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Abstract  

The Mullins’ effect remains a major challenge in order to provide good mechanical modeling of the complex 

behavior of industrial rubber materials. It’s been forty years since Mullins [1] wrote his review on the phenomenon 

and still no general agreement has been found either on the physical source or on the mechanical modeling of this 

effect. Therefore, we reviewed the literature dedicated to this topic over the past six decades. We present the 

experimental evidences, which characterize the Mullins’ softening. The phenomenon is observed in filled and 

crystallizing rubbers. Then, the phenomenological models dedicated to fit the mechanical behavior of rubbers 

undergoing some Mullins’ softening are studied. To overcome the limit of a descriptive phenomenological modeling, 

several authors looked for a physical understanding of the phenomenon. Various theories have been exposed, but 

none of them has been supported unanimously. Nonetheless, these theories favor the emergence of physically based 

mechanical behavior laws. We tested some of these laws, which show little predictive abilities since the values of 

their parameters do not compare well with the physical quantities they are linked to.  

 

1. Introduction  

Rubber-like materials exhibit an appreciable change in their mechanical properties resulting from the first 

extension. This property, reported in filled and non-filled rubber-like materials, has been investigated intensively by 

Mullins and his co-workers and consequently is referred to as the “Mullins’ effect.”  The objective of this 

contribution is to review and discuss this phenomenon, which remains a challenge in terms of physical understanding 

and mechanical modeling.  

Although the Mullins’ effect has been studied for more than six decades, it is still recognized as a major difficulty 

for rubber-like materials behavior. Stress-softening experimental evidences reported in the literature account for 

materials of distinct physical properties (unfilled rubbers, filled rubbers, thermoplastics…). In section 2, we tried to 

clarify the features of the Mullins’ effect.  
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For the past three decades, in attempt to represent the mechanical behavior of rubbers depending on the strain 

history, specific efforts were accomplished to define new models. Due to the complexity of the mechanical behavior 

of rubbers, involving large deformations, nonlinear behavior and Mullins’ softening, most models depend on 

phenomenological parameters. We report and test some of these models in section 3. 

In order to provide a better understanding of the stress-softening resulting from the Mullins’ effect, several 

physical interpretations were proposed, from chain breakage at the interface between the rubber and the fillers, 

slipping of molecules, rupture of the clusters of fillers, chain disentanglements, to more complex composite structure 

formation. These interpretations are presented and discussed in section 4. They provide materials for the emergence 

of physically motivated mechanical models.  We present and discuss these models in section 5. 

 

2. Experimental observations 

 2.1. Softening effect 

In order to illustrate the material softening resulting from the Mullins’ effect, cyclic uniaxial tension tests were 

performed on a sulfur-vulcanized SBR filled with 50 phr of N220 carbon black. Flat tensile samples were cut from 

SBR sheets. Uniaxial tension tests were performed on a G’Test 810 tensile machine operated in a local strain control 

mode through Appolor® video image anaysis.  Tests were run at a low constant strain rate of 10-3 s-1. One sample 

was submitted to a simple uniaxial tension test, while another one was submitted to a cyclic uniaxial tension test with 

the maximum stretching increasing every 5 cycles. Fig. 1 presents the stress-strain responses of both samples. In Fig. 

1, we observe a softening that is specific to materials exhibiting the Mullins’ effect:  

• Most of the softening, which is characterized by a lower resulting stress for the same applied strain, 

appears after the first load. 

• After a few number of cycles (values up to 10 are reported in the literature depending on the material 

nature), the material responses coincide during the successive cycles. 

• The softening appears for stretches lower or equal to the maximum stretch ever applied. 

• When the extension exceeds the maximum extension previously applied, the material stress-strain 

response returns on the same path than the monotonous uniaxial tension test stress-strain response after a 

transition, which increases with the amount of strain. 

• The softening increases progressively with the increasing maximum stretch. 
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The literature reports Mullins’ effect for various materials, see table 1 for examples.  

In his early work, Mullins [5] submitted filled and unfilled natural rubbers (NR) to the same amount of stretch and 

noticed a softening effect in the filled compounds only. He noted that the softening was increasing with the 

increasing stiffening ability of the fillers, and that for stretches of one-half of the pre-deformation, the filled NR 

stress-strain response approaches the pure NR. Mullins interpreted this by a disappearance of the reinforcing effect of 

the filler.  

Later, by applying the same amount of stress to filled and unfilled NR, he and his co-authors [2] observed a 

softening in pure NR as well. Moreover, Harwood and Payne [3] noticed that a pure NR and a carbon-black filled 

NR experience a similar softening when both materials are stretched up to the same stress level. According to this 

result, it seemed more appropriate to relate the Mullins’ softening to a stress level than to a strain level, and very 

often the Mullins’ effect has been referred to as a stress-softening effect. Nevertheless, the mechanical quantity 

characterizing the Mullins’ effect threshold has not yet been clearly defined. It would require applying various 

loading conditions consecutively. Although the Mullins’ softening is reported in the literature for other states of 

deformation than uniaxial tension: Uniaxial compression [18], hydrostatic tension [19], simple shear [7], and equi-

biaxial tension [7,8,20,21], it is still not clear which mechanical quantity pilots the Mullins’ effect. 

Natural rubber is known to crystallize and Mullins’effect has been observed in such other pure crystallizing gums 

such as NBR [14]. It was reported also in filled gums that do not crystallize, such as SBR [2,10] or EPDM [11,22], in 

materials containing initially some crystallization like thermoplastics elastomers [23,24], and recently in polymer 

gels [25] and in living tissues that have a rubbery behavior[26-28]. But Mullins and Tobin [4] noted that pure gums 

that do not crystallize break before showing any softening effect. We observed similar break on polyurethane 

networks consisting of polyether diols reticulated by Toloante HDT triisocyanate. Hence, contrary to the general idea 

that the Mullins’ effect takes place in filled and unfilled rubbers, it is necessary that unfilled rubbers crystallize to 

undergo this effect.   

Applying cyclic uniaxial tension up to various stretch levels on several materials, we noted that there is no general 

stretching lower limit to observe some Mullins’ softening, but rather it depends on the materials. Materials 

containing a fairly important amount of fillers may show some Mullins effect at very low stretch. As an example, 

Fig. 2 shows that our 50 phr carbon-black filled SBR undergoes some Mullins’ effect after a 10 %-stretch, well 

before the upturn of the stress-strain curve.  
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 2.2. Crystallization 

As we mentioned earlier, in order to display some Mullins’ softening, unfilled rubbers need either to initially 

contain crystallites like thermoplastic rubbers, or to crystallize during the deformation process. The strain-induced 

crystallization in natural rubber has been studied early [29,30]. Mullins and Tobin [4] studied the Mullins’ effect in 

carbon-black filled and unfilled natural rubber vulcanizates, and noticed a decrease in the materials volume, which 

they relate to the occurrence of crystallization. More recently, Rault and his co-authors studied this phenomenon [31-

34]. They measured the crystallinity in pure NR and filled NR during cyclic uniaxial tension loading conditions, and 

they showed that the hysteresis characterized by the difference between the loading and the unloading stress-strain 

responses results from crystallization [31]. They also observed that fillers act as a strain amplifier [34] like Mullins 

and Tobin proposed earlier [35]. Thus, crystallization, like the softening effect, appears at a lower strain level for 

filled NR than for pure NR. But most of all, Trabelsi et al. [32] measured the same amount of crystallinity during the 

first three cycles of uniaxial tension applied to a filled NR, whereas the stress-strain curves showed a conspicuous 

softening at the second cycle. Therefore, a similar crystallization appears at the second cycle, when the Mullins’ 

effect is evacuated. Hence, we note that the presence of crystallites is necessary for the occurrence of the Mullins’ 

softening in unfilled rubbers and the Mullins’ softening does not affect the strain-induced crystallization. 

 

 2.3. Permanent set 

The permanent set refers to the residual extension remaining after a material sample is stretched and released. 

Mullins [36] studied in parallel the permanent set and the softening of pure NR and filled NR. He noted that the 

permanent set is actually not exactly permanent and that part of it can even be recovered rapidly. Therefore, he fixed 

the release time to one hour, prior to any measurement of permanent set in order to allow the materials to recover 

from the residual deformation resulting from viscoelasticity. Similarly, after stretching a filled EPDM up to 200 %, 

Diani et al. [22] reported an instantaneous residual stretch of 31 %, which decreased to 13 % after 20 minutes and 

remained to 12 % after 48 hours. Mullins [36] noticed that materials showing little softening also show little residual 

deformations. Moreover, though the residual deformation depends on the type of fillers, it cannot be related simply 

to the stiffening effect of the fillers.  

Dorfmann and Ogden [6] conducted cyclic uniaxial tension experiments on natural rubbers added of 1 phr, 20 phr 

and 60 phr of carbon black fillers. They reported a residual extension that increased with the amount of fillers and 
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with the amplitude of stretching applied to the materials. When submitted to uniaxial compressions, elastomers show 

a compressive residual strain increasing with the intensity of loading, like Boyce et al. [23] showed on EPDM-PP 

thermoplastic rubber. Finally, after cyclic uniaxial tension tests, rubbers show a permanent set in compression in the 

direction perpendicular to the direction of stretching, exhibiting an anisotropy of the permanent set [22,36].  

 

 2.4. Induced anisotropy 

Mullins [5,36] noticed that stretching a reinforced rubber produces an uneven softening in all directions, and thus 

creates some anisotropy.  Other authors showed experimental evidences of the Mullins induced anisotropy in carbon-

black natural rubber [37], in silica filled PDMS [17] and in carbon black filled EPDM [22].  Nevertheless, we have 

not been able to find any study quantifying clearly the induced anisotropy according to the gum or filler nature, or to 

the applied strain history.  

 

 2.5. Recovery 

Mullins [5] studied the stress-recovery of a filled NR previously stretched up to 420 %. For that, after various 

recovery periods, he measured the stress at an elongation of 200 % and compared it to the stress measured on the 

material stretched to the same elongation for the first time (virgin material). He showed a temperature-dependence of 

the recovery. At room temperature only a small recovery is observed (less than 20 %), while at 100 C, the material 

recovers 80 % of the softening after only two days. Mullins noted that exposing the material to such a high 

temperature changes its behavior due to aging. At high temperatures, Harwood and Payne [38] studied the stress-

recovery in unfilled vulcanizates natural rubber depending of the type of crosslinking. After a first cyclic load, the 

materials were heated in vacuo at 100 C for 24 h. Then, the material was stretched for a second time and the stress-

strain response was compared to the initial one. Results show that the recovery depends on the type of crosslinking 

and may be almost complete for monosulfide crosslinked and carbon to carbon crosslinked vulcanizates. Similarly, 

Laraba-Abbes et al. [37] showed a complete recovery of the softening (stress-strain response similar to the virgin 

material) of a carbon-black filled natural rubber exposed to a high temperature of 95 C in vacuo during 48 hours.  

We tested the recovery at high temperature in vacuo on samples of SBR added of 50 phr of carbon black. Samples 

were submitted to cyclic uniaxial tensile tests up to 200%, after which, they were exposed to a temperature of 80 C in 

vacuo for up to 17 hours. Then, the samples were submitted for a second time to the same cyclic uniaxial tension 
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tests. After approximately 3 hours, we measured a full recovery of the residual strain but an incomplete recovery of 

the modulus. As shown in Fig. 3, the material stress-strain response was recovered after 17 hours of exposure to the 

heat. 

At room temperature, Rigbi [39] showed that in a carbon black filled rubber, a long relaxation (4 weeks) leads to 

partial stress-recovery only, and Hanson et al. [17] mentions that in silica-filled PDMS, the stress softening produced 

during the first extension could not be recovered after 26 weeks.  

Harwood and Payne [38] immersed their samples in a solvent and showed in some cases a complete recovery of 

the Mullins’ effect by swelling.  

Therefore, the physical phenomena taking place during the Mullins’ softening are reversible but require a high 

temperature or a solvent exposure to heal. For this last reason, the Mullins’ softening may be considered as the result 

of damage, and this is how it is introduced in the phenomenological models. Actually, due to the complexity of the 

stress-strain response of rubber-like materials, which involves large deformations, non-linearity and softening, most 

of the mechanical models are phenomenological.  

 

3. Phenomenological models 

In order to account for the Mullin’s softening, Simo [40] proposed to penalize the classic elastic strain energy 

densities, )(0 FW , designed to fit the hyperelastic stress-strain responses of rubber-like materials submitted to the 

deformation gradient F , by a reducing parameter of the Kachanov form [41], 

)()1()( 0 FF WdW −= .           (1) 

The parameter d defines a damage, which is a priori unknown and may cover any physical phenomenon like chain 

and multichain damage, microstructural damage, microvoid formation.... During the past three decades, various 

models have been defined according to Eq. (1). They vary from each other by the damage criterion or\and by the 

damage evolution law. The damage criterion identifies when d changes, and so depends on the mechanical quantity 

characterizing d, while the evolution law expresses how d is changing.  

As sketched in Fig. 4, we can file the models in two classes, according to whether or not the material stress-strain 

response at the second loading is identical to the unloading stress-strain response, as long as the maximum 

deformation is not reached. When both material responses superpose (Fig. 4a), damage is a function of a 

discontinuous quantity like the maximum applied stretch. For example, Simo [40] defines a discontinuous damage 
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variable that depends on the maximum of )(2 0 FW over the past history. In the case of diverging unloading and 

reloading responses (Fig. 4b), damage depends not only on a discontinuous variable but also on a continuous one, 

with the latter accumulating continuously within the deformation process. In this way, Miehe [42] introduced a 

damage, which is partly governed by the arclength dss

t∫
0

)(f& , where f  is the thermodynamic force which drives the 

damage evolution. Several authors [43-45] adopted such a definition of damage. Another way to define a reloading 

response differing from the unloading one is to build a time-dependent constitutive law, which can be done by using 

rheological models with serial and parallel combinations of elastic and viscous elements, or by using Besdo and 

Ihlemann [46] model for which the stress-strain response is defined within two asymptotic curves. These asymptotic 

responses evolve according to the material history. Actually, rubber-like materials are viscoelastic materials since 

their stress-strain responses depend on the strain rate. But this topic is beyond the scope of this contribution, since it 

deals with viscohyperelastic modeling of the mechanical behavior of rubbers. 

Albeit models of the first class show stress-strain responses which return to the primary (virgin material) stress-

strain responses without any transition, they are usually preferred to the models of the second class for their 

simplicity. Among them, two different definitions of the evolution of d have been adopted. For the first approach, it 

is assumed that damage occurs during the first loading path, which can write as: 

⎪⎩
⎪⎨⎧ ≥=

−∞∈ otherwisesxMaxd

xwhenxd
d

ts
)])([(

0)(

],[

&
 .        (2) 

This is for instance the case of the models proposed in [21,47-51]. 

For the second approach, damage stays zero when the material is virgin and evolves in the range of deformation yet 

seen by the material. This second definition writes as: 

⎪⎩
⎪⎨⎧ ≥=

−∞∈ otherwisesxMaxxd

xwhen
d

ts
)])([,(

00

],[

&
.        (3) 

Such a definition of the damage variable has been largely adopted [6,52-56]. 

The quantity x, in Eqs. (2) and (3), defines the damage governing variable. It depends on the models, and we report 

some examples in table 2. 
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Models defined by Eqs. (1) and (2) have been scarcely confronted to experimental data. They do not seem to 

perform well when applied to fit a cyclic stress-strain response like the one presented in Fig. 1 [51]. Moreover, they 

show some theoretical issues. First, as sketched in Fig. 4, the level of the theoretical stress for the maximum stretch 

is the same for the first and the second loadings, which ignores the stress-softening at the maximum stretch. Second, 

considering a material uniaxially stretched up to two different strain levels, strains x and y, and calculating the ratio 

of the Cauchy stress corresponding to the two unloading responses vs. the material stretch F, these models assume 

that the ratio remains constant:  

   FFF ∀−−= ,))(1(/))(1())(,(/))(,( ydxdydxd σσ .         (4) 

As reported by Chagnon et al. [51] and Diani et al. [10], actual rubber-like materials do not satisfy this theoretical 

property. We plotted in Fig. 5, values of the ratio wrote in Eq. (4) for x=2 and y=3, corresponding to the unloading 

responses of the 50 phr carbon-black filled SBR presented in Fig. 1. This ratio is obviously not constant.  

Due to the definition of d depending on two variables (x and max(x)), models defined by Eqs. (1) and (3) offer 

more flexibility and usually provide a better fit of the unloading responses. Good representations of experimental 

data are displayed in [52,55,56]. However, Kazakevičiǌtơ-Makovska [56] demonstrated a conflict between the theory 

and the experimental data. On one side, the Clausius-Duhem inequality imposes that: 

00 ≥⇒≥∂
∂− dd

d

W && .           (5) 

Thus, the softening function d must increase monotonously with the deformation extent. On the other side, the 

experimental variations of d, estimated by calculating the ratio of the stress response of a material previously 

stretched (which is the unloading stress response) over the stress response of the virgin material, do not satisfy to this 

property. For instance, we show in Fig. 6, a non monotonous trend for the experimental values of d estimated on our 

50 phr carbon-black filled SBR. Since rubbers do not satisfy to Eq. (5), which is a direct consequence of  Eq. (1), 

other forms of the strain energy densities should be proposed in order to improve the mechanical modeling of rubber-

like material softening, 

Actually, very few other paths have been taken to suggest other forms of phenomenological models. Qi and Boyce 

[58] followed the early concept of Mullins and Tobin [4]. The material is described by a two-phase system 

containing a hard phase and a soft phase. The strain is sustained by the soft-phase, which percentage increases with 

the maximum stretch applied to the material. The main drawback of Qi and Boyce [58] model is a damage criterion 
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controlled by a scalar, which leads to an isotropic model with no residual strain and with a second loading response 

equal to the unloading one (Fig. 4a type of mechanical behaviour).  Nonetheless, this model does not possess the 

theoretical limits reported for the constitutive laws following Eq. (1), and we tested it on the 50 phr carbon-black 

SBR. The 5 model parameters were fitted on the stress-stretch response (Fig. 1), and then the model estimates of the 

data plotted in Fig. 5 and Fig. 6 were calculated. The results are shown in Fig. 7. Although, the model is unable to 

accurately fit the data when presented like in Figs. 5 and 6, the stress-strain response is reproduced well. Actually, 

Figs. 5 and 6 emphasize the discrepancy between the model and the experimental data. When the induced anisotropy 

and the residual strains are neglected, this model seems to perform well. Moreover, although we used it as it is 

defined by its authors, some of the constitutive functions, like the evolution of the volume fraction of the soft domain 

or the strain amplifier function, can be modify to better fit one’s specific materials. 

As we discussed above, some phenomenological models can reasonably fit the mechanical behavior of rubberlike 

materials undergoing some stress-softening as long as the induced anisotropy and the permanent set is neglected. 

Nonetheless, they are limited by their descriptive abilities. An alternative to the phenomenological models may be 

provided by models grounded on physical interpretations of the Mullins’ effect. For this purpose, several authors 

propounded various physical interpretations of the Mullins’ effect; we present them in the next section.  

 

4. Physical interpretations 

In order to understand the pre-strain softening in rubbers, several physical interpretations have been proposed. The 

main physical interpretations and their representation are summarized in Table 3. They involve microstructural 

ruptures as well as microstructural changes, but they are mainly dedicated to filled rubbers and usually do not extend 

to the case of crystallizing pure gums. The various explanations suggested for the Mullin’s effect show that there is 

still no general agreement on the origin of this effect at the microscopic or mesoscopic scale. 

Blanchard and Parkinson [59] explained the Mullins’ effect by bond ruptures. In their modeling, the shear modulus 

is related to the number of crosslinks, which are defined by the chemical crosslinks introduced by the vulcanization 

process added of the rubber-particle linkages. The pre-strain induces the rupture of the weaker bonds (physical 

bonds) at the rubber-particle interface. Further pre-strain breaks the stronger bonds (chemical bonds). Following the 

idea of Blanchard and Parkinson [59], Bueche [60] also interpreted the Mullins’ softening by the rupture of chains 

linking two particles. He assumed an affine displacement between the centers of the particles, which highly 
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constrains the shorter chains in-between particles. When completely extended, these shorter chains break at the 

surface of the particles. Bueche [60] explained the difference between filled and unfilled rubbers by assuming that in 

unfilled rubbers, the junctions arrange so as not to over-stretch the shorter chains. Later, Suzuki et al. [64] used 

electron spin resonance to measure the chain scission in silica filled SBR. They observed a considerable number of 

carbon radicals corresponding to broken polymer chains and concluded that chain scission might contribute to the 

Mullins’ effect, but they also observed chain scission in unfilled SBR, which does not exhibit any Mullins’ softening. 

Since the reversibility of the softening was not studied in the filled SBR, it is difficult to assess if the chain scission is 

associated to either an unrecoverable softening or a recoverable Mullins’ softening.  

According to Houwink [61], the theory of physical bond rupture does not fit with the slow restoration of the 

Mullins’ effect at room temperature. Moreover, if chemical filler-rubber bonds exist and break, this type of rupture 

would be permanent. Therefore, Houwink [61] proposed that during the first extension, molecules slip over the 

surface of the fillers and that new bonds are instantaneously created along the chains. The new bonds would be of the 

same physical nature as the original ones, but would appear at different places along the rubber molecules. This 

would result in a change of the material entropy, which could be restored by a temperature increase. The theory of 

chain slipping is equivalent to the mechanism of breaking and reforming adsorption bonds proposed earlier by 

Alexandrov and Lazurkin [65]. Dannenberg and Brennan [66], after measuring no significant change in the crosslink 

density of stretched networks, confuted the idea that the reversible part of the Mullins’ effect results in bond 

breakage, and adhered to Houwink’s theory [61]. According to them, only the irreversible, permanent, softening can 

be the consequence of the breakage of adsorption bonds. Later, Clément et al. [15] conducted uniaxial tension tests 

and atomic force microscopy observations on silica-filled PDMS. They attributed the stress-softening to bond rupture 

or chain slippage along the filler surface, of chains reaching their limit of extensibility. They observed more Mullins’ 

effect in materials containing a non homogeneous distribution of silica, and explained it by larger local strains in 

regions with high silica concentrations, in relation with the high stiffness of silica.  

Kraus et al. [62] carried out some swelling tests to ascertain the extent of bond rupture in prestretched filled 

rubbers. Like Dannenberg and Brennan [66], they measured a rather small change in the network density compared 

to the relatively large stress-softening observed. They concluded that the amount of bond ruptures at the rubber-

particle interface is moderate and cannot be the main source of the Mullins’ softening. Moreover, they looked at the 

volume expansion that could be caused by the separation of the polymer and the fillers creating vacuoles. While the 
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material is stretched up to 300%, the volume expands by a few percent only, which allowed the authors to reject the 

vacuole formation as the main cause of the pre-strain softening. As a consequence, while admitting that bond 

ruptures happen and vacuoles form in the material during the pre-strain, the authors proposed to attribute the main 

source of the stress-softening to the rupture of carbon black structure, especially for highly reinforced materials. 

Klüppel and Schramm [12] used the same interpretation of the Mullins’ softening. The main contradiction about this 

idea is mentioned in [12]. Such a process would be almost irreversible. Moreover, this theory is difficult to extend to 

the case of unfilled crystallizing rubbers. 

Harwood and Payne [2,38] studied the Mullins’ recovery in pure NR according to the nature of the crosslinks. 

They observed an incomplete recovery of the stress-softening for rubbers with polysulfidic crosslinks. In such a case, 

they attributed the major part of the stress-softening to a rearrangement of the network due to local nonaffine 

deformation resulting from completely extended short chains. Roland [67] confuted this hypothesis by observing 

similar Mullins’ softening in several crosslinked networks with different structures. He proposed that Mullins’ 

softening arose from adjustments of local imbalances in segment density and contraction of primitive path of 

network chain ends. To further study the possible effect of dangling chains on the Mullins’ softening, Santangelo and 

Roland [68] carried out some tests on natural rubber with various chain-end fractions. Their results demonstrated that 

the stress-softening is unrelated to the presence of dangling chains, or to the dispersion in the network strands. The 

contraction of chain ends cannot contribute to the stress-softening.  

Hanson et al. [17] proposed another interpretation of the Mullins’ softening, which accommodates the induced 

anisotropy. Using Hamed and Hatfield [69] configuration of chain entanglements between particles, they assumed 

that the removal of entanglements associated with the strain axis causes the stress-softening. The number of active 

chains is assumed to remain constant; only the entanglement density changes with respect to the extension. The 

recovery is supplied by thermal motions, which could produce new entanglements.  

Looking at the larger picture of the carbon black reinforcement of elastomers, Fukahori [63,70] proposed an 

interface model to explain the mechanics and mechanisms of reinforcement and softening. In this model, the material 

is represented by aggregates of particles, which are regarded as spherical, surrounded by a double-layer structure of 

bound rubber embedded in a crosslinked rubbery matrix. The inner layer consists of polymer in the glassy state (GH, 

glassy hard) with strictly constrained molecular motions, while the outer layer (SH, sticky hard) is made of highly 

constrained polymer compared to the unfilled rubber vulcanizate. When the particles are well dispersed the SH layer 
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is discontinuous. During the first loading, SH layers orient and extend, and finally connect with others SH layers to 

create a super-nertwork structure. When unloading, it is assumed that the bundles of the super-network cannot hold 

the stress and, instead, the matrix of vulcanized rubber supports the stress. In the second loading, as long as the 

stretch remains below the maximum stretch ever applied, the matrix sustains the load. When the stretch exceeds the 

extension previously applied, the super-network structure returns to its previously extended state and support the 

stress. The entropic forces in the super-network structure are believed to be the source of the Mullins’ effect 

recovery. Unfortunately, this model cannot be extended to the pure crystallizing gums, since, as shown by Trabelsi et 

al. [31], the crystallites melt down when the material is unloaded and, therefore, the persistence of a super-network 

structure is unlikely.  

Besdo and Ihlemann [71] wrote a computer program to simulate the deformation of a macromolecular network. 

The network is represented by a number of connections which are linked by strings with specific features. The 

strings behave like springs. They can break or form according to the distance between the connections. Rigid strings 

are introduced to represent chemical crosslinks. Moreover, some randomly picked connections are assumed fixed to 

simulate the presence of crystallites or fillers.  During an applied deformation, the system self-organizes. This self-

organization leads to a hysteretic behavior including Mullins’ softening during cyclic loading conditions. The model 

seems to capture well the main features of the cyclic uniaxial stress-strain response of rubber-like materials. 

Moreover, it shows that the assumption of fixed connections is crucial to observe a Mullins’ effect. Further 

investigation testing the resulting anisotropy of the simulated model material would be interesting.   

An alternative to the phenomenological models is to write the physical interpretations exposed so far into 

equations. This leads to macromolecular models, which parameters are related to physical properties of the materials. 

Although these models are based on physical interpretations of the Mullins’ softening, they do not show particularly 

good predictive abilities, because the values of their fitted parameters are unrealistic. Nonetheless, they are 

sometimes a convenient alternative to introduce the induced anisotropy as will be shown in the next section.  

 

5. Macromolecular models 

  Pursuing the concept of Bueche [60], Govindjee and Simo [72] modeled the softening of virgin materials by the 

rupture of chains linking particles. The strain energy density decomposes into the sum of a contribution of chains 

stretched between two crosslinks and a contribution of chains attached to two particles. The model is based on the 
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isotropic macromolecular three-chain model [73], and the damage parameter depends on the largest eigenvalue of the 

deformation gradient. Although, the model is physically based, its parameters are phenomenological. Moreover, it 

depends on integrals, which makes it more difficult to compute. Finally, this isotropic model is unable to account for 

the residual strain and for the difference between the material unloading and reloading responses. In order to account 

for the induced anisotropy and for the residual strain, Göktepe and Miehe [74] improved the model of Govindjee and 

Simo [72] by employing 21 material directions instead of the three chain directions parallel to the principal directions 

of the deformation gradient. The induced anisotropy results from an account of the damage history by one scalar for 

each material direction.  

Killian et al. [75] proposed a physical model that defines the Mullins’ softening as irreversible chain slippages. 

The model is based on the extension of chains parted into those located on the surface of the particle and those going 

from the filler to the matrix.  The model depends on 12 parameters, which have to be fitted and which are difficult to 

interpret.  

Klüppel and Schramm [12] adhered to Kraus et al. [62] theory of the filler cluster breakdown. As we mentioned 

earlier, the adjunction of fillers is recognized as a local strain amplifier, which is modelled by a strain amplification 

factor. Although this factor has an understandable physical source, it cannot be related quantitatively to a measurable 

physical quantity. In Klüppel and Schramm model [12], this factor decreases linearly with the maximum strain 

applied to the material. The model is isotropic and depends on 8 parameters, we tried it on our experimental data. 

Results are plotted in Fig. 8. The model reproduces fairly well the stress-strain response of the SBR, but not as well 

as the phenomenological model of Qi and Boyce [58].   

Marckmann et al. [76] defined another alteration network model, assuming that the Mullins’ softening is caused by 

the breakage of network crosslinks. The network alteration results into longer but also fewer chains sustaining the 

stress. The damage is actuated when the chains are stretched above the maximum stretch ever applied. In Fig. 9, we 

propose a comparison of the model with our experimental data. The experimental stress-strain response is well 

replicated by the model, but like Qi and Boyce model [58], the model shows some discrepancies with the 

experimental data when these last ones are shown like in Figs. 5 and 6. The model is based on the Arruda and Boyce 

[77] 8-chain macromolecular model, for which all chains are equally stretched and thus equally damaged. Therefore, 

the model is unable to reproduce the induced anisotropy and the resulting residual strain. For this reason, like 

Göktepe and Miehe [74] extended Govindjee and Simo [72] model, Diani et al. [22] adapted the model of 
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Marckmann et al. [76] to a set of material directions. Each material direction softens according to the maximum 

stretch applied in this specific direction. The material is then unevenly damaged, which induces some residual strain 

and anisotropy.  

Let us mention that Meissner and MatƟjka [78] proposed earlier a semi-phenomenological model which is close to 

the model of Marckmann et al. [76]. Based on a macromolecular energy density, they assumed that the finite 

extensibility of the chains increases progressively with the level of deformation. They defined the limit extensibility 

of the chains as a phenomenological function of the maximum stretch undergone by the chains. This idea is 

equivalent to increasing the length of the chains, since the limit of extension of a chain is directly related to its 

length. Finally, Horgan et al. [54] applied the Marckmann et al. [76] softening to the phenomenological hyperelastic 

law of Gent [79].  This leads to a tensorial phenomenological model, which is potentially anisotropic but this aspect 

has not been tested.  

Although based on a physical understanding of the Mullins’ effect, not all the previously cited models depend on 

parameters that can be compared to measurable physical quantities. The models [12,54,72,74,75,78] depend on 

phenomenological parameters. Moreover, when the model parameters are clearly related to physical quantities, the 

fitted values do not often coincide with the physical properties they are related to. For instance, one of the parameters 

of the Marckmann et al. [76] model is the number of monomers per chain. In their paper, the fitted value of this 

parameter increases with the maximum applied stretch from 2 to 5, which is unrealistic for the SBR and the NR they 

considered. For the model estimate plotted in Fig. 9, the same parameter varied from 2 to 6. As a consequence, the 

range of applicability of the macromolecular models is limited to the description of the mechanical behaviour of 

rubberlike materials and further efforts are required to define predictive models, which would estimate the expected 

Mullins’ softening of a material from some of its physical parameters.  

 

6. Conclusions 

We have reviewed the literature on the Mullins’ effect. The Mullins’ effect is a softening that occurs in rubbers 

when first stretched above the ever applied level of deformation. It goes with residual strain and induced anisotropy. 

Contrary to the commonly reported allegation that Mullins’ softening is observed in filled and unfilled rubbers, only 

filled rubbers and pure gums that crystallize show some Mullins’ softening. The phenomenon is reversible, since 

materials heal when exposed to high temperature in vacuo or to solvent swelling. 
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The mechanical behavior of rubbers undergoing Mullins’ softening has been often modeled by adopting a damage 

continuum mechanics approach. The hyperelastic strain energy density is penalized by a damage parameter, which is 

defined by a scalar quantity. This leads to constitutive laws that neglect the residual strain and the induced 

anisotropy. Such a definition of the softening has been challenged by the evaluation of the damage evolution. 

Experimental estimates of the damage evolution do not agree with the thermodynamics laws which impose damage 

to increase monotonously with deformation. Nonetheless, some phenomenological models show a fairly good 

estimate of the cyclic uniaxial tension stress-strain response of rubberlike materials, as long as the induced 

anisotropy and the residual strain are neglected. 

In order to propose physically motivated models, several authors have developed theories to explain the Mullins’ 

effect. These theories include bond ruptures, molecules slipping, filler clusters rupture, chain disentanglement, chain 

retraction, network rearrangement, and composite microstructure formation. One major problem is that most of these 

theories are built for filled rubbers and do not extend to pure gums, which crystallize. For the moment, none has 

gained a general agreement, and more work is necessary to reach a consensus on the actual physical source of the 

Mullins’ effect. Nevertheless, the physical interpretations have inspired authors to propose physically motivated 

mechanical models. Some of these models can fit the rubberlike materials stress-softening but, although their 

parameters are in principle related to physical quantities, when fitted, their values do not correspond to the physical 

parameters they are related to. Therefore, the models have limited predictive abilities and have the same range of 

application as the phenomenological ones.   
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Fig. 1. Stress-strain responses of a 50 phr carbon-black filled SBR submitted to a simple uniaxial tension and to a 

cyclic uniaxial tension with increasing maximum stretch every 5 cycles. 
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Fig. 2. Mullins’ effect at small and moderate deformation observed on a 50 phr carbon-black filled SBR submitted to 

cyclic uniaxial tension. 
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Fig. 3. Recovery of pre-stretch softening by in vacuo heating. Stress-strain responses of 50 phr carbon black filled 

SBR submitted to cyclic uniaxial tension in virgin state, and in pre-stretched state after 3 hours and 17 hours 

exposure to 80 C. 
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Fig. 4. Model representation of the mechanical behavior of rubbers undergoing Mullins’ softening. a) First class of 

models: reloading response coincides with the unloading response, b) Second class of models: the reloading and the 

unloading responses differ. 
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Fig. 5. For the 50 phr carbon-black filled SBR, ratio of the stress unloading response of the material stretched to 100 

% (x=2) over the stress unloading response of the material stretched to 200% (y=3), vs. stretch λ.  

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5

Stretch(λ)

σ
(λ

,d
(λ

,λ
m

))
 /

 σ
(λ

,0
)

 

Fig.6. Experimental estimate of the damage function defined by Eqs. (1) and (3), d(λ,λm=3) vs. stretch λ, for a 50 phr 

carbon-black filled SBR stretched up to 200 % (λm=3), which stress-strain response is plotted in Fig. 1.  
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Fig. 7. Comparison of Qi and Boyce model [58] with experimental data. Left: Fit of the material stress-strain 

response presented in Fig. 1. Right: Model estimate of the data presented in Figs. 5 and 6. 
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Fig. 8. Comparison of Klüppel and Schramm model [12] with experimental data. Left: Fit of the material stress-

strain response presented in Fig. 1. Right: Model estimate of the data presented in Figs. 5 and 6. 
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Fig. 9. Comparison of Marckmann et al. model [76] with experimental data. Left: Fit of the material stress-strain 

response presented in Fig. 1. Right: Model estimate of the data presented in Figs. 5 and 6. 
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Table 1 

Examples of materials showing some Mullins’ softening 

Gum 

nature 

No filler Carbon-black fillers Silica fillers Other 

fillers 

NR [2-4] [2-11] [5] [5] 

SBR  [2,10,12,13]  [13]  

NBR [14]    

EPDM  [10-12]   

PDMS   [15-17]  

Neoprene  [10]   

 

Table 2 

Variable driving the discontinuous damage d for some phenomenological models defined by Eq. (1) 

Variable x Reference 

)(2 0 FW  
[42] 

)(0 FW  [6,21,52,54] 

Largest eigenvalue of F [50] 

13/1 −I  
[51] 

)( 2İtrace  [47] 

3−B.B  where FFB
T=  [55,56] 

21))1(
2

1
( −−Btrace  

[57] 
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Table 3 

Physical explanations of the Mullins’ effect 

Physical source Sketch 

Bond rupture 

 

[59,60]  

 

Molecules slipping 

 

[61] A

B

C

A'

B'

C'

 

Filler rupture 

 

[62] 
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Double-layer 

model 

[63] 

 

 


