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SIMPLICIAL LOCALIZATION OF MONOIDAL STRUCTURES, AND A NON-LINEAR VERSION OF DELIGNE'S CONJECTURE

We show that if (M, ⊗, I) is a monoidal model category then REnd M (I) is a (weak) 2-monoid in sSet. This applies in particular when M is the category of A-bimodules over a simplicial monoid A: the derived endomorphisms of A then form its Hochschild cohomology, which therefore becomes a simplicial 2-monoid.

Introduction

Deligne's conjecture. Deligne's conjecture (stated informally in a letter in 1993) states that the Hochschild cohomology HH(A) of an associative algebra A is a 2algebra -this means that up to homotopy it has two compatible multiplication laws.

Various versions of this conjecture have been proved, cf. e.g. [START_REF] Getzler | Operads, homotopy algebra and iterated integrals for double loop spaces[END_REF], [START_REF] Gerstenhaber | Homotopy G-algebras and moduli space operad[END_REF], [START_REF] Dmitry | Another proof of M. Kontsevich formality theorem for R n[END_REF], [START_REF] Kontsevich | Operads and motives in deformation quantization[END_REF], [START_REF] Voronov | Homotopy Gerstenhaber algebras[END_REF], [START_REF] Mcclure | A solution of Deligne's Hochschild cohomology conjecture[END_REF], [START_REF] Kontsevich | Deformations of algebras over operads and the Deligne conjecture[END_REF], [START_REF] Hu | On Kontsevich's Hochschild cohomology conjecture[END_REF], [START_REF] Berger | Combinatorial operad actions on cochains[END_REF]. All these proofs are technical, and a more conceptual proof would certainly be desirable (we refer for example to [START_REF] Batanin | The Eckmann-Hilton argument, higher operads and En-spaces[END_REF] for a conceptual point of view on Deligne's conjecture based on higher category theory). In the present work we state a non-linear version of this conjecture, and provide an elementary proof of it based on model category theory and simplicial localization techniques à la Dwyer-Kan.

The main result of this work is the following. It can reasonably be considered as a model category version of the well known fact that the endomorphisms of the unit of a monoidal category form a commutative monoid.

Theorem. Let (M, ⊗, I) be a monoidal model category. The simplicial set of derived endomorphisms of the unit, REnd M (I), is a simplicial 2-monoid (cf. 1.2).

The theorem applies in particular when M is the category of A-bimodules over a simplicial monoid A. Then the Hochschild cohomology HH(A) is naturally identified with REnd Bimod A (A), and hence becomes a 2-monoid in sSet. This is what we refer to as the non-linear analogue of Deligne's conjecture.

The proof of our theorem relies heavily on ideas of Segal [START_REF] Segal | Categories and cohomology theories[END_REF] and Dwyer-Kan [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF]. Once the statements have been formulated in terms of Segal categories, the theorem follows from two easy observations and an application of a theorem of Dwyer and Kan.

First it is observed that if a monoidal structure on a category is strictly compatible with a notion of equivalence, the Dwyer-Kan localization is a monoid 1 in the category 1 We warn the reader that the word monoid is used in this work in a much weaker sense than usual, and always refers to an underlying notion of equimorphisms. See 1.2 for details.

1 of simplicial categories (see 1.2), and by taking the endomorphism space of the unit object we get instead a monoid in the category of simplicial monoids, i.e., what we call a simplicial 2-monoid.

Second, in the case of a monoidal model category (in the sense of Hovey [START_REF] Hovey | Model categories[END_REF]), the monoidal operation does not preserve equivalences, but we observe that Hovey's 'unit axiom' expresses exactly that a suitable equivalent full subcategory has the strict compatibility and hence we have reduced to the first case.

The theorem of Dwyer-Kan [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF] describes the derived homomorphisms of a model category (the simplicial function complexes) in terms of its simplicial localization.

It is fair to point out that our viewpoint and proof do not seem to work for the original Deligne conjecture, since currently the theory of Segal categories does not work well in linear contexts (like chain complexes), but only in cartesian monoidal contexts. Also, we did not investigate the relations between 2-monoids and simplicial sets with an action of the little 2-cube operad, and therefore our version of Deligne's conjecture might be considered as a bit far from the original one. However, our original motivation was not to give an additional proof of Deligne's conjecture, but rather to try to understand it from a more conceptual point of view. The new insight provided by our approach may also shed light on related subjects. We also think it is an interesting application of simplicial localization techniques.

Localization of monoidal coloured categories

1.1. Coloured categories and simplicial localization. By a coloured category we mean a pair (C, W ) where C is a category and W is a subclass of arrows, called equimorphisms (or coloured arrows), closed under composition, and comprising all isomorphisms. Key examples are Top, sSet, and Cat with the usual notions of (weak) equivalences as equimorphisms. For the present purposes, an equally important example is sCat, the category of simplicial categories (cf. [START_REF] Dwyer | Simplicial localizations of categories[END_REF]): a simplicial functor F : A → B is coloured if π 0 F : π 0 A → π 0 B is an equivalence of categories and for each pair of objects x, y ∈ A, the map A(x, y) → B(F x, F y) is a weak equivalence of simplicial sets.

The importance of coloured categories is that they can be localised and thus serve as context for expressing weak structures. Let CCat denote the category whose objects are coloured categories and whose arrows are functors that preserve equimorphisms. The classical notion of localization [START_REF] Gabriel | Calculus of fractions and homotopy theory[END_REF] is the functor Ho : CCat → Cat defined by formally inverting all equimorphisms. A much more sophisticated construction is the simplicial localization introduced by Dwyer-Kan [START_REF] Dwyer | Simplicial localizations of categories[END_REF], which can be seen as a derived version of Ho. It is a functor L : CCat → sCat. It reflects much more homotopy theoretic information than the classical localization, and in many respects it seems to be the 'correct' localization, of which the classical localization is just a truncation. (Indeed, the category of connected components of LC is equivalent to Ho(C).)

There are several possible ways of turning CCat into a coloured category itselfthe crucial desired property is that L should be colour-preserving. For simplicity we take this as the definition: a (colour-preserving) functor F : (C, W ) → (C ′ , W ′ ) between coloured categories is called an equifunctor if LF is an equivalence of simplicial categories.

1.2. Monoids and 2-monoids. Let (S, W ) be any of the coloured categories mentioned above -in particular S is monoidal with cartesian product as multiplication and the singleton object * as unit. A monoid in (S, W ) is a functor

X : ∆ op → S satisfying [S0] X 0 = * [S1] The natural maps X k → X 1 × • • • × X 1 are equimorphisms (k ≥ 1).
This last axiom is the Segal condition. It played a crucial rôle in Segal's work [START_REF] Segal | Categories and cohomology theories[END_REF] and was subsequently named after him by Tamsamani [START_REF] Tamsamani | Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles multi-simpliciaux[END_REF]. A monoid homomorphism is a natural transformation of such functors. The category Mon(S) of monoids and monoid homomorphisms is coloured via the forgetful functor to S. A 2-monoid in (S, W ) is by definition a monoid in Mon(S).

In the case S = sSet, a monoid is just a Segal category with a single object, and a 2-monoid is a Segal category with a single 0-cell and a single 1-cell. For the basic theory of Segal categories see [START_REF] Hirschowitz | Descente pour les n-champs[END_REF] or [START_REF] Toën | Segal topoi and stacks over Segal categories[END_REF]. Note that this notion of monoid makes sense only in cartesian monoidal categories (in the ususal sense), since it depends on the universal property of the product.

Monoidal categories as weak monoids.

A monoidal category can be described as a sort of weak monoid object in Cat. The weakness is usually described in terms of 2-cells subject to coherence constraints (e.g., as a bicategory with a single object). Here, we will adopt instead the simplicial viewpoint, and define a monoidal category as a monoid in Cat, in the sense of 1.2, conveniently hiding all questions of coherence from the user interface. This notion is not the same as the usual one defined in terms of coherence, but since monoidal categories in either sense are equivalent to strict monoidal categories, the two notions lead to the same homotopy theory. It is not trivial to make specific translation between the two languages (cf. Leinster [START_REF] Leinster | Homotopy algebras for operads[END_REF]; see also Segal [21]).

Monoidal coloured categories.

A monoidal coloured category is a monoidal structure on a coloured category (C, W ) whose structure functors are colour preserving. Precisely, we define a monoidal coloured category to be a functor ∆ op → CCat satisfying [S0] and [S1].

1.5. Localization of monoidal coloured categories. The way we have set things up it is immediate that the localization of a monoidal coloured category is a monoidal simplicial category. Indeed, it is just the composite

∆ op → CCat L -→ sCat.
Since L preserves the terminal object, preserves products up to equivalence (see [START_REF] Toën | Segal topoi and stacks over Segal categories[END_REF]Cor. 4.1.2]), and preserves equivalences, this composite will again satisfy [S0] and [S1]. (Similar remarks hold of course for the classical localization.) 1.6. Endomorphisms of the unit. In fact the simplicial categories appearing in the image are all pointed -the base point is simply the image of [0]. Thus we can in a canonical way compose with the endomorphism functor sCat * → Mon(sSet), associating to each pointed simplicial category the endomorphism monoid of the base point. This is a strict simplicial monoid, and this functor preserves products, terminal object, and equimorphisms. The whole composite is therefore a monoid object in Mon(sSet), i.e., a simplicial 2-monoid. Hence: Theorem 1. Let ((C, W ), ⊗, I) be a monoidal coloured category. Then LC(I, I) is a simplicial 2-monoid.

Localization of monoidal model categories

Model categories are prominent examples of coloured categories, and their richer structure allows for important variations on the localization theme.

2.1. The pushout product axiom. Localization of monoidal structure in a model category M was considered from the very beginning of model category theory: Quillen [START_REF] Quillen | Homotopical algebra[END_REF] observed that in order to induce a monoidal structure on Ho(M ), it is not necessary for a monoidal structure on M to preserve equivalences on the nose, as in the general coloured case 1.4. It is enough that the unit is cofibrant and that ⊗ satisfies the pushout product axiom: given cofibrations A 1 → A 2 and B 1 → B 2 then the induced map

(A 1 ⊗ B 2 ) A 1 ⊗B 1 (A 2 ⊗ B 1 ) -→ A 2 ⊗ B 2
is again a cofibration, and if furthermore one of the two original maps is a trivial cofibration then the induced map is too. Indeed, in this case it follows easily from Ken Brown's Lemma that the full subcategory of cofibrant objects M c is a monoidal coloured category, and in any case M c and M have the same homotopy type, so one can induce a monoidal structure on Ho(M ) by taking it from Ho(M c ).

2.2. The unit axiom. Later, Hovey [START_REF] Hovey | Model categories[END_REF] remarked that the requirement that the unit be cofibrant can be relaxed: assuming the pushout product axiom holds, it is enough that M satisfies the unit axiom: for a given cofibrant replacement functor Q : M → M c , and for every cofibrant X, the composite QI ⊗ X → I ⊗ X → X is an equivalence (and similarly from the right). In this situation, even though the multiplication law on M c is not unital, the induced multiplication on Ho(M ) ≃ Ho(M c ) does in fact acquire a unit. This justifies the terminology of Hovey [START_REF] Hovey | Model categories[END_REF] which has become standard:

Definition. A monoidal model category is a model category with a monoidal structure satisfying the pushout product axiom and the unit axiom.

The following simple observation seems not to have been made before. Assume the pushout property axiom holds in (M, ⊗, I), and let M denote the full subcategory of all cofibrant objects together with the unit. 2.3. Lemma. The unit axiom holds in (M, ⊗, I) if and only if (M , ⊗, I) is a monoidal coloured category (i.e., the monoidal operation preserves equivalences).

Proof. Simply note that the unit axiom holds for QI ∼ → I if and only if for any cofibrant Z with an equivalence Z ∼ → I the conclusion of the unit axiom holds: for cofibrant X, the map Z ⊗ X → I ⊗ X → X is an equivalence. Now an equivalence in M is either one between cofibrant objects (which case is covered by the pushout product axiom), or of the type Z ∼ → I (the situation just analysed), or I ∼ → Z. But this last type of equivalences is preserved under ⊗, provided the unit axioms holds, as it readily follows by taking a cofibrant replacement of the map and invoking the 2-out-of-3 axiom for a model category.

It is easy to see that the monoidal structure induced on Ho(M ) by Hovey's arguments (resp. on LM ) is merely the one coming from Ho(M ) (resp. from LM ) via the direct construction of 1.5. One observation is due for this to make sense: 2.4. Lemma. The full embedding F : M ֒→ M induces an equivalence LM ∼ → LM of simplicial categories.

Proof. In fact this is true for any full subcategory sandwiched between M c and M . A cofibrant replacement functor

Q : M → M c ֒→ M comes with natural transfor- mations Q • F ⇒ id M and F • Q ⇒ id M ,
whose components are equivalences. By standard arguments (see [START_REF] Hirschowitz | Descente pour les n-champs[END_REF]Lemma 8.1] for all details), this induces an equivalence after simplicial localization.

2.5. Derived endomorphisms. The derived hom set (simplicial function complex) of a pair of objects in a model category is usually defined in terms of fibrant-cofibrant resolutions functors (see e.g. [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF]). We will denote them by RHom M (-, -). For two objects A and B in M , RHom M (A, B) is an object in sSet defined up to equivalence. Of course, RHom M (A, A) is denoted by REnd M (A).

A deep result of Dwyer-Kan [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF] states that this simplicial set is equivalent to the simplicial hom sets of the simplicial localization: Of course, the expression is in the above theorem really means is equivalent to the underlying simplicial set of a 2-monoid in sSet.

RHom M (A, B) ≃ LM (A, B) ≃ LM (A, B).
2.6. Remark. In some cases the trick of just adding the non-cofibrant unit by hand is not appropriate: for example in K-theory one studies Waldhausen categories which are subcategories of the category of cofibrant objects, and one cannot just add the unit. In a similar vein, Spitzweck [START_REF] Spitzweck | Operads, algebras and modules in model categories and motives[END_REF] works with a notion of monoidal model category with pseudo-unit: this pseudo-unit does not act as a unit, but its cofibrant replacements do, up to homotopy. In these cases the important structure is not the 'unit' itself but rather the space of cofibrant replacements. These cases are accounted for by the theory of monoidal categories with weak units, and more generally higher categories with weak identity arrows, where instead of strict identities each object has a contractible space of up-to-homotopy identity arrows. The basics of this theory is worked out elsewhere; see [START_REF] Kock | A notion of weak identity arrows in higher categories[END_REF] for an introduction. In fact our original approach to the theorem was with weak units, but for the present purpose the M trick seems simpler.

3.

A simplicial version of Deligne's conjecture 3.1. Bimodules. Let A be a simplicial monoid (in the strict sense, i.e. a simplicial object in the category of monoids), then A × A op is again a simplicial monoid, and we can consider the category of (A × A op )-modules (i.e., simplicial sets with a (A × A op )-action). (A × A op )-modules will be called A-bimodules, and the category of A-bimodules is denoted by Bimod A . This category carries a natural model structure whose fibrations and equivalences are induced via the forgetful functor Bimod A → sSet (this is standard, see e.g. Schwede-Shipley [START_REF] Schwede | Algebras and modules in monoidal model categories[END_REF]). There is a tensor product defined on Bimod A as the coequalizer

M × A × N ⇉ M × N → M ⊗ A N .
The bimodule A itself is the unit for ⊗ A . A ,⊗ A ,A) is a monoidal model category.

Lemma. (Bimod

Proof. The proof of the lemma relies on a small object argument, using the standard generating sets of cofibrations and trivial cofibrations (described in [START_REF] Schwede | Algebras and modules in monoidal model categories[END_REF]), as explained in [11, 4.3].

Let us recall that the forgetful functor Bimod A → sSet possesses a left adjoint F : sSet → Bimod A , sending a simplicial set X to the free A-bimodule F (X) = A× X ×A. If I 0 (resp. J 0 ) is a set of generating cofibrations (resp. trivial cofibrations) in sSet then I = F (I 0 ) (resp. J = F (J 0 )) is a set of generating cofibrations (resp. trivial cofibrations) in Bimod A .

To prove the pushout product axiom in Bimod A it is enough by [11, 4.3] to notice that for two simplicial sets X and Y one has a natural isomorphism of Abimodule

F (X) ⊗ A F (Y ) ≃ F (X × A × Y ).
The pushout product axiom in Bimod A is then a direct consequence of the wellknown facts that the functor F is left Quillen and that the pushout product axiom holds in sSet.

It remains to prove the unit axiom in Bimod A . For this we use the standard free resolution associated to the forgetful functor Bimod A → sSet (see e.g. Illusie [START_REF] Illusie | Complexe cotangent et déformations[END_REF]). Let us recall that for any A-bimodule M , one constructs a simplicial object P * (M ) in Bimod A , together with an augmentation P 0 (M ) → M such that the natural morphism hocolim n∈∆ op P n (M ) -→ M is an equivalence in Bimod A . Furthermore, each A-bimodule P n (M ) is free and given by P n (M ) : = F (P n-1 (M )), and the various face and degeneracy morphisms are given by using the adjunction between the forgetful functor and F . Since each P n (M ) is a cofibrant object in Bimod A (as it is free), we can use Hirschhorn [START_REF] Hirschhorn | Model categories and their localizations[END_REF]Thm. 19.4.2] to see that hocolim n P n (M ) is a cofibrant model for M . To check the unit axiom it is therefore enough by [11, 4.3] to prove that for any simplicial set X the natural morphism

(hocolim n P n (A)) ⊗ A F (X) -→ A ⊗ A F (X) ≃ F (X) is an equivalence. Clearly this morphism is isomorphic to hocolim n (P n (A) ⊗ A F (X)) -→ A ⊗ A F (X) ≃ F (X).
But, P n (A)⊗ A F (X) ≃ P n (A)× X × A, at least in sSet, and therefore the morphism is in fact isomorphic, as a morphism in sSet, to

hocolim n (P n (A) × X × A) -→ A × X × A = F (X).
The fact that this last morphism is an equivalence follows simply from the fact that P * (A) is a simplicial resolution of A and that homotopy colimits commute, up to equivalences, with products.

Note that the unit object A of the model category Bimod A is not cofibrant. Indeed, cofibrant means roughly 'free', i.e., direct sum of copies of A × A op , but A is rather a quotient.

3.3.

The Hochschild cohomology. The Hochschild cohomology of a simplicial monoid A can naturally be defined as

HH(A) : = REnd Bimod A (A).
The Hochschild cohomology of a simplicial monoid is clearly a homotopy version of its centre. Indeed, if M is a monoid (in the category of sets), the endomorphisms of M as a M -bimodule is naturally isomorphic to the centre of M .

There exist also more explicit descriptions of the Hochschild cohomology of a simplicial monoid A, more in the style of the Hochschild complex of an associative algebra. They can be obtained by taking explicit cofibrant replacement of A as an A-bimodule.

Finally, Theorem 2 applies, yielding the following corollary, which we call a theorem for emphasis: Theorem 3. Let A be a simplicial monoid. Then the Hochschild cohomology HH(A) is a simplicial 2-monoid.

Higher dimensional generalization

Theorem 3 can be generalized in the following way in terms of Segal categories (starting from the observation that a simplicial monoid is a Segal 1-monoid). First of all, the definition of monoids in a coloured category as described in 1.2 can be iterated. Starting by letting 0-SeMon be the coloured category of simplicial sets and equivalences, one defines (for d ≥ 1) the coloured category d-SeMon of Segal d-monoids as d-SeMon : = Mon (d-1)-SeMon , in the sense of 1.2.

Any Segal d-monoid M has an underlying Segal 1-monoid, which up to equivalence can be chosen to be a simplicial monoid in the usual sense (i.e. a simplicial object in the category of monoids), cf. e.g. [START_REF] Hirschowitz | Descente pour les n-champs[END_REF][START_REF] Getzler | Operads, homotopy algebra and iterated integrals for double loop spaces[END_REF]. We define the Hochschild cohomology of a Segal d-monoid to be the Hochschild cohomology of its underlying simplicial monoid, as defined in 3.3. Theorem 3 now has the following generalization. We will not include the proof of this theorem as it uses the theory of Segal categories and the so-called strictification theorem stated in [START_REF] Toën | Segal topoi and stacks over Segal categories[END_REF]. It would be interesting however to have a model category proof of Theorem 4. A possible approach would be through a suitable notion of iterated model category, which roughly would be an iterated monoidal category in the sense of [START_REF] Bȃlteanu | Iterated monoidal categories[END_REF], together with a compatible model category structure. Our Theorem 2 should then generalize as follows: if M is a d-times iterated monoidal model category then REnd M (I) is a (d + 1)-monoid.

(

  This was actually the original motivation for introducing simplicial localization.) In particular, by lemma 2.4 we have REnd M (I) ≃ LM (I, I), and in combination with Theorem 1 we get Theorem 2. Let (M, ⊗, I) be a monoidal model category. Then REnd M (I) is a simplicial 2-monoid.

Theorem 4 .

 4 Let A be a Segal d-monoid. Then the Hochschild cohomology HH(A) is a Segal (d + 1)-monoid.
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