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Abstract—This paper introduces a novel technique to track
structures in time evolving graphs. The method is based on a
parameter free approach for three-dimensional co-clustering of
the source vertices, the target vertices and the time. All these
features are simultaneously segmented in order to build time
segments and clusters of vertices whose edge distributions are
similar and evolve in the same way over the time segments. The
main novelty of this approach lies in that the time segments
are directly inferred from the evolution of the edge distribution
between the vertices, thus not requiring the user to make an
a priori discretization. Experiments conducted on a synthetic
dataset illustrate the good behaviour of the technique, and a
study of a real-life dataset shows the potential of the proposed
approach for exploratory data analysis.

Keywords-Coclustering;Blockmodeling;Graph
Mining;Model Selection

I. INTRODUCTION

In real world problems, interaction between entities are
generally evolving through time. This is the case for instance
in collaboration networks between scientists when new PhD
students are recruited or conclude their thesis, when re-
searchers move from one team to another, etc. Understanding
the corresponding time evolving interaction graphs implies
both to discover structures in those graphs and to track the
evolution of those structures through time. In this paper,
we address this problem by introducing a form of temporal
blockmodeling.

The concept of blockmodeling originates in the pioneering
works on quantitative graph structure analysis conducted by
sociologists in the 1950s in the context of social network
analysis. Vertices of the graph represent here social actors
(also called subjects), while edges between them correspond
to social interaction. Among other topics, sociologists were
interested in structuring the interrelations between actors into
(social) roles [1], [2]. This led in particular to the introduction
of the structural equivalence notion [3]: two actors are said
to be structurally equivalent if they play the same role in the
social network, that is if they interact in the same way with
the same actors. By grouping structurally equivalent actors,
that is vertices in the corresponding graph, one obtains a
simplified and synthetic version of the original graph. A
generalization of structural equivalence was introduced later
on to relax its very strong constraints, under the name of
regular equivalence [4]. This consists in grouping actors into
clusters which interact identically with the same clusters.

To track the underlying structure of a graph, a matrix
representation of a graph is usually exploited, generally its
adjacency matrix. Rows and columns represent the actors, and
the values of the matrix indicate whether there is a relation
between the actors represented. Early sociological approaches
suggested to rearrange the rows and the column in order to
partition the matrix in homogeneous blocks, a technique
called blockmodeling. Once the blocks are extracted, a
partition of the subjects of both rows and column can be made.
This type simultaneous grouping is named co-clustering. A
convenient way to represent the co-clustering is through the
image graph: its vertices are the clusters of subjects/actors
identified in the blockmodeling; there is an edge between
two cluster vertices if there are edges between the actors that
belong to those clusters in the original social network (those
edges are the ones that define the characteristics of the roles
in a case of regular equivalence).

Numerous methods have been proposed to build a satis-
factory image graph. Some of them [5] are based on the op-
timization of criteria that favor partitions with homogeneous
blocks, especially with pure zero-blocks as recommended in
[6]. More recent deterministic approaches have focused on
optimizing criteria that quantify how well the image graph
summarizes the graph [7] (see e.g. [8] for details on such
criteria). Other approaches include stochastic blockmodeling.
In those generative models, a latent cluster indicator variable
is associated to each actor/vertex. Conditionally to their
latent variables, the probability of observing an edge between
two actors follows some standard distribution (a Bernoulli
distribution in the simplest case) whose parameters depend
only on the pair of clusters designated by the latent variables.
In early approaches, the number of clusters is chosen by the
user [9]. More recent techniques determine automatically the
number of clusters using a Dirichlet Process [10]. Finally,
some recent approaches consider non-boolean latent variables:
cluster assignments are not strong and a vertex has an
affiliation degree to each cluster [11].

Studies on evolving graphs are quite recent. The majority
of the methods define an evolving graph as a sequence of
static snapshots. In some approaches, the times segments are
obtained by making an agglomerative hierarchical grouping
of the snapshots and intervals using a similarity measure
[12]. As for stochastic blockmodeling, an adaptation of the
mixed membership is proposed that studies the evolution of



the latent variables over time [13]. Graphscope [14] is a two-
stage method dedicated to simple bipartite graphs that tracks
structures within time-evolving graphs. First, a partition of the
snapshots is retrieved and evaluated using a MDL framework
[15], then an agglomerative process is used to determine the
temporal segmentation. As discussed in [16], the partitioning
results may be sensitive to the coding schemes: in particular,
coding shemes like those used in [14] have no guarantee of
robustness w.r.t. random graphs. The method we introduced
in this paper is related to Graphscope in that it also exploits
a modelization in blocks and is parameter free. However,
our approach exploits a robust modelization technique with
high resiliance to noise (see Section III), can be applied to a
large family of graphs (directed, undirected, bipartite, simple
or multigraph) and considers simultaneously the partitioning
of the graph and the discretization of the temporal variable
within a global triclustering process, avoiding the use of a
two-stage method.
In this paper, we propose a form of temporal blockmodeling
for evolving graph built upon the MODL approach [17].
As in classical blockmodeling, our parameter free method
groups vertices whose edges are similarly distributed over
the clusters. In addition, it partitions the time interval into
time segments during which the edge distributions between
the clusters are stationary. In order to obtain such a synthetic
representation of the evolving graph, a tri-clustering method
is introduced. It optimizes simultaneously the vertices co-
clusters and the time interval partition. This approach is
resilient to noise and reliable in the senses that no co-
clustering structure is detected in case of random graphs
and that no time segmentation is made in case of globally
stationary graphs. In addition the true underlying distribution
is asymptotically estimated. Section 2, describes the proposed
approach in details and introduces a post-treatment technique
useful as an exploratory analysis tool. Section 3 investigates
the behaviour of the method using an artificial dataset. Finally,
the method is applied on a real-life dataset in order to prove
its effectiveness on a practical case.

II. EVOLVING GRAPH MODEL

We study graphs with multiple edges and therefore the
method is not restricted to binary or symetrical adjacency ma-
trices. Let us denote an evolving graph G = 〈VS , VT , E(t)〉
where the sets of vertices VS and VT are constant and
E(t) is the set of edges observed at time t ∈ [Tmin, Tmax].
This setting is general enough to account for simple graphs,
multigraphs, directed graphs, bipartite graphs and undirected
graphs, where each edge comes twice with the two directions.

A. Model Definition

As the graph edges are evolving through time, we replace
the synthetic representation by a unique image graph by
a sequence of image graphs, IG = (IGn)n=1,...,N . Each
image graph is supposed to be a synthetic representation of

the graph on a specific time segment. The description of a
graph and its image are displayed on Table I.

Graph G Image Graph IG
VS set of source vertices CS set of KS clusters of source vertices
VT set of target vertices CT set of KT clusters of target vertices
T the temporal variable I = {I1, I2, ..., IN} set of time segments
E(t ∈ T ) evolving edges EIG(In) edges between clusters at In

Table I: Data Representation of the initial graph and the
image graph

Now that the different components of an image graph are
introduced, their parametrization must be specified. A model
characterizing an image graph is defined by:

1) the number of source and target clusters (KS and KT );
2) the number of time segments (N );
3) the partition of the source vertices (resp. target vertices)

into the source (resp. target) clusters of vertices;
4) the distribution of the temporal edges of the graph

on the co-clusters of source vertices, target vertices
and time (i.e the edges of the image graph). Given
this specification, we can derive from the graph the
frequency of the clusters and time segments. Since
time is a continuous variable, we can deduce the time
segments bounds from their frequency;

5) for each source (resp. target) cluster of vertices, the
distribution of the edges whose source (resp. target)
belongs to the cluster on the vertices of the cluster.

Notice that specifications defined in third and fifth points
are not required for the temporal variable. We require that a
good temporal discretization should be invariant w.r.t. any
monotonous transformation of the input time interval and
robust w.r.t. atypical values (outliers). Given this requirement,
we choose to exploit the ranks of the input values in the
data sample rather than the values themselves. Thus, it is
not necessary to specify how the timestamps are distributed
over the time segments since time segments follow a logical
order. As for the distribution of edges on the ranks locally
to each interval, it is also not specified since we consider
in our model that there is one rank per timestamp and thus
only one way to distribute the edges over a time segment.

B. MODL, the Criterion

Given the model definition, the method we use is similar
to a co-clustering with three features: the source and the
target vertices are grouped and the time is discretized.
In order to infer the best 3D partition, a criterion is
built following a MAP (Maximum A Posteriori) Approach:
IG∗ = argmaxIG P (IG)P (G|IG). We detail below the
two contributions P (IG), a prior on the image graphs, and
P (G|IG), the likelihood of the graph conditionally to an
image graph.

Prior: Directly learning the model (image graph) on
the data (graph) would enable the model to consider noisy
phenomena as significative patterns and thus increases the



risk of overfitting. To overcome this issue, a prior on the
model penalizes the likelihood.

The prior is built hierarchically and uniformly at each
stage in order to be uninformative [18]. By doing this, we
make no assumption on the data distribution. The following
enumeration is a description of the a priori terms that
constitutes the prior on the model:

(i) The number of source clusters KS (resp. target clusters
KT ) is uniformly distributed between 1 and |VS |, the number
of source vertices (resp. |VT |, the number of target vertices).
The case with one single cluster corresponds to the null model,
where there is no significative pattern within the graph. The
other extreme case corresponds to the finest model where
each vertex has a significant enough role to be clustered
alone: the model has as many clusters as vertices . Both
clustering structures are consistent with regular equivalence
[19], [4]. Following the same idea, N , the number of time
segments, is uniformly distributed between 1 and the number
of edges |E|. The case with one time segment corresponds
to a stationary graph over time. The one with as many time
segments as edges is an extremely fine-grained discretization:
as time is a continuous variable, this case is allowed in our
approach.

p(KS) =
1

|VS |
; p(KT ) =

1

|VT |
; p(N) =

1

|E|

(ii) For a given number of source clusters (resp. target
clusters), every partition of the |VS | vertices (resp. |VT |
vertices) is equiprobable.

p({CS}|KS) =
1

B(|VS |,KS)
; p({CT }|KT ) =

1

B(|VT |,KT )

where B(|VS |,KS) =
∑KS

k=1 S(|VS |, k) is a sum of
Stirling numbers of second kind, i.e the number of way of
partitioning |VS | elements into k non-empty subsets. At this
step, no a priori hypothesis has been made on the clustering
schemes. This point has been raised in [10] where a Dirichlet
process is used as a prior on the number of clusters and
on the distribution of vertices on the clusters. Such a prior
favors a structure with a few populated clusters and several
smaller clusters and penalizes balanced clustering models.
Our approach overcomes this issue owing to its definition.

(iii) For an image graph with KS source and KT target
clusters, every distribution of edges on the tri-clusters –
defined as the cross product of both source, target clusters
and time segments – is equiprobable.

p(EIG(CS , CT , In)|KS ,KT , N) =
1(|E|+KSKTN−1

KSKTN−1

)
(iv) For a given cluster of source vertices ci = {vi, i =

1..|ci|}(resp. target vertices cj = {vj , j = 1..|cj |}), every

distribution of the out-degree (resp. in-degree) on the vertices
of the cluster is equiprobable.

p(dout(vi)|dout(ci), {ci}) =
1(dout(ci)+|ci|−1

|ci|−1

)
p(din(vj)|din(cj), {cj}) =

1(din(cj)+|cj |−1

|cj |−1

)
Likelihood: Once the image graph parameters are

specified owing to the prior definition, the likelihood
P (G|IG) is defined as the most likely way to observe the
graph knowing the image graph parametrization. More
formally, the likelihood is made up of the following
hypothesis on each parameters of the model :

(i) On the image graph, every way to draw |e(ci, cj , In)|
edges between the clusters ci and cj , seen as vertices of the
image graph, at the time segment In with the |E| edges of
the graph is equiprobable and equal to :

P (E|CS , CT , I) =

∏
ci∈CS ,cj∈CT ,In∈I

|e(ci, cj , In)|!

|E|!

(ii) For every cluster of source (resp. target) vertices, every
way to distribute dout(ci), the out-degree of the source cluster
ci, (resp. din(cj), the in-degree of the target cluster cj),
knowing the set of vertices it contains and the degree of each
of them, is equiprobable.

P (VS |CS) =

∏
vi∈VS

dout(vi)!∏
ci∈CS

dout(ci)!
; P (VT |CT ) =

∏
vj∈VT

din(vj)!

∏
cj∈CT

din(cj)!

(iii) Every distribution of the rank of the edges timestamps
is equiprobable within each time segment.

P (T |I) =
1∏

In∈I
|In|!

The product of the prior and likelihood terms results in
a posterior probability, the negative log of which is used
to build a criterion. By optimizing it, vertices which edges
in/out-coming tend to be similarly distributed on the clusters
are grouped, and the time is discretized into time segments
where the edge distribution is stationary. This behavior is
illustrated in Section 3.

Definition (Cost of an Image Graph). The Image Graph
IG, which is the best synthetic representation of a graph
G according to our modelization, minimizes the following
criterion :

c(IG) = − log [P (IG)P (G|IG)] (1)

The first term of the criterion corresponds to the negative
log of the prior probability and the second one to the



negative log of the likelihood. In the information theory
principles, a negative log of probability amounts to a Shannon-
Fano coding length [20]. Thus, the negative log of the
prior probability − log(P (IG)) is the description length
of the image graph. As for the negative log likelihood
− log(P (IG)), it is the description length of the graph when
modeled by the image graph. Minimizing the sum of these
two terms therefore has a natural interpretation in terms of
a crude MDL (minimum description length) principle [15].
The criterion c(IG) provides an exact analytical formula for
the posterior probability of an image graph IG. That is why
the design of sophisticated optimization algorithms is both
necessary and meaningful. Such algorithms are described in
[17].

The criterion is minimized using a greedy bottom-up
merge heuristic. It starts from the finest image graph, i.e
the one with one cluster per vertice and one interval per
timestamp. The merges of source and target clusters and the
merges between adjacent time intervals are evaluated and
performed so that the criterion decreases. This process is
reiterated until there is no more improvement, as detailed in
Algorithm 1

Require: IG (initial solution)
Ensure: IG∗ ; c(IG∗) ≤ c(IG)
IG∗ ← IG
while solution is improved do
IG′ ← IG∗
for all merge m between 2 source or target clusters or

adjacent time segments do
{Consider merge m for Image Graph IG}
IG+ ← IG∗ +m
if c(IG+) < c(IG′) then
IG′ ← IG+

end if
end for
if c(IG′) < c(IG∗) then
IG∗ ← IG′ (improved solution)

end if
end while

Algorithm 1: Greedy Bottom Up Merge Heuristic

The greedy heuristic may lead to computational issues and
a straightforward implementation would be hard to perform.
By exploiting both the sparseness of the time-evolving
graph and the additivity of the criterion, one can reduce
the memory complexity to O(|E|) and the time complexity
to O(|E|

√
|E| log |E|).

The optimized version of the greedy heuristic is time
efficient, but it may fall into a local optimum. This problem
is tackled using the variable neighborhood search (VNS)
meta-heuristic [21], which mainly benefits from multiple
runs of the algorithms with different random initial solutions.

C. Simplifying the Image Graph

When huge graphs are studied, the number of clusters of
vertices and of time segments may be too high for an easy
interpretation. This problem has been raised in [6], where an

agglomerative method is suggested as an exploratory analysis
tool.

The method we propose here consists in merging succes-
sively the clusters and the time segments in the least costly
way until the image graph is synthetic enough for an easy
interpretation. From an optimal image graph according to the
criterion detailed in Equation 1, clusters of source vertices,
of target vertices or time segments are merged sequentially.
At each step, the merged clusters (or time segments) are the
ones that induce the smallest increase of the value of the
criterion.

Theorem. Asymptotically - i.e when the number of edges
tends to infinity - the variation ∆c of the criterion when
merging 2 clusters of (source or target) vertices is equal to
the Jensen Shannon divergence between the distribution of
the edges on the merged clusters. Similarly, the variation of
the criterion when merging two time segments is equal to
the Jensen Shannon divergence between the distribution of
the edges on the cocluster of source and target clusters for
the merged time segments.

∆c(∪(c1, c2)) = (|c1|+ |c2|)JSα1,α2 (P1, P2) (2)
= (|c1|+ |c2|) (α1KL(P1||P1∪2) + α2KL(P2||P1∪2))

where c1 and c2 are the clusters (or time segments) to be
merged into a cluster (or time segment) c1∪2. P1, P2 and
P1∪2 are the respective distributions of c1, c2 and c1∪2. In
case of a merge of source clusters:

Pi∈{1,2} =

{
|e(ci, cj , In)|

|E|

}
cj∈CT ,In∈I

P1∪2 = α1P1 + α2P2 αi∈{1,2} =
|ci|

|c1|+ |c2|

JS is the general Jensen-Shannon Divergence [22] and
KL, the Kullback-Leibler Divergence. The full proof is left
out for brevity and relies on the Stirling approximation:
log(n!) = n log(n) − n + O(log(n)), when the difference
between the criterion values after and before the merges is
computed.

The Jensen-Shannon divergence has some interesting prop-
erties: it is a symetric and non-negative measure between two
probability distributions and the Jensen-Shannon divergence
of two identical distributions is equal to zero. While this
divergence is not a metric, as it is not sub-additive, it has
nevertheless the minimal properties need to be used as a
similarity measure within an agglomerative process [23].

To handle the coarsening of the model, a measure of infor-
mativeness of the model is computed at each agglomerative
step. It corresponds to the percentage of informativity the
model has kept after a merge, compared to a null model.

Definition (Informativity of an image graph). The null model
IG∅ is the parametrization of the image graph, such as there
is one single cluster of source and target vertices and one
time segment. The null model is the synthetic representation



of a stationary graph with no underlying structure. Given the
best image graph IG∗ obtained by optimizing the criterion
defined in Definition 1, the informativity of an image graph
IG is :

τ(IG) = c(IG)− c(IG∅)
c(IG∗)− c(IG∅)

By definition, τ(IG) ≤ 1 ; note that τ(IG) < 0 is possible
when IG is an irrelevant modelization of the graph G (e.g.
IG 6= IG∅ when G is a random graph).

III. EXPERIMENTS ON ARTIFICIAL DATASETS

Experiments have been conducted on artificial datasets in
order to investigate the properties of our approach. To that
end, we generate artificial graphs with known underlying
evolving structures.

A. Experiments on graphs with significative patterns

The synthetic dataset consists in 40 vertices and a variable
number edges. The vertices are grouped into 4 clusters. There
are 5 vertices in clusters 1 and 2, 10 vertices in cluster 3 and
20 vertices in cluster 4. The studied time interval [0, 100]
has been split into 4 intervals (I1 = [0, 20], I2 = [20, 30],
I3 = [30, 60] and I4 = [60, 100]) to which are associated
specific image graphs (see Figure 1).

(a) [0, 20[ (b) [20, 30[ (c) [30, 60[ (d) [60, 100]

Figure 1: Image graph for each time interval

The dataset is generated by drawing edges between the
vertices according the following process:

1) A source vertex (and its associated source cluster) and
a timestamp are selected uniformly at random.

2) The timestamp is associated to the corresponding time
interval which gives an image graph specified on
Figure 1.

3) If the source cluster is connected to targets clusters
in the image graph, then a target vertex is chosen
uniformly at random in the union of those target
clusters and an edge is generated from the source
vertex to this target vertex.

Then, 30% of the edges are rewired uniformly at random in
order to introduce some noise in the dataset. It should be
noted that this procedure generates numerous multiple edges
that can be considered as integer weighted edges.

This synthetic dataset has been generated with a varying
number of edges. In order to obtain reliable results, one
hundred graph realisations have been built for each number
of edges.

The results are displayed on Figure 2. For a low number of
edges (below 512), the method does not retrieve any cluster.

The number of instances is too low for the method to retrieve
any reliable cluster. In this case, the prior is stronger than the
likelihood and the patterns are not retrieved. Between 512
and 2048, data are numerous enough to detect the biggest
clusters (3 and 4), other ones are sometimes too small and
considered as noise. Finally, beyond 2048 edges, the data
are in a large enough amount and the patterns are retrieved
by the method. It is empirically observed that the numbers
of clusters and intervals tend to the true numbers of patterns.
Provided that no more evolution takes place, the method
asymptotically estimates the true underlying (evolving) edge
distribution.

Figure 2: Synthetic graph with a time evolving structure. The
two top curves are the average numbers of clusters and intervals
functions of the number of generated edges. The two bottom curves
are the respective standard deviations.

B. Experiments on stationary graphs

A stationary graph is a graph whose regular structure (edge
distribution) does not evolve over time. To generate such a
graph, we have taken the same hundred previous graphs for
a given number of edges and we have randomly shuffled
the timestamps of the edges. By doing this, we obtain one
single new distribution of edges between the clusters that
corresponds to a mixture of the previous four distributions.
In brief, the graph can be considered as static and the image
graph has only one snapshot that is much more complex.

Figure 3: Synthetic graph with a stationary structure. The two top
curves are the average numbers of clusters and intervals functions
of the number of generated edges. The two bottom curves are the
respective standard deviations.

Figure 3 shows that whatever the number of edges, the
method does not discretize the temporal variable. It is resilient
to noise and does not create any spurious time segment. Let
us notice that the method requires more data to retrieve the



4 clusters of vertices than the previous experiment. This is
due to the complexity of the structure obtained after having
mixed the edges distributions of the 4 time segments of the
previous experiment.

C. Experiments on Random Graphs

To obtain random graphs, we have kept the stationary graph
and randomly rewired all the edges. By doing this, there
is neither underlying structure between clusters of vertices
nor temporal structure. Here, the method retrieves one group
of vertices and one time segment, with a zero variance on
all the hundred graphs whatever the number of edges. The
method avoids overfitting and does not detect any spurious
structure.

IV. EXPERIMENTS ON A REAL-LIFE DATASET

Experiments on a real-life dataset have been conducted
in order to illustrate the effectiveness of the method on a
practical case.

A. The London cycles dataset

The dataset is a record of all the cycle hires in the
Barclays cycle stations of London between May 31st, 2011
and February 4th, 2012. The Data are available on the
website of TFL1. The dataset consists in 488 stations and
4.8 million journeys. It is modelled as a graph with the
departure stations as source vertices, the destination stations
as target vertices and the journeys as edges. A timestamp
on the edges corresponds to the hire time of the day with
a minute precision. Actually, there are 1,440 different hire
times per day. In this study, we focus on the time of rental
as a temporal variable.

B. The optimal Image Graph

By applying our method on this dataset, we obtain 296
clusters of source stations, 281 clusters of target stations and
5 time segments. This has been computed in 50 minutes
using a maximal memory of 4.5 GB. The majority of the
stations being clustered alone within their own cluster, the
segmentation is very fine-grained but this is not the result
of an overfitting. In fact, this is due to the huge number of
hires, the distributions of edges coming from/to the vertices
are characteristic enough to distinguish them from each other.
As for the temporal discretization, there are 5 time segments,
that is a decent number to make an interpretation.

C. Simplified Image Graph

Nearly 300 clusters of stations is huge. It is the reason
why, we have simplified the image graph in order to enable
an interpretation. The image graph has been simplified using
the exploratory post-processing described in Section 2.3. By
merging step by step the clusters and the interval, we have
chosen to coarsen the image graph until obtaining 70% of

1Transport for London, http://www.tfl.gov.uk

informativity (see Section 2.3). This simplification yields 20
clusters of source and target stations while keeping all the 5
time segments.

Figure 4: Clusters of source stations plotted on a map of
London. There is one greyed symbol per cluster.

A detailed analysis of the clusters reveals that the clustered
stations are in general geographically correlated, despite we
made no assumption on the proximity of the stations within a
cluster. There is also no constraint on our method that yield
symetric clusters. In our case, we have considered more
interesting to envisage two different clustering structures
on target and source stations. Consequently we obtain two
different clustering structures on the set of source and target
vertices.

Some clusters illustrate this characteristic. First, there is
a cluster of stations located within Hyde Park (darkgrey
triangles on Figure 4). This cluster is exactly the same
as source and as target. By contrast, the City of London
constitutes one single target cluster while it is split into two
source clusters (see Figure 4). Like these two examples, most
clusters display a strong geographical correlation, except bike
stations in front of Waterloo and King’s Cross train stations
(white circles on Figure 4) that have been grouped together
while they are very distant. Both being major intercity railroad
stations, we can assume that people there have the same
behaviour and all converge at the same time to the same
point in London, the Central Business District for example.

D. Detailed Visualization

We use clustering as an exploratory tool and illustrate
below the benefit of some specialized visualizations.

Definition (Mutual Information between the clusters of
stations). This measure quantifies the dependence of two
variables. In this first study, the time is left aside and we only
focus on the traffic of cycles between the stations all over the
day. Let us denote it MI(CS , CT ), defined as follows [24] :

MI(CS , CT ) =
∑
cS ,cT

p(cS , cT ) log
p(cS , cT )

p(cS)p(cT )
(3)



Mutual information is necessarily positive. However the in-
volvement to mutual information of a couple of source/target
clusters stations can be positive or negative according to
whether the observed joint probability of journeys p(cS , cT )
is above or below the expected probability p(cS)p(cT ) in
case of independence. Displaying such a measure would
quantify whether there is a lack or an excess of journeys
between two clusters of stations in comparison with the
expected number.

Figure 5: Mutual information from the source cluster City/Barbican
(stations drawn using stars) to all the clusters. The more a station
is colored in red, the more there is an excess of journeys from the
stations of the source cluster to the colored station as compared
to the expectation under the hypothesis of independance between
source and target.

In Figure 5, there are clearly more journeys from the cluster
”City/Barbican” to the stations of the same neighbourhood,
particularly the stations toward the east ; and toward the
north, that are mostly residential areas. The conclusions are
similar for the majority of the clusters, users tend to make
short journeys and leave their bikes in the area where they
have hired them.

Definition (Mutual Information between journeys and time
segments). We compute the Mutual Information between
stations pairs and time segments , MI[(CS , CT ), I], to study
journeys evolution through time.

MI[(CS , CT ), I] =
∑

cS ,cT ,In

p(cS , cT , In) log
p(cS , cT , In)

p(cS , cT )p(In)

Similarly to the previous measure, this one aims at showing
the couple of clusters between which there is an excess of
traffic compared to the usual daily traffic between these
stations and the usual traffic at this period in London. To
illustrate the measure, we focus on the cluster of Hyde
Park and we observe an atypical behaviour. For this cluster,
the traffic is lower than what we expected on mornings
(see Figure 6). Indeed, a negative contribution to mutual
information means that there is a lack of journeys between
the stations of Hyde Park at this time of the day p(cS , cT , In)
compared to the usual traffic between the stations p(cS , cT )
and the usual traffic at this time segment p(In). By contrast

there is an excess during the day.

Figure 6: Mutual information between the journeys from source
cluster Hyde Park (stations drawn using stars) to all the clusters
and a time segment, morning (top map) and day (bottom map). The
more a station is colored in red (resp. blue), the more there is an
excess (resp. lack) of journeys from the stations of the source cluster
to the colored station compared to the traffic there is mornings or
during the day all over London and traffic there is within Hyde
Park all over the day.

These results are not really surprising because we can
assume that in the mornings (time segment from 7:06AM to
9:27AM), when people go to their office, they do not go for a
ride in Hyde Park. However, Hyde Park and the morning are
both among the busiest clusters and time segments concerning
the cycle hires in London. This contrast explains the blue
stations on the map of Figure 6. By contrast, the major
part of the traffic within Hyde Park occurs during the day
(time segment from 9:27AM to 3:25PM) whereas this time
segment corresponds to an off-peak time concerning bikes
hires elsewhere in London. This is the reason why Hyde Park
is colored in red at the time segment ”day” (see Figure 6).
As for the night (time segment from 8:16PM to 4:12AM), all
the stations over London are colored in white. Actually, there
is the expected number of journeys at this time segment: the
Park is closed and the number is so low that the mutual
information between journeys belonging from Hyde Park
and the time segment ”night” is null.

E. Related Works

A similar study on the bike renting system of Lyon (France)
has already been lead [25]. However, the dataset needed to
be pre-processed to be studied. Indeed the timestamps are
aggregated by hour or day depending on which time interval
is studied. Moreover, some edges beetween the stations are
deleted in order to keep only the ”significant” stream of
bikes between the stations. Our method does not need such
a pre-processing, the time is treated as a continuous variable



and the irrelevant streams of bikes between stations are
automatically detected as noise by the method.
Using the aggregate journey distribution over time to pre-
discretize the temporal variable into time segments is conceiv-
able, however making such a choice is not easy and requires
an advice of an expert on the studied field, on the one hand to
make choices toward the discretization and on the other hand
to take a critical look on the results. Because our method
simultaneously groups vertices and discretizes the temporal
variable without requiring the user to tune parameters, it
is particularly suitable for studies on such datasets. All the
more so as there is not necessarily a correlation between
the journey distribution over time and the evolution of the
underlying structures of the graph. Our approach is also able
to track very short time segments with significative changes
of the structure.

V. CONCLUSION

In this paper, we have dealed with the structural changes
within an evolving graph. A novel method, named MODL,
aiming at grouping vertices and discretizing the time interval
has been introduced. This is related to co-clustering in that
we consider the graph as a set of edges described by three
features: source vertices, target vertices and time. All of them
are simultaneously segmented in order to build a synthetic
representation of the graph owing to a set of image graphs
that modelizes the static underlying structure of a graph for
every time segment. This approach is particularly interesting
because it does not require any data preprocessing, such as an
aggregation of timestamps or a selection of significative edges.
Its good properties have been assessed with experiments
on artificial datasets. The method is reliable because it is
resilient to noise and asymptotically finds the true underlying
distribution. It is also suitable in practical cases as illustrated
by the study on the bikes renting system of London. In future
works, such a method could be extended to co-clustering
in k-dimensions, adding labels on the vertices or another
temporal feature (day of week) for example.
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