(2)) by E(S,a,(2)).
In this section, we shall prove the following proposition.

Proposition 4.3 Under the assumptions of Theorem 2.1, for any z € C™T, the convergence
(4.7) holds true with B, and G,, as defined in (4.16) and (4.34) respectively.

With this aim, we shall use the Lindeberg method that is based on telescoping sums. In order
to develop it, we first give the following definition:

Definition 4.1 Let z be a vector of RNX™ with coordinates
T = (x(l),...,x(”)) where for any i € {1,...,n}, 2 = (xl(j), ke {1,...,N}) )

Let z € Ct and f := f, be the function defined from RN*" to C by

Zn:(ac(k))Tx(k) , (4.35)

k=1

Tr(A(z) — ZI)_1 where A(x) =

S|

f@) = %

and 1 is the identity matriz.

The function f, as defined above, admits partial derivatives of all orders. Indeed, let u be one
of the coordinates of the vector x and A, = A(x) the matrix-valued function of the scalar w.
Then, setting G, = (Au — 21)71 and differentiating both sides of the equality G, (A, — zI) =1,
it follows that e A

Tu —G%G, (4.36)
(see the equality (17) in Chatterjee (2006)). Higher-order derivatives may be computed by
applying repeatedly the above formula. Upper bounds for some partial derivarives up to the

fourth order are given in Appendix.
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Now, using Definition 4.1 and the notations (4.15) and (4.33), we get that, for any z € CT,

E(Sps,(2)) —E(S,a,(2)) =Ef(XW ..., XM) —Ef (2D ..., Z2M). (4.37)

To continue the development of the Lindeberg method, we introduce additional notations. For

any i € {1,...,n} and kn,, given in (4.8), we define random vectors (Uy))ée{l ) of
dimension N x n as follows. For any £ € {1,...,knm}, ’

Ugl) = (O(ifl)N7 0(@71)(p+m) ) uy) ) 07”@7 O(nfz)N> ’ (438)

where the ugi)’s are defined in (4.13) and (4.14), and
r¢=N—Lp+m) for L€ {1,....,knm—1},and rgy, =0. (4.39)

Note that the vectors (Ug’))1 ci<ni<t<ky. 8T€ mutually independent. Moreover, with the no-

tations (4.38) and (4.15), the following relations hold. For any ¢ € {1,...,n},

kN,m ) n kNm
Y ul = (ON(H) X0 0,y ) and >3 U (XU) . XW) , (4.40)
=1 i=1 (=1
where the X(’s are defined in (4.15).
Now, for any i € {1,...,n}, we define random vectors (VéZ))EG{l,...,kN,m} of dimension N X n,
as follows: for any ¢ € {1,...,knm},
(Z) (0(1 DN 5 Oe—1)(ptm) » Vél) ; 0rg70(n—i)N) ; (4.41)
where 7y is defined in (4.39) and the Vé )’s are defined in Section 4.2. With the notations (4.41)
and (4.33), the following relations hold: for any i € {1,...,n},
kN,m n knm )
Z V (0 — (ON (i—1) » () ’ ON(TZ—Z)) and Z Z Véz) = (Z(l) PRI Z(n)) ) (442)
i=1 (=1

where the Z(®’s are defined in (4.33). We define now, for any i € {1,...,n},

i kNm n kNm
S, — Z Z Ugs) and T; = Z Z V&S) ’ (4.43)
s=1 =1 s=i £=1
and any s € {1,....knm},
S ) kN,m .
O =5"U{" and TO = " v, (4.44)
=1 l=s

In all the notations above, we use the convention that ) ;. = 0 if r > s. Therefore, starting
from (4.37), considering the relations (4.40) and (4.42), and using the notations (4.43) and
(4.44), we successively get

n

E(Sps,(2)) —E(Spe, (2) = Z (Ef(si 4+ Tit1) —Ef(Si—1 + Tz))
i—1

N,m .
= Z Z (Ef(si—1 +S§i> —i—TSJ)rl +Ti+1) —Ef( i—1 +S()1 —|—T( 2 +Ti+1)> .
i=1 s=1
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Therefore