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Laboratoire Emile Picard

UMR CNRS 5580
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Abstract

This is the first of a series of papers devoted to lay the foundations of Algebraic Geometry in homotopical and
higher categorical contexts. In this first part we investigate a notion of higher topos.

For this, we use S-categories (i.e. simplicially enriched categories) as models for certain kind of ∞-categories,
and we develop the notions of S-topologies, S-sites and stacks over them. We prove in particular, that for an
S-category T endowed with an S-topology, there exists a model category of stacks over T , generalizing the model
category structure on simplicial presheaves over a Grothendieck site of A. Joyal and R. Jardine. We also prove
some analogs of the relations between topologies and localizing subcategories of the categories of presheaves, by
proving that there exists a one-to-one correspodence between S-topologies on an S-category T , and certain left
exact Bousfield localizations of the model category of pre-stacks on T . Based on the above results, we study the
notion of model topos introduced by C. Rezk, and we relate it to our model categories of stacks over S-sites.

In the second part of the paper, we present a parallel theory where S-categories, S-topologies and S-sites are
replaced by model categories, model topologies and model sites. We prove that a canonical way to pass from the
theory of stacks over model sites to the theory of stacks over S-sites is provided by the simplicial localization
construction of Dwyer and Kan. As an example of application, we propose a definition of étale K-theory of ring
spectra, extending the étale K-theory of commutative rings.
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1 Introduction

This is the first part of a series of papers devoted to the foundations of Algebraic Geometry in homotopical and
higher categorical contexts, the ultimate goal being a theory of algebraic geometry over monoidal ∞-categories, a
higher categorical generalization of algebraic geometry over monoidal categories (as developed, for example, in [Del1,
Del2, Ha]). We refer the reader to the Introduction of the research announcement [To-Ve 1] and to [To-Ve 2], where
motivations and prospective applications (mainly to the so-called derived moduli spaces of [Ko, Ci-Ka1, Ci-Ka2]) are
provided. These applications, together with the remaining required monoidal part of the theory, will be given in
[To-Ve 5].

In the present work we investigate the required theory of higher sheaves, or equivalently stacks, as well as its
associated notion of higher topoi.

Topologies, sheaves and topoi

As we will proceed by analogy, we will start by recalling some basic constructions and results from topos theory,
in a way that is suited for our generalization. Our references for this overview are [SGA4-I, Sch, M-M]. Throughout
this introduction we will neglect any kind of set theoretical issues, always assuming that categories are small when
required.

Let us start with a category C and let us denote by Pr(C) the category of presheaves of sets on C (i.e. Pr(C) :=
SetC

op

). If C is endowed with a Grothendieck topology τ , one can define the notion of τ -local isomorphisms in Pr(C)
by requiring injectivity and surjectivity only up to a τ -covering. We denote by Στ the subcategory of Pr(C) consisting
of local isomorphisms. One possible way to define the category Shτ (C), of sheaves (of sets) on the Grothendieck site
(C, τ), is by setting

Shτ (C) := Σ−1
τ Pr(C),

where Σ−1
τ Pr(C) denotes the localization of Pr(C) along Στ i.e. the category obtained from Pr(C) by formally

inverting the morphisms in Στ (see [Sch, 19.1, 20.3.6 (a)]). The main basic properties of the category Shτ (C) are
collected in the following well known theorem.

Theorem 1.0.1 Let (C, τ) be a Grothendieck site and Shτ (C) its category of sheaves as defined above.

1. The category Shτ (C) has all limits and colimits.
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2. The natural localization morphism a : Pr(C) −→ Shτ (C) is left exact (i.e. commutes with finite limits) and has
a fully faithful right adjoint j : Shτ (C) −→ Pr(C).

3. The category Shτ (C) is cartesian closed (i.e. has internal Hom-objects).

Of course, the essential image of the functor j : Shτ (C) −→ Pr(C) is the usual subcategory of sheaves, i.e.
of presheaves having descent with respect to τ -coverings, and the localization functor a becomes equivalent to the
associated sheaf functor. The definition of Shτ (C) as Σ−1

τ Pr(C) is therefore a way to define the category of sheaves
without even mentioning what a sheaf is precisely.

In particular, Theorem 1.0.1 shows that the datum of a topology τ on C gives rise to an adjunction

a : Pr(C) −→ Shτ (C) Pr(C)←− Shτ (C) : j,

whith j fully faithful and a left exact. Such an adjoint pair will be called an exact localization of the category Pr(C).
Another fundamental result in sheaf theory is the following

Theorem 1.0.2 The rule sending a Grothendieck topology τ on C to the exact localization

a : Pr(C) −→ Shτ (C) Pr(C)←− Shτ (C) : j,

defines a bijective correspondence between the set of topologies on C and the set of (equivalences classes) of exact
localizations of the category Pr(C). In particular, for a category T the following two conditions are equivalent

• There exists a category C and a Grothendieck topology τ on C such that T is equivalent to Shτ (C).

• There exists a category C and a left exact localization

a : Pr(C) −→ T Pr(C)←− T : j.

A category satisfying one the previous conditions is called a Grothendieck topos.

Finally, a famous theorem by Giraud ([SGA4-I] Exp. IV, Théorème 1.2) provides an internal characterization of
Grothendieck topoi.

Theorem 1.0.3 (Giraud’s Theorem) A category T is a Grothendieck topos if and only if it satisfies the following
conditions.

1. The category T is has a small set of strong generators.

2. The category T has small colimits.

3. Sums are disjoint in T (i.e. xj ×∐
i xi

xk ' ∅ for all j 6= k).

4. Colimits commute with pull backs.

5. Any equivalence relation is effective.

The main results of this work are generalizations to a homotopical setting of the notions of topologies, sites and
sheaves satisfying analogs of theorems 1.0.1, 1.0.2, and 1.0.3. We have chosen to use both the concept of S-categories
(i.e. simplicially enriched categories) and of model categories as our versions of base categories carrying homotopical
data. For both we have developed homotopical notions of topologies, sites and sheaves, and proved analogs of theorems
1.0.1, 1.0.2 and 1.0.3 which we will now describe in more details.

S-topologies, S-sites and stacks

Let T be a base S-category. We consider the category SPr(T ), of T op-diagrams in the category SSet of simplicial
sets. This category can be endowed with an objectwise model structure for which the equivalences are defined
objectwise on T . This model category SPr(T ) will be called the model category of pre-stacks on T , and will be our
higher analog of the category of presheaves of sets. The category SPr(T ) comes with a natural Yoneda embedding
Lh : T −→ SPr(T ), a up to homotopy analog of the usual embedding of a category into the category of presheaves on
it (see Corollary 2.4.3).

We now consider Ho(T ), the category having the same objects as T but for which the sets of morphisms are the
connected components of the simplicial sets of morphisms in T . Though it might be surprising at first sight, we define
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an S-topology on the S-category T to be simply a Grothendieck topology on the category Ho(T ) (see Defintion 3.1.1).
A pair (T, τ), where T is an S-category and τ is an S-topology on T , will be called an S-site. Of course, when T
is a usual category (i.e. all its simplicial sets of morphisms are discrete), an S-topology on T is nothing else than a
Grothendieck topology on T . Therefore, a site is in particular an S-site, and our definitions are actual generalizations
of the usual definitions of topologies and sites.

For the category of presheaves of sets on a Grothendieck site, we have already mentioned that the topology induces
a notion of local isomorphisms. In the case where (T, τ) is an S-site we define a notion of local equivalences in
SPr(T ) (see Definition 3.3.2). When T is a category, and therefore (T, τ) is a site in the usual sense, our notion
of local equivalences specializes to the notion introduced by L. Illusie and later by R. Jardine (see [Ja1]). Our first
main theorem is a generalization of the existence of the local model category structure on the category of simplicial
presheaves on a site (see [Ja1, Bl]).

Theorem 1.0.4 (Thm. 3.4.1, Prop. 3.4.10 and Cor. 3.6.2) Let (T, τ) be an S-site.

1. There exists a model structure on the category SPr(T ), called the local model structure, for which the equivalences
are the local equivalences. This new model category, denoted by SPrτ (T ), is furthermore the left Bousfield
localization of the model category SPr(T ) of pre-stacks along the local equivalences.

2. The identity functor
Id : SPr(T ) −→ SPrτ (T )

commutes with homotopy fibered products.

3. The homotopy category Ho(SPrτ (T )) is cartesian closed, or equivalently, it has internal Hom-objects.

The model category SPrτ (T ) is called the model category of stacks on the S-site (T, τ).

This theorem is our higher analog of Theorem 1.0.1. Indeed, the existence of the local model structure formally
implies the existence of homotopy limits and homotopy colimits in SPrτ (T ), which are homotopical generalizations of
the notion of limits and colimits (see [Hi, §19]). Moreover, SPrτ (T ) being a left Bousfield localization of SPr(T ), the
identity functor Id : SPrτ (T ) −→ SPr(T ) is a right Quillen functor and therefore induces an adjunction on the level
of homotopy categories

a := LId : Ho(SPr(T )) −→ Ho(SPrτ (T )) Ho(SPr(T ))←− Ho(SPrτ (T )) : j := RId.

It is a general property of Bousfield localizations that the functor j is fully faithful, and Theorem 1.0.4 (2) implies that
the functor a is homotopically left exact, i.e. commutes with homotopy fibered products. Finally, part (3) of Theorem
1.0.4 is a homotopical analog of Theorem 1.0.1 (3).

As in the case of sheaves on a site, it remains to characterize the essential image of the inclusion functor j :
Ho(SPrτ (T )) −→ Ho(SPr(T )). One possible homotopy analog of the sheaf condition is the hyperdescent property for
objects in SPr(T ) (see Definition 3.4.8). It is a corollary of our proof of the existence of the local model structure
SPrτ (T ) that the essential image of the inclusion functor j : Ho(SPrτ (T )) −→ Ho(SPr(T )) is exactly the full
subcategory of objects satisfying the hyperdescent condition (see Corollary 3.4.7). We call these objects stacks over
the S-site (T, τ) (Definition 3.4.9). The functor a : Ho(SPr(T )) −→ Ho(SPrτ (T )) can then be identified with the
associated stack functor (Definition 3.4.9).

Finally, we would like to mention that the model categories SPrτ (T ) are not in general Quillen equivalent to model
categories of simplicial presheaves on some site. Therefore, Theorem 1.0.4 is a new result in the sense that neither
its statement nor its proof can be reduced to previously known notions and results in the theory of simplicial presheaves.

Model topoi and S-topoi

Based on the previously described notions of S-sites and stacks, we develop a related theory of topoi. For this, note
that Theorem 1.0.4 implies that an S-topology τ on an S-category T gives rise to the model category SPrτ (T ), which
is a left Bousfield localization of the model category SPr(T ). This Bousfield localization has moreover the property
that the identity functor Id : SPr(T ) −→ SPrτ (T ) preserves homotopy fibered products. We call such a localization
a left exact Bousfield localization of SPr(T ) (see Definition 3.8.1). This notion is a homotopical analog of the notion
of exact localization appearing in topos theory as reviewed before Theorem 1.0.2. The rule τ 7→ SPrτ (T ), defines a
map from the set of S-topologies on a given S-category T to the set of left exact Bousfield localizations of the model
category SPr(T ). The model category SPrτ (T ) also possesses a natural additional property, called t-completeness
which is a new feature of the homotopical context which does not have any counterpart in classical sheaf theory (see
Definition 3.8.2). An object x in some model category M is called n-truncated if for any y ∈ M , the mapping space
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MapM (y, x) is an n-truncated simplicial set; an object in M is truncated if it is n-truncated for some n ≥ 0. A model
category M will then be called t-complete if truncated objects detect isomorphisms in Ho(M): a morphism u : a→ b
in Ho(M) is an isomorphism if and only if, for any truncated object x in Ho(M), the map u∗ : [b, x] −→ [a, x] is
bijective.

The notion of t-completeness is very natural and very often satisfied as most of the equivalences in model categories
are defined using isomorphisms on certain homotopy groups. The t-completeness assumption simplyy states that an
object with trivial homotopy groups is homotopically trivial, which is a very natural and intuitive condition. The
usefulness of this notion of t-completeness is explained by the following theorem, which is our analog of Theorem 1.0.2

Theorem 1.0.5 (Thm. 3.8.3 and Cor. 3.8.5) Let T be an S-category. The correspondence τ 7→ SPrτ (T ) induces a
bijection between S-topologies on T and t-complete left exact Bousfield localizations of SPr(T ). In particular, for a
model category M the following two conditions are equivalent

• There exists an S-category T and an S-topology on T such that M is Quillen equivalent to SPrτ (T ).

• The model category M is t-complete and there exists an S-category T such that M is Quillen equivalent to a left
exact Bousfield localization of SPr(T ).

A model category satisfying one the previous conditions is called a t-complete model topos.

It is important to stress that there are t-complete model topoi which are not Quillen equivalent to any SPrτ (C),
for C a usual category (see Remark 3.8.7 (1)). Therefore, Theorem 1.0.5 also shows the unavoidable relevance of
considering topologies on general S-categories rather than only on usual categories. In other words there is no way
to reduce the theory developed in this paper to the theory of simplicial presheaves over Grothendieck sites as done in
[Ja1, Jo1].

The above notion of model topos was suggested to us by C. Rezk, who defined a more general notion of homotopy
topos (a model topos without the t-completness assumption), which is a model category Quillen equivalent to an
arbitrary left exact Bousfield localization of some SPr(T ) (see Definition 3.8.1). The relevance of Theorem 1.0.5 is
that, on one hand it shows that the notion of S-topology we used is correct exactly because it classifies all (t-complete)
left exact Bousfield localizations, and, on the other hand it provides an answer to a question raised by Rezk on which
notion of topology could be the source of his homotopy topoi.

It is known that there exist model topoi which are not t-complete (see Remark 3.8.7), and therefore our notion of
stacks over S-categories does not model all of Rezk’s homotopy topoi. However, we are strongly convinced that The-
orem 1.0.5 has a more general version, in which the t-completeness assumption is dropped, involving a corresponding
notion of hyper-topology on S-categories as well as the associated notion of hyper-stack (see Remark 3.8.7).

Using the above notion of model topos, we also define the notion of S-topos. An S-topos is by definition an
S-category which is equivalent, as an S-category, to some LM , for M a model topos (see Definition 3.8.8). Here we
have denoted by LM the Dwyer-Kan simplicial localization of M with respect to the set of its weak equivalences (see
the next paragraph for further explanations on the Dwyer-Kan localization).

S-Categories and model categories

Most of the S-categories one encounters in practice come from model categories via the Dwyer-Kan simplicial
localization. The simplicial localization is a refined version of the Gabriel-Zisman localization of categories. It associates
an S-category L(C, S) to any category C equipped with a subcategory S ⊂ C (see §2.2), such that the homotopy
category Ho(L(C, S)) is naturally equivalent to the Gabriel-Zisman localization S−1C, but in general L(C, S) contains
non-trivial higher homotopical informations. The simplicial localization construction is particularly well behaved when
applied to a model category M equipped with its subcategory of weak equivalences W ⊂ M : in fact in this case the
S-category LM := L(M,W ) encodes the so-called homotopy mapping spaces of the model category M (see §2.2). We
will show furthemore that the notions of S-topologies, S-sites and stacks previously described in this introduction,
also have their analogs in the model category context, and that the simplicial localization construction allows one to
pass from the theory over model categories to the theory over S-categories.

For a model1 category M , we consider the category SPr(M) of simplicial presheaves on M , together with its
objectwise model structure. We define the model category M∧ to be the left Bousfield localization of SPr(M) along
the set of equivalences in M (see Definition 4.1.4). In particular, unlike that of SPr(M), the model structure of
M∧ takes into account the fact that M is not just a bare category but has an additional (model) structure. The
model category M∧ is called the model category of pre-stacks on M , and it is important to remark that its homotopy

1Actually, in Section 4, all the constructions are given for the weaker notion of pseudo-model categories because we will need this
increased flexibility in some present and future applications. However, the case of model categories will be enough for this introduction.
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category can be identified with the full subcategory of Ho(SPr(M)) consisting of functors F : Mop −→ SSet sending
equivalences in M to equivalences of simplicial sets. We construct a homotopical Yoneda-like functor

h : M −→M∧,

roughly speaking by sending an object x to the simplicial presheaf y 7→MapM (y, x), where MapM (−,−) denotes the
homotopy mapping space in the model category M (see Definition 4.2.5). An easy but fundamental result states that
the functor h possesses a right derived functor

Rh : Ho(M) −→ Ho(M∧)

which is fully faithful (Theorem 4.2.3). This is a model category version of the Yoneda lemma.
We also define the notion of a model pre-topology on the model category M and show that this induces in a natural

way a Grothendieck topology on the homotopy category Ho(M). A model category endowed with a model pre-topology
will be called a model site (see Definition 4.3.1). For a model site (M, τ), we define a notion of local equivalences in
the category of pre-stacks M∧. The analog of Theorem 1.0.1 for model categories is then the following

Theorem 1.0.6 (Thm. 4.6.1) Let (M, τ) be a model site.

1. There exists a model structure on the category M∧, called the local model structure, for which the equivalences are
the local equivalences. This new model category, denoted by M∼,τ , is furthermore the left Bousfield localization
of the model category of pre-stacks M∧ along the local equivalences.

2. The identity functor
Id : M∧ −→M∼,τ

commutes with homotopy fibred products.

3. The homotopy category Ho(M∼,τ ) is cartesian closed.

The model category M∼,τ is called the model category of stacks on the model site (M, τ).

As for stacks over S-sites, there exists a notion of object satisfying a hyperdescent condition with respect to the
topology τ , and we prove that Ho(M∼,τ ) can be identified with the full subcategory of Ho(M∧) consisting of objects
satisfying hyperdescent (see Definition 4.6.5).

Finally, we compare the two parallel constructions of stacks over S-sites and over model sites.

Theorem 1.0.7 (Thm. 4.7.1) Let (M, τ) be a model site.

1. The simplicial localization LM possesses an induced S-topology τ , and is naturally an S-site.

2. The two corresponding model categories of stacks M∼,τ and SPrτ (LM) are naturally Quillen equivalent. In
particular M∼,τ is a t-complete model topos.

The previous comparison theorem finds his pertinence in the fact that the two approaches, stacks over model sites
and stacks over S-sites, seem to possess their own advantages and disadvantages, depending of the situation and the
goal that one wants to reach. On a computational level the theory of stacks over model sites seems to be better suited
than that of stacks over S-sites. On the other hand, S-categories and S-sites are much more intrinsic than model
categories and model sites, and this has already some consequences, e.g. at the level of functoriality properties of the
categories of stacks. We are convinced that having the full picture, including the two approaches and the comparison
theorem 1.0.7, will be a very friendly setting for the purpose of several future applications.

A Giraud theorem for model topoi

Our version of Theorem 1.0.3 is on the model categories’ side of the theory. The corresponding statement for
S-categories would drive us too far away from the techniques used in this work, and will not be investigated here.

Theorem 1.0.8 (Thm. 4.9.2) A combinatorial model category M is a model topos if and only if it satisfies the
following conditions.

1. Homotopy coproducts are disjoints in M .

2. Homotopy colimits are stable under homotopy pullbacks.
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3. All Segal equivalences relations are homotopy effective.

The condition of being a combinatorial model category is a set theoretic condition on M (very often satisfied in
practice), very similar to the condition of having a small set of generators (see appendix A.2). Conditions (1) and
(2) are straightforward homotopy theoretic analogs of conditions (3) and (4) of Theorem 1.0.3: we essentially replace
pushouths, pullbacks and colimits by homotopy pushouts, homotopy pullbacks and homotopy colimits (see Definition
4.9.1). Finally, condition (3) of Theorem 1.0.8, spelled out in Definition 4.9.1(3) and 4.9.1(4), is a homotopical version
of condition (5) of Giraud’s theorem 1.0.3, where groupoids of equivalence relations are replaced by Segal groupoids
and effectivity has to be understood homotopically.

The most important consequence of Theorem 1.0.8 is the following complete characterization of t-complete model
topoi.

Corollary 1.0.9 (Cor. 4.9.7) For a combinatorial model category M , the following two conditions are equivalent.

1. There exists a small S-site (T, τ), such that M is Quillen equivalent to SPrτ (T ).

2. M is t-complete and satisfies the conditions of Theorem 1.0.8.

A topological application: étale K-theory of commutative S-algebras

As an example of application of our constructions, we give a definition of the étale K-theory of (commutative)
S-algebras, which is to algebraic K-theory of S-algebras (as defined for example in [EKMM, §VI]) what étale K-theory
of rings is to algebraic K-theory of rings. For this, we use the notion of etale morphisms of S-algebras introduced in
[Min] (and in [To-Ve 1]) in order to define an étale pre-topology on the model category of commutative S-algebras
(see Definition 5.2.10). Associated to this model pre-topology, we have the model category of étale stacks (AffS)∼,ét;
the functor K that maps an S-algebra A to its algebraic K-theory space K(A), defines an object K ∈ (AffS)∼,ét. If
Két ∈ (AffS)∼,ét is an étale fibrant model for K, we define the space of étale K-theory of an S-algebra A to be the
simplicial set Két(A) (see Definition 5.3.1). Our general formalism also allows us to compare Két(Hk) with the usual
definition of etale K-theory of a field k (see Corollary 5.3.3).

This definition of étale K-theory of S-algebras gives a possible answer to a question raised by J. Rognes in [Ro].
In the future it might be used as a starting point to develop étale localization techniques in K-theory of S-algebras, as
Thomason’s style étale descent theorem, analog of the Quillen-Lichtenbaum’s conjecture, etc. For further applications
of the general theory developed in this paper to algebraic geometry over commutative ring spectra, we refer the reader
to [To-Ve 5] and [To-Ve 6].

Organization of the paper

The paper is organized in five sections and one appendix. In Section 2 we review the main definitions and results
concerning S-categories. Most of the materials can be found in the original papers [D-K1, D-K2, DHK], with the
possible exception of the last two subsections. In Section 3 we define the notion of S-topologies, S-sites, local equiv-
alences and stacks over S-sites. This section contains the proofs of theorems 1.0.4 and 1.0.5. We prove in particular
the existence of the local model structure as well as internal Hom’s (or equivalently, stacks of morphisms). We also
investigate here the relations between Rezk’s model topoi and S-topologies. Section 4 is devoted to the theory of model
topologies, model sites and stacks over them. As it follows a pattern very similar to the one followed in Section 3 (for
S-categories), some details have been omitted. It also contains comparison results between the theory of stacks over
S-sites and the theory of stacks over model sites, as well as the Giraud’s style theorem for model topoi. In Section 5
we present one application of the theory to the notion of étale K-theory of S-algebras. For this we review briefly the
homotopy theory of S-modules and S-algebras, and we define an étale topology on the model category of commutative
S-algebra, which is an extension of the étale topology on affine schemes. Finally we use our general formalism to define
the étale K-theory space of a commutative S-algebra.

Finally, in Appendix A we collected some definitions and conventions concerning model categories and the use of
universes in this context.

Related works
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There has been several recent works on (higher) stacks theory which use a simplicial and/or a model categorical
approach (see [DHI, Hol, Ja2, S1, H-S, To2, To3]). The present work is strongly based on the same idea that simplicial
presheaves are after all very good models for stacks in ∞-groupoids, and provide a powerful and rich theory. It may
also be considered as a natural continuation of the foundational papers [Jo1, Ja1].

A notion of a topology on a 2-category, as well as a notion of stack over a 2-site has already been considered
by R. Street in [Str], D. Bourn in [Bou] and, more recently, by K. Behrend in his work on DG-schemes [Be]. Using
truncation functors (Section 3.7), a precise comparison with these approaches will appear in the second part of this
work [To-Ve 5] (the reader is also referred to Remark 3.7.9).

We have already mentioned that the notion of model topos used in Section 3.8 essentially goes back to the
unpublished manuscript [Re], though it was originally defined as left exact Bousfield localizations of model category of
simplicial presheaves on some usual category, which is not enough as we have seen. A different, but similar, version of
our Giraud’s theorem 4.9.2 appeared in [Re] as conjecture. The notion of S-topos introduced in Section 3.8 seems new,
though more or less equivalent to the notion of model topos. However, we think that both theories of S-categories
and of model categories reach here their limits, as it seems quite difficult to define a reasonable notion of geometric
morphisms between model topoi or between S-topoi. This problem can be solved by using Segal categories of [H-S, P]
in order to introduce a notion of Segal topos as explained in [To-Ve 3].

A notion relatively closed to the notion of Segal topos can also be found in [S2] where Segal pre-topoi are investigated
and the question of the existence of a theory of Segal topoi is clearly addressed.

Also closely related to our approach to model topoi is the notion of ∞-topos appeared in the recent preprint [Lu]
by J. Lurie. The results of [Lu] are exposed in a rather different context, and are essentially disjoints from ours. For
example the notion of topology is not considered in [Lu] and results of the type 3.8.3, 3.8.5 or 4.9.7 do not appear in
it. Also, the notion of stack used by J. Lurie is slightly different from ours (however the differences are quite subtle).
An exception is Giraud’s theorem which first appeared in [Lu] in the context of ∞-categories, and only later on in the
last version of this work (February 2004) for model categories. These two works have been done independently, though
we must mention that the first version of the present paper has been publicly available since July 2002 (an important
part of it was announced in [To-Ve 1] which appeared on the web during October 2001), whereas [Lu] appeared in
June 2003.

Let us also mention that A. Joyal (see [Jo2]) has developed a theory of quasi-categories, which is expected to be
equivalent to the theory of S-categories and of Segal categories, and for which he has defined a notion of quasi-topos
very similar to the notion of Segal topos in [To-Ve 3]. The two approaches are expected to be equivalent. Also, the
recent work of D-C. Cisinski ([Cis]) seems to be closely related to a notion of hypertopology we discuss in Remark 3.8.7
(3).

Our definition of the étale topology for S-algebras was strongly influenced by the content of [Min, MCM], and the
definition of étale K-theory in the context of S-algebras given in §5 was motivated by the note [Ro].
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Notations and conventions. We will use the word universe in the sense of [SGA4-I, Exp. I, Appendice]. Universes
will be denoted by U ∈ V ∈ W . . . . For any universe U we will assume that N ∈ U. The category of sets (resp.
simplicial sets, resp. . . . ) belonging to a universe U will be denoted by SetU (resp. SSetU, resp. . . . ). The objects
of SetU (resp. SSetU, resp. . . . ) will be called U-sets (resp. U-simplicial sets, resp. . . . ). We will use the expression
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U-small set (resp. U-small simplicial set, resp. . . . ) to mean a set isomorphic to a set in U (resp. a simplicial set
isomorphic to a simplicial set in U, resp. . . . ).

Our references for model categories are [Ho] and [Hi]. By definition, our model categories will always be closed
model categories, will have all small limits and colimits and the functorial factorization property. The word equivalence
will always mean weak equivalence and will refer to a model category structure.

The homotopy category of a model category M is W−1M (see [Ho, Def. 1.2.1]), where W is the subcategory of
equivalences in M , and it will be denoted as Ho(M). The sets of morphisms in Ho(M) will be denoted by [−,−]M ,
or simply by [−,−] when the reference to the model category M is clear. We will say that two objects in a model
category M are equivalent if they are isomorphic in Ho(M). We say that two model categories are Quillen equivalent
if they can be connected by a finite string of Quillen adjunctions each one being a Quillen equivalence.

The homotopy fibered product (see [Hi, §11] or [DHK, Ch. XIV]) of a diagram x // z yoo in a model

category M will be denoted by x×hz y. In the same way, the homotopy push-out of a diagram x zoo // y will

be denoted by x
∐h
z y. When the model category M is a simplicial model category, its simplicial sets of morphisms

will be denoted by Hom(−,−), and their derived functors by RHom (see [Ho, 1.3.2]).
For the notions of U-cofibrantly generated, U-combinatorial and U-cellular model category, we refer to [Ho, Hi, Du2]

or to Appendix B, where the basic definitions and crucial properties are recalled in a way that is suitable for our needs.
As usual, the standard simplicial category will be denoted by ∆. For any simplicial object F ∈ C∆op

in a category
C, we will use the notation Fn := F ([n]). Similarly, for any co-simplicial object F ∈ C∆, we will use the notation
Fn := F ([n]).

For a Grothendieck site (C, τ) in a universe U, we will denote by Pr(C) the category of presheaves of U-sets on
C, Pr(C) := CSet

op
U . The subcategory of sheaves on (C, τ) will be denoted by Shτ (C), or simply by Sh(C) if the

topology τ is unambiguous.

2 Review of S-categories

In this first section we recall some facts concerning S-categories. The main references on the subject are [D-K1, D-K2,
DHK], except for the material covered in the two final subsections for which it does not seem to exist any reference.
The notion of S-category will be of fundamental importance in all this work, as it will replace the notion of usual
category in our higher sheaf theory. In Section 3, we will define what an S-topology on an S-category is, and study
the associated notion of stack.

We start by reviewing the definition of S-category and the Dwyer-Kan simplicial localization technique. We recall
the existence of model categories of diagrams over S-categories, as well as their relations with the model categories of
restricted diagrams. The new materials are presented in the last two subsections: here, we first prove a Yoneda-like
lemma for S-categories and then introduce and study the notion of comma S-category.

2.1 The homotopy theory of S-categories

We refer to [Ke] for the basic notions of enriched category theory. We will be especially interested in the case where
the enrichement takes place in the cartesian closed category SSet of simplicial sets.

Definition 2.1.1 An S-category T is a category enriched in SSet. A morphism of S-categories T → T ′ is a SSet-
enriched functor.

More explicitly, an S-category T consists of the following data.

• A set Ob(T ) (whose elements are called the objects of T ).

• For any pair of objects (x, y) of Ob(T ), a simplicial set HomT (x, y) (called the simplicial set of morphisms from
x to y). A 0-simplex in HomT (x, y) will simply be called a morphism from x to y in T . The 1-simplices in
HomT (x, y) will be called homotopies.

• For any triple of objects (x, y, z) in Ob(T ), a morphism of simplicial sets (called the composition morphism)

HomT (x, y)×HomT (y, z) −→ HomT (x, z).

• For any object x ∈ Ob(T ), a 0-simplex Idx ∈ HomT (x, x)0 (called the identity morphism at x).

These data are required to satisfy the usual associativity and unit axioms.

A morphism between S-categories f : T −→ T ′ consists of the following data.
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• A map of sets Ob(T ) −→ Ob(T ′).

• For any two objects x and y in Ob(T ), a morphism of simplicial sets

HomT (x, y) −→ HomT ′(f(x), f(y)),

compatible with the composition and unit in an abvious way.

Morphisms of S-categories can be composed in the obvious way, thus giving rise to the category of S-categories.

Definition 2.1.2 The category of S-categories belonging to a universe U, will be denoted by S − CatU, or simply by
S − Cat if the universe U is clear from the context or irrelevant.

The natural inclusion functor j : Set −→ SSet, sending a set to the corresponding constant simplicial set, allows
us to construct a natural inclusion j : Cat −→ S−Cat, and therefore to see any category as an S-category. Precisely,
for a category C, j(C) is the S-category with the same objects as T and whose simplicial set of morphism from x to y
is just the constant simplicial set associated to the set HomC(x, y). In the following we will simply write C for j(C).

Any S-category T has an underlying category of 0-simplices T0; its set of objects is the same as that of T while the
set of morphisms from x to y in T0 is the set of 0-simplices of the simplicial set HomT (x, y). The construction T 7→ T0

defines a functor S − Cat −→ Cat which is easily checked to be right adjoint to the inclusion j : Cat −→ S − Cat
mentioned above. This is completely analogous to (and actually, induced by) the adjunction between the constant
simplicial set functor c : Set −→ SSet and the 0-th level set functor (−)0 : SSet −→ Set.

Any S-category T also has a homotopy category, denoted by Ho(T ); its set of objects is the same as that of T ,
and the set of morphisms from x to y in Ho(T ) is given by π0(HomT (x, y)), the set of connected components of the
simplicial set of morphisms from x to y in T . The construction T 7→ Ho(T ) defines a functor S − Cat −→ Cat which
is easily checked to be left adjoint to the inclusion j : Cat −→ S − Cat. Again, this is completely analogous to (and
actually, induced by) the adjunction between the constant simplicial set functor c : Set −→ SSet and the connected
components’ functor π0 : SSet −→ Set.

Summarizing, we have the following two adjunction pairs (always ordered by writing the left adjoint on the left):

j : Cat −→ S − Cat Cat←− S − Cat : (−)0

Ob(T0) := Ob(T ) HomT0
(x, y) := HomT (x, y)0

Ho(−) : S − Cat −→ Cat S − Cat←− Cat : j

Ob(Ho(T )) := Ob(T ) HomHo(T )(x, y) := π0(HomT (x, y)).

For an S-category T , the two associated categories T0 and Ho(T ) are related in the following way. There exist
natural morphisms of S-categories

T0
i // T

p // Ho(T ) ,

which induce a functor q : T0 −→ Ho(T ). Being the underlying category of an S-category, the category T0 has a
natural notion of homotopy between morphisms. This induces an equivalence relation on the set of morphisms of T0,
by declaring two morphisms equivalent if there is a string of homotopies between them. This equivalence relation is
furthermore compatible with composition. The category obtained from T0 by passing to the quotient with respect to
this equivalence relation is precisely Ho(T ).

Definition 2.1.3 Let f : T −→ T ′ be a morphism of S-categories.

1. The morphism f is essentially surjective if the induced functor Ho(f) : Ho(T ) −→ Ho(T ′) is an essentially
surjective functor of categories.

2. The essential image of f is the inverse image by the natural projection T ′ −→ Ho(T ′) of the essential image of
Ho(f) : Ho(T ) −→ Ho(T ′).

3. The morphism f is fully faithful if for any pair of objects x and y in T , the induced morphism fx,y : HomT (x, y) −→
HomT ′(f(x), f(y)) is an equivalence of simplicial sets.

4. The morphism f is an equivalence if it is essentially surjective and fully faithful.

The category obtained from S−Cat by formally inverting the equivalences will be denoted by Ho(S−Cat). The set of
morphisms in Ho(S − Cat) between two objects T and T ′ will simply be denoted by [T, T ′].
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Remark 2.1.4 [DHK, §XII-48] contains the sketch of a proof that the category S − Cat admits a model structure
whose equivalences are exactly the ones defined above. It seems however that this proof is not complete, as the
generating trivial cofibrations of [DHK, 48.5] fail to be equivalences. In his note [May2, Thm. 1.9], P. May informed
us that he knows an alternative proof, but the reader will notice that the notion of fibrations used in [May2] is different
from the one used in [DHK] and does not seem to be correct. We think however that the model structure described in
[DHK] exists2, as we have the feeling that one could simply replace the wrong set of generating trivial cofibrations by
the set of all trivial cofibrations between countable S-categories. The existence of this model structure would of course
simplify some of our constructions, but it does not seem to be really unavoidable, and because of the lack of clear
references we have decided not to use it at all. This will cause a “lower degree” of functoriality in some constructions,
but will be enough for all our purposes.

Since the natural localization functor SSet −→ Ho(SSet) commutes with finite products, any category enriched
in SSet gives rise to a category enriched in Ho(SSet). The Ho(SSet)-enriched category associated to an S-category
T will be denoted by Ho(T ), and has Ho(T ) as underlying category. Furthermore, for any pair of objects x and y
in Ho(T ), one has HomHo(T )(x, y) = HomT (x, y) considered as objects in Ho(SSet). Clearly, T 7→ Ho(T ) defines a

functor from S−Cat to the category Ho(SSet)−Cat of Ho(SSet)-enriched categories, and a morphism of S-categories
is an equivalence if and only if the induced Ho(SSet)-enriched functor is an Ho(SSet)-enriched equivalence. Therefore,
this construction induces a well defined functor

Ho(S − Cat) −→ Ho(Ho(SSet)− Cat)
T 7→ Ho(T ),

where Ho(Ho(SSet)−Cat) is the localization of the category of Ho(SSet)-enriched categories along Ho(SSet)-enriched
equivalences.

The previous construction allows one to define the notions of essentially surjective and fully faithful morphisms
in Ho(S − Cat). Precisely, a morphism f : T −→ T ′ in Ho(S − Cat) will be called essentially surjective (resp. fully
faithful) if the corresponding Ho(SSet)-enriched functor Ho(f) : Ho(T ) −→ Ho(T ′) is essentially surjective (resp. fully
faithful) in the Ho(SSet)-enriched sense.

Finally, for an S-category T and a property P of morphisms in Ho(T ), we will often say that a morphism f in T
satisfies the property P to mean that the image of f in Ho(T ) through the natural projection T −→ Ho(T ), satisfies
the property P. Recall that a morphism f in an S-category T is just an element in the zero simplex set of HomT (x, y)
for some x and y in Ob(T ).

2.2 Simplicial localization

Starting from a category C together with a subcategory S ⊂ C, W. Dwyer and D. Kan have defined in [D-K1] an
S-category L(C, S), which is an enhanced version of the localized category S−1C. It is an S-category with a diagram of
morphisms in S−Cat (viewing, according to our general conventions, any category as an S-category via the embedding
j : Cat→ S − Cat)

C F∗C
poo L // L(C, S)

where F∗C is the so-called standard simplicial free resolution of the category C, and in particular, the projection p is
an equivalence of S-categories. Therefore, there exists a well defined localization morphism in Ho(S − Cat)

L : C −→ L(C, S).

The construction (C, S) 7→ L(C, S) is functorial in the pair (C, S) and it also extends naturally to the case where S is
a sub-S-category of an S-category C (see [D-K1, §6]). Note also that by construction, if C belongs to a universe U so
does L(C, S).

Remark 2.2.1

1. One can also check that the localization morphism L satisfies the following universal property. For each S-
category T , let us denote by [C, T ]S the subset of [C, T ] = HomHo(S−Cat)(C, T ) consisting of morphisms for
which the induced morphism C −→ Ho(T ) sends morphisms of S into isomorphisms in Ho(T ) (the reader will
easily check that this property is well defined). Then the localization morphism L is such that for any S-category
T the induced map

L∗ : [L(C, S), T ] −→ [C, T ]

2Progresses in this direction have been recently made by J. Bergner (private communication).
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is injective and its image is [C, T ]S . This property characterizes the S-category L(C, S) as an object in the
comma category C/Ho(S − Cat). This universal property will not be used in the rest of the paper, but we
believe it makes the meaning of the simplicial localization more transparent.

2. It is important to mention the fact that any S-category T is equivalent to some L(C, S), for a category C with
a subcategory S ⊂ C (this is the delocalization theorem of [D-K2]). Furthermore, it is clear by the construction
given in [D-K1] that, if T is U-small, then so are C, S and L(C, S).

Two fundamental properties of the functor L : (C, S) 7→ L(C, S) are the following

1. The localization morphism L induces a well defined (up to a unique isomorphism) functor

Ho(L) : C ' Ho(F∗C) −→ Ho(L(C, S)),

that identifies Ho(L(C, S)) with the (usual Gabriel-Zisman) localization S−1C.

2. Let M be a simplicial model category, W ⊂M its subcategory of equivalences and let Int(M) be the S-category
of fibrant and cofibrant objects in M together with their simplicial sets of morphisms. The full (not simplicial)
subcategory M cf ⊂M of fibrant and cofibrant objects in M has two natural morphisms in S − Cat

M M cfoo // Int(M),

which induce isomorphisms in Ho(S − Cat)

L(M,W ) ' L(M cf ,W ∩M cf ) ' L(Int(M),W ∩M cf ) ' Int(M).

In the same way, if Mf (resp. M c) is the full subcategory of fibrant (resp. cofibrant) objects in M , the natural
morphisms Mf −→M , M c −→M induce isomorphisms in Ho(S − Cat)

L(Mf ,W ∩Mf ) ' L(M,W ) L(M c,W ∩M c) ' L(M,W ).

Definition 2.2.2 If M is any model category, we set LM := L(M,W ), where W ⊂ M is the subcategory of equiva-
lences in M .

The construction M 7→ LM is functorial, up to equivalences, for Quillen functors between model categories. To see
this, let f : M −→ N be a right Quillen functor. Then, the restriction to the category of fibrant objects f : Mf −→ Nf

preserves equivalences, and therefore induces a morphism of S-categories

Lf : LMf −→ LNf .

Using the natural isomorphisms LMf ' LM and LNf ' LN in Ho(S − Cat), one gets a well defined morphism
Lf : LM −→ LN . This is a morphism in the homotopy category Ho(S − Cat), and one checks immediately that
M 7→ LM is a functor from the category of model categories (belonging to a fixed universe U) with right Quillen
functors, to Ho(S − CatU). The dual construction gives rise to a functor M 7→ LM from the category of model
categories which belongs to a universe U and left Quillen functors to Ho(S − CatU).

The reader will check easily that if
f : M −→ N M ←− N : g

is a Quillen adjunction which is a Quillen equivalence, then the morphisms Lf : LM −→ LN and Lg : LN −→ LM
are isomorphisms inverse to each others in Ho(S − Cat).

2.3 Model categories of diagrams

In this paragraph we discuss the notion of pre-stack over an S-category which is a generalization of the notion of
presheaf of sets on a usual category.
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2.3.1 Diagrams

Let T be any S-category in a universe U, and M a simplicial model category which is U-cofibrantly generated (see
[Hi, 13.2] and Appendix A). Since M is simplicial, we may view it as an S-category, with the same set of objects as
M and whose simplicial sets of morphisms are provided by the simplicial structure. Therefore, we may consider the
category MT , of morphisms of S-categories F : T −→M . To be more precise, an object F : T −→M in MT consists
of the following data

• A map F : Ob(T ) −→ Ob(M).

• For any pair of objects (x, y) ∈ Ob(T )×Ob(T ), a morphism of simplicial sets

Fx,y : HomT (x, y) −→ Hom(F (x), F (y)),

(or equivalently, morphisms Fx,y : HomT (x, y) ⊗ F (x) −→ F (y) in M) satisfying the obvious associativity and
unit axioms.

A morphism from F to G in MT consists of morphisms Hx : F (x) −→ G(x) in M , for all x ∈ Ob(T ), such that
the following diagram commutes in M

HomT (x, y)⊗ F (x)
Fx,y //

Id⊗Hx
��

F (y)

Hy

��
HomT (x, y)⊗G(x)

Gx,y

// G(y).

One defines a model structure on MT , by defining a morphism H to be a fibration (resp. an equivalence) if for all
x ∈ Ob(T ), the induced morphism Hx is a fibration (resp. an equivalence) in M . It is known that these definitions
make MT into a simplicial model category which is again U-cofibrantly generated (see [Hi, 13.10.17] and Appendix
A). This model structure will be called the projective model structure on MT . Equivalences and fibrations in MT will
be called objectwise equivalences and objectwise fibrations.

Let us suppose now that M is an internal model category (i.e. a symmetric monoidal model category for the direct
product, in the sense of [Ho, Ch. 4]). The category MT is then naturally tensored and co-tensored over M . Indeed,
the external product A⊗ F ∈MT of A ∈M and F ∈MT , is simply defined by the formula (A⊗ F )(x) := A× F (x)
for any x ∈ Ob(T ). For any x and y in Ob(T ), the transition morphisms of A⊗ F are defined by

(A⊗ F )x,y := A× Fx,y : HomT (x, y)×A× F (x) ' A×HomT (x, y)× F (x) −→ A× F (y).

In the same way, the exponential FA ∈MT of F by A, is defined by (FA)(x) := F (x)A for any x in Ob(T ).
With these definitions the model category MT becomes a M -model category in the sense of [Ho, Def. 4.2.18]. When

M is the model category of simplicial sets, this implies that SSetT has a natural structure of simplicial model category
where exponential and external products are defined levelwise. In particular, for any x ∈ Ob(T ), the evaluation functor

j∗x : MT −→ M
F 7→ F (x)

commutes with the geometric realization and total space functors of [Hi, §19.5]. As fibrant (resp. cofibrant) objects in
MT are also objectwise fibrant (resp. objectwise cofibrant), this easily implies that j∗x commutes, up to an equivalence,
with homotopy limits and homotopy colimits. One may also directly shows that j∗x is indeed a left and right Quillen
functor. Finally, if M is a proper model category, then so is MT .

Let f : T −→ T ′ be a morphism in S − CatU. It gives rise to an adjunction

f! : MT −→MT ′ MT ←−MT ′ : f∗,

where f∗ is defined by the usual formula f∗(F )(x) := F (f(x)), for any F ∈MT ′ and any x ∈ Ob(T ), and f! is its left
adjoint. The functor f∗ is clearly a right Quillen functor, and therefore (f!, f

∗) is a Quillen adjunction.

The following theorem is proved in [D-K2] when M is the category of simplicial sets; its proof generalizes immedi-
ately to our situation. As above, M is a simplicial U-cofibrantly generated model category.
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Theorem 2.3.1 If f : T → T ′ is an equivalence of S-categories, then (f!, f
∗) is a Quillen equivalence of model

categories.

Definition 2.3.2 Let T ∈ S−CatU be an S-category in U, and M a U-cofibrantly generated simplicial model category.
The model category Pr(T,M) of pre-stacks on T with values in M is defined as

Pr(T,M) := MT op .

We will simply write SPr(T ) for Pr(T, SSetU), and call it the model category of pre-stacks on T .

Theorem 2.3.1 implies that the model category Pr(T,M), for a fixed M , is an invariant, up to Quillen equivalence,
of the isomorphism class of T in Ho(S −CatU). In the same way, if f : T −→ T ′ is a morphism in Ho(S −CatU), one
can represent f by a string of morphisms in S − CatU

T T1
p1oo f1 // T2 T3

p3oo f3 // T4 · · · T2n−1
p2n−1oo f2n−1 // T ′,

where each pi is an equivalence of S-categories. We deduce a diagram of right Quillen functors

Pr(T,M)
p∗1 // Pr(T1,M) Pr(T2,M)

f∗1oo p∗3 // Pr(T3,M) · · ·
p∗2n−1 // Pr(T2n−1,M) Pr(T ′,M),

f∗2n−1oo

such that each p∗i is a right adjoint of a Quillen equivalence. By definition, this diagram gives a Quillen adjunction
between Pr(T,M) and Pr(T ′,M), up to Quillen equivalences, which can also be interpreted as a morphism in the
category of model categories localized along Quillen equivalences. In particular, we obtain a well defined morphism in
Ho(S − Cat)

Rf∗ := (p∗1)−1 ◦ (f∗1 ) ◦ · · · ◦ (p∗2n−1)−1 ◦ (f∗2n−1) : LPr(T ′,M) −→ LPr(T,M).

Using direct images (i.e. functors (−)!) instead of inverse images, one also gets a morphism in the other direction

Lf! := (f2n−1)! ◦ (p2n−1)−1
! ◦ · · · ◦ (f1)! ◦ (p1)−1

! : LPr(T,M) −→ LPr(T ′,M)

(again well defined in Ho(S−Cat)). Passing to the associated Ho(SSet)-enriched categories, one obtains a Ho(SSet)-
enriched adjunction

Lf! : Ho(Pr(T,M)) −→ Ho(Pr(T ′,M)) Ho(Pr(T,M))←− Ho(Pr(T ′,M)) : Rf∗.

The two Ho(SSet)-enriched functors are well defined up to a unique isomorphism. When M is fixed, the construction
above defines a well defined functor from the category Ho(S − Cat) to the homotopy category of Ho(SSet)-enriched
adjunctions.

2.3.2 Restricted diagrams

Let C be a U-small S-category, S ⊂ C a sub-S-category, and M a simplicial model category which is U-cofibrantly
generated. We will assume also that M is a U-combinatorial or U-cellular model category so that the left Bousfield
localization techniques of [Hi, Ch. 4] can be applied to homotopically invert any U-set of morphisms (see Appendix
A).

We consider the model category MC , of simplicial functors from C to M , endowed with its projective model
structure. For any object x ∈ C, the evaluation functor i∗x : MC −→ M , defined by i∗x(F ) := F (x), has a left adjoint
(ix)! : M −→MC which is a left Quillen functor. Let I be a U-set of generating cofibrations in M . For any f : A −→ B
in I and any morphism u : x −→ y in S ⊂ C, one consider the natural morphism in MC

f�u : (iy)!(A)
∐

(ix)!(A)

(ix)!(B) −→ (iy)!(B).

Since M is a U-combinatorial (or U-cellular) model category, then so is MC (see [Du2, Hi] and Appendix A). As
the set of all f�u, for f ∈ I and u a morphism in S, belongs to U, the following definition is well posed.

Definition 2.3.3 The model category MC,S is the left Bousfield localization of MC along the set of all morphisms
f�u, where f ∈ I and u is a morphism in S.

The model category MC,S will be called the model category of restricted diagrams from (C, S) to M .
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Remark 2.3.4 If M = SSetU, we may take I to be the usual set of generating cofibrations

I = {fn : ∂∆[n] ↪→ ∆[n] | n ≥ 0} .

Since as it is easily checked, we have a canonical isomorphism (ix)!(∗ = ∆[0]) ' hx in SSet(C,S)op , for any x ∈ C,
where hx denotes the simplicial diagrams defined by hx(y) := HomT (y, x). Then, for any u : x→ y in S, we have that
the set of morphisms fn�u is exactly the set of augmented horns on the set of morphisms hx → hy (see [Hi, §4.3]).

This implies that SSetC,S is simply the left Bousfield localization of SSetC along the set of morphisms hx → hy for
any x→ y in S.

By the general theory of left Bousfield localization of [Hi], the fibrant objects in the model category MC,S are the
functors F : C −→M satisfying the following two conditions:

1. For any x ∈ C, F (x) is a fibrant object in M (i.e. F is fibrant in MC for the projective model structure).

2. For any morphism u : x −→ y in S, the induced morphism Fx,y(u) : F (x) −→ F (y) is an equivalence in M .

Now, let (F∗C,F∗S) be the canonical free resolution of (C, S) in S −CatU (see [D-K1]). Then, one has a diagram
of pairs of S-categories

(C, S) (F∗C,F∗S)
poo l // (F∗S)−1(F∗C) = L(C, S),

inducing a diagram of right Quillen functors

MC,S
p∗ // MF∗C,F∗S ML(C,S)

l∗oo .

The following result is proved in [D-K2] in the case where M = SSetU, and its proof generalizes easily to our situation.

Theorem 2.3.5 The previously defined right Quillen functors p∗ and l∗ are Quillen equivalences. In particular the
two model categories ML(C,S) and MC,S are Quillen equivalent.

The model categories of restricted diagrams are functorial in the following sense. Let f : C −→ D be a functor
between two U-small S-categories, and let S ⊂ C and T ⊂ D be two sub-S-categories such that f(S) ⊂ T . The
functor f induces the usual adjunction on the categories of diagrams in M

f! : MC,S −→MD,T MC,S ←−MD,T : f∗.

The adjunction (f!, f
∗) is a Quillen adjunction for the objectwise model structures. Furthermore, using the description

of fibrant objects given above, it is clear that f∗ sends fibrant objects in MD,T to fibrant objects in MC,S . By the
general formalism of left Bousfield localizations (see [Hi, §3]), this implies that (f!, f

∗) is also a Quillen adjunction for
the restricted model structures.

Corollary 2.3.6 Let f : (C, S) −→ (D,T ) be as above. If the induced morphism of S-categories Lf : L(C, S) −→
L(D,T ) is an equivalence, then the Quillen adjunction (f!, f

∗) is a Quillen equivalence between MC,S and MD,T .

Proof: This is a consequence of theorems 2.3.1 and 2.3.5. 2

2.4 The Yoneda embedding

In this paragraph we define a Yoneda embedding for S-categories. To be precise it will be only defined as a morphism
in S−Cat for fibrant S-categories, i.e. for S-categories whose simplicial sets of morphisms are all fibrant; for arbitrary
S-categories, the Yoneda embedding will only be defined as a morphism in the homotopy category Ho(S − Cat).

We fix T , a U-small S-category. The category SPr(T ) (see Definition 2.3.2) is naturally enriched over SSet and
the corresponding S-category will be denoted by SPr(T )s. Note that Int(SPr(T )) is a full sub-S-category of SPr(T )s
(recall that Int(SPr(T )) is the S-category of fibrant and cofibrant objects in the simplicial model category SPr(T )).
Recall the following SSet-enriched version of Yoneda lemma (e.g., [G-J, IX Lemma 1.2])

Proposition 2.4.1 Let T be an S-category. For any object x in T , let us denote by hx the object in SPr(T )s defined
by hx(y) := HomT (y, x). Then, for any simplicial functor F : T → SSet, there is a canonical isomorphism of
simplicial sets

F (x) ' HomSPr(T )s
(hx, F )

which is functorial in the pair (F, x).
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Then, for any T ∈ S −CatU, one defines a morphism of S-categories h : T −→ SPr(T )s, by setting for x ∈ Ob(T )

hx : T op −→ SSetU
y 7→ HomT (y, x).

Note that Proposition 2.4.1 defines immediately h at the level of morphisms between simplicial Hom’s and shows
that h is fully-faithful (in a strong sense) as a morphism in S−CatV. Now, the morphism h induces a functor between
the associated homotopy categories that we will still denote by

h : Ho(T ) −→ Ho(SPr(T )s).

Now, we want to compare Ho(SPr(T )s) to Ho(SPr(T )); note that the two Ho(−)’s here have different meanings, as
the first one refers to the homotopy category of an S-category while the second one to the homotopy category of a
model category. By definition, in the set of morphisms between F and G in Ho(SPr(T )s), simplicially homotopic
maps in HomSPr(T )(F,G) = HomSPr(T )s

(F,G)0, give rise to the same element. Then, since simplicially homotopic
maps in HomSPr(T )(F,G) have the same image in Ho(SPr(T )) (see, for example, [Hi, Cor. 10.4.5]), the identity
functor induces a well defined localization morphism

Ho(SPr(T )s) −→ Ho(SPr(T )).

Composing this with the functor h, one deduces a well defined functor (denoted with the same symbol)

h : Ho(T ) −→ Ho(SPr(T )).

The following is a homotopy version of the enriched Yoneda lemma (i.e. a homotopy variation of Proposition 2.4.1)

Proposition 2.4.2 For any object F ∈ SPr(T ) and any x ∈ Ob(T ), there exists an isomorphism in Ho(SSetU)

F (x) ' RHom(hx, F )

which is functorial in the pair (F, x) ∈ Ho(SPr(T ))×Ho(T ). In particular, the functor h : Ho(T ) −→ Ho(SPr(T )) is
fully faithful.

Proof: Using Proposition 2.4.1, since equivalences in SPr(T ) are defined objectwise, by taking a fibrant replacement
of F , we may suppose that F is fibrant. Moreover, again by Proposition 2.4.1, the unique morphism ∗ → hx has the
right lifting property with respect to all trivial fibrations, hence hx is a cofibrant object in SPr(T ). Therefore, for any
fibrant object F ∈ SPr(T ), one has natural isomorphisms in Ho(SSetU)

F (x) ' Hom(hx, F ) ' RHom(hx, F ).

2

The following corollary is a refined version of Proposition 2.4.2.

Corollary 2.4.3 Let T be an S-category in U with fibrant simplicial Hom-sets. Then, the morphism h : T −→
SPr(T )s factors through Int(SPr(T )) and the induced morphism h : T −→ Int(SPr(T )) in S − Cat is fully faithful.

Proof: The assumption on T implies that hx is fibrant and cofibrant in SPr(T ), for any x ∈ Ob(T ) and therefore
that h factors through Int(SPr(T )) ⊂ SPr(T )s. Finally, Proposition 2.4.2 immediately implies that h is fully faithful.
Actually, this is already true for h : T −→ SPr(T )s, by Proposition 2.4.1, and hence this is true for our factorization
since Int(SPr(T )) is a full sub-S-category of SPr(T )s. 2

In case T is an arbitrary S-category in U (possibly with non-fibrant simplicial Hom sets), one can consider a
fibrant replacement j : T −→ RT , defined by applying the Kan Ex∞-construction ([G-J], III.4) to each simplicial set
of morphisms in T , together with its Yoneda embedding

T
j // RT

h // Int(SPr(RT )).

When viewed in Ho(S − CatV), this induces a well defined morphism

T
j // RT

h // Int(SPr(RT )) ' LSPr(RT ).

Finally, composing with the isomorphism Lj! = (j∗)−1 : LSPr(RT ) ' LSPr(T ) of Theorem 2.3.1, one gets a morphism

Lh : T −→ LSPr(T ).

This is a morphism in Ho(S −CatV), called the S-Yoneda embedding of T ; when no confusion is possible, we will
simply call it the Yoneda embedding of T . Now, Corollary 2.4.3 immediately implies that Lh is fully faithful, and is
indeed isomorphic to the morphism h defined above when T has fibrant simplicial Hom-sets.
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Definition 2.4.4 Let T be an S-category. An object in Ho(SPr(T )) is called representable if it belongs to the essential
image (see Definition 2.1.3, 2.) of the functor Lh : T −→ LSPr(T ).

For any T ∈ Ho(S−CatU), the Yoneda embedding Lh : T −→ LSPr(T ) induces an isomorphism in Ho(S−CatV)
between T and the full sub-S-category of LSPr(T ) consisting of representable objects.

Note that the functor induced on the level of homotopy categories

Lh : Ho(T ) −→ Ho(LSPr(T )) = Ho(SPr(T ))

simply sends x ∈ Ob(T ) to the simplicial presheaf hx ∈ Ho(SPr(T )).

2.5 Comma S-categories

In this subsection we will use the Yoneda embedding defined above, in order to define, for an S-category T and an
object x ∈ T , the comma S-category T/x in a meaningful way.

Let T be an S-category in U, and let us consider its (usual, enriched) Yoneda embedding

h : T −→ SPr(T ) := SSetT
op

U .

For any object x ∈ Ob(T ), we consider the comma category SPr(T )/hx, together with its natural induced model
structure (i.e. the one created by the forgetful functor SPr(T )/hx → SPr(T ), see [Ho, p. 5]). For any object
y ∈ Ob(T ), and any morphism u : hy −→ hx, let Fu ∈ SPr(T )/hx be a fibrant replacement of u. Since u is already
a cofibrant object in SPr(T )/hx (as we already observed in the proof of Proposition 2.4.2), the object Fu is then
actually fibrant and cofibrant.

Definition 2.5.1 The comma S-category T/x is defined to be the full sub-S-category of L(SPr(T )/hx) consisting of
all objects Fu, for all u of the form u : hy → hx, y ∈ Ob(T ).

Note that since T belongs to U, so does the S-category T/x, for any object x ∈ Ob(T ).
There exists a natural morphism in Ho(S − CatV)

T/x −→ L(SPr(T )/hx) −→ LSPr(T ),

where the morphism on the right is induced by the forgetful functor SPr(T )/hx −→ SPr(T ). One checks immediately
that the essential image of this morphism is contained in the essential image of the Yoneda embedding Lh : T −→
LSPr(T ). Therefore, there exists a natural factorization in Ho(S − CatV)

T/x

jx !!BBBBBBBB
// LSPr(T )

T

Lh

::vvvvvvvvv

As the inclusion functor Ho(S − CatU) −→ Ho(S − CatV) is fully faithful (see Appendix A), this gives a well defined
morphism in Ho(S − CatU)

jx : T/x −→ T.

It is important to observe that the functor R(jx)! : Ho(SPr(T/x)) −→ Ho(SPr(T )), induced by jx is such that
R(jx)!(∗) ' hx.

Up to a natural equivalence of categories, the homotopy category Ho(T/x) has the following explicit description.
For the sake of simplicity we will assume that T is a fibrant S-category (i.e. all the simplicial sets HomT (x, y) of
morphisms are fibrant). The objects of Ho(T/x) are simply pairs (y, u), consisting of an object y ∈ Ob(T ) and a
0-simplex u ∈ HomT (y, x)0 (i.e. a morphism y → x in the category T0).

Let us consider two objects (y, u) and (z, v), and a pair (f, h), consisting of a 0-simplex f ∈ HomT (y, z) and a

1-simplex h ∈ HomT (y, x)∆1

such that
∂0(h) = u ∂1(h) = v ◦ f.

We may represent diagramatically this situation as:

y
f //

u

��222222222222222 z

v

�����������������

h⇒

x

17



Two such pairs (f, h) and (g, k) are defined to be equivalent if there exist a 1-simplex H ∈ HomT (y, z)∆1

and a

2-simplex G ∈ HomT (y, x)∆2

such that

∂0(H) = f ∂1(H) = g ∂0(G) = h ∂1(G) = k ∂2(G) = v ◦H.

The set of morphisms in Ho(T/x) from (y, u) to (z, v) is then the set of equivalences classes of such pairs (f, h). In
other words, the set of morphisms from (y, u) to (z, v) is the set of connected components of the homotopy fiber of
− ◦ v : HomT (y, z) −→ HomT (y, x) at the point u.

Let (f, h) : (y, u) −→ (z, v) and (g, k) : (z, v) −→ (t, w) be two morphisms in Ho(T/x). The composition of
(f, h) and (g, k) in Ho(T/x) is the class of (g ◦ f, kḣ), where kḣ is the concatenation of the 1-simplices h and k ◦ f in
HomT (y, x). Pictorially, one composes the triangles as

y
f //

u

!!DDDDDDDDDDDDDDDDDDDD z

v

��

g // t

}}zzzzzzzzzzzzzzzzzzzz

h⇒ k ⇒

x.

As the concatenation of 1-simplices is well defined, associative and unital up to homotopy, this gives a well defined,
associative and unital composition of morphisms in Ho(T/x).

Note that there is a natural projection Ho(T/x) −→ Ho(T )/x, which sends an object (y, u) to the object y together
with the image of u in π0(HomT (y, x)) = HomHo(T )(y, x). This functor is not an equivalence but is always full and
essentially surjective. The composition functor Ho(T/x) −→ Ho(T )/x −→ Ho(T ) is isomorphic to the functor induced
by the natural morphism T/x −→ T .

3 Stacks over S-sites

This section is devoted to the definition of the notions of S-topologies, S-sites and stacks over them. We start
by defining S-topologies on S-categories, generalizing the notion of Grothendieck topologies on usual categories and
inducing an obvious notion of S-site. For an S-site T , we define a notion of local equivalence in the model category
of pre-stacks SPr(T ), analogous to the notion of local isomorphism between presheaves on a given Grothendieck
site. The first main result of this section is the existence of a model structure on SPr(T ), the local model structure,
whose equivalences are exactly the local equivalences. This model structure is called the model category of stacks.
To motivate this terminology we prove a criterion characterizing fibrant objects in the model category of stacks as
objects satisfying a hyperdescent property with respect to the given S-topology, which is a homotopy analog of the
usual descent or sheaf condition. We also investigate functoriality properties (i.e. inverse and direct images functors)
of the model categories of stacks, as well as the very useful notion of stack of morphisms (i.e. internal Hom’s).

The second main result of this section is a correspondence between S-topologies on an S-category T and t-complete
left Bousfield localizations of the model category of pre-stacks SPr(T ). Finally, we relate our definition of stacks over
S-sites to the notion of model topos due to C. Rezk, and we conclude from our previous results that almost all model
topoi are equivalent to a model category of stacks over an S-site.

3.1 S-topologies and S-sites

We refer to [SGA4-I, Exp. II] or [M-M] for the definition of a Grothendieck topology and for the associated sheaf theory.

Definition 3.1.1 An S-topology on an S-category T is a Grothendieck topology on the category Ho(T ). An S-site
(T, τ) is the datum of an S-category T together with an S-topology τ on T .

Remark 3.1.2 1. It is important to remark that the notion of an S-topology on an S-category T only depends on
the isomorphism class of T ∈ Ho(S − Cat), since equivalent S-categories have equivalent homotopy categories.

2. From the point of view of higher category theory, S-categories are models for ∞-categories in which all i-arrows
are invertible for all i > 1. Therefore, if one tries to define the notion of a topology on this kind of higher
categories, the stability axiom will imply that all i-morphisms should be automatically coverings for i > 1. The
datum of the topology should therefore only depends on isomorphism classes of 1-morphisms, or, in other words,
on the homotopy category. This might give a more conceptual explanation of Definition 3.1.1. See also Remark
3.8.7 for more on topologies on higher categories.
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Let T ∈ S − CatU be a U-small S-category and SPr(T ) its model category of pre-stacks. Given any pre-stack
F ∈ SPr(T ), one can consider its associated presheaf of connected components

T op −→ SetU
x 7→ π0(F (x)).

The universal property of the homotopy category of T op implies that there exists a unique factorization

T op //

��

SetU

Ho(T )op
πpr0 (F )

::uuuuuuuuu

The construction F 7→ πpr0 (F ), being obviously functorial in F , induces a well defined functor SPr(T ) −→
Set

Ho(T )op

U ; but, since equivalences in SPr(T ) are defined objectwise, this induces a functor

πpr0 (−) : Ho(SPr(T )) −→ Set
Ho(T )op

U .

Definition 3.1.3 Let (T, τ) be a U-small S-site.

1. For any object F ∈ SPr(T ), the sheaf associated to the presheaf πpr0 (F ) is denoted by πτ0 (F ) (or π0(F ) if the
topology τ is clear from the context). It is a sheaf on the site (Ho(T ), τ), and is called the sheaf of connected
components of F .

2. A morphism F −→ G in Ho(SPr(T )) is called a τ -covering (or just a covering if the topology τ is clear from
the context) if the induced morphism πτ0 (F ) −→ πτ0 (G) is an epimorphism of sheaves.

3. A morphism F −→ G in SPr(T ) is called a τ -covering (or just a covering if the topology τ is unambiguous) if
its image by the natural functor SPr(T ) −→ Ho(SPr(T )) is a τ -covering as defined in the previous item.

Clearly, for two objects x and y in T , any morphism x −→ y such that the sieve generated by its image in Ho(T )
is a covering sieve of y, induces a covering hx −→ hy.

More generally, one has the following characterization of coverings as homotopy locally surjective morphisms. This
is the homotopy analog of the notion of epimorphism of stacks (see for example [La-Mo, §1]), where one requires that
any object in the target is locally isomorphic to the image of an object in the source.

Proposition 3.1.4 A morphism f : F −→ G in SPr(T ) is a covering if it has the following homotopy local surjec-
tivity property. For any object x ∈ Ob(T ), and any morphism in Ho(SPr(T )), hx −→ G, there exists a covering sieve
R of x in Ho(T ), such that for any morphism u→ x in R there is a commutative diagram in Ho(SPr(T ))

F // G

hu

OO

// hx.

OO

In other words, f is a covering if and only if any object of G over x lifts locally and up to homotopy to an object of
F .

Proof: First of all, let us observe that both the definition of a covering and the homotopy local surjectivity property
hold true for the given f : F → G if and only if they hold true for RF → RG, where R(−) is a fibrant replacement
functor in SPr(T ). Therefore, we may suppose both F and G fibrant. Now, by [M-M, III.7, Cor. 6], f : F → G
is a covering iff the induced map of presheaves πpr0 (F ) → πpr0 (G) is locally surjective. But, by Yoneda πpr0 (H)(y) '
π0(HomSPr(T )(hy, H)), for any H ∈ SPr(T ) and any object y in T . Since F and G are fibrant, we then have

πpr0 (F )(y) ' HomHo(SPr(T ))(hy, F ) and πpr0 (G)(y) ' HomHo(SPr(T ))(hy, G), for any object y in T . But then, the
local surjectivity of πpr0 (F )→ πpr0 (G) exactly translates to the homotopy local surjectivity property in the proposition
and we conclude. 2

Remark 3.1.5 If the morphism f of Proposition 3.1.4 is an objectwise fibration (i.e. for any x ∈ T , the morphism
F (x) −→ G(x) is a fibration of simplicial sets), then the homotopy local surjectivity property implies the local
surjectivity property. This means that the diagrams

F // G

hu

OO

// hx

OO

of Proposition 3.1.4 can be chosen to be commutative in SPr(T ), and not only in Ho(SPr(T )).
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From this characterization one concludes easily that coverings have the following stability properties.

Corollary 3.1.6 1. A morphism in SPr(T ) which is a composition of coverings is a covering.

2. Let

F ′
f ′ //

��

G′

��
F

f
// G

be a homotopy cartesian diagram in SPr(T ). If f is a covering so is f ′.

3. Let F
u // G

v // H be two morphisms in SPr(T ). If the morphism v ◦ u is a covering then so is v.

4. Let

F ′
f ′ //

��

G′

p

��
F

f
// G

be a homotopy cartesian diagram in SPr(T ). If p and f ′ are coverings then so is f .

Proof: Properties (1) and (3) follows immediately from Proposition 3.1.4, and (4) follows from (3). It remains to
prove (2). Let us f and f ′ be as in (2) and let us consider a diagram

hx

��
F ′

��

f ′ // G′

��
F

f // G.

As f is a covering, there exists a covering sieve R over x ∈ Ho(T ), such that for any u→ x in R, one has a commutative
diagram

hu

��

// hx

��
F

f // G.

By the universal property of homotopy fibered products, the morphisms hu −→ F and hu −→ hx −→ G′ are the two
projections of a (non unique) morphism hu −→ F ′. This gives, for all u→ x, the required liftings

hu

��

// hx

��
F ′

f ′ // G′.

2

3.2 Simplicial objects and hypercovers

Let us now consider sSPr(T ) := SPr(T )∆op

, the category of simplicial objects in SPr(T ). Its objects will be denoted
as

F∗ : ∆op −→ SPr(T )
[m] 7→ Fm.

As the category SPr(T ) has all kind of limits and colimits indexed in U, the category sSPr(T ) has a natural
structure of tensored and co-tensored category over SSetU (see [G-J, Ch. II, Thm. 2.5]). The external product of
F∗ ∈ sSPr(T ) by A ∈ SSetU, denoted by A⊗ F∗, is the simplicial object in SPr(T ) defined by

A⊗ F∗ : ∆op −→ SPr(T )
[n] 7→

∐
An

Fn.
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The exponential (or co-tensor) of F∗ by A, is denoted by F
A
∗ and is determined by the usual adjunction isomorphism

Hom(A⊗ F∗, G∗) ' Hom(F∗, G
A
∗ ).

Notation: We will denote by FA∗ ∈ SPr(T ) the 0-th level of the simplicial object F
A
∗ ∈ sSPr(T ).

Explicitly, the object FA∗ is the end of the functor

∆op ×∆ −→ SPr(T )
([n], [m]) 7→

∏
Am

Fn.

One checks immediately that for any F∗ ∈ sSPr(T ), one has a natural isomorphism F∆n

∗ ' Fn.

We endow the category sSPr(T ) with its Reedy model structure (see [Ho, Thm. 5.2.5]). The equivalences in
sSPr(T ) are the morphisms F∗ −→ G∗ such that, for any n, the induced morphism Fn −→ Gn is an equivalence in
SPr(T ). The fibrations are the morphisms F∗ −→ G∗ such that, for any [n] ∈ ∆, the induced morphism

F∆n

∗ ' Fn −→ F ∂∆n

∗ ×G∂∆n
∗

G∆n

∗

is a fibration in SPr(T ).
Given any simplicial set A ∈ SSetU, the functor

sSPr(T ) −→ SPr(T )
F∗ 7→ FA∗

is a right Quillen functor for the Reedy model structure on sSPr(T ) ([Ho, Prop. 5.4.1]). Its right derived functor will
be denoted by

Ho(sSPr(T )) −→ Ho(SPr(T ))
F∗ 7→ FRA

∗ .

For any object F ∈ SPr(T ), one can consider the constant simplicial object c(F )∗ ∈ sSPr(T ) defined by c(F )n := F
for all n. One the other hand, one can consider

(RF )∆∗ : ∆op −→ SPr(T )
[n] 7→ (RF )∆n

,

where RF is a fibrant model for F in SPr(T ), and (RF )∆n

is the exponential object defined using the simplicial
structure on SPr(T ). The object (RF )∆∗ is a fibrant replacement of c∗(F ) in sSPr(T ). Furthermore, for any object
G ∈ SPr(T ) and A ∈ SSetU, there exists a natural isomorphism in SPr(T )

(G∆∗)A ' GA.

This induces a natural isomorphism in Ho(SPr(T ))

(c(F )∗)
RA ' ((RF )∆∗)A ' (RF )A.

However, we remark that c(F )A∗ is not isomorphic to FA as an object in SPr(T ).

Notation: For any F ∈ SPr(T ) and A ∈ SSetU, we will simply denote by FRA ∈ Ho(SPr(T )) the object
c(F )RA∗ ' (RF )A.

We let ∆≤n be the full subcategory of ∆ consisting of objects [p] with p ≤ n, and denote by snSPr(T ) the category
of functors ∆op

≤n −→ SPr(T ). The natural inclusion in : ∆≤n → ∆ induces a restriction functor

i∗n : sSPr(T ) −→ snSPr(T )

which has a right adjoint (in)∗ : snSPr(T ) −→ sSPr(T ), as well as a left adjoint (in)! : snSPr(T ) −→ sSPr(T ). The
two adjunction morphisms induce isomorphisms i∗n(in)∗ ' Id and i∗n(in)! ' Id: therefore both functors (in)∗ and (in)!

are fully faithful.

Definition 3.2.1 Let F∗ ∈ sSPr(T ) and n ≥ 0.

1. One defines the n-th skeleton and n-th coskeleton of F∗ as

Skn(F∗) := (in)!i
∗
n(F∗) Coskn(F∗) := (in)∗i

∗
n(F∗).
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2. The simplicial object F∗ is called n-bounded if the adjunction morphism F∗ −→ Coskn(F∗) is an isomorphism.

It is important to note that F∗, Coskn(F∗) and Skn(F∗) all coincide in degrees ≤ n

i∗n(F∗) ' i∗n(CosknF∗) ' i∗n(SknF∗).

The adjunctions (i∗n, (in)∗) and ((in)!, i
∗
n) induce a natural adjunction isomorphism

Hom(Skn(F∗), G∗) ' Hom(F∗, Coskn(G∗)),

for any F∗ and G∗ in sSPr(T ) and any n ≥ 0. As a special case, for any A ∈ SSetU, one has an isomorphism in
SPr(T )

FSknA∗ ' (CosknF∗)
A.

As Skn∆n+1 = ∂∆n+1, one gets natural isomorphisms

F ∂∆n+1

∗ ' Coskn(F∗)n+1. (1)

Lemma 3.2.2 The functor Coskn : sSPr(T ) −→ sSPr(T ) is a right Quillen functor for the Reedy model structure
on sSPr(T ).

Proof: By adjunction, for any integer p with p ≤ n, one has

(Coskn(F∗))
∂∆p

' F ∂∆p

∗ (Coskn(F∗))
∆p

' F∆p

∗ ,

while, for p > n+ 1, one has
(Coskn(F∗))

∂∆p

' (Coskn(F∗))
∆p

.

Finally, for p = n+ 1 one has

(Coskn(F∗))
∂∆n+1

' F ∂∆n+1

∗ (Coskn(F∗))
∆n+1

' F ∂∆n+1

∗ .

Using these formulas and the definition of Reedy fibrations in sSPr(T ) one checks immediately that the functor Coskn
preserves fibrations and trivial fibrations. As it is a right adjoint (its left adjoint being Skn), this implies that Coskn
is a right Quillen functor. 2

The previous lemma allows us to consider the right derived version of the coskeleton functor

RCoskn : Ho(sSPr(T )) −→ Ho(sSPr(T )).

It comes with a natural morphism IdHo(sSPr(T )) −→ RCoskn(F ), induced by the adjunction morphism IdsSPr(T ) −→
(in)∗i

∗
n. There exist obvious relative notions of the functors Skn and Coskn whose formulations are left to the reader.

Let us only mention that the relative derived coskeleton of a morphism F∗ −→ G∗ in sSPr(T ) may be defined by the
following homotopy cartesian square in SPr(T )

RCoskn(F∗/G∗) //

��

G∗

��
RCoskn(F∗) // RCoskn(G∗).

The functor RCosk0(−/c(G)∗), relative to a constant diagram c(G)∗, where G ∈ SPr(T ), has the following
interpretation in terms of derived nerves. For any morphism F∗ −→ c∗(G) in sSPr(T ), with c∗(G) the constant
simplicial diagram with value G, we consider the induced morphism f : F0 −→ G in Ho(SPr(T )). Let us represent
this morphism by a fibration in SPr(T ), and let us consider its usual nerve N(f):

N(f) : ∆op −→ SPr(T )
[n] 7→ F0 ×G F0 ×G · · · ×G F0︸ ︷︷ ︸

n times

.

The nerve N(f) is naturally augmented over G, and therefore is an object of sSPr(T )/c∗(G). Then, there is a natural
isomorphism in Ho(sSPr(T )/c∗(G))

RCosk0(F∗/c∗(G)) ' N(f).
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Definition 3.2.3 Let (T, τ) be a U-small S-site.

1. A morphism in sSPr(T )
F∗ −→ G∗

is called a τ -hypercover (or just a hypercover if the topology τ is unambiguous) if for any n, the induced morphism

FR∆n

∗ ' Fn −→ FR∂∆n

∗ ×hGR∂∆n
∗

GR∆n

∗

is a covering in Ho(SPr(T )) (see Definition 3.1.3 (2)).

2. A morphism in Ho(sSPr(T ))
F∗ −→ G∗

is called a τ -hypercover (or just a hypercover if the topology τ is unambiguous) if one of its representatives in
sSPr(T ) is a τ -hypercover.

Using the isomorphisms (1), Definition 3.2.3 may also be stated as follows. A morphism f : F∗ −→ G∗ is a
τ -hypercover if and only if for any n ≥ 0 the induced morphism

Fn −→ RCoskn−1(F∗/G∗)n

is a covering in Ho(SPr(T )).
Note also that in Definition 3.2.3 (2), if one of the representatives of f is a hypercover, then so is any representative.

Being a hypercover is therefore a property of morphisms in Ho(sSPr(T )).

3.3 Local equivalences

Throughout this subsection, we fix a U-small S-site (T, τ).
Let x be an object in T . The topology on Ho(T ) induces a natural topology on the comma category Ho(T )/x. We

define a Grothendieck topology on Ho(T/x) by pulling back the topology of Ho(T )/x through the natural projection
Ho(T/x) −→ Ho(T )/x. By this, we mean that a sieve S over an object y ∈ Ho(T/x), is defined to be a covering sieve
if and only if (the sieve generated by) its image in Ho(T ) is a τ -covering sieve of the object y ∈ Ho(T )/x. The reader
will check easily that this indeed defines a topology on Ho(T/x), and therefore an S-topology on T/x. This topology
will still be denoted by τ .

Definition 3.3.1 The S-site (T/x, τ) will be called the comma S-site of (T, τ) over x.

Let F ∈ SPr(T ), x ∈ Ob(T ) and s ∈ π0(F (x)) be represented by a morphism s : hx −→ F in Ho(SPr(T ))
(see 2.4.2). By pulling-back this morphism along the natural morphism jx : T/x −→ T , one gets a morphism in
Ho(SPr(T/x))

s : j∗x(hx) −→ j∗x(F ).

By definition of the comma category T/x, it is immediate that j∗x(hx) has a natural global point ∗ −→ j∗x(hx) in
Ho(SPr(T/x)). Note that the morphism ∗ −→ j∗x(hx) is also induced by adjunction from the identity of hx ' R(jx)!(∗).
Therefore we obtain a global point of j∗x(F )

s : ∗ −→ j∗x(hx) −→ j∗x(F ).

Definition 3.3.2 Let F ∈ SPr(T ) and x ∈ Ob(T ).

1. For any integer n > 0, the sheaf πn(F, s) is defined as

πn(F, s) := π0(j∗x(F )R∆n

×j∗x(F )R∂∆n ∗).

It is a sheaf on the site (Ho(T/x), τ) called the n-th homotopy sheaf of F pointed at s.

2. A morphism f : F −→ G in SPr(T ) is called a π∗-equivalence or, equivalently, a local equivalence, if the
following two conditions are satisfied:

(a) The induced morphism π0(F ) −→ π0(G) is an isomorphism of sheaves on Ho(T ).

(b) For any object x ∈ Ob(T ), any section s ∈ π0(F (x)) and any integer n > 0, the induced morphism
πn(F, s) −→ πn(G, f(s)) is an isomorphism of sheaves on Ho(T/x).

3. A morphism in Ho(SPr(T )) is a π∗-equivalence if one of its representatives in SPr(T ) is a π∗-equivalence.
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Obviously an equivalence in the model category SPr(T ) is always a π∗-equivalence for any topology τ on T . Indeed,
an equivalence in SPr(T ) induces isomorphisms between the homotopy presheaves which are the homotopy sheaves
for the trivial topology.

Note also that in Definition 3.3.2 (3), if a representative of f is a π∗-equivalence then so is any of its representatives.
Therefore, being a π∗-equivalence is actually a property of morphisms in Ho(SPr(T )).

The following characterization of π∗-equivalences is interesting as it does not involve any base point.

Lemma 3.3.3 A morphism f : F −→ G in SPr(T ) is a π∗-equivalence if and only if for any n ≥ 0 the induced
morphism

FR∆n

−→ FR∂∆n

×hGR∂∆n G
R∆n

is a covering.
In other words, f : F −→ G is a π∗-equivalence if and only if it is a τ -hypercover when considered as a morphism

of constant simplicial objects in SPr(T ).

Proof: Without loss of generality we can assume that f is a fibration between fibrant objects in the model category
SPr(T ). This means that for any x ∈ Ob(T ), the induced morphism f : F (x) −→ G(x) is a fibration between fibrant
simplicial sets. In particular, the morphism

FR∆n

−→ FR∂∆n

×hGR∂∆n G
R∆n

in Ho(SPr(T )) is represented by the morphism in SPr(T )

F∆n

−→ F ∂∆n

×G∂∆n G∆n

.

This morphism is furthermore an objectwise fibration, and therefore the local lifting property of τ -coverings (see Prop.
3.1.4) holds not only in Ho(SPr(T )) but in SPr(T ) (see Remark 3.1.5). Hence, f is a hypercover if and only if it
satisfies the following local lifting property.

For any x ∈ Ho(T ), and any morphism in SPr(T )

hx −→ F ∂∆n

×G∂∆n G∆n

,

there exists a covering sieve R of x and, for any u→ x in R, a commutative diagram in SPr(T )

F∆n // F ∂∆n ×G∂∆n G∆n

hu

OO

// hx.

OO

By adjunction, this is equivalent to the following condition. For any object x ∈ Ob(T ) and any commutative
diagram in SSetU

F (x) // G(x)

∂∆n

OO

// ∆n

OO

there exists a covering sieve R of x in Ho(T ) such that for any morphism u→ x in T , whose image belongs to R, there
is a commutative diagram in SSetU

F (u) // G(u)

F (x) //

OO

G(x)

OO

∂∆n

OO

// ∆n

YY4444444444444444

OO

By definition of the homotopy sheaves, this last condition is easily seen to be equivalent to being a π∗-equivalence (the
details are left to the reader, who might also wish to consult [Ja1, Thm. 1.12]). 2

Corollary 3.3.4 Let f : F −→ G be a morphism in SPr(T ) and G′ −→ G be a covering. Then, if the induced
morphism

f ′ : F ×hG G′ −→ G′

is a π∗-equivalence, then so is f .
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Proof: Apply Lemma 3.3.3 and Proposition 3.1.6 (2). 2

Corollary 3.3.5 Let f : F −→ G be a π∗-equivalence in SPr(T ) and G′ −→ G be an objectwise fibration. Then, the
induced morphism

f ′ : F ×G G′ −→ G′

is a π∗-equivalence.

Proof: This follows from Corollary 3.3.4 since SPr(T ) is a proper model category. 2

Let x be an object in T and f : F → G be a morphism in Ho(SPr(T )). For any morphism s : hx −→ G in
Ho(SPr(T )), let us define Fs ∈ Ho(SPr(T/x)) by the following homotopy cartesian square in SPr(T/x)

j∗x(F )
j∗x(f) // j∗x(G)

Fs

OO

// ∗

OO

where the morphism ∗ −→ j∗x(G) is adjoint to the morphism s : R(jx)!(∗) ' hx −→ G.

Corollary 3.3.6 Let f : F −→ G be a morphism in SPr(T ). With the same notations as above, the morphism f is
a π∗-equivalence if and only for any s : hx −→ G in Ho(SPr(T )), the induced morphism Fs −→ ∗ is a π∗-equivalence
in Ho(SPr(T/x)).

Proof: By Lemma 3.3.3 it is enough to show that the morphism f is a covering if and only if all the Fs −→ ∗ are
coverings in Ho(SPr(T/x)). The only if part follows from Proposition 3.1.6 (2), so it is enough to show that if all the
Fs −→ ∗ are coverings then f is a covering.

Given s : hx −→ G in Ho(SPr(T )), let us prove that it lifts locally to F . By adjunction, s corresponds to a
morphism ∗ −→ j∗x(G). As the corresponding morphism Fs −→ ∗ is a covering, there exists a covering sieve R of ∗ in
Ho(T/x) and, for each u→ ∗ in R, a commutative diagram in Ho(SPr(T/x))

j∗x(F ) // j∗x(G)

hu //

OO

*

OO

By adjunction, this commutative diagram induces a commutative diagram in Ho(SPr(T ))

F // G

R(jx)!(hu) //

OO

hx

OO

But R(jx)!(hu) ' hjx(u), and by definition of the induced topology on Ho(T/x), the morphisms in (jx)(R) form a
covering sieve of x. Therefore, the commutative diagram above shows that the morphism s lifts locally to F . 2

We end this paragraph by describing the behaviour of π∗-equivalences under homotopy push-outs.

Proposition 3.3.7 Let f : F −→ G be a π∗-equivalence in SPr(T ) and F −→ F ′ be an objectwise cofibration (i.e. a
monomorphism). Then, the induced morphism

f ′ : F ′ −→ F ′
∐
F

G

is a π∗-equivalence.

Proof: It is essentially the same proof as that of [Ja1, Prop. 2.2]. 2
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3.4 The local model structure

Throughout this subsection, we fix a U-small S-site (T, τ).
The main purpose of this paragraph is to prove the following theorem which is a generalization of the existence of

the local projective model structure on the category of simplicial presheaves on a Grothendieck site (see for example
[Bl] and [H-S, §5]). The proof we present here is based on some arguments found in [S1], [H-S] and [DHI] (as well as
on some hints from V. Hinich) and uses the Bousfield localization techniques of [Hi], but does not assume the results
of [Bl, Ja1].

Theorem 3.4.1 Let (T, τ) be an S-site. There exists a closed model structure on SPr(T ), called the local projective
model structure, for which the equivalences are the π∗-equivalences and the cofibrations are the cofibrations for the
projective model structure on SPr(T ). Furthermore the local projective model structure is U-cofibrantly generated and
proper. The category SPr(T ) together with its local projective model structure will be denoted by SPrτ (T ).

Proof: We are going to apply the existence theorem for left Bousfield localizations [Hi, Thm. 4.1.1] to the ob-
jectwise model structure SPr(T ) along a certain U-small set H of morphisms. The main point will be to check that
equivalences in this localized model structure are exactly π∗-equivalences.

Definition of the set H

As the S-category T is U-small, the set

E(T ) :=
∐
n∈N

∐
(x,y)∈Ob(T )2

HomT (x, y)n,

of all simplices in all simplicial set of morphisms of T is also U-small. We denote by α a U-small cardinal bigger than
the cardinal of E(T ) and than ℵ0. Finally, we let β be a U-small cardinal with β > 2α.

The size of a simplicial presheaf F ∈ SPr(T ) is by definition the cardinality of the set∐
n∈N

∐
x∈Ob(T )

Fn(x).

We will denote it by Card(F ).
For an object x ∈ Ob(T ) we consider a fibrant replacement hx ↪→ R(hx) as well as the simplicial object it defines

R(hx)∆∗ ∈ sSPr(T ). Note that as hx is a cofibrant object, so is R(hx). We define a subset Hβ(x) of objects in
sSPr(T )/R(hx)∆∗ in the following way. We consider the following two conditions.

1. The morphism F∗ −→ R(hx)∆∗ ∈ Ho(sSPr(T )) is a hypercover.

2. For all n ≥ 0, one has Card(Fn) < β. Furthermore, for each n ≥ 0, Fn is isomorphic in Ho(SPr(T )) to a
coproduct of representable objects

Fn '
∐
u∈In

hu.

We define Hβ(x) to be a set of representatives in sSPr(T )/R(hx)∆∗ , for the isomorphism classes of objects
F∗ ∈ sSPr(T )/R(hx)∆∗ which satisfy conditions (1) and (2) above. Note that condition (2) insures that Hβ(x) is a
U-small set for any x ∈ Ob(T ).

Now, for any x ∈ Ob(T ), any F∗ ∈ Hβ(x) we consider its geometric realization |F∗| in SPr(T ), together with its
natural adjunction morphism |F∗| −→ R(hx) (see [Hi, 19.5.1]). Note that |F∗| is naturally equivalent to the homotopy
colimit of the diagram [n] 7→ Fn. Indeed, for any y ∈ Ob(T ), |F∗|(y) is naturally isomorphic to the diagonal of the
the bi-simplicial set F∗(y) (see [Hi, 16.10.6]). We define the set H to be the union of all the Hβ(x)’s when x varies in
Ob(T ). In other words, H consists of all morphisms

|F∗| −→ R(hx),

for all x ∈ Ob(T ) and all F∗ ∈ Hβ(x). Clearly, the set H is U-small, so one can apply Theorem A.2.2 or A.2.4 to
the objectwise model category SPr(T ) and the set of morphisms H. We let LHSPr(T ) be the left Bousfield local-
ization of SPr(T ) along the set of morphisms H. We are going to show that equivalences in LHSPr(T ) are exactly
π∗-equivalences. This will clearly implies the existence of the local model structure of 3.4.1.

The morphisms in H are π∗-equivalences

26



The main point in the proof is the following lemma.

Lemma 3.4.2 For any object x ∈ Ob(T ) and any hypercover F∗ −→ R(hx)∆∗ , the natural morphism in Ho(SPr(T ))

hocolim[n]∈∆n(Fn) −→ R(hx) ' hx

is a π∗-equivalence.

Proof: By applying the base change functor j∗x : Ho(SPr(T )) −→ Ho(SPr(T/x)) one gets a natural morphism
j∗x(hocolim[n]∈∆n(Fn)) −→ j∗x(hx). By definition of the homotopy sheaves one sees that it is enough to show that the
homotopy fiber of this morphism at the natural point ∗ −→ j∗xhx is π∗-contractible (see Corollary 3.3.6). In other
words, one can always assume that x is a final object in T , or in other words that hx ' ∗ (this reduction is not necessary
but simplifies notations). We can also assume that F∗ is fibrant as an object in sSPr(T ), so Coskn(F∗) ' RCoskn(F∗).
We will simply denote by |G∗| the homotopy colimit of a simplicial diagram G∗ in SPr(T ).

Step 1: Let us first assume that F∗ is a 0-bounded hypercover. Recall that this means that for any n > 0 one has
Fn ' FR∂∆n

∗ , or in other words that F∗ is the nerve of the covering F0 −→ ∗. Therefore, we can suppose that F0 is
fibrant in SPr(T ), and that Fn = Fn0 (the face and degeneracy morphisms being induced by the various projections
and diagonals). As F0 −→ ∗ is a covering, one can find a covering sieve R of ∗ such that for any object u → ∗ in S,
there exists a commutative diagram

F0
// *

hu

OO ??��������

Furthermore, as π∗-equivalences are local for the topology τ (see Corollary 3.3.4), it is enough to prove that for any
such u, the nerve of the morphism

F0 × hu −→ hu

is a π∗-equivalence. We can therefore assume that the morphism F0 −→ ∗ admits a section. But then, for any object
x ∈ Ob(T ), |F∗|(x) ∈ Ho(SSetU) is the geometric realization of the nerve of a morphism of simplicial sets which has a
section, and therefore is contractible. This proves Lemma 3.4.2 for 0-bounded hypercovers.

Step 2: Let us now assume that F∗ is (n + 1)-bounded for some integer n > 0 (see Definition 3.2.1), and let us
consider the morphism

F∗ −→ CosknF∗.

For any integer p, and any simplicial set K ∈ SSetU, there is a co-cartesian square of simplicial sets

SkpK // Skp+1K

∐
K∂∆p+1 ∂∆p+1 //

OO

∐
Kp+1

∆p+1

OO

This induces a cartesian square in SPr(T )

F
Skp+1K
∗

//

��

F
SkpK
∗

��∏
Kp+1

Fp+1 // ∏
K∂∆p+1 F ∂∆p+1

∗ .

As F∗ is fibrant for the Reedy structure and a hypercover, each bottom horizontal morphism is a fibration which is

again a covering. This shows by induction and by Proposition 3.1.6 (1), that F
Skp+iK
∗ −→ F

SkpK
∗ is a covering and a

fibration for any i > 0. But, since we have
(CosknF∗)

K ' FSknK∗ ,

we easily conclude that for any K ∈ SSetU such that K = SkpK for some p, the natural morphism

FK∗ −→ (CosknF∗)
K
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is again a fibration and a covering. In particular, taking K = ∆p, one finds that the natural morphism

Fp −→ (CosknF∗)p.

is a fibration and a covering.
Let U∗,∗ be the bi-simplicial object such that Up,∗ is the nerve of the morphism Fp −→ (CosknF∗)p. It fits into a

commutative diagram of bi-simplicial objects

F∗ //

��

CosknF∗

U∗,∗,

99ttttttttt

where F∗ and CosknF∗ are considered as constant in the second spot. Furthermore, for any p, Up,∗ −→ (CosknF∗)p
is a 0-truncated hypercover. Therefore, by Step 1, we deduce that

|diag(U∗,∗)| ' hocolimphocolimq(Up,q) −→ |CosknF∗|

is a π∗-equivalence.
Now, let U∗ := diag(U∗,∗) be the diagonal of U∗,∗. It fits into a commutative diagram

F∗
π //

f

��

CosknF∗

U∗.

φ

::uuuuuuuuu

We are going to construct a morphism U∗ −→ F∗ that will be a retract of f compatible with the two projections π
and φ (i.e. construct a retraction of φ on π).

The above diagram consists clearly of isomorphisms in degrees p ≤ n, showing that π is a retract of φ is degrees
p ≤ n. As F∗ is (n + 1)-bounded, to extend this retraction to the whole φ, it is enough to define a morphism
Un+1 −→ Fn+1 which is equalized by all the face morphisms Fn+1 −→ Fn. But, by definition

Un+1 = F∆n+1

∗ ×F∂∆n+1
∗

F∆n+1

∗ × · · · ×F∂∆n+1
∗

F∆n+1

∗︸ ︷︷ ︸
(n+1) times

,

and so any of the natural projections Un+1 −→ Fn+1 to one of these factors will produce the required extension.
In conclusion, the morphism F∗ −→ CosknF∗ is a retract of U∗ −→ CosknF∗, which itself induces a π∗-

equivalence on the homotopy colimits. As π∗-equivalences are stable by retracts, this shows that the induced morphism
|F∗| −→ |CosknF∗| is also a π∗-equivalence. Therefore, by induction on n and Step 1, this implies that |F∗| −→ ∗ is a
π∗-equivalence.

Step 3: Finally, for a general hypercover F∗, the i-th homotopy presheaf of |F∗| only depends on the n-th coskeleton
of F∗ for i < n (as the (n− 1)-skeleton of |F∗| and |CosknF∗| coincide). In particular, the i-th homotopy sheaf of |F∗|
only depends on RCoskn(F∗) for i < n. Therefore one can always suppose that F∗ = CosknF∗ for some integer n and
apply Step 2.

Lemma 3.4.2 is proved. 2

Now, let f : F −→ G be any H-local equivalence (i.e. an equivalence in LHSPr(T )), and let us prove that it is a
π∗-equivalence. By definition of H-local equivalences, the induced morphism on the H-local models

LHf : LHF −→ LHG

is an objectwise equivalence, and in particular a π∗-equivalence. By considering the commutative diagram

F
f //

��

G

��
LHF

LHf
// LHG,

one sees that it is enough to show that the localization morphisms F −→ LHF and G −→ LHG are π∗-equivalences.
But the functor LH can be defined via the small object argument applied to the set of augmented horns on H, Λ(H)
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(see [Hi, §4.3]). In the present situation, the morphisms in Λ(H) are either trivial cofibrations in SPr(T ) or projective
cofibrations which are isomorphic in Ho(SPr(T )) to

∆n ⊗ |F∗|
h∐

∂∆n⊗|F∗|

∂∆n ⊗R(hx) −→ ∆n ⊗R(hx).

By Proposition 3.3.7 and Lemma 3.4.2, these morphisms are π∗-equivalences, and therefore all morphisms in Λ(H)
are projective cofibrations and π∗-equivalences. As π∗-equivalences are also stable by filtered colimits, another appli-
cation of Proposition 3.3.7 shows that relative cell complexes on Λ(H) are again π∗-equivalences. This shows that
the localization morphisms F −→ LHF are always π∗-equivalences, and finish the proof that H-local equivalences are
π∗-equivalences.

π∗-Equivalences are H-local equivalences

To conclude the proof of Theorem 3.4.1, we are left to show that π∗-equivalences are H-local equivalences.
Recall that we denoted by α a U-small cardinal bigger than ℵ0 and than the cardinality of the set E(T ) of all

simplicies in all simplicial set of morphisms in T . Recall also that β is a U-small cardinal with β > 2α.

Lemma 3.4.3 Let f : F −→ G be a morphism in SPr(T ) which is a π∗-equivalence and an objectwise fibration
between fibrant objects. Then, for any object x ∈ Ob(T ) and any morphism R(hx) −→ G, there exists an F∗ ∈ Hβ(x)
and a commutative diagram in SPr(T )

F // G

|F∗| //

OO

R(hx).

OO

Proof: By adjunction, it is equivalent to find a commutative diagram in sSPr(T )

F∆∗ // G∆∗

F∗ //

OO

R(hx)∆∗ ,

OO

with F∗ ∈ Hβ(x). We will define F∗ inductively. Let us suppose we have constructed F (n)∗ ∈ sSPr(T )/R(hx)∆∗ ,
with a commutative diagram

F∆∗ // G∆∗

F (n)∗ pn
//

OO

R(hx)∆∗ ,

OO

such that SknF (n)∗ = F (n)∗, and pn is a Reedy fibration and a hypercover in degrees i ≤ n. By the latter condition
we mean that

F (n)i −→ F (n)∂∆i

×R(hx)∂∆i R(hx)∆i

is an objectwise fibration and a covering for any i ≤ n (we do not require pn to be a Reedy fibration). We also
assume that Card(F (n)m) < β for any m. We need the following (technical) factorization result with control on the
cardinality.

Lemma 3.4.4 Let f : F −→ G be a morphism in SPr(T ) such that Card(F ) and Card(G) are both stricly smaller
than β. Then, there exists a factorization in SPr(T )

F
i // RF

p // G ,

with i a trivial cofibration, p a fibration, and Card(RF ) < β.

Proof: We use the standard small object argument in order to produce such a factorization (see [Ho, §2.1.2]). The
trivial cofibrations in SPr(T ) are generated by the set of morphisms

Λn,k ⊗ hx −→ ∆n ⊗ hx,
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for all x ∈ Ob(T ) and all n ∈ N, 0 ≤ k ≤ n. This set is clearly of cardinality smaller than ℵ0.α, and therefore is stricly
smaller than β. Furthermore, for any of these generating trivial cofibrations, the set of all commutative diagrams

F // G

Λn,k ⊗ hx //

OO

∆n ⊗ hx,

OO

is in bijective correspondence with the set of all commutative diagrams

F (x) // G(x)

Λn,k //

OO

∆n.

OO

By the assumptions made on F and G, this set is therefore of cardinality stricly smaller than β. Furthermore, by the
choice of β, it is clear that Card(A⊗ hx) ≤ α < β for any finite simplicial set A. Therefore, the push-out

F // F1

∐
I Λn,k ⊗ hx //

OO

∐
I ∆n ⊗ hx

OO

where I consists of all objects x ∈ Ob(T ) and commutative diagrams

F // G

Λn,k ⊗ hx //

OO

∆n ⊗ hx,

OO

is such that
Card(F1) ≤ Card(F ) + Card(

∐
I

∆n ⊗ hx) < β + Card(I).α.

But Card(I) < α.β, and therefore one has Card(F1) < β. As the factorization F // RF // G is obtained after
a numerable number of such push-outs constructions (see [Ho, Thm. 2.1.14])

F // F1
// . . . // Fn // . . . // RF = colimiFi,

we conclude that Card(RF ) < β. The proof of Lemma 3.4.4 is achieved. 2

Let us come back to the proof of Lemma 3.4.3. We consider the following diagram

F∆n+1 // F ∂∆n+1 ×G∂∆n+1 G∆n+1

F (n)∂∆n+1

∗ ×R(hx)∂∆n+1 R(hx)∆n+1

.

OO

By Lemma 3.4.4, we can suppose that Card(R(hx)) < β. Therefore, by induction on n

Card(F (n)∂∆n+1

∗ ×R(hx)∂∆n+1 R(hx)∆n+1

) < β.

This implies that there exists a U-small set J of objects in T , with Card(J) < β, and a covering∐
z∈J

hz −→ F (n)∂∆n+1

∗ ×R(hx)∂∆n+1 R(hx)∆n+1

.

Now, by considering the induced diagram

F∆n+1 // F ∂∆n+1 ×G∂∆n+1 G∆n+1

∐
z∈J hz,

OO
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and using the fact that the top horizontal morphism is a covering, one sees that there exists, for all z ∈ J , a covering
sieve Sz of z ∈ Ho(T ), and a commutative diagram

F∆n+1 // F ∂∆n+1 ×G∂∆n+1 G∆n+1

∐
z∈J,(u→z)∈Sz hu

OO

//
∐
z∈J hz.

OO

Clearly, one has

Card(
∐

z∈J,(u→z)∈Sz

hu) ≤ Card(J).2α.α < β.

We now consider the commutative diagram

F∆n+1 // F ∂∆n+1 ×G∂∆n+1 G∆n+1

∐
z∈J,(u→z)∈Sz hu

//

OO

F (n)∂∆n+1

∗ ×R(hx)∂∆n+1 R(hx)∆n+1

.

OO

Lemma 3.4.4 implies the existence of an object H(n+ 1) ∈ SPr(T ), with Card(H(n+ 1)) < β, and a factorization∐
z∈J,(u→z)∈Sz hu

// H(n+ 1) // F (n)∂∆n+1

∗ ×R(hx)∂∆n+1 R(hx)∆n+1

,

into an objectwise trivial cofibration followed by a fibration in SPr(T ). Since the morphism

F∆n+1

−→ F ∂∆n+1

×G∂∆n+1 G∆n+1

is an objectwise fibration, there exists a commutative diagram in SPr(T )

F∆n+1 // F ∂∆n+1 ×G∂∆n+1 G∆n+1

∐
z∈J,(u→z)∈Sz hu

//

OO

H(n+ 1)

ggOOOOOOOOOOOOO
// F (n)∂∆n+1

∗ ×R(hx)∂∆n+1 R(hx)∆n+1

.

OO

We define F (n+ 1)p := F (n)p for any p < n+ 1, and F (n+ 1)n+1 to be the coproduct of H(n+ 1) together with
Ln+1F , the (n+ 1)-th latching space of F (n). The face morphisms F (n+ 1)n+1 −→ F (n)n are defined as the identity
on Ln+1F (n) and via the (n+ 1) natural projections (corresponding to the face inclusions ∆n ⊂ ∂∆n+1)

F (n)∂∆n+1

−→ F (n)∆n

= F (n)n

on the factor H(n+ 1). Then, by adjunction, one has a natural commutative diagram in sn+1SPr(T )

F∆∗ // G∆∗

F (n+ 1)∗ pn+1

//

OO

R(hx)∆∗ ,

OO

which extends via the functor (in+1)! to the required diagram in sSPr(T ). It is clear by construction, that pn+1 is a
Reedy fibration and a hypercover in degrees i ≤ n + 1 and that its n-th skeleton is pn. Therefore, by defining F∗ to
be the limit of the F (n)’s, the natural morphism F∗ −→ R(hx)∆∗ is a hypercover. It is also clear by construction that
F∗ satisfies condition (2) defining the set Hβ(x). 2

We are now ready to finish the proof that π∗-equivalences are H-local equivalences. Let f : F −→ G be a π∗-
equivalence; we can clearly assume f to be an objectwise fibration between fibrant objects. Furthermore, as H-local
equivalences are already known to be π∗-equivalences, we can also suppose that f is a H-local fibration between
H-local objects. We are going to prove that f is in fact an objectwise equivalence.
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Let

F
f // G

∂∆n ⊗ hx //

OO

∆n ⊗ hx

OO

be a commutative diagram in SPr(T ). We need to show that there exist a lifting ∆n⊗hx −→ F . By adjunction, this
is equivalent to showing that the natural morphism

hx −→ F ∂∆n

×G∂∆n G∆n

lifts to a morphism hx −→ F∆n

.
As F and G are objectwise fibrant, the previous morphism factors through

hx −→ R(hx) −→ F ∂∆n

×G∂∆n G∆n

.

An application of Lemma 3.4.3 to the morphism

F∆n

−→ F ∂∆n

×G∂∆n G∆n

,

which satisfies the required hypothesis, shows that there exists an F∗ ∈ Hβ(x) and a commutative diagram

F∆n // F ∂∆n ×G∂∆n G∆n

|F∗| //

OO

R(hx).

OO

By adjunction, this commutative diagram yields a commutative diagram

F
f // G

∆n ⊗ |F∗|
∐
∂∆n⊗|F∗| ∂∆n ⊗R(hx) //

OO

∆n ⊗R(hx).

OO

The horizontal bottom morphism is an H-local equivalence by definition, and therefore a lifting ∆n ⊗ R(hx) −→ F
exists in the homotopy category Ho(LHSPr(T )). But, as f is a H-local fibration, F and G are H-local objects and
R(hx) is cofibrant, this lifting can be represented in SPr(T ) by a commutative diagram

F
f // G

∆n ⊗R(hx).

eeKKKKKKKKKK

OO

Composing with hx −→ R(hx), we obtain the required lifting. This implies that π∗-equivalences are H-local equiva-
lences, and completes the proof of the existence of the local model structure.

By construction, SPrτ (T ) is the left Bousfield localization of SPr(T ) along the set of morphisms H: this implies
that it is a U-cellular and U-combinatorial model category. In particular, it is U-cofibrantly generated. Finally,
properness of SPrτ (T ) follows from Corollary 3.3.5 and Proposition 3.3.7.

This concludes the proof of Theorem 3.4.1. 2

Let us keep the notations introduced in the proof of Theorem 3.4.1. We choose a U-small cardinal β as in the proof
and consider, for any object x ∈ Ob(T ), the subset of hypercovers Hβ(x).

Corollary 3.4.5 The model category SPrτ (T ) is the left Bousfield localization of SPr(T ) with respect to the set of
morphisms

{|F∗| −→ hx | x ∈ Ob(T ), F∗ ∈ Hβ(x)} .

Proof: This is exactly the way we proved Theorem 3.4.1. 2
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Remark 3.4.6 It is worthwile emphasizing that the proof of Theorem 3.4.1 shows actually a bit more than what’s in
its statement. In fact, the argument proves both Theorem 3.4.1 and Corollary 3.4.5, in that it gives two descriptions of
the same model category SPrτ (T ): one as the left Bousfield localization of SPr(T ) with respect to local equivalences
and the other as the left Bousfield localization of the same SPr(T ) but this time with respect to hypercovers (more
precisely, with respect to the set of morphisms defined in the statement of Corollary 3.4.5).

In the special case where (T, τ) is a usual Grothendieck site (i.e. when T is a category), the following corollary
was announced in [Du1] and proved in [DHI].

Corollary 3.4.7 An object F ∈ SPrτ (T ) is fibrant if and only if it is objectwise fibrant and for any object x ∈ Ob(T )
and any H∗ ∈ Hβ(x), the natural morphism

F (x) ' RHom(hx, F ) −→ RHom(|H∗|, F )

is an isomorphism in Ho(SSet).

Proof: This follows from Thm. 3.4.1 and from the explicit description of fibrant objects in a left Bousfield local-
ization (see [Hi, Thm. 4.1.1]). 2

The previous corollary is more often described in the following way. For any H∗ ∈ Hβ(x) and any n ≥ 0, Hn is
equivalent to a coproduct of representables

Hn '
∐
i∈In

hui .

Therefore, for any H∗ ∈ Hβ(x) and any fibrant object F in SPr(T ), the simplicial set RHom(|H∗|, F ) is naturally
equivalent to the homotopy limit of the cosimplicial diagram in SSet

[n] 7→
∏
i∈In

F (ui).

Then, Corollary 3.4.7 states that an object F ∈ SPr(T ) is fibrant if and only if, for any x ∈ Ob(T ), F (x) is fibrant,
and the natural morphism

F (x) −→ holim[n]∈∆

(∏
i∈In

F (ui)

)
is an equivalence of simplicial sets, for any H∗ ∈ Hβ(x).

Definition 3.4.8 1. A hypercover H∗ −→ hx is said to be semi-representable if for any n ≥ 0, Hn is isomorphic
in Ho(SPr(T )) to a coproduct of representable objects

Hn '
∐
u∈In

hu.

2. An object F ∈ SPr(T ) is said to have hyperdescent if, for any object x ∈ Ob(T ) and any semi-representable
hypercover H∗ −→ hx, the induced morphism

F (x) ' RHom(hx, F ) −→ RHom(|H∗|, F )

is an isomorphism in Ho(SSetU).

An immediate consequence of the proof of Theorem 3.4.1 is that an object F ∈ SPr(T ) has hyperdescent with
respect to all hypercover H∗ ∈ Hβ(x) if and only if it has hyperdescent with respect to all semi-representable hyper-
covers.

From now on we will adopt the following terminology and notations.

Definition 3.4.9 Let (T, τ) be an S-site in U.

1. A stack on the site (T, τ) is a pre-stack F ∈ SPr(T ) which satisfies the hyperdescent condition of Definition
3.4.8.

2. The model category SPrτ (T ) is also called the model category of stacks on the S-site (T, τ). The category
Ho(SPr(T )) (resp. Ho(SPrτ (T ))) is called the homotopy category of pre-stacks, and (resp. the homotopy
category of stacks). Objects of Ho(SPr(T )) (resp. Ho(SPrτ (T ))) will simply be called pre-stacks on T (resp.,
stacks on (T, τ)). The functor a : Ho(SPr(T )) −→ Ho(SPrτ (T )) will be called the associated stack functor.
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3. The topology τ is said to be sub-canonical if for any x ∈ Ob(T ), the pre-stack hx ∈ Ho(SPr(T )) is a stack (in
other words, if the Yoneda embedding Lh : Ho(T ) −→ Ho(SPr(T )) factors through the subcategory of stacks).

4. For pre-stacks F and G on T , we will denote by RHom(F,G) ∈ Ho(SSetU) (resp. by RτHom(F,G) ∈
Ho(SSetU)) the derived Hom-simplicial set computed in the simplicial model category SPr(T ) (resp. SPrτ (T )).

Let’s explain why, given Definition 3.4.9 (1), we also call the objects in Ho(SPrτ (T )) stacks ( Definition 3.4.9 (2)).
As SPrτ (T ) is a left Bousfield localization of SPr(T ), the identity functor SPr(T ) −→ SPrτ (T ) is left Quillen, and
its right adjoint (which is still the identity functor) induces a fully faithful functor

j : Ho(SPrτ (T )) −→ Ho(SPr(T )).

Furthermore, the essential image of this inclusion functor is exactly the full subcategory consisting of objects having
the hyperdescent property; in other words, the essential image of j is the full subcategory of Ho(SPr(T )) consisting
of stacks. We will often identify Ho(SPrτ (T )) with its essential image via j (which is equivalent to Ho(SPrτ (T ))).
The left adjoint

a : Ho(SPr(T )) −→ Ho(SPrτ (T ))

to the inclusion j, is a left inverse to j. Note that F ∈ Ho(SPr(T )) is a stack iff the canonical adjunction map
F → ja(F ) (which we will write as F → a(F ) taking into account our identification) is an isomorphism in Ho(SPr(T )).

As explained in the Introduction, this situation is the analog for stacks over S-sites of the usual picture for
sheaves over Grothendieck sites. In particular, this gives a sheaf-like description of objects of Ho(SPrτ (T )), via the
hyperdescent property. However, this description is not as useful as one might at first think, though it allows to prove
easily that some adjunctions are Quillen adjunctions (see for example, [DHI, 7.1], [To2, Prop. 2.2.2] and [To3, Prop.
2.9]) or to check that an S-topology is sub-canonical.

We will finish this paragraph with the following proposition.

Proposition 3.4.10 1. Let F and G be two pre-stacks on T . If G is a stack, then the natural morphism

RHom(F,G) −→ RτHom(F,G)

is an isomorphism in Ho(SSet).

2. The functor Id : SPr(T ) −→ SPrτ (T ) preserves homotopy fibered products.

Proof: (1) follows formally from Corollary 3.4.5. To prove (2) it is enough to show that π∗-equivalences are stable
under pull-backs along objectwise fibrations, and this follows from Corollary 3.3.5. 2

Remark 3.4.11 If M is any left proper U-combinatorial or U-cellular (see Appendix A) simplicial model category,
one can also define the local projective model structure on Pr(T,M) := MT op as the left Bousfield localization of
the objectwise model structure, obtained by inverting hypercovers. This allows one to consider the model category
of stacks on the S-site (T, τ) with values in M . Moreover, in many cases (e.g., symmetric spectra [HSS], simplicial
abelian groups, simplicial groups, etc.) the local equivalences also have a description in terms of some appropriately
defined π∗-equivalences. We will not pursue this here as it is a purely formal exercise to adapt the proof of Theorem
3.4.1 to these situations.

In many cases these model categories of stacks with values in M may also be described by performing the con-
structions defining M directly in the model category SPrτ (T ). More precisely, one can consider e.g. the categories
of symmetric spectra, abelian group objects, group objects etc., in SPr(T ), and use some general results to provide
these categories with model structures. For reasonable model categories M both approaches give Quillen equivalent
model categories (e.g. for group objects in SPrτ (T ), and stacks of simplicial groups on (T, τ)). The reader might
wish to consult [Bek] in which a very general approach to these considerations is proposed.

3.5 Functoriality

Let (T, τ) and (T ′, τ ′) be two U-small S-sites and f : T −→ T ′ a morphism of S-categories. As we saw in Subsection
2.3.1 before Thm. 2.3.1, the morphism f induces a Quillen adjunction on the model categories of pre-stacks

f! : SPr(T ) −→ SPr(T ′) SPr(T )←− SPr(T ′) : f∗.

Definition 3.5.1 We say that the morphism f is continuous (with respect to the topologies τ and τ ′) if the functor
f∗ : SPr(T ′) −→ SPr(T ) preserves the subcategories of stacks.
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As the model categories of stacks SPrτ (T ) and SPrτ ′(T ) are left Bousfield localizations of SPr(T ) and SPr(T ′),
respectively, the general machinery of [Hi] implies that f is continuous if and only if the adjunction (f!, f

∗) induces a
Quillen adjunction

f! : SPrτ (T ) −→ SPrτ (T ′) SPrτ (T )←− SPrτ ′(T ′) : f∗

between the model category of stacks.
Recall from the proof of Theorem 3.4.1 that we have defined the sets of distinguished hypercovers Hβ(x), for any

object x ∈ T . These distinguished hypercovers detect continuous functors, as shown in the following proposition.

Proposition 3.5.2 The morphism f is continuous if and only if, for any x ∈ Ob(T ) and any H∗ ∈ Hβ(x), the induced
morphism

Lf!(|H∗|) −→ Lf!(hx) ' hf(x)

is an isomorphism in Ho(SPrτ ′(T
′)).

Proof: This follows immediately by adjunction, from Corollary 3.4.7. 2

3.6 Injective model structure and stacks of morphisms

The goal of this paragraph is to present an injective version of the local model structure on SPr(T ) for which
cofibrations are monomorphisms, and to use it in order to construct stacks of morphisms. Equivalently, we will show
that the injective model category of stacks over an S-site possesses derived internal Hom’s, and as a consequence the
homotopy category of stacks Ho(SPrτ (T )) is cartesian closed (in the usual sense of [ML, Ch. IV §10]). These stacks
of morphisms will be important especially for applications to Derived Algebraic Geometry (see [To-Ve 2, To-Ve 5]),
since many of the moduli stacks are defined as stacks of morphisms to a certain classifying stack (for example, the
stack of vector bundles on a scheme).

Before going into details, let us observe that in general, as explained in [H-S, §11], the projective model structure
on SPrτ (T ) is not an internal model category, i.e. is not a closed symmetric monoidal model category for the direct
product ([Ho, Def. 4.2.6]), and therefore the internal Hom’s of the category SPrτ (T ) are not compatible with the
model structure. This prevents one from defining derived internal Hom’s in the usual way (i.e. by applying the
internal Hom’s of SPr(T ) to fibrant models for the targets and cofibrant models for the sources). One way to solve
this problem is to work with another model category which is internal and Quillen equivalent to SPr(T ). The canonical
choice is to use an injective model structure on SPr(T ), analogous to the one described in [Ja1].

Proposition 3.6.1 Let (T, τ) be an S-site in U. Then there exists a simplicial closed model structure on the cat-
egory SPr(T ), called the local injective model structure and denoted by SPrinj,τ (T ), where the cofibrations are the
monomorphisms and the equivalences are the local equivalences. Moreover, the local injective model structure on
SPr(T ) is proper and internal3.

Proof: The proof is essentially the same as the proof of our Theorem 3.4.1. The starting point is the objectwise in-
jective model structure SPrinj(T ), for which equivalences and cofibrations are defined objectwise. The existence of this
model structure can be proved by the same cardinality argument as in the case where T is a usual category (see [Ja1]).
The model category SPrinj(T ) is clearly proper, U-cellular and U-combinatorial, so one can apply the localization
techniques of [Hi]. We define the model category SPrinj,τ (T ) as the left Bousfield localization of SPrinj(T ) along the
set of hypercovers H defined in the proof of Theorem 3.4.1. Note that the identity functor SPrinj,τ (T ) −→ SPrτ (T )
is the right adjoint of a Quillen equivalence. From this and Theorem 3.4.1 we deduce that equivalences in SPrinj,τ (T )
are exactly the local equivalences of Definition 3.3.2. This proves the existence of the model category SPrinj,τ (T ).
The fact that it is proper follows easily from the fact the the model category SSet is proper and from the descrip-
tion of equivalences in SPrinj,τ (T ) as π∗-equivalences. It only remains to show that SPrinj,τ (T ) is internal. But, as
cofibrations are the monomorphisms this follows easily from the fact that finite products preserves local equivalences. 2

As the equivalences in SPrinj,τ (T ) and SPrτ (T ) are the same, the corresponding homotopy categories coincide

Ho(SPrinj,τ (T )) = Ho(SPrτ (T )).

Since the homotopy category of an internal model category is known to be cartesian closed, Proposition 3.6.1 implies
the following corollary.

Corollary 3.6.2 For any S-site T in U, the homotopy category of stacks Ho(SPrτ (T )) is cartesian closed.

3Recall once again that a model category is said to be internal if it is a monoidal model category (in the sense of [Ho, Def. 4.2.6]) for
the monoidal structure given by the direct product.
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Proof: Apply [Ho, Thm. 4.3.2] to the symmetric monoidal model category SPrinj,τ (T ), with the monoidal struc-
ture given by the direct product. 2

Definition 3.6.3 1. The internal Hom’s of the category Ho(SPrτ (T )) will be denoted by

RτHom(−,−) : Ho(SPrτ (T ))×Ho(SPrτ (T )) −→ Ho(SPrτ (T )).

2. Let (T, τ) be an S-site in U, and F , G be stacks in Ho(SPrτ (T )). The stack of morphisms from F to G is
defined to be the stack

RτHom(F,G) ∈ Ho(SPrτ (T )).

Explicitly, we have for any pair of stacks F and G

RτHom(F,G) ' Hom(F,RinjG),

where Rinj is the fibrant replacement functor in the objectwise injective model category SPrinj(T ), and Hom is the
internal Hom functor of the category SPr(T ). In fact, if G is a stack, then both RinjG and Hom(F,RinjG) are stacks.

Actually, Proposition 3.6.1 gives more than the cartesian closedness of Ho(SPrτ (T )). Indeed, one can consider
the full sub-category SPrinj,τ (T )f of fibrant objects in SPrinj,τ (T ). As any object is cofibrant in SPrinj,τ (T ), for
any two objects F and G in SPrinj,τ (T )f the internal Hom Hom(F,G) is also a fibrant object and therefore lives
in SPrinj,τ (T )f . This shows in particular that SPrinj,τ (T )f becomes cartesian closed for the direct product, and
therefore one can associate to it a natural SPrinj,τ (T )f -enriched category SPrinj,τ (T )f . Precisely, the set of object of

SPrinj,τ (T )f is the set of fibrant objects in SPrinj,τ (T ), and for two such objects F and G the object of morphisms

is Hom(F,G).
The SPrinj,τ (T )f -enriched category SPrinj,τ (T )f yields in fact a up-to-equivalence SPrinj,τ (T )f -enrichement of

the S-category LSPrτ (T ). Indeed, as SPrτ (T ) and SPrinj,τ (T ) has the same simplicial localizations (because they
are the same categories with the same notion of equivalence), one has a natural equivalence of S-categories

LSPrτ (T ) = LSPrinj,τ (T ) ' Int(SPrinj,τ (T )).

Recall that the S-category Int(SPrinj,τ (T )) consists of fibrant objects in SPrinj,τ (T ) and their simplicial Hom-sets.
In other words the SSet-enriched category Int(SPrinj,τ (T )) is obtained from the SPrinj,τ (T )f -enriched category
SPrinj,τ (T )f by applying the global section functor Γ : SPrinj,τ (T ) −→ SSet. In conclusion, one has a triple

(LSPrτ (T ), SPrinj,τ (T )f , α)

where α is an isomorphism in Ho(S − Cat) between LSPrτ (T ) and the underlying S-category of SPrinj,τ (T )f .

This triple is what we refer to as an up-to-equivalence SPrinj,τ (T )f -enrichement of LSPrτ (T ). For example, the
SPrinj,τ (T )f -enriched functor

Hom : (SPrinj,τ (T )f )op × SPrinj,τ (T )f −→ SPrinj,τ (T )f

gives rise to a well defined morphism in Ho(S − cat)

RτHom : LSPrτ (T )op × LSPrτ (T ) −→ LSPrτ (T ),

lifting the internal Hom-structure on the homotopy category Ho(SPrτ (T )).

Remark 3.6.4 This last structure is at first sight more subtle than the cartesian closedness of the homotopy category
Ho(SPrτ (T )), as SPrinj,τ (T )f encodes strictly associative and unital compositions between stacks of morphisms, which

are only described by Ho(SPrτ (T )) as up-to-homotopy associative and unital compositions. This looks like comparing
the notions of simplicial monoids (i.e. monoids in SSet) and up-to-homotopy simplicial monoids (i.e. monoids in
Ho(SSet)), and the former is well known to be the right notion. However, we would like to mention that we think
that the S-category alone LSPrτ (T ) ∈ Ho(S − Cat), together with the fact that Ho(SPrτ (T )) is cartesian closed,
completely determines its up-to-equivalence SPrinj,τ (T )f -enrichement. In other words, the structure

(LSPrτ (T ), SPrinj,τ (T )f , α)

only depends, up to an adequate notion of equivalence, on the S-category LSPrτ (T ). Unfortunately, investigating
this question would drive us way too far from our purpose, as we think the right context to treat it is the general
theory of symmetric monoidal S-categories, as briefly exposed in [To4, §5.1].
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3.7 Truncated stacks and truncation functors

We start by recalling some very general definition of truncated objects in model categories.

Definition 3.7.1 1. Let n ≥ 0. An object x ∈ Ho(M) is called n-truncated if for any y ∈ Ho(M), the mapping
space MapM (y, x) ∈ Ho(SSet) is n-truncated.

2. An object x ∈ Ho(M) is called truncated if it is n-truncated for some integer n ≥ 0.

Clearly, a simplicial set X is n-truncated in the sense above if and only it is n-truncated in the classical sense (i.e.
if for any base point x ∈ X, πi(X,x) = 0 for all i > n).

We now fix an S-site (T, τ) in U, and we consider the correponding model category of stacks SPrτ (T ).

Definition 3.7.2 Let n ≥ 0 be an integer. A morphism f : F −→ G in SPrτ (T ) is a π≤n-equivalence (or a local
n-equivalence) if the following two conditions are satisfied.

1. The induced morphism π0(F ) −→ π0(G) is an isomorphism of sheaves on Ho(T ).

2. For any object x ∈ Ob(T ), any section s ∈ π0(F (x)) and any integer i such that n ≥ i > 0, the induced morphism
πi(F, s) −→ πi(G, f(s)) is an isomorphism of sheaves on Ho(T/x).

Theorem 3.7.3 There exists a closed model structure on SPr(T ), called the n-truncated local projective model
structure, for which the equivalences are the π≤n-equivalences and the cofibrations are the cofibrations for the projective
model structure on SPr(T ). Furthermore the n-local projective model structure is U-cofibrantly generated and proper.

The category SPr(T ) together with its n-truncated local projective model structure will be denoted by SPr≤nτ (T ).

Proof: The proof is essentially a corollary of Theorem 3.4.1. Let J (resp., I) be a U-small set of generating
trivial cofibrations (resp., generating cofibrations) for the model category SPrτ (T ). Let J ′ be the set of morphisms
∂∆i ⊗ hx −→ ∆i ⊗ hx, for all i > n and all x ∈ Ob(T ). We define J(n) = J ∪ J ′. Finally, let W (n) be the set of
π≤n-equivalences. It is easy (and left to the reader) to prove that [Ho, Thm. 2.1.19] can be applied to the sets W (n),
I and J(n). 2

Corollary 3.7.4 The model category SPr≤nτ (T ) is the left Bousfield localization of SPrτ (T ) with respect to the mor-
phisms ∂∆i ⊗ hx −→ ∆i ⊗ hx, for all i > n and all x ∈ Ob(T ).

Proof: This follows immediately from the explicit description of the set J(n) of generating cofibrations given in
the proof of Theorem 3.7.3 above. 2

Note that corollaries 3.4.5 and 3.7.4 also imply that SPr≤nτ (T ) is a left Bousfield localization of SPr(T ).
For the next corollary, an object F ∈ SPr(T ) is called objectwise n-truncated if for any x ∈ Ob(T ), the simplicial

set F (x) is n-truncated (i.e. for any base point s ∈ F (x)0, one has πi(F (x), s) = 0 for i > n).

Corollary 3.7.5 An object F ∈ SPr≤nτ (T ) is fibrant if and only if it is objectwise fibrant, satisfies the hyperdescent
condition (see Def. 3.4.8) and is objectwise n-truncated.

Proof: This again follows formally from the explicit description of the set J(n) of generating cofibrations given in
the proof of Theorem 3.7.3. 2

From the previous corollaries we deduce that the identity functor Id : SPrτ (T ) −→ SPr≤nτ (T ) is a left Quillen
functor, which then induces an adjunction on the homotopy categories

t≤n := LId : Ho(SPrτ (T )) −→ Ho(SPr≤nτ (T )) Ho(SPrτ (T ))←− Ho(SPr≤nτ (T )) : jn := RId.

Note however that the functor
t≤n : LId : Ho(SPrτ (T )) −→ Ho(SPr≤nτ (T ))

does not preserves homotopy fibered products in general. Finally, jn is fully faithful and a characterization of its
essential image is given in the following lemma.

Lemma 3.7.6 Let F ∈ SPrτ (T ) and n ≥ 0. The following conditions are equivalent.

1. F is an n-truncated object in the mdoel category SPrτ (T ) (in the sense of Definition 3.7.1).

2. For any x ∈ Ob(T ) and any base point s ∈ F (x), one has πi(F, s) = 0 for any i > n.
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3. The adjunction morphism F −→ jnt≤n(F ) is an isomorphism in Ho(SPrτ (T )).

Proof: The three conditions are invariant under isomorphisms in Ho(SPrτ (T )); we can therefore always assume
that F is fibrant in SPrτ (T ).

To prove that (1)⇒ (2), it is enough to observe that RτHom(hx, F ) ' F (x). Conversely, let us suppose that (2)
holds and let j : F −→ RF be a fibrant replacement in SPr≤nτ (T ). The hypothesis on F and Corollary 3.7.5 imply
that j is a π∗-equivalence, thus showing that we can assume F to be fibrant in SPr≤nτ (T ), and by Corollary 3.7.5

again, that F can be also assumed to be objectwise n-truncated. In particular, the natural morphism F∆i −→ F ∂∆i

is an objectwise trivial fibration for any i > n. Therefore, one has for any i > n,

RτHom(G,F )R∂∆i

' RHomτ (G,F ∂∆i

) ' RHomτ (G,F∆i

) ' RτHom(G,F )R∆i

.

This implies that RτHom(G,F ) is n-truncated for any G ∈ SPrτ (T ). This proves the equivalence between (1) and
(2).

For any F ∈ Ho(SPrτ (T )), the adjunction morphism F −→ jnt≤n(F ) is represented in SPr(T ) by a fibrant
resolution j : F −→ RF in the model category SPr≤nτ (T ). If F satisfies condition (2), we have already seen that j is
a π∗-equivalence, and therefore that (3) is satisfied. Conversely, by Corollary 3.7.5, RF always satisfies condition (2)
and then (3)⇒ (2). 2

In the rest of the paper we will systematically use Lemma 3.7.6 and the functor jn to identify the homotopy category
Ho(SPr≤nτ (T )) with the full subcategory of Ho(SPrτ (T )) consisting of n-truncated objects. We will therefore never
specify the functor jn. With this convention, the functor t≤n becomes an endofunctor

t≤n : Ho(SPrτ (T )) −→ Ho(SPrτ (T )),

called the n-th truncation functor. There is an adjunction morphism Id −→ t≤n, and for any F ∈ Ho(SPrτ (T )), the
morphism F −→ t≤n(F ) is universal among morphisms from F to an n-truncated object. More precisely, for any
n-truncated object G ∈ Ho(SPrτ (T )), the natural morphism

RτHom(t≤n(F ), G) −→ RτHom(F,G)

is an isomorphism in Ho(SSet).

Definition 3.7.7 The n-th truncation functor is the functor previously defined

t≤n : Ho(SPrτ (T )) −→ Ho(SPrτ (T )).

The essential image of t≤n is called the subcategory of n-truncated stacks.

Note that the essential image of t≤n is by constuction equivalent to the category Ho(SPr≤nτ (T )).

The following proposition gives a complete characterization of the category of 0-truncated stacks and of the 0-th
truncation functor t≤0.

Proposition 3.7.8 The functor πpr0 : SPr(T ) −→ Pr(Ho(T )) induces an equivalence of categories

Ho(SPr≤0
τ (T )) ' Shτ (Ho(T ))

where Shτ (Ho(T )) denotes the category of sheaves of sets on the usual Grothendieck site (Ho(T ), τ).

Proof: Let us first suppose that the topology τ is trivial. In this case, we define a quasi-inverse functor as follows.
By considering sets as constant simplicial sets, we obtain an embedding Pr(Ho(T )) ⊂ SPr(Ho(T )) that we compose
with the pullback p∗ : SPr(Ho(T )) −→ SPr(T ) along the natural projection p : T −→ Ho(T ). It is quite clear that
F 7→ πpr0 (F ) and F 7→ p∗(F ) induce two functors, inverse of each others

πpr0 : Ho(SPr≤0(T )) ' Pr(Ho(T )) : p∗.

In the general case, we use Corollary 3.4.5. We need to show that a presheaf F ∈ Pr(Ho(T )) is a sheaf for the topology
τ if and only if the corresponding object p∗(F ) has the hyperdescent property. This last step is left to the reader as
an exercice. 2

Remark 3.7.9
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1. The previous Proposition implies in particular that the homotopy category of stacks Ho(SPrτ (T )) always con-
tains the category of sheaves on the site (Ho(T ), τ) as the full subcategory of 0-truncated objects. Again, we
will not mention explicitly the functor p∗ : Shτ (Ho(T )) −→ Ho(SPrτ (T )) and identify Shτ (Ho(T )) with the full
subcategory of Ho(SPrτ (T )) consisting of 0-truncated objects.

2. Proposition 3.7.8 is actually just the 0-th stage of a series of similar results involving higher truncations. In fact
Proposition 3.7.8 can be generalized to a Quillen equivalence between SPr≤nτ (T ) and a certain model category
of presheaves of n-groupoids on the (n+ 1)-category t≤n(T ) obtained from T by applying the n-th fundamental
groupoid functor to its simplicial sets of morphisms (see [H-S, §2, p. 28]). We will not investigate these results
further in this paper.

3.8 Model topoi

Let M be any U-cellular ([Hi, §14.1]) or U-combinatorial ([Sm], [Du2, Def. 2.1]) left proper model category (see also
Appendix A). Let us recall from Theorem A.2.2 and A.2.4 that for any U-set of morphisms S in M , the left Bousfield
localization LSM exists. It is a model category, whose underlying category is still M , whose cofibrations are those of
M and whose equivalences are the so-called S-local equivalences ([Hi, §3.4]). A left Bousfield localization of M is any
model category of the form LSM , for a U-small set S of morphisms in M .

The following definition is a slight modification of the a notion communicated to us by C. Rezk (see [Re]). It is a
model categorical analog of the notion of topos defined as a reflexive subcategory of the category of presheaves with
an exact localization functor (see for example, [Sch, Ch. 20]).

Definition 3.8.1 1. If T is an S-category, a left exact Bousfield localization of SPr(T ) is a left Bousfield local-
ization LSSPr(T ) of SPr(T ), such that the identity functor Id : SPr(T ) −→ LSSPr(T ) preserves homotopy
fiber products.

2. A U-model topos is a model category in V which is Quillen equivalent to a left exact Bousfield localization of
SPr(T ) for some T ∈ S − CatU.

For 2., recall our convention throughout the paper, according to which two model categories are Quillen equivalent
if they can be connected by a finite chain of Quillen equivalences, regardless of their direction. We will also need the
following general definitions related to the notion of truncated objects in a model category (see Remark 3.8.7 for some
comments on it).

Definition 3.8.2 Let M be any model category.

1. We say that M is t-complete if truncated objects detect isomorphisms in Ho(M) i.e. if a morphism u : a→ b in
Ho(M) is an isomorphism if and only if, for any truncated object x in Ho(M), the map u∗ : [b, x] −→ [a, x] is
bijective.

2. A U-model topos is t-complete if its underlying model category is t-complete.

The next Theorem shows that given an S-category T , t-complete left exact Bousfield localizations of SPr(T )
correspond exactly to simplicial topologies on T . It should be considered as a homotopy analog of the correspondence
for usual Grothendieck topologies as described e.g. in [Sch, Thm. 20.3.7].

Theorem 3.8.3 Let T be a U-small S-category. There exists a bijective correspondence between S-topologies on T
and left exact Bousfield localizations of SPr(T ) which are t-complete.

Proof: Let T (T ) be the set of S-topologies on T , which by definition is also the set of Grothendieck topologies
on Ho(T ). Let B(T ) be the set of left exact Bousfield localizations of SPr(T ), and Bt(T ) ⊂ B(T ) the subset of those
which are t-complete. We are first going to define maps φ : T (T )→ Bt(T ) and ψ : Bt(T )→ T (T ).

The map φ : T (T )→ Bt(T )

Let τ ∈ T (T ) be an S-topology on T . According to Corollary 3.4.5 and Proposition 3.4.10 (2), SPrτ (T ) is a
left exact Bousfield localization of SPr(T ). We are going to show that SPrτ (T ) is also t-complete. We know by
Lemma 3.7.6, that an object F ∈ Ho(SPrτ (T )) is n-truncated if and only if F ' t≤n(F ). Therefore, if a morphism
f : F −→ G satisfies the condition (3) of Definition 3.8.2, one has

[t≤n(F ), H] ' [F,H] ' [G,H] ' [t≤n(G), H]
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for any n-truncated object H ∈ Ho(SPrτ (T )). This implies that for any n, the induced morphism t≤n(F ) −→ t≤n(G)
is an isomorphism in Ho(SPr≤nτ (T )), and hence in Ho(SPrτ (T )). In other words, f is an π≤n-equivalence for any n,
and hence a π∗-equivalence. This shows that the model category SPrτ (T ) is a t-complete model category and allows
us to define the map φ : T (T ) −→ Bt(T ) by the formula φ(τ) = SPrτ (T ).

The map ψ : Bt(T )→ T (T )

Let LSSPr(T ) ∈ Bt(T ), and let us consider the derived Quillen adjunction given by the identity functor Id :
SPr(T ) −→ LSSPr(T )

a := LId : Ho(SPr(T )) −→ Ho(LSSPr(T )) Ho(SPr(T ))←− Ho(LSSPr(T )) : RId =: i.

The reader should note that the above functor a is not equal a priori to the associated stack functor of Definition 3.4.9
(5), as no S-topology on T has been given yet. We know that j is fully faithful and identifies Ho(LSSPr(T )) with the
full subcategory of Ho(SPr(T )) consisting of S-local objects (see [Hi, Def. 3.2.4 1(a); Th. 4.1.1 (2)]).

We consider the full subcategory Ho≤0(LSSPr(T )) (resp. Ho≤0(SPr(T ))) of Ho(LSSPr(T )) (resp. of Ho(SPr(T )))
consisting of 0-truncated objects. Note that in general, an object x in a model category is 0-truncated if and only if
for any n ≥ 1, the natural morphism xR∆n −→ xR∂∆n

is an equivalence. As both a and i preserve homotopy fiber
products, they also preserve 0-truncated objects. Therefore we have an induced adjunction

a0 : Ho≤0(SPr(T )) −→ Ho≤0(LSSPr(T )) Ho≤0(SPr(T ))←− Ho≤0(LSSPr(T )) : i0.

Now, the functor πpr0 : Ho(SPr(T )) −→ SetHo(T )op induces an equivalence of categories

Ho≤0(SPr(T )) ' SetHo(T )op =: Pr(Ho(T )),

and so the adjunction (a0, i0) is in fact equivalent to an adjunction

a0 : Pr(Ho(T )) −→ Ho≤0(LSSPr(T )) Pr(Ho(T ))←− Ho≤0(LSSPr(T )) : i0

where, of course, the functor i0 is still fully faithful and the functor a0 is exact. By [Sch, Thm. 20.3.7], there exists
then a unique Grothendieck topology τ on Ho(T ) such that the essential image of i0 is exactly the full subcategory
of sheaves on Ho(T ) for the topology τ . The functor a0 is then equivalent to the asscociated sheaf functor. Thus, we
define ψ : Bt(T ) −→ T (T ) by the formula ψ(LSSPr(T )) := τ ∈ T (T ).

Proof of φ ◦ ψ = Id

Let LSSPr(T ) ∈ Bt(T ) be a left exact Bousfield localization of SPr(T ) and τ = ψ(LSSPr(T )) the corresponding
topology on T . We need to prove that the set of S-local equivalences equal the set of π∗-equivalences. Recall that we
have denoted by

a := LId : Ho(SPr(T )) −→ Ho(LSSPr(T )) Ho(SPr(T ))←− Ho(LSSPr(T )) : RId =: i,

the adjunction induced by the identity functor Id : LSSPr(T ) −→ SPr(T ).
Let us first prove that S-local equivalences are π∗-equivalences. Equivalently, we need to prove that for any

morphism f : F −→ G which is an equivalence in LSSPr(T ), f is an hypercover in SPrτ (T ). For this we may
assume that F and G are both objectwise fibrant objects. As the identity functor Id : SPr(T ) −→ SPrτ (T ) preserves
homotopy fiber products, the induced morphism

F∆n

−→ F ∂∆n

×G∂∆n G∆n

is still an S-local equivalence. Using this fact and Lemma 3.3.3, one sees that it is enough to show that f is a covering
in SPrτ (T ).

Recall that the topology τ is defined in such a way that the associated sheaf to a presheaf of sets E on Ho(T )
is i0a0(E) (where the adjunction (a0, i0) is the one considered above in the definition of the map ψ). It is therefore
enough to prove that the induced morphism a0(πpr0 (F )) −→ a0(πpr0 (G)) is an isomorphism4.

Lemma 3.8.4 For any F ∈ Ho(SPr(T )), one has

a0(πpr0 (F )) ' a0π
pr
0 (ia(F )).

4Recall that πpr
0 (F ) is a presheaf of sets on Ho(T ), that is considered via the projection p : T −→ Ho(T ) as a presheaf of discrete

simplicial sets on T , and therefore as an object in SPr(T ).
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Proof: This immediately follows from the adjunctions (a, i) and (a0, i0), and the fact that πpr0 is isomorphic to the
0-th truncation functor t≤0 on Ho(SPr(T )). 2

As f is an S-local equivalence, the morphism ia(F ) −→ ia(G) is an isomorphism in Ho(SPr(T )), and therefore
the same is true for

a0(πpr0 (F )) ' a0π
pr
0 (ia(F )) −→ a0π

pr
0 (ia(G)) ' a0(πpr0 (G)).

We have thus shown that the S-local equivalences are π∗-equivalences. Conversely, to show that π∗-equivalences
are S-local equivalences it is enough to show that for any x ∈ Ob(T ) and any hypercover F∗ −→ hx in SPrτ (T ), the
natural morphism

ia(|F∗|) −→ ia(hx)

is an isomorphism in Ho(SPr(T )) (see Corollary 3.4.5). As a preserves homotopy fibered products, one has (ia(G))RK '
ia(GRK), for any G ∈ Ho(SPr(T )) and any finite simplicial set K (here (−)RK is computed in the model category
SPr(T )). Therefore, by t-completeness one has, for any n

t≤n−1(ia(|F∗|)) ' t≤n−1(ia(|RCosknF∗|)).

This shows that one can assume that F∗ = RCoskn(F∗/hx), for some n (i.e. that F∗ −→ hx is relatively n-bounded).
Furthermore, the same argument as in the proof of Theorem 3.4.1, but relative to hx, shows that, by induction, one
can assume n = 0. In other words, one can assume that F∗ is the derived nerve of a covering F0 −→ hx (which will
be assumed to be an objectwise fibration).

By the left exactness property of a and i, the object ia(|F∗|) is isomorphic in Ho(SPr(T )) to the geometric
realization of the derived nerve of ia(F0) −→ ia(hx). This implies that for any y ∈ Ob(T ), the morphism ia(|F∗|)(y) −→
ia(hx)(y) is isomorphic in Ho(SSet) to the geometric realization of the nerve of a fibration between simplicial sets. It
is well known that such a morphism is isomorphic in Ho(SSet) to an inclusion of connected components. Therefore it
is enough to show that the morphism

πpr0 (ia(|F∗|)) −→ πpr0 (ia(hx))

induces an isomorphism on the associated sheaves. By Lemma 3.8.4, this is equivalent to showing that the morphism

i0a0π
pr
0 (ia(|F∗|)) −→ i0a0π

pr
0 (ia(hx))

is an isomorphism of presheaves of sets on Ho(T ). This morphism is also isomorphic to

i0a0(πpr0 (|F∗|)) −→ i0a0π
pr
0 (hx)

whose left hand side is the sheaf associated to the co-equalizer of the two projections

pr1, pr2 : πpr0 (F0)×πpr0 (hx) π
pr
0 (F0) −→ πpr0 (hx),

whereas the right hand side is the sheaf associated to πpr0 (hx). To conclude the proof, it is enough to notice that
πpr0 (F0) −→ πpr0 (hx) induces an epimorphism of sheaves (because F∗ is a hypercover) and that epimorphisms of sheaves
are always effective (see [SGA4-I, Exp. II, Théorème 4.8]).

Proof of ψ ◦ φ = Id

Let τ be a topology on T . By definition of the maps ψ and φ, to prove that ψ ◦ φ = Id, it is equivalent to show
that the functor πpr0 : Ho(SPrτ (T )) −→ Pr(Ho(T )), when restricted to the full subcategory of 0-truncated objects
in Ho(SPrτ (T )), induces an equivalence to the category of sheaves on the site (Ho(T ), τ). But this follows from
Proposition 3.7.8. 2

Corollary 3.8.5 Let M be a model category in U. The following conditions are equivalent:

1. The model category M is a t-complete U-model topos.

2. The model category M is t-complete and there exists a U-small category C and a subcategory S ⊂ C, such that
M is Quillen equivalent to a left exact Bousfield localization of MC,S (see Def. 2.3.3).

3. There exists a U-small S-site (T, τ) such that M is Quillen equivalent to SPrτ (T ).

Proof: The equivalence of (2) and (3) follows immediately from Theorem 2.3.5 and the delocalization theorem
[D-K2, Thm. 2.5], while (1) and (3) are equivalent by Theorem 3.8.3. 2

The previous results imply in particular the following interesting rigidity property for S-groupoids.
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Corollary 3.8.6 Let T be a U-small S-category such that Ho(T ) is a groupoid (i.e. every morphism in T is invertible
up to homotopy). Then, there is no non-trivial t-complete left exact Bousfield localization of SPr(T ).

Proof: In fact, there is no non-trivial topology on a groupoid, and therefore there is no non-trivial S-topology on
T . 2

Remark 3.8.7 1. There exist t-complete U-model topoi which are not Quillen equivalent to some SPrτ (T ), for
T a U-small category. Indeed, when T is a category, the model category SPrτ (T ) is such that any object is a
homotopy colimits of 0-truncated objects (this is because representable objects are 0-truncated). It is not difficult
to see that this last property is not satisfied when T is a general S-category. For example, let T = BK(Z, 1) be
the S-category with a unique object and the simplicial monoid K(Z, 1) as simplicial set of endomorphisms. Then,
SPr(T ) is the model category of simplicial sets together with an action of K(Z, 1), and 0-truncated objects in
SPr(T ) are all equivalent to discrete simplicial set with a trivial action of K(Z, 1). Therefore any homotopy
colimit of such will be a simplicial set with a trivial action by K(Z, 1). However, the action of K(Z, 1) on itself
by left translations is not equivalent to a trivial one.

2. As observed by J. Lurie, there are examples of left exact Bousfield localization of SPr(T ) which are not of the form
SPrτ (T ). To see this, let (T, τ) be a Grothendieck site and consider the left Bousfield localization LcovSPr(T )
of SPr(T ) along only those hypercovers which are nerves of coverings (obviously, not all hypercovers are of this
kind). Now, an example due to C. Simpson shows that there are Grothendieck sites (T, τ) such that LcovSPr(T )
is not the same as SPrτ (T ) (see for example [DHI, Ex. A.10]). However, LcovSPr(T ) is a left exact Bousfield
localization of SPr(T ), and the topology it induces on T via the procedure used in the proof of Theorem 3.8.3,
coincides with τ . Of course, the point here is that LcovSPr(T ) is not a t-complete model category. This shows
that one can not omit the hypothesis of t-completeness in Theorem 3.8.3.

3. Though the hypothesis of t-completeness in Theorem 3.8.3 is quite natural, and allows for a clean explanation in
terms of S-topologies, it could be interesting to look for a similar comparison result without such an assumption.
One way to proceed would be to introduce a notion of hyper-topology on a category (or more generally on
an S-category), a notion which was suggested to us by some independent remarks of V. Hinich, A. Joyal and
C. Simpson. A hyper-topology on a category would be essentially the same thing as a topology with the
difference that one specifies directly the hypercovers and not only the coverings; the conditions it should satisfy
are analogous to the conditions imposed on the family of coverings in the usual definition of a Grothendieck
(pre)topology. The main point here is that for a given Grothendieck site (T, τ), the two hyper-topologies defined
using all τ -hypercovers on one side or only bounded τ -coverings on the other side, will not be equivalent in
general. It seems reasonable to us that our Theorem 3.8.3 can be generalized to a correspondence between
hyper-topologies on T and arbitrary left exact Bousfield localizations of SPr(T ). This notion of hypertopology
seems to be closely related to Cisinki’s results in [Cis].

4. Theorem 3.8.3 suggests also a way to think of higher topologies on n-categories (and of higher topoi) for n ≥ 1
as appropriate left exact localizations. In this case, the explicit notion of higher topology (that one has to
reconstruct e.g. assuming the Theorem still holds for higher categories), will obviously depend on more then
the associated homotopy category. For example, for the case of 2-categories, as opposed to the case when all
i-morphisms are invertible for i > 1 (see Remark 3.1.2), a topology should give rise to some kind of topologies
on the various categories of 1-morphisms and these topologies should satisfy some compatibility condition with
respect to the composition.

We finish this paragraph with the following definition.

Definition 3.8.8 An U−S-topos is an S-category which is isomorphic in Ho(S−Cat) to some LSPrτ (T ), for (T, τ)
a U-small S-site.

4 Stacks over pseudo-model categories

In this Section we define the notion of a model pre-topology on a model category and the notion of stacks on such model
sites. A model pre-topology is a homotopy variation of the usual notion of a Grothendieck pre-topology and it reduces
to the latter when the model structure is trivial (i.e. when equivalences are isomorphisms and any map is a fibration
and a cofibration). We develop the theory in the slightly more general context of pseudo-model categories, i.e of full
subactegories of model categories that are closed under equivalences and homotopy pull-backs (see Definition 4.1.1).
We have chosen to work in this more general context because in some applications we will need to use subactegories
of model categories defined by homotopy invariant conditions but not necessarily closed under small limits and/or
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colimits (e.g., certain subcategories of objects of finite presentation). The reader is however strongly encouraged to
cancel everywhere the word pseudo- in the following and to restore it only when interested in some application that
requires such a degree of generality (as for example, the problem of defining étale K-theory on the pseudo-model
category of connective commutative S-algebras, see Prop. 5.1.2). On the other hand, the theory itself presents no
additional difficulty, except possibly for the linguistic one.

4.1 Model categories of pre-stacks on a pseudo-model category

In this subsection we will define the (model)category of pre-stacks on a pseudo-model category which is essentially a
category with weak equivalences that admits a nice embedding into a model category.

Definition 4.1.1 A U-small pseudo-model category is a triple (C, S, ι) where C is a U-small category, S ⊂ C is a
subcategory of C and ι : C →M is a functor to a model U-category M satisfying the following four conditions.

1. The functor ι is fully faithful.

2. One has ι(S) = W ∩ ι(C), where W is the set of weak equivalences in the model category M .

3. The category C is closed under equivalences in M , i.e. if x → y is an equivalence in M and x (resp. y) is in
the image of ι, then so is y (resp. x).

4. The category C is closed under homotopy pullbacks in M .

The localization S−1C will be called the homotopy category of (C, S) and often denoted by Ho(C, S) or simply Ho(C)
when the choice of S is unambiguous.

Condition (4) of the previous definition can be precised as follows. Denoting by Ho(ι) : S−1C → Ho(M) the
functor induced by ι (due to (2).), which is fully faithful due to (1) and (3), the image of Ho(ι), that coincides with
its essential immage, is closed under homotopy pullbacks.

Note also that because of condition (3) of Definition 4.1.1, the functor ι is an isomorphism from C to its essential
image in M . Hence we will most of the time identify C with its image ι(C) in the model category M ; therefore an
object x ∈ C will be called fibrant (respectively, cofibrant) in C if ι(x) is fibrant (resp. cofibrant) in M . Moreover, we
will sometimes call the maps in S simply equivalences.

Conditions (3) and (4) imply in particular that for any diagram

x
p // y

z

OO

of fibrant objects in C, such that p is a fibration, the fibered product x×z y exists. Indeed, this fibered product exists
in the ambient model category M , and being equivalent to the homotopy fibered product, it also belongs to C by
condition (3) and (4).

Remark 4.1.2

1. Being a pseudo-model category is not a self-dual property, in the sense that if M is a pseuo-model category, then
Mop is not pseudo-model in general. Objects satisfying Definition 4.1.1 should be called more correctly right
pseudo-model categories and the dual definition (i.e. closure by homotopy push-outs) should deserve the name
of left pseudo-model category. However, to simplify the terminology, we fix once for all definition 4.1.1 as it is
stated.

2. Note that if M is a model category with weak equivalences W , the triple (M,W, IdM ) is a pseudo-model category.
Moreover, a pseudo-model category is essentially a model category. In fact, conditions (1) − (3) imply that C
satisfies conditions (1), (2) and (4) of the definition of a model structure in the sense of [Ho, Def. 1.1.3]. However,
C is not exactly a model category in general, since it is not required to be complete and co-complete (see [Ho,
Def. 1.1.4]), and the lifting property (3) of [Ho, Def. 1.1.3] is not necessarily satisfied.

3. If C is a complete and co-complete category and S consists of all isomorphisms in C, then (C, S, IdC) is a trivial
pseudo-model category, where we consider on C the trivial model structure with equivalences consisting of all
isomorphisms and any map being a fibration (and a cofibration). If C is not necessarily complete and co-complete
but has finite limits, then we may view it as a trivial pseudo-model category by replacing it with its essential
image in Pr(C) or SPr(C), endowed with the trivial model stuctures, and taking S to be all the isomorphisms.
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Example 4.1.3

1. Let k be a commutative ring and M := Ch(k)op the opposite model category of unbounded chain complexes of
k-modules (see [Ho, Def. 2.3.3]). The full subcategory C ↪→M of homologically positive objects (i.e. objects P•
such that Hi(P•) = 0 for i < 0) is a pseudo-model category.

2. Let k be a commutative ring (respectively, a field of characteristic zero) and let M := (E∞−Algk)op (respectively,
M = CDGAop

k ) be the opposite model category of E∞-algebras over the category of unbounded cochain complexes
of k-modules (resp., the opposite model category of commutative and unital differential graded k-algebras in
non-positive degrees) which belong to U (see for example [Hin] for a description of these model structures). We
say that an object A of M is finitely presented if for any filtered direct diagram C : J → Mop, with J ∈ U, the
natural map

hocolimj∈JMapMop(A,Cj) −→ MapMop(A,hocolimj∈JCj)

is an equivalence of simplicial sets. Here MapMop(−,−) denotes the mapping spaces (or function complexes) in
the model category Mop (see [Ho, §5.4]). The reader will check that the full subcategory C ↪→ M of finitely
presented objects is a pseudo-model category.

3. Let A be a commutative S-algebra as defined in [EKMM, Ch. 2, §3]. Let M be the opposite category of the
comma model category of commutative S-algebras under A: an object in M is then a map of commutative
S-algebras A → B. Then, the full subcategory C ↪→ M consisting of finitely presented A-algebras (see the
previous example or Definition 5.2.1) is a pseudo-model category. The full subcategory C ↪→ M consisting of
étale maps A → B (see Definition 5.2.3) is also a pseudo-model category. This pseudo-model category will be
called the small étale site over A.

4. Let X be a scheme and C(X,O) be the category of unbounded cochain complexes of O-modules. There exists a
model structure on C(X,O) where the equivalences are the local quasi-isomorphisms. Then, the full subcategory
of C(X,O) consisting of perfect complexes is a pseudo-model category.

Recall from Subsection 2.3.2 that for any category C in U and any subcategory S ⊂ C, we have defined (Definition

2.3.3) the model category SSetC,SU of restriced diagrams on (C, S) of simplicial sets. Below, we will consider restricted
diagrams on (Cop, Sop), where (C, S, ι) is a pseudo-model category.

Definition 4.1.4 1. Let (C, S) be a category with a distinguished subset of morphisms. The model category

SSetC
op,Sop

U , of restricted diagrams of simplicial sets on (Cop, Sop) will be denoted by (C, S)∧ and called the
model category of pre-stacks on (C, S) (note that if (C, S, ι) is a pseudo-model category, (C, S)∧ does not depend
on ι).

2. Let (C, S, ι) be a pseudo-model category and let Cc (resp. Cf , resp. Ccf ) be the full subcategory of C consisting
of cofibrant (resp. fibrant, resp cofibrant and fibrant) objects, and Sc := Cc ∩ S (resp. Sf := Cf ∩ S, resp.
Scf := Ccf ∩ S). We will denote by ((C, S)c)∧ (resp. ((C, S)f )∧, resp. ((C, S)cf )∧) the model category of
restricted diagrams of U-simplicial sets on (Cc, Sc)op (resp. on (Cf , Sf )op, resp. on (Ccf , Scf )op).

Objects of (C, S)∧ are simply functors F : Cop −→ SSetU and, as observed in Subsection 2.3.2, F is fibrant in
(C, S)∧ if and only if it is objectwise fibrant and preserves equivalences.

The category (C, S)∧ is naturally tensored and co-tensored over SSetU, with external products and exponential
objects defined objectwise. This makes (C, S)∧ into a simplicial closed model category. This model category is
furthermore left proper, U-cellular and U-combinatorial (see [Hi, Ch. 14], [Du2] and Appendix A). The derived
simplicial Hom’s of the model category (C, S)∧ will be denoted by

RwHom(−,−) : Ho((C, S)∧)op ×Ho((C, S)∧) −→ Ho((C, S)∧).

The derived simplicial Hom’s of the model categories ((C, S)c)∧, ((C, S)f )∧ and ((C, S)cf )∧, will be denoted similarly
by

Rw,cHom(−,−) Rw,fHom(−,−) Rw,cfHom(−,−).

For an object x ∈ C, the evaluation functor j∗x : (C, S)∧ −→ SSetU is a right Quillen functor. Its left adjoint
is denoted by (jx)! : SSetU −→ (C, S)∧. We note that there is a canonical isomorphism hx ' (jx)!(∗) in (C, S)∧,
where hx : Cop −→ SSetU sends an object y ∈ C to the constant simplicial set Hom(y, x). More generally, for any
A ∈ SSetU, one has (jx)!(A) ' A⊗ hx.

As (C, S)∧ is a left Bousfield localization of SPr(C), the identity functor Id : SPr(C) −→ (C, S)∧ is left Quillen. In
particular, homotopy colimits of diagrams in (C, S)∧ can be computed in the objectwise model category SPr(C). On
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the contrary, homotopy limits in (C, S)∧ are not computed in the objectwise model structure; moreover, the identity
functor Id : (C, S)∧ −→ SPr(C) does not preserve homotopy fibered products in general.

As explained in Subsection 2.3.2 (before Corollary 2.3.6), if (C, S) and (C ′, S′) are categories with distinguished
subsets of morphisms (e.g., pseudo-model categories) and f : C → C ′ is a functor sending S into S′, then we have a
direct and inverse image Quillen adjunction

f! : (C, S)∧ −→ (C, S′)∧ (C, S)∧ ←− (C ′, S′)∧ : f∗.

In particular, if (C, S, ι) is a pseudo-model category, we may consider the inclusions

(Cc, Sc) ⊂ (C, S) (Cf , Sf ) ⊂ (C, S) (Ccf , Scf ) ⊂ (C, S).

As a consequence of Theorem 2.3.5 (or by a direct check), we get

Proposition 4.1.5 Let (C, S, ι) be a pseudo-model category. The natural inclusions

ic : (C, S)c ↪→ (C, S) if : (C, S)f ↪→ (C, S) icf : (C, S)cf ↪→ (C, S),

induce right Quillen equivalences

i∗c : (C, S)∧ ' ((C, S)c)∧ i∗f : (C, S)∧ ' ((C, S)f )∧ i∗cf : (C, S)∧ ' ((C, S)cf )∧.

These equivalences are furthermore compatible with derived simplicial Hom, in the sense that there exist natural
isomorphisms

Rw,cHom(R(ic)
∗(−),R(ic)

∗(−)) ' RwHom(−,−)

Rw,fHom(R(if )∗(−),R(if )∗(−)) ' RwHom(−,−)

Rw,cfHom(R(icf )∗(−),R(icf )∗(−)) ' RwHom(−,−).

4.2 The Yoneda embedding of a pseudo-model category

Let us fix a pseudo-model category (C, S, ι : C →M). Throughout this subsection we will also fix a cofibrant resolution
functor (Γ : M −→ M∆, i) in the model category M (see [Hi, 17.1.3, (1)]). This means that for any object x ∈ M ,
Γ(x) is a co-simplicial object in M , which is cofibrant for the Reedy model structure on M∆, together with a natural
equivalence i(x) : Γ(x) −→ c∗(x), c∗(x) being the constant co-simplicial object in M at x. Let us remark that when
the model category M is simplicial, one can use the standard cofibrant resolution functor Γ(x) := ∆∗ ⊗Q(x), where
Q is a cofibrant replacement functor in M .

We define the functor h : C −→ SPr(C), by sending each x ∈ C to the simplicial presheaf

hx : Mop −→ SSetU
y 7→ HomM (Γ(y), x),

where, to be more explicit, the presheaf of n-simplices of hx is given by the formula

(hx)n(−) := HomM (Γ(−)n, x).

Note that for any y ∈ M , Γ(y)n → y is an equivalence in M , therefore y ∈ C implies that Γ(y) ∈ C∆ (since C is a
pseudo-model category).

We warn the reader that the two functors h and h from C to (C, S)∧ are different and should not be confused.
For any x ∈ C, hx is a presheaf of discrete simplicial sets (i.e. a presheaf of sets) whereas hx is an actual simplicial
presheaf. The natural equivalence i(−) : Γ(−) −→ c∗(−) induces a morphism in (C, S)∧

hx = Hom(c∗(−), x) −→ Hom(Γ(−), x) = hx,

which is functorial in x ∈M .
If, for a moment we denote by hC : C −→ (C, S)∧ and by hM : M −→ (M,W )∧ the functor defined for the

pseudo-model categories (C, S, ι) and (M,W, Id), respectively, we have a commutative diagram

C

ι

��

hC // (C, S)∧

M
hM // M∧

ι∗

OO
(2)

where ι∗ is the restriction, right Quillen functor.
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Lemma 4.2.1 Both functors h : C −→ SPr(C) and h : C −→ (C, S)∧ preserves fibrant objects and equivalences
between them.

Proof: The statement for h : M −→ SPr(M) follows from the standard properties of mapping spaces, see [Ho,
§5.4] or [Hi, Prop. 18.1.3, Thm. 18.8.7]. The statement for h : M −→ M∧ follows from the previous one and from
[Hi, Thm. 18.8.7 (2)]. Finally, the statements for hC : C −→ SPr(C) and h : C −→ (C, S)∧ follow from the previous
ones for M and from the commutativity of diagram (2), since ι∗ is right Quillen. 2

Lemma 4.2.1 enables us to define a right derived functor of h as

Rh : S−1C −→ Ho((C, S)∧)
x 7→ (h ◦R ◦ ι)(x).

where R denotes a fibrant replacement functor in M and we implicitly used the fact that Rι(x) is still in C for x ∈ C.
Also note that, by definition of (C, S)∧, the functor h : C −→ (C, S)∧ preserves equivalences, hence induces a functor
Ho(h) : S−1C −→ Ho((C, S)∧).

The reader should notice that if (Γ′, i′) is another cofibrant resolution functor in M , then the two derived functor
Rh and Rh′ obtained using respectively Γ and Γ′, are naturally isomorphic. Therefore, our construction does not
depend on the choice of Γ once one moves to the homotopy category.

Lemma 4.2.2 The functors Ho(h) and Rh from S−1C to Ho((C, S)∧) are canonically isomorphic. More precisely, if
R be a fibrant replacement functor in M , then the natural equivalence i(−) : Γ(−) −→ c∗(−) induces, for any x ∈ C,
an equivalence in (C, S)∧ (hence a fibrant replacement, by Lemma 4.2.1)

hx = Hom(−, x) −→ Hom(Γ(−), R(x)) = hR(x).

Proof: First we show that if x is a fibrant and cofibrant object in C, then the natural morphism hx −→ hx is an
equivalence in ((C, S)c)∧. To see this, let x −→ x∗ be a simplicial resolution of x in M , hence in C (see [Hi, 17.1.2]).
We consider the following two simplicial presheaves

hx∗ : (Cc)op −→ SSetU
y 7→ Hom(y, x∗),

hx∗ : (Cc)op −→ SSetU
y 7→ diag(Hom(Γ(y), x∗)).

The augmentation Γ(−) −→ c(−) and co-augmentation x −→ x∗ induce a commutative diagram in ((C, S)cf )∧

hx
a //

b

��

hx

d

��
hx∗

c // hx∗ .

By the properties of mapping spaces (see [Ho, §5.4]), both morphisms c and d are equivalences in SPr(Cc). Further-
more, the morphism hx −→ hx∗ is isomorphic in Ho(SPr(Cc)) to the induced morphism hx −→ hocolim[n]∈∆hxn . As
each morphism hx −→ hxn is an equivalence in ((C, S)c)∧, this implies that d is an equivalence in ((C, S)c)∧. We
deduce from this that also the natural morphism hx −→ hx is an equivalence in ((C, S)c)∧. Let us show how this
implies that for any x ∈ C, the natural morphism hx −→ hRx is an equivalence in (C, S)∧.

Since for any equivalence z → z′ in C, the induced map hz → hz′ is an equivalence in (C, S)∧ (see Remark 2.3.4),
it is enough to show that, for any x ∈ C, the canonical map hRx −→ hRx is an equivalence. By the Yoneda lemma
for Ho((C, S)∧), it is enough to show that the induced map HomHo((C,S)∧)(hRx, F ) → HomHo((C,S)∧)(hRx, F ) is a
bijection for any F ∈ Ho((C, S)∧). Now,

HomHo((C,S)∧)(G,F ) ' π0(RwHom(G,F ))

for any G and F in (C, S)∧, hence it is enough to show that we have an induced equivalence of simplicial sets

RwHom(hRx, F )) ' RwHom(hx, F ).

By the properties of mapping spaces (see [Ho, §5.4]), if Q denotes a cofibrant replacement functor in M , the map
hRx −→ hQRx is an equivalence in (C, S)∧; therefore, if we denote by (−)c th restriction to Cc, we have an equivalence
of simplicial sets

RwHom(hRx, F )) ' Rw,cHom((hQRx)c, Fc).
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Since QR(x) is fibrant and cofibrant, we have already proved that

Rw,cHom((hQRx)c, Fc) −→ Rw,cHom((hx)c, Fc)

is an equivalence of simplicial sets and we conclude since Rw,cHom((hx)c, Fc)) ' RwHom(hx, F ) by Proposition 4.1.5.
2

The main result of this subsection is the following theorem.

Theorem 4.2.3 If (C, S, ι : C → M) is a pseudo-model category, the functor Rh : S−1C −→ Ho((C, S)∧) is fully
faithful.

Proof: We will identify C as a full subcategory of M and S−1C as a full subcategory of Ho(M) using ι. For any
x and y in S−1C, letting R be a fibrant replacement functor in M , one has

HomS−1C(x, y) ' π0(HomM (Γ(x), R(y))

since Ho(ι) is fully faithful and Hom(Γ(−), R(−)) is a homotopy mapping complex in M (see [Ho, 5.4]). As (C, S, ι) is
a pseudo-model category, we have HomM (Γ(x)), R(y)) = HomC(Γ(x), R(y)). But, by definition of h and the enriched
Yoneda lemma in (C, S)∧, we have isomorphisms of simplicial sets

HomC(Γ(x), R(y)) ' hR(y)(x) ' Hom(C,S)∧(hx, hR(y)).

Now, hx is cofibrant in (C, S)∧ and, by Lemma 4.2.1, hR(y) is fibrant in (C, S)∧, so that

π0(Hom(C,S)∧(hx, hR(y))) ' HomHo((C,S)∧)(hx, hR(y))

since (C, S)∧ is a simplicial model category. Finally, by Lemma 4.2.2 we have

HomHo((C,S)∧)(hx, hR(y)) ' HomHo((C,S)∧)(Rhx,Rhy)

showing that Rh is fully faithful. 2

Corollary 4.2.4 For any x ∈ C and any F ∈ SPr(C), there is an isomorphism in Ho(SSet)

RwHom(C,S)∧(hx, F ) ' F (x).

Definition 4.2.5 For any pseudo-model category (C, S, ι) which is U-small, the fully faithful emdedding

Rh : Ho(C, S) −→ Ho((C, S)∧)

is called the Yoneda embedding of (C, S, ι).

Remark 4.2.6

1. According to Definition 4.2.5, the Yoneda embedding of a pseudo-model category a priori depends on the em-
bedding ι : C ↪→M . However, it will be shown in 4.7.3 that it only depends on the pair (C, S).

2. The Yoneda embedding for (pseudo-)model categories is one of the key ingredients used in [To-Ve 4] to prove that,
for a large class of Waldhausen categories, the K-theory only depends on the Dwyer-Kan simplicial localization
(though it is known to depend on strictly more than the usual localization).

4.3 Model pre-topologies and pseudo-model sites

Definition 4.3.1 A model pre-topology τ on a U-small pseudo-model category (C, S, ι), is the datum for any object
x ∈ C, of a set Covτ (x) of subsets of objects in Ho(C, S)/x, called τ -covering families of x, satisfying the following
three conditions.

1. (Stability) For all x ∈ C and any isomorphism y → x in Ho(C, S), the one-element set {y → x} is in Covτ (x).

2. (Composition) If {ui → x}i∈I ∈ Covτ (x), and for any i ∈ I, {vij → ui}j∈Ji ∈ Cov − τ(ui), the family
{vij → x}i∈I,j∈Ji is in Covτ (x).

3. (Homotopy base change) Assume the two previous conditions hold. For any {ui → x}i∈I ∈ Covτ (x), and any
morphism in Ho(C, S), y → x, the family {ui ×hx y → y}i∈I is in Covτ (y).
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A U-small pseudo-model category (C, S, ι) together with a model pre-topology τ will be called a U-small pseudo-model
site.

Remark 4.3.2

1. Note that in the third condition (Homotopy base-change) we used the homotopy fibered product of diagrams
x // z yoo in Ho(M). By this we mean the homotopy fibered product of a lift (up to equivalence) of this

diagram to M . This is a well defined object in Ho(M) but only up to a non-canonical isomorphism in Ho(M)
(in particular it is not functorially defined). However, condition (3) of the previous definition still makes sense
because we assumed the two previous conditions (1) and (2) hold.

2. When the pseudo-model structure on (C, S) is trivial as in Remark 4.1.2 2, a model pre-topology on (C, S) is
the same thing as a Grothendieck pre-topology on the category C as defined in [SGA4-I, Exp. II]. Indeed, in
this case we have a canonical identification Ho(C, S) = C under which homotopy fibered products correspond
to fibered products.

Let (C, S, ι; τ) be a U-small pseudo-model site and Ho(C, S) = S−1C the homotopy category of (C, S). A sieve R
in Ho(C, S) over an object x ∈ Ho(C, S) will be called a τ -covering sieve if it contains a τ -covering family.

Lemma 4.3.3 For any U-small pseudo-model site (C, S, ι; τ), the τ -covering sieves form a Grothendieck topology on
Ho(C, S).

Proof: The stability and composition axioms of Definition 4.3.1 clearly imply conditions (i’) and (iii’) of [M-M, Ch.
III, §2, Def. 2]. It is also clear that if u : y → x is any morphism in Ho(C, S), and if R is a sieve on x which contains
a τ -covering family {ui → x}i∈I , then the pull-back sieve u∗(R) contains the family {ui ×hx y → y}i∈I . Therefore, the
homotopy base change axiom of Definition 4.3.1 implies condition (ii’) of [M-M, Ch. III, §2, Def. 2]. 2

The previous lemma shows that any (U-small) pseudo-model site (C, S, ι τ) gives rise to a (U-small) S-site
(L(C, S), τ), where L(C, S) is the Dwyer-Kan localization of C with respect to S and τ is the Grothendieck topology
on Ho(L(C, S)) = Ho(C, S) defined by τ -covering sieves. We will say that the S-topology τ on L(C, S) is generated
by the pre-topology τ on (C, S).

Conversely, a topology on Ho(C, S) induces a model pre-topology on the pseudo-model category (C, S, ι) in the
following way. A subset of objects {ui → x}i∈I in Ho(C, S)/x is defined to be a τ -covering family if the sieve it
generates is a covering sieve (for the given topology on Ho(C, S)).

Lemma 4.3.4 Let (C, S, ι) be a U-small pseudo-model category and let τ be a Grothendieck topology on Ho(C, S).
Then, the τ -covering families in Ho(C, S) defined above form a model pre-topology on (C, S, ι), called the induced
model pre-topology.

Proof: Conditions (1) and (2) of Definition 4.3.1 are clearly satisfied and it only remains to check condition (3).
For this, let us recall that the homotopy fibered products have the following semi-universal property in Ho(C, S). For
any commutative diagram in Ho(C, S)

x //

��

y

��
z // t,

there exists a morphism x→ z×ht y compatible with the two projections to z and y. Using this property one sees that
for any subset of objects {ui → x}i∈I in Ho(C, S)/x, and any morphism u : y → x, the sieve over y generated by the
family {ui ×hx y → y}i∈I coincides with the pull-back by u of the sieve generated by {ui → x}i∈I . Therefore, the base
change axiom (ii’) of [M-M, Ch. III, §2, Def. 2] implies the homotopy base change property (3) of Definition 4.3.1. 2

Lemmas 4.3.3 and 4.3.4 show that model pre-topologies on a pseudo-model category (C, S) are essentially the same
as Grothendieck topologies on Ho(C, S), and therefore the same thing as S-topologies on the S-category L(C, S). As
in the usual case (i.e. for the trivial model structure on (C, S)) the two above constructions are not exactly mutually
inverse but we have the following

Proposition 4.3.5 Let (C, S, ι) be a pseudo-model category. The rule assigning to a model pre-topology τ on (C, S, ι)
the S-topology on L(C, S) generated by τ and the rule assigning to an S-topology on L(C, S) the induced model pre-
topology on (C, S, ι), induce a bijection
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{
Saturated model

pre-topologies on (C,S,ι)

}
oo //

{
S-topologies
on L(C,S)

}
where we call a model pretopology τ saturated if any family of morphisms in Ho(C, S)/x that contains a τ -covering
family for x is again a τ -covering family for x.

Proof: Straightforward from Lemma 4.3.3 and 4.3.4. 2

Example 4.3.6

1. Topological spaces. Let us take as C = M the model category of U-topological spaces, Top, with S = W consisting
of the usual weak equivalences. We define a model pre-topology τ in the following way. A family of morphism
in Ho(Top), {Xi → X}i∈I , I ∈ U, is defined to be in Covτ (X) if the induced map

∐
i∈I π0(Xi) −→ π0(X) is

surjective. The reader will check easily that this defines a topology on Top in the sense of Definition 4.3.1.

2. Strong model pre-topologies for E∞-algebras over k. Let k be a commutative ring (respectively, a field of
characteristic zero) and let C = M := (E∞ − Algk)op (resp. C = M := (CDGA≤0; k)op) be the opposite model
category of E∞-algebras over the category of (unbounded) complexes of k-modules (resp., the opposite model
category of commutative and unital differential graded k-algebras in negative degrees) which belong to U; see
for example [Hin] and [Bo-Gu] for a description of these model structures. Let τ be one of the usual topologies
defined on k-schemes (e.g. Zariski, Nisnevich, étale, ffpf or ffqc). Let us define the strong topology τstr on M in
the sense of Definition 4.3.1, as follows. A family of morphisms in Ho(Mop), {B → Ai}i∈I , I ∈ U, is defined to
be in Covτstr(B) if it satisfies the two following conditions.

• The induced family of morphisms of affine k-schemes {SpecH0(Ai)→ SpecH0(B)}i∈I is a τ -covering.

• For any i ∈ I, one has H∗(Ai) ' H∗(B)⊗H0(B) H
0(Ai).

In the case of negatively graded commutative differential graded algebras over a field of characteristic zero, the
strong étale topology (ét)str has been considered in [Be]. We will use these kind of model pre-topologies in
[To-Ve 5] to give another approach to the theory of DG-schemes of [Ci-Ka1] and [Ci-Ka2] (or, more generally, to
the theory of E∞-schemes, when the base ring is not a field of characteristic zero) by viewing them as geometric
stacks over the category of complexes of k-modules.

3. Semi-strong model pre-topologies for E∞-algebras over k. With the same notations as in the previous example, we
define the semi-strong topology τsstr on M by stipulating that a family of morphisms in Ho(Mop), {B → Ai}i∈I ,
I ∈ U, is in Covτsstr(B) if the induced family of morphisms of affine k-schemes

{SpecH∗(Ai)→ SpecH∗(B)}i∈I

is a τ -covering.

4. The Tor≥0 model pre-topology for E∞-algebras over k. Let k be a commutative ring and C = M := (E∞−Algk)op

be the opposite model category of E∞-algebras over the category of (unbounded) complexes of k-modules which
belong to U. For any E∞-algebra A, we denote by ModA the model category of A-modules (see [Hin] or [Sp]). We
define the positive Tor-dimension pre-topology, Tor≥0, on M , as follows. A family of morphisms in Ho(Mop),
{fi : B → Ai}i∈I , I ∈ U, is defined to be in CovTor≥0

(B) if it satisfies the two following conditions.

• For any i ∈ I, the derived base-change functor Lf∗i = −⊗L
B Ai : Ho(ModB) −→ Ho(ModAi) preserves the

subcategories of positive modules (i.e. of modules P such that Hi(P ) = 0 for any i ≤ 0).

• The family of derived base-change functors

{Lf∗i : Ho(ModB) −→ Ho(ModAi)}i∈I

is conservative (i.e. a morphism in Ho(ModB) is an isomorphism if and only if, for any i ∈ I, its image in
Ho(ModAi) is an isomorphism).

This positive Tor-dimension pre-topology is particularly relevant in interpreting higher tannakian duality ([To1])
as a part of algebraic geometry over the category of unbounded complexes of k-modules. We will come back on
this in [To-Ve 5].
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We fix a model pre-topology τ on a pseudo-model category (C, S, ι) and consider the pseudo-model site (C, S, ι; τ).
The induced Grothendieck topology on Ho(C, S) described in the previous paragraphs will still be denoted by τ .

Let F ∈ (C, S)∧ be a pre-stack on the pseudo-model site (C, S, ι; τ), and let F → RF be a fibrant replacement of
F in (C, S)∧. We may consider the presheaf of connected components of RF , defined as

πpr0 (RF ) : Cop −→ Set
x 7→ π0(RF (x)).

Since any other fibrant model of F in (C, S)∧ is actually objectwise equivalent to RF , the presheaf πpr0 (RF ) is well
defined up to a unique isomorphism. This defines a functor

πeq0 : (C, S)∧ −→ Pr(C)
F 7→ πpr0 (RF ).

As RF is fibrant, it sends equivalences in C to equivalences of simplicial sets, hence the presheaf πeq0 (F ) always sends
equivalences in C to isomorphisms, so it factors through Ho(C, S)op. Again, this defines a functor

πeq0 : (C, S)∧ −→ Pr(Ho(C, S))
F 7→ πeq0 (F ).

Finally, if F −→ G is an equivalence in (C, S)∧, the induced morphism RF −→ RG is an objectwise equivalence,
and therefore the induced morphism πeq0 (F ) −→ πeq0 (G) is an isomorphism of presheaves of sets. In other words, the
functor πeq0 factors through the homotopy category Ho((C, S)∧) as

πeq0 : Ho((C, S)∧) −→ Pr(Ho(C, S)).

Definition 4.3.7 Let (C, S, ι; τ) be a pseudo-model site in U.

1. For any object F ∈ (C, S)∧, the sheaf associated to the presheaf πeq0 (F ) is denoted by πτ0 (F ) (or π0(F ) if the
topology τ is clear from the context). It is a usual sheaf on the site (Ho(C, S), τ), and is called the sheaf of
connected components of F ;

2. A morphism f : F −→ G in Ho((C, S)∧) is called a τ -covering (or just a covering if the topology τ is clear from
the context) if the induced morphism of presheaves πeq0 (F ) −→ πeq0 (G) induces an epimorphism of sheaves on
Ho(C, S) for the topology τ ;

3. A morphism F −→ G in (C, S)∧ is called a τ -covering (or just a covering if the topology τ is clear) if the induced
morphism in Ho((C, S)∧) is a τ -covering according to the previous definition.

Coverings in the model category (C, S)∧ behave exactly as coverings in the model category of pre-stacks over an
S-site (see Subsection 3.1). It is easy to check (compare to Proposition 3.1.4) that a morphism F −→ G between
fibrant objects in (C, S)∧ is a τ -covering iff for any object x ∈ C and any morphism hx −→ G in (C, S)∧, there exists
a covering family {ui → x}i∈I in C (meaning that its image in Ho(C, S) is a τ -covering family), and for each i ∈ I, a
commutative diagram in Ho((C, S)∧)

F // G

hui //

OO

hx.

OO

Moreover, we have the following analog of proposition 3.1.6.

Proposition 4.3.8 Let (C, S, ι; τ) be a pseudo-model site.

1. A morphism in SPr(T ) which is a composition of coverings is a covering.

2. Let

F ′
f ′ //

��

G′

��
F

f
// G

be a homotopy cartesian diagram in (C, S)∧. If f is a covering then so is f ′.
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3. Let F
u // G

v // H be two morphisms in (C, S)∧. If the morphism v ◦ u is a covering then so is v.

4. Let

F ′
f ′ //

��

G′

p

��
F

f
// G

be a homotopy cartesian diagram in (C, S)∧. If p and f ′ are coverings then so is f .

Proof: Easy exercise left to the reader. 2

4.4 Simplicial objects and hypercovers

In this subsection we fix a pseudo-model site (C, S, ι; τ) in U and keep the notations of Subsection 3.2, with SPr(T )
replaced by (C, S)∧; more precisely we take T = L(Cop, Sop) (with the induced S-topology, see Prop. 4.3.5) and use

Theorem 2.3.5 with M = SSet to have definitions and results of Subsection 3.2 available for (C, S)∧ = SSetC
op,Sop

U .

We introduce a nice class of hypercovers that will be used in the proof of the existence of the local model structure;
this class will replace our distinguised set of hypercovers H used in the proof of Theorem 3.4.1.

Definition 4.4.1 1. An object F ∈ (C, S)∧ is called pseudo-representable if it is a U-small disjoint union of
representable presheaves

F '
∐
u∈I

hu.

2. A morphism between pseudo-representable objects

f :
∐
u∈I

hu −→
∐
v∈J

hv

is called a pseudo-fibration if for all u ∈ I, the corresponding projection

f ∈
∏
u∈I

∐
v∈J

Hom(hu, hv) −→
∐
v∈J

Hom(hu, hv) '
∐
v∈J

HomC(u, v)

is represented by a fibration in C.

3. Let
f :
∐
u∈I

hu −→
∐
v∈J

hv

be a morphism between pseudo-representable objects, and for any v ∈ J let Iv be the sub-set of I of components
hu which are sent to hv. The morphism is called a pseudo-covering if for any v ∈ J , the family of morphisms

{hu → hv}u∈Iv

corresponds to a covering family in the pseudo-model site (C, S).

4. Let x be a fibrant object in C. A pseudo-representable hypercover of x is an object F∗ −→ hx in s(C, S)∧/hx
such that for any integer n ≥ 0 the induced morphism

Fn −→ F ∂∆n

∗ ×h∂∆n
x

h∆n

x

is a pseudo-fibration and a pseudo-covering between pseudo-representable objects.

The first thing to check is that pseudo-representable hypercovers are hypercovers.

Lemma 4.4.2 A pseudo-representable hypercover F∗ −→ hx is a τ -hypercover (see Definition 3.2.3).

Proof: It is enough to check that the natural morphism

F ∂∆n

∗ ×h∂∆n
x

h∆n

x −→ FR∂∆n

∗ ×hhR∂∆n
x

hR∆n

x

is an isomorphism in Ho((C, S)∧). But this follows from the fact that h preserves finite limits (when they exists) and
the fact that (C, S) is a pseudo-model category. 2
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4.5 Local equivalences

This subsection is completely analogous (actually a bit easier, because the notion of comma site is completely harmless
here) to Subsection 3.3.

Let (C, S, ι; τ) be a U-small pseudo-model site, and x be a fibrant object in C. The comma category (C/x, S, ι) is
then endowed with its natural structure of a pseudo-model category. The underlying category is C/x, the category of
objects over x. The equivalences S in C/x are simply the morphisms whose images in C are equivalences. Finally, the
embedding ι : C −→M induces an embedding ι : C/x −→M/ι(x). The comma category M/ι(x) is endowed with its
natural model category structure (see [Ho, §1]). It is easy to check that (C/x, S, ι) is a pseudo-model category in the
sense of Definition 4.1.1.

We define a model pre-topology, still denoted by τ , on the comma pseudo-model category (C/x, S, ι) by declaring
that a family {ui → y}i∈I of objects in Ho((C/x, S))/y is a τ -covering family if its image family under the natural
functor Ho((C/x, S))/y −→ Ho((C, S))/y is a τ -covering family for y. As the object x is fibrant in (C, S) the forgetful
functor (C/x, S) −→ (C, S) preserves homotopy fibered products, and therefore one checks immediately that this
defines a model pre-topology τ on (C/x, S, ι).

Definition 4.5.1 The pseudo-model site (C/x, S, ι; τ) will be called the comma pseudo-model site of (C, S, ι; τ) over
the (fibrant) object x.

Remark 4.5.2 Note that in the case where (C, S, ι) is a right proper pseudo-model category, the hypothesis that x
is fibrant is unnecessary.

For any object x ∈ C, the evaluation functor

j∗x : (C, S)∧ −→ SSetU
F 7→ F (x)

has a left adjoint (jx)!. The adjunction

(jx)! : SSetU −→ (C, S)∧ SSetU ←− (C, S)∧ : j∗x

is clearly a Quillen adjunction.
Let F ∈ (C, S)∧, x a fibrant object in (C, S) and s ∈ πeq0 (F (x)) be represented by a morphism s : hx −→ F in

Ho((C, S)∧). By pulling-back this morphism through the functor

Rj∗x : Ho((C, S)∧) −→ Ho((C/x, S)∧)

one gets a morphism in Ho((C/x, S)∧)
s : Rj∗x(hx) −→ Rj∗x(F ).

By definition of the comma pseudo-model category (C/x, S), it is immediate that Rj∗x(hx) has a natural global point
∗ −→ Rj∗x(hx) in Ho((C/x, S)∧). Observe that the morphism ∗ −→ Rj∗x(hx) can also be seen as induced by adjunction
from the identity of hx ' L(jx)!(∗). We therefore obtain a global point

s : ∗ −→ Rj∗x(hx) −→ Rj∗x(F ).

Definition 4.5.3 1. For an integer n > 0, the sheaf πn(F, s) is defined to be

πn(F, s) := π0(Rj∗x(F )R∆n

×Rj∗x(F )R∂∆n ∗).

It is a usual sheaf on the site (Ho(C/x, S), τ) called the n-th homotopy sheaf of F pointed at s.

2. A morphism f : F −→ G in (C, S)∧ is called a π∗-equivalence (or equivalently a local equivalence) if the following
two conditions are satisfied:

(a) The induced morphism π0(F ) −→ π0(G) is an isomorphism of sheaves on Ho(C, S);

(b) For any fibrant object x ∈ (C, S), any section s ∈ πeq0 (F (x)) and any integer n > 0, the induced morphism
πn(F, s) −→ πn(G, f(s)) is an isomorphism of sheaves on Ho(C/x, S).

As observed in Subsection 3.3, an equivalence in the model category (C, S)∧ is always a π∗-equivalence, for any
model pre-topology τ on (C, S).

The π∗-equivalences in (C, S)∧ behave the same way as the π∗-equivalences in SPr(T ) (see Subsection 3.3). We
will therefore state the following basic facts without repeating their proofs.
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Lemma 4.5.4 A morphism f : F −→ G in (C, S)∧ is a π∗-equivalence if and only if for any n ≥ 0, the induced
morphism

FR∆n

−→ FR∂∆n

×hGR∂∆n G
R∆n

is a covering. In other words f is a π∗-equivalence if and only if it is a τ -hypercover when considered as a morphism
between constant simplicial objects in (C, S)∧.

Corollary 4.5.5 Let f : F −→ G be a morphism in (C, S)∧ and G′ −→ G be a covering. Then, if the induced
morphism

f ′ : F ×hG G′ −→ G′

is a π∗-equivalence, so is f .

Let f : F −→ G be a morphism in (C, S)∧. For any fibrant object x ∈ (C, S) and any morphism s : hx −→ G in
Ho((C, S)∧), let us define Fs ∈ Ho(((C, S)/x)∧) via the following homotopy cartesian square

Rj∗x(F )
Rj∗x(f) // Rj∗x(G)

Fs

OO

// •

OO

where the morphism ∗ −→ Rj∗x(G) is adjoint to the morphism s : L(jx)!(∗) ' hx −→ G.

Corollary 4.5.6 Let f : F −→ G be a morphism in (C, S)∧. With the same notations as above, the morphism f is a
π∗-equivalence if and only if for any s : hx −→ G in Ho((C, S)∧), the induced morphism Fs −→ ∗ is a π∗-equivalence
in Ho(((C, S)/x)∧).

Proposition 4.5.7 Let f : F −→ G be a π∗-equivalence in (C, S)∧ and F −→ F ′ be an objectwise cofibration (i.e. a
monomorphism). Then, the induced morphism

f ′ : F ′ −→ F ′
∐
F

G′

is a π∗-equivalence.

Proof: As F −→ F ′ is an objectwise monomorphism, F ′
∐
F G

′ is a homotopy coproduct in SPr(C), and therefore
in (C, S)∧. One can therefore replace F , G and F ′ by their fibrant models in (C, S)∧ and suppose therefore that they
preserve equivalences. The proof is then the same as in [Ja1, Prop. 2.2]. 2

4.6 The local model structure

The following result is completely similar to Theorem 3.4.1, also as far as the proof is concerned. Therefore we will
omit to repeat the complete proof below, only mentioning how to replace the set H used in the proof of Theorem 3.4.1.

Theorem 4.6.1 Let (C, S, ι; τ) be a pseudo-model site. There exists a closed model structure on SPr(C), called
the local projective model structure, for which the equivalences are the π∗-equivalences and the cofibrations are the
cofibrations for the projective model structure on (C, S)∧. Furthermore the local projective model structure is U-
combinatorial and left proper.

The category SPr(C) together with its local projective model structure will be denoted by (C, S)∼,τ .

Proof: It is essentially the same as the proof of 3.4.1. We will however give the set of morphism H that one needs
to use. We choose α to be a U-small cardinal which is bigger than the cardinality of the set of morphisms in C and
than ℵ0. Let β be a U-small cardinal such that β > 2α.

For a fibrant object x ∈ C, we consider a set Hβ(x), of representatives of the set of isomorphism classes of objects
F∗ −→ hx in s(C, S)∧/hx satisfying the following two conditions

1. The morphism F∗ −→ hx is a pseudo-representable hypercover in the sense of Definition 4.4.1.

2. For all n ≥ 0, one has Card(Fn) < β.
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We set H =
∐
x∈Cf Hβ(x), which is clearly a U-small set.

The main point of the proof is then to check that equivalences in the left Bousfield localization LH(C, S)∧ are
exactly local equivalences. The argument follows exactly the main line of the proof of Theorem 3.4.1 and we leave
details to the interested reader. 2

The following corollaries and definitions are the same as the ones following Theorem 3.4.1.

Corollary 4.6.2 The model category (C, S)∼,τ is the left Bousfield localization of (C, S)∧ with respect to the set of
morphisms {

|F∗| −→ hx|x ∈ Ob(Cf ), F∗ ∈ Hβ(x)
}
.

Proof: This is exactly the way we proved Theorem 4.6.1. 2

Corollary 4.6.3 An object F ∈ (C, S)∼,τ is fibrant if and only if it is objectwise fibrant, preserves equivalences and
satisfies the following hyperdescent condition

• For any fibrant object x ∈ C and any H∗ ∈ Hβ(x), the natural morphism

F (x) ' RwHom(hx, F ) −→ RwHom(|H∗|, F )

is an isomorphism in Ho(SSet).

Proof: This follows from Corollary 4.6.2 and from the explicit description of fibrant objects in a left Bousfield
localization (see [Hi, Thm. 4.1.1]). 2

Remark 4.6.4 As we did in Remark 3.4.6, we would like to stress here that the proof of Theorem 4.6.1 (i.e. of
Theorem 3.4.1) proves actaully both Theorem 4.6.1 and Corollary 4.6.2, in that it gives two descriptions of the same
model category (C, S)∼,τ : one as the left Bousfield localization of (C, S)∧ with respect to local equivalences and the
other as the left Bousfield localization of the same (C, S)∧ but this time with respect to hypercovers (precisely, with
respect to the set of morphisms defined in the statement of Corollary 4.6.2).

Definition 4.6.5 An object F ∈ (C, S)∧ is said to have hyperdescent (or τ -hyperdescent if the topology τ has to be
reminded) if for any fibrant object x ∈ C and any pseudo-representable hypercover H∗ −→ hx, the induced morphism

F (x) ' RwHom(hx, F ) −→ RwHom(|H∗|, F )

is an isomorphism in Ho(SSetU).

From now on, we will adopt the following terminology and notations.

Definition 4.6.6 Let (C, S, ι; τ) be a pseudo-model site in U.

• A stack on (C, S, ι; τ) is a pre-stack F ∈ (C, S)∧ that has τ -hyperdescent (Definition 4.6.5).

• The model category (C, S)∼,τ is called the model category of stacks on the pseudo-model site (C, S, ι; τ). The
category Ho((C, S)∧) (resp. Ho((C, S)∼,τ )) is called the homotopy category of pre-stacks, (resp. the homotopy
category of stacks). Objects of Ho((C, S)∧) (resp. Ho((C, S)∼,τ )) will simply be called pre-stacks on (C, S, ι)
(resp., stacks on (C, S, ι; τ)). The functor a : Ho((C, S)∧) −→ Ho((C, S)∼,τ ) will be called the associated stack
functor.

• The topology τ is said to be sub-canonical if for any x ∈ C the pre-stack Rhx ∈ Ho((C, S)∧) is a stack (in other
words if the Yoneda embedding Rhx : Ho(C, S) −→ Ho((C, S)∧) factors through the subcategory of stacks).

• For pre-stacks F and G on (C, S, ι; τ), we will denote by RwHom(F,G) ∈ Ho(SSetU) (resp. by Rw,τHom(F,G) ∈
Ho(SSetU)) the simplicial derived Hom-simplicial set computed in the simplicial model category (C, S)∧ (resp.
(C, S)∼,τ ).

As (C, S)∼,τ is a left Bousfield localization of (C, S)∧, the identity functor (C, S)∧ −→ (C, S)∼,τ is left Quillen
and its right adjoint (which is still the identity functor) induces by right derivation a fully faithful functor

j : Ho((C, S)∼,τ ) −→ Ho((C, S)∧).

Furthermore, the essential image of this inclusion functor is exactly the full subcategory consisting of objects having
the hyperdescent property. The left adjoint

a : Ho((C, S)∧) −→ Ho((C, S)∼,τ )

to the inclusion j, is a left inverse to j.
We will finish this paragraph by the following proposition.
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Proposition 4.6.7 1. Let F and G be two pre-stacks on (C, S, ι; τ). If G is a stack then the natural morphism

RwHom(F,G) −→ Rw,τHom(F,G)

is an isomorphism in Ho(SSet).

2. The functor Id : (C, S)∧ −→ (C, S)∼,τ preserves homotopy fibered products.

Proof: (1) follows formally from Corollary 4.6.2 while (2) follows from Corollary 4.5.5. 2

4.7 Comparison between the S-theory and the pseudo-model theory

In this Subsection, we fix a pseudo-model category (C, S, ι) in U, together with a pre-topology τ on it. The natural
induced topology on Ho(C, S) will be denoted again by τ . We let T be L(C, S), the simplicial localization of (C, S)
along the set S of its equivalences. As Ho(T ) = Ho(C, S) (though the two Ho(−)’s here have different meanings),
the topology τ may also be considered as an S-topology on T . Therefore, we have on one side a pseudo-model site
(C, S, ι; τ), and on the other side an S-site (T, τ), and we wish to compare the two corresponding model categories of
stacks.

Theorem 4.7.1 The two model categories (C, S)∼,τ and SPrτ (T ) are Quillen equivalent.

Proof: By Theorem 2.3.5, the model categories of pre-stacks SPr(T ) and (C, S)∧ are Quillen equivalent. Further-
more, it is quite clear that through this equivalence the notions of local equivalences in SPr(T ) and (C, S)∧ coincide.
As the local model structures are both left Bousfield localizations with respect to local equivalences, this shows that
this Quillen equivalence between (C, S)∧ and SPr(T ) induces a Quillen equivalence on the model categories of stacks.
2

Then, corollaries 3.6.2 and 3.8.5 imply the following

Corollary 4.7.2 1. The model category (C, S)∼,τ is a t-complete U-model topos.

2. The homotopy category Ho((C, S)∼,τ ) is internal.

3. There exists an isomorphism of S-categories in Ho(S − CatU)

LSPrτ (T ) ' L(C, S)∼,τ .

Now we want to compare the two Yoneda embeddings (the simplicial one and the pseudo-model one). To do
this, let us suppose now that the topology τ is sub-canonical so that the two Yoneda embeddings factor through the
embeddings of the homotopy categories of stacks:

Rh : Ho(C, S) −→ Ho((C, S)∼,τ ) Lh : Ho(T ) −→ Ho(Int(SPrτ (T ))) ' Ho(SPrτ (T )).

One has Ho(C, S) = Ho(T ), and Corollary 4.7.2 gives an equivalence of categories between Ho(SPrτ (T )) and
Ho((C, S)∼,τ ).

Corollary 4.7.3 The following diagram commutes up to an isomorphism

Ho(C, S)

∼
��

Rh // Ho((C, S)∼,τ )

∼
��

Ho(T )
Lh

// Ho(SPrτ (T )).

Proof: This follows from the fact that for any x ∈M , one has natural isomorphisms

[Rhx, F ]Ho((C,S)∼,τ ) ' F (x) ' [Lhx, F ]Ho(SPrτ (T )).

This implies that Rhx and Lhx are naturally isomorphic as objects in Ho((C, S)∧). 2
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4.8 Functoriality

In this subsection, we state and prove in detail the functoriality results and some useful criteria for continuous
morphisms and continuous equivalences between pseudo-model sites, in such a way that the reader only interested in
working with stacks over pseudo-model sites will find here a more or less self-contained treatment. However, at the
end of the subsection and in occasionally scattered remarks, we will also mention the comparison between functoriality
on pseudo-model sites and the corresponding functoriality on the associated Dwyer-Kan localization S-sites.

Recall from Subsection 4.1 (or Subsection 2.3.2 before Corollary 2.3.6) that if (C, S) and (C ′, S′) are categories
with a distinguished subset of morphisms (e.g., pseudo-model categories) and f : C → C ′ is a functor sending S into
S′, we have a Quillen adjunction

f! : (C, S)∧ −→ (C, S′)∧ (C, S)∧ ←− (C ′, S′)∧ : f∗

If (C, S, ι) is a pseudo-model category, by Proposition 4.1.5, we have in particular the following Quillen equivalences

i∗c : (C, S)∧ ' ((C, S)c)∧ i∗f : (C, S)∧ ' ((C, S)f )∧

i∗cf : (C, S)∧ ' ((C, S)cf )∧,

which will be useful to establish functorial properties of the homotopy category Ho((C, S)∧). Indeed, if f : (C, S) −→
(C ′, S′) is a functor such that f(Scf ) ⊂ S′ (e.g. a left or right Quillen functor), then f induces well defined functors

Rf∗ : Ho((C ′, S′)∧) −→ Ho(((C, S)cf )∧) ' Ho((C, S)∧),

Lf! : Ho((C, S)∧) ' Ho(((C, S)cf )∧) −→ Ho((C ′, S′)∧).

The (derived) inverse image functor Rf∗ is clearly right adjoint to the (derived) direct image functor Lf!.
The reader should be warned that the direct and inverse image functors are not, in general, functorial in f .

However, the following proposition ensures in many cases the functoriality of these constructions.

Proposition 4.8.1 Let (C, S), (C ′, S′) and (C ′′, S′′) be pseudo-model categories and

(C, S)
f // (C ′, S′)

g // (C ′′, S′′)

be two functors preserving fibrant or cofibrant objects and equivalences between them. Then, there exist natural iso-
morphisms

R(g ◦ f)∗ ' Rf∗ ◦ Rg∗ : Ho((C ′′, S′′)∧) −→ Ho((C, S)∧),

L(g ◦ f)! ' Lg! ◦ Lf! : Ho((C, S)∧) −→ Ho((C ′′, S′′)∧).

These isomorphisms are furthermore associative and unital in the arguments f and g.

Proof: The proof is the same as that of the usual property of composition for derived Quillen functors (see [Ho,
Thm. 1.3.7]), and is left to the reader. 2

Examples of pairs of functors to which the previous proposition applies are given by pairs of right or left Quillen
functors.

Proposition 4.8.2 If f : (C, S) −→ (C, S) is a (right or left) Quillen equivalence between pseudo-model categories,
then the induced functors

Lf! : Ho((C, S)∧) −→ Ho((C ′, S′)∧) Ho((C, S)∧)←− Ho((C ′, S′)∧) : Rf∗,

are equivalences, quasi-inverse of each others.

Proof: This is a straightforward application of Corollary 2.3.6. 2

Let (C, S) and (C ′, S′) be pseudo-model categories and let us consider a functor f : C −→ C ′ such that f(Scf ) ⊂ S′.
We will denote by fcf : (C, S) −→ (C ′, S′) the composition

fcf : (C, S)
RQ // (C, S)cf

f // (C ′, S′),

where R (respectively, Q) denotes the fibrant (resp., cofibrant) replacement functor in (C, S). We deduce an adjunction
on the model categories of pre-stacks

(fcf )! : (C, S)∧ −→ (C ′, S′)∧ (C, S)∧ ←− (C ′, S′)∧ : f∗cf .

Note that the right derived functor Rf∗cf is isomorphic to the functor Rf∗ defined above.

56



Proposition 4.8.3 Let (C, S; τ) and (C ′, S′; τ ′) be pseudo-model sites and f : C −→ C ′ a functor such that f(Scf ) ⊂
S′. Then the following properties are equivalent.

1. The right derived functor Rf∗cf ' Rf∗ : Ho((C ′, S′)∧)→ Ho((C, S)∧) sends the subcategory Ho((C ′, S′)∼,τ
′
) into

the subcategory Ho((C, S)∼,τ ).

2. If F ∈ (C ′, S′)∧ has τ ′-hyperdescent, then f∗F ∈ SPr(C) has τ -hyperdescent.

3. For any pseudo-representable hypercover H∗ −→ hx in (C, S)∧ (see Def. 4.4.1), the morphism

L(fcf )!(H∗) −→ L(fcf )!(hx) ' hfcf (x)

is a local equivalence in (C ′, S′)∧.

4. The functor f∗cf : (C ′, S′)∼,τ −→ (C, S)∼,τ is right Quillen.

Proof: The equivalence between (1), (2) and (3) follows immediately from the fact that fibrant objects in (C, S)∼,τ

(resp. in (C ′, S′)∼,τ ) are exactly those fibrant objects in (C, S)∧ (resp. in (C ′, S′)∧) which satisfy τ -hyperdescent
(resp. τ ′-hyperdescent) (see Corollary 4.6.3). Finally, (4) and (2) are equivalent by adjunction. 2

Definition 4.8.4 Let (C, S; τ) and (C ′, S′; τ ′) be pseudo-model sites. A functor f : C → C ′ such that f(Scf ) ⊆ S′, is
said to be continuous or a morphism of pseudo-model sites, if it satisfies one of the equivalent conditions of Proposition
4.8.3.

Remark 4.8.5 By the comparison Theorem 4.7.1, a functor f : (C, S; τ) → (C ′, S′; τ ′) such that f(Scf ) ⊆ S′, is
continuous if and only if the induced functor (L(C, S), τ) ' (L(Ccf , Scf ), τ)→ (L(C ′, S′), τ ′) between the simplicially
localized associated S-sites is continuous according to Definition 3.5.1.

It is immediate to check that if f is a continuous functor, then the functor

Rf∗ : Ho((C ′, S′)∼,τ
′
) −→ Ho((C, S)∼,τ )

has as left adjoint
L(f!)

∼ ' L(fcf !) : Ho((C, S)∼,τ ) −→ Ho((C ′, S′)∼,τ
′
),

the functor defined by the formula
L(f!)

∼(F ) := a(Lf!(F )),

for F ∈ Ho((C, S)∼,τ ) ⊂ Ho((C, S)∧), where a : Ho((C, S)∧)→ Ho((C, S)∼,τ ) is the associated stack functor.
The basic properties of the associated stack functor a imply that the functoriality result of Proposition 4.8.1 still

holds by replacing the model categories of pre-stacks with the model categories of stacks, if f and g are continuous.
Now we define the obvious notion of continuous equivalence between pseudo-model sites.

Definition 4.8.6 A continuous functor f : (C, S; τ) → (C ′, S′; τ ′) is said to be a continuous equivalence or an
equivalence of pseudo-model sites if the induced right Quillen functor f∗cf : (C ′, S′)∼,τ

′ → (C, S)∼,τ is a Quillen
equivalence.

The following criterion will be useful in the next section.

Proposition 4.8.7 Let (C, S; τ) and (C ′, S′; τ ′) be pseudo-model sites, f : C −→ C ′ a functor such that f(Scf ) ⊆ S′
and fcf : (C, S) −→ (C ′, S′) the induced functor. Let us denote by τ (resp. by τ ′) the induced Grothendieck topology
on the homotopy category Ho(C, S) (resp. Ho(C ′, S′)). Suppose that

1. The induced morphism Lfcf : L(C, S) −→ L(C ′, S′) between the Dwyer-Kan localizations is an equivalence of
S-categories.

2. The functor
Ho(fcf ) : Ho(C, S) −→ Ho(C ′, S′)

reflects covering sieves (i.e., a sieve R over x ∈ Ho(C, S) is τ -covering iff the sieve generated by Ho(fcf )(R) is
a τ ′-covering sieve over fcf (x).

Then f is a continuous equivalence.

Proof: This follows easily from the comparison statement Theorem 4.7.1 and from Theorem 2.3.1. 2
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4.9 A Giraud’s theorem for model topoi

In this section we prove a Giraud’s type theorem characterizing model topoi internally. Applied to t-complete model
topoi, this will give an internal description of model categories that are Quillen equivalent to some model category of
stacks over an S-site. We like to consider this result as an extension of D. Dugger characterization of combinatorial
model categories ([Du2]), and as a model category analog of J. Lurie’s theorem characterizing∞-topoi (see [Lu, Thm.
2.4.1]). Using the strictification theorem of A. Hirschowitz and C. Simpson (stated in §4.2 of [To-Ve 3]) it also gives a
proof of the Giraud’s theorem for Segal topoi conjectured in [To-Ve 3, Conj. 5.1.1]. The statement presented here is
very close in spirit to the statement presented in [Re], with some minor differences in that our conditions are weaker
than [Re], and closer to the original ones stated by Giraud (see [SGA4-I] Exp. IV, Théorème 1.2).

We start with some general definitions.

Definition 4.9.1 Let M be any U-model category.

1. The model category has disjoint homotopy coproducts if for any U-small family of objects {xi}i∈I , and any i 6= j
in I, the following square is homotopy cartesian

∅ //

��

xi

��
xj // ∐L

i∈I xi.

2. The homotopy colimits are stable under pullbacks in M if for any morphism y −→ z in M , such that z is fibrant,
and any U-small diagram x∗ : I −→M/z of objects over z, the natural morphism

hocolimi∈I(xi ×hz y) −→ (hocolimi∈Ixi)×hz y

is an isomorphism in Ho(M).

3. A Segal groupoid object in M is a simplicial object

X∗ : ∆op −→M,

such that

• for any n > 0, the natural morphism

Xn −→ X1 ×hX0
X1 ×hX0

· · · ×hX0
X1︸ ︷︷ ︸

n times

induced by the n morphisms si : [1] −→ [n], defined as si(0) = i, si(1) = i+1, is an isomorphism in Ho(M).

• The morphism
d0 × d1 : X2 −→ X1 ×hd0,X0,d0

X1

is an equivalence in Ho(M).

4. We say that Segal equivalences relation are homotopy effective in M if for any Segal groupoid object X∗ in M
with homotopy colimit

|X∗| := hocolimn∈∆Xn,

and any n > 0, the natural morphism

Xn −→ X0 ×h|X∗| X0 ×h|X∗| · · · ×
h
|X∗| X0︸ ︷︷ ︸

n times

induced by the n distinct morphisms [0]→ [n], is an isomorphism in Ho(M).

We are now ready to state our version of Giraud’s theorem for model topoi.

Theorem 4.9.2 Let M be a U-combinatorial model category (see Definition A.2.1). Then, M is a U-model topos if
and only if it satisfies the following conditions.

1. M has disjoint homotopy coproducts.
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2. Homotopy colimits in M are stable under homotopy pullbacks.

3. Segal equivalence relations are homotopy effective in M .

Proof: The fact that the conditions are satisfied in any model topos follows easily from the well known fact that
they are satisfied in the model category SSet. The hard point is to prove they are sufficient conditions.
Let M be a U-model category satisfying the conditions of the theorem.

We chose a regular cardinal λ as in the proof of [Du2, Prop. 3.2], and let C := Mλ be a U-small full sub-category
of M consisting of a set of representatives of λ-small objects in M . By increasing λ if necessary, one can assume
that the full sub-category C of M is U-small, and is stable under fibered products in M and under the fibrant and
cofibrant replacement functors (let us suppose these are fixed once for all). By this last condition we mean that for
any morphism x → y in C, the functorial factorizations x → x′ → y are again in C. Let Γ∗ and Γ∗ be fibrant and
cofibrant resolution functors on M ([Hi], Ch. 16). We can also assume that C is stable by Γ∗ and Γ∗ (i.e. that for
any x ∈ C and any [n] ∈ ∆, Γn(x) and Γn(x) belong to C). We note that C is not stricly speaking a pseudo-model
category but will behave pretty much the same way.

We consider the functor
hC : M −→ SPr(C),

sending an object x ∈M to the simplicial presheaf

hCx : Cop −→ SSetU
y 7−→ Hom(Γ∗(y), x).

The functor h has a left adjoint
L : SPr(C) −→M,

sending a U-simplicial presheaf F to its geometric realization with respect to Γ. By the standard properties of
mapping spaces, one sees that for any fibrant object x ∈M the simplicial presheaf hCx is fibrant in the model category
of restricted diagrams (C,W )∧. This, and the general properties of left Bousfield localizations imply that the pair
(hC , L) defines a Quillen adjunction

L : (C,W )∧ −→M (C,W )∧ ←−M : hC .

Lemma 4.9.3 The right derived functor

RhC : Ho(M) −→ Ho((C,W )∧)

is fully faithful.

Proof: By the choice of C, any object x ∈M is a λ-filtered colimit x ' colimi∈Ixi of objects xi ∈ C. As all objects
in C are λ-small, this implies that

RhCx ' hocolimi∈IRhCxi .

From this, one sees that to prove that RhC is fully faithful, it is enough to prove it is fully faithful when restricted to
objects of C. This last case can be treated exactely as in the proof of our Yoneda Lemma 4.2.3. 2

By the previous lemma and by Proposition 3.2 of [Du2], we can conclude that there is a U-small set of morphisms
S in (C,W )∧ such that the above adjunction induces a Quillen equivalence

L : LS(C,W )∧ −→M LS(C,W )∧ ←−M : hC .

By Corollary 3.8.5 (2), it only remains to show that the left Bousfield localization of (C,W )∧ along S is exact, or
equivalently that the functor LL commutes with homotopy pull backs.

We start by the following particular case. Let c ∈ C and hc be the presheaf represented by c. One can see hc as
an object in (C,W )∧ by considering it as a presheaf of discrete simplicial sets. Let F −→ hc and G −→ hc be two
morphisms in (C,W )∧.

Lemma 4.9.4 The natural morphism

LL(F ×hhc G) −→ LL(F )×hLL(hc)
LL(G)

is an isomorphism in Ho(M).
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Proof: Up to an equivalence, we can write F as a homotopy colimit hocolimi∈Ihxi for some xi ∈ C. As homotopy
pull-backs commutes with homotopy colimits this shows that one can suppose F and G of the form ha and hb, for a
and b two objects in C.

Now, as in lemma 4.2.2, one checks that hx and RhCx are naturally isomorphic in Ho((C,W )∧). For this, we easily
deduce that the natural morphism

ha ×hhc hb −→ ha×hc b,

is an equivalence in (C,W )∧ (here ha×hc b can be seen as an object of C because of our stabilty assumptions). Therefore,

to prove the lemma it is enough to check that for any x ∈ C the natural morphism hx −→ hC(x) induces by adjunction
a morphism L(hx) −→ x which is an equivalence in M . But, as hx is always a cofibrant object in (C,W )∧, one has

L(hx) ' LL(hx) ' LL(hCx ) ' x

by lemma 4.9.3. 2

Let
∐
i∈I hci be a coproduct with ci ∈ C, and

F −→
∐
i∈I

hci ←− G

be two morphisms in (C,W )∧.

Lemma 4.9.5 The natural morphism

LL(F ×h∐
i∈I hci

G) −→ LL(F )×hLL(
∐
i∈I hci )

LL(G)

is an isomorphism in Ho(M).

Proof: As for lemma 4.9.4, one can reduce to the case where F and G are of the form ha and hb. Lemma 4.9.5 will
then follows easily from our assumption (1) on M . 2

We are now ready to treat the general case.

Lemma 4.9.6 The functor LL preserves homotopy pull-backs.

Proof: Let F // H Goo be two morphisms in (C,W )∧. One can, as for lemma 4.9.4 suppose that F and
G are of the form ha and hb. We can also suppose that H is fibrant in (C,W )∧.

We let
∐
i hxi −→ H be an epimorphism of simplicial presheaves with xi ∈ C, and we replace it by an equivalent

fibration p : X0 −→ H. We set X∗ the nerve of p, which is the simplicial object of (C,W )∧ given by

Xn := X0 ×H X0 ×H · · · ×H X0︸ ︷︷ ︸
n times

,

and for which faces and degeneracies are given by the various projections and generalized diagonals. As p is a fibration
between fibrant objects one sees that X∗ is a Segal groupoid object in (C,W )∧. Furthermore, as p is homotopycally
surjective (as a morphism of simplicial presheaves), the natural morphism

|X∗| −→ H

is an equivalence in (C,W )∧. Finally, as X0 is equivalent to
∐
i hxi , lemma 4.9.5 implies that LL(X∗) is a Segal

groupoid object in M , and one has |LL(X∗)| ' LL(H) as L is left Quillen. The assumption (3) on M implies that

LL(X0 ×hH X0) ' LL(X1) ' LL(X0)×hLL(H) LL(X0).

To finish the proof of lemma 4.9.6 it is then enough to notice that since X0 −→ H is surjective up to homotopy, the
morphisms ha, hb −→ H can be lifted up to homotopy to morphisms to X0 (because they correspond to elements in
H(a) and H(b)), and therefore

ha ×hH hb ' ha ×hX0
(X0 ×hH X0)×hH hb.

One can then apply lemma 4.9.5. 2

Theorem 4.9.2 is proven. 2

The following corollary is an internal classification of t-complete model topoi.
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Corollary 4.9.7 Let M be a U-combinatorial model category. Then the following are equivalent.

1. The model category M satisfies the conditions of theorem 4.9.2 and is furthermore t-complete.

2. There exists a U-small S-site T such that M is Quillen equivalent to SPrτ (T ).

Proof: (1) and (2) follow from Theorem 4.9.2 combined with our Theorem 3.8.3. 2

From the proof of theorem 4.9.2 one also extracts the following consequence.

Corollary 4.9.8 Let M be a U-combinatorial model category. Then the following are equivalent.

1. The model category M satisfies the conditions of theorem 4.9.2 and is furthermore t-complete.

2. There exists a U-model category N , and a U-small full subcategory of cofibrant object C ⊂ N c, and a topology
τ on Ho(C) := (W ∩ C)−1C, such that M is Quillen equivalent to (C,W )∼,τ . Furthermore, the natural functor
Ho(C) −→ Ho(N) is fully faithful and its image is stable under homotopy pull backs.

This last corollary states that M is Quillen equivalent to the model category of stacks over something which is
“almost” a pseudo-model site. However, the sub-category C produced during the proof of Theorem 4.9.2 is not a
pseudo-model site as it is not stable by equivalences in N . On the other hand, one can show that the closure C
of C by equivalences in N is a pseudo-model site, and that the natural morphism LC −→ LC is an equivalence of
S-categories.

Corollary 4.9.9 If M is a U-model topos (resp. a t-complete U-model topos) then so is M/x for any fibrant object
x ∈M .

Proof: Indeed, if M is a U-combinatorial model category satisfying the conditions of Theorem 4.9.2 then so does
M/x for any fibrant object x. Furthermore, one can check that for any S-site (T, τ), and any object F the model
category SPrτ (T )/F is t-complete. This implies that if M is furthermore t-complete then so is M/x. 2

Corollary 4.9.10 1. Any U-model topos M is Quillen equivalent to a left proper model category for which avery
object is cofibrant and which is furthermore internal (i.e. is a symmetric monoidal model category for the direct
product moniodal structure).

2. For any U-model topos M and any fibrant object x ∈M , the category Ho(M/x) is cartesian closed.

Proof: It is enough to check this for M = LSSPr(T ), for some U-small S-category T and some U-small set of
morphisms S in SPr(T ) such that Id : SPr(T )longrightarrowLSSPr(T ) preserves homotopy fiber products. We can
also replace the projective model structure SPr(T ) by the injective one SPrinj(T ) (see Prop. 3.6.1), and therefore can
suppose M of the form LSSPrinj(T ), again with Id : SPrinj(T )longrightarrowLSSPrinj(T ) preserving homotopy
fiber products. We know that SPrinj(T ) is an internal model category in which every object is cofibrant, and from
this one easily deduces that the same is true for the exact localization LSSPrinj(T ).

(2) follows from (1) and Cor. 4.9.9. 2

5 Étale K-theory of commutative S-algebras

In this section we apply the theory of stacks over pseudo-model sites developed in the previous section to the problem
of defining a notion of étale K-theory of a commutative S-algebra i.e. of a commutative monoid in Elmendorf-Kriz-
Mandell-May’s category of S-modules (see [EKMM]). The idea is very simple. We only need two ingredients: the
first is a notion of an étale topology on the model category (AlgS) of commutative S-algebras and the second is the
corresponding model category of étale stacks on (AlgS). Then, in analogy with the classical situation (see [Ja1, §3]),
étale K-theory will be just defined as a fibrant replacement of algebraic K-theory in the category of étale stacks over
(AlgS). The first ingredient is introduced in Subsection 5.2 as a natural generalization of the conditions defining étale
coverings in Algebraic Geometry; the second ingredient is contained in the general theory developed in Section 4. We
also study some basic properties of this étale K-theory and suggest some further lines of investigation.

A remark on the choice of our setting for commutative ring spectra is in order. Although we choosed to build
everything in this Section starting from [EKMM]’s category MS of S-modules, completely analogous constructions
and results continue to hold if one replaces from the very beginning MS with any other model for spectra having a
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well behaved smash product. Therefore, the reader could replace MS with Hovey-Shipley-Smith’s category SpΣ of
symmetric spectra (see [HSS]) or with Lydakis’ category SF of simplicial functors (see [Ly]), with no essential changes.

Moreover, one could also apply the constructions we give below for commutative S-algebras, to the category of
E∞-algebras over any symmetric monoidal model category of the type considered by Markus Spitzweck in [Sp, §8, 9].
In particular, one can repeat with almost no changes what is in this Section starting from Spitzweck’s generalization
of S-modules as presented in [Sp, §9].

The problem of defining an étale K-theory of ring spectra was suggested to us by Paul-Arne Ostvær and what we
give below is a possible answer to his question. We were very delighted by the question since it looks as a particularly
good test of applicability of our theory. For other applications of the theory developed in this paper to moduli spaces
in algebraic topology we refer the reader to [To-Ve 6].

5.1 S-modules, S-algebras and their algebraic K-theory

The basic reference for what follows is [EKMM]. We fix two universes U and V with U ∈ V. These universes are, as
everywhere else in this paper, to be understood in the sense of [SGA4-I, Exp. I, Appendice] and not in the sense of
[EKMM, 1.1].

Definition 5.1.1 • We will denote by MS the category of S-modules in the sense of [EKMM, II, Def. 1.1] which
belong to U.

• AlgS will denote the category of commutative S-algebras in U, i.e. the category of commutative monoids in MS.
Its opposite category will be denoted by AffS. Following the standard usage in algebraic geometry, an object A in
AlgS, will be formally denoted by SpecA when considered as an object in AffS.

• If A is a commutative S-algebra, MA will denote the category of A-modules belonging to U and AlgA the
category of commutative A-algebras belonging to U (i.e. the comma category A/AlgS of objects in AlgS under A
or equivalently the category of commutative monoids in MA).

• We denote by Algconn, S the full subcategory of AlgS consisting of connective algebras; its opposite category will
be denoted by Affconn, S. If A is a (connective) algebra, we denote by Algconn, A the full subcategory of AlgA
consisting of connective A-algebras; its opposite category will be denoted by Affconn, A.

Recall thatMA is a topologically enriched, tensored and cotensored over the category (Top) of topological spaces in
U, left proper U-cofibrantly generated V-small model category where equivalences are morphisms inducing equivalences
on the underlying spectra (i.e. equivalences are created by the forgetful functorMA → S, where S denotes the category
of spectra [EKMM, I and VII, Th. 4.6] belonging to U) and cofibrations are retracts of relative cell A-modules ([EKMM,
III, Def. 2.1 (i), (ii); VII, Th. 4.15 ]). Note that since the realization functor |−| : SSet → Top is monoidal, we can
also view MS and MA as tensored and cotensored over SSet.

Moreover, a crucial property ofMS andMA, for any commutative S-algebra A, is that they admit a refinement of
the usual “up to homotopy” smash product of spectra giving them the structure of (topologically enriched, tensored
and cotensored over the category (Top) of topological spaces or over SSet) symmetric monoidal model categories
([EKMM, III, Th. 7.1]).

Finally, both AlgS and AlgA for any commutative S-algebra A are topologically or simplicially tensored and
cotensored model categories ([EKMM, VII, Cor. 4.10]).

Proposition 5.1.2 Let ι : Algconn, S ↪→ AlgS be the full subcategory of connective algebras and W| the set of equiv-
alences in Algconn, S. Then (Affconn, S = (Algconn, S)op,W op

| , ι
op) is a V-small pseudo-model category (see Definition

4.1.1).

Proof: The only nontrivial property to check is stability of (Algconn, S)op under homotopy pullbacks, i.e. stability
of Algconn, S under homotopy push-outs in AlgS. Let B ← A → C be a diagram in Algconn, S; by [Sp, p. 41, after

Lemma 9.14], there is an isomorphism B ∧LA C ' B
∐h
A C in Ho(MA), where the left hand side is the derived smash

product over A while the right hand side is the homotopy pushout in AlgA. Therefore it is enough to know that for
any connective A-modules M and N , one has πi(M ∧LA N) ≡ TorAi (M,N) = 0 if i < 0; but this is exactly [EKMM,
Ch. IV, Prop. 1.2 (i)]. 2

For any commutative S-algebra A, the smash product − ∧A − on MA induces (by derivation) on the homotopy
category Ho(MA) the structure of a closed symmetric monoidal category ([EKMM, III, Th. 7.1]). One can therefore
define the notion of strongly dualizable objects in Ho(MA) (as in [EKMM, §III.7, (7.8)]). The full subcategory of the
category Mc

A of cofibrant objects in MA, consisting of strongly dualizable objects will be denoted by Msd
A , and will

be endowed with the induced classes of cofibrations and equivalences coming fromMA. It is not difficult to check that
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with this structure, Msd
A is then a Waldhausen category (see [EKMM, §VI]). Furthermore, if A −→ B is a morphism

of commutative S-algebras, then the base change functor

f∗ := B ∧A (−) :Msd
A −→Msd

B ,

being the restriction of a left Quillen functor, preserves equivalences and cofibrations. This makes the lax functor

Msd
− : AffS −→ CatV

SpecA 7→ Msd
A

(Specf : SpecB → SpecA) 7→ f∗

into a lax presheaf of Waldhausen V-small categories. Applying standard strictification techniques (e.g. [May1, Th.
3.4]) and then taking the simplicial set (denoted by

∣∣wS•Msd
A

∣∣ in [Wa]) whose Ω-spectrum is the Waldhausen K-theory
space, we deduce a presheaf of V-simplicial sets of K-theory

K(−) : AffS −→ SSetV
SpecA 7→ K(Msd

A ).

The restriction of the simplicial presheaf K to the full subcategory Affconn
S of connective affine objects will be denoted

by
K|(−) : Affconn

S −→ SSetV.

Following Subsection 4.1, we denote by Aff∧S (resp. by Affconn
S )∧) the model category of pre-stacks over the V-small

pseudo-model categories AffS (resp. Affconn
S ).

Definition 5.1.3 The presheaf K (respectively, the presheaf K|) will be considered as an object in Aff∧S (resp. in
(Affconn

S )∧) and will be called the presheaf of algebraic K-theory over the symmetric monoidal model category MS
(resp. the restricted presheaf of algebraic K-theory over the category Mconn

S of connective S-modules). For any
SpecA ∈ AffS, we will write

K(A) := K(SpecA).

Remark 5.1.4

1. Note that we adopted here a slightly different definition of the algebraic K-theory space K(A) as compared to
[EKMM, VI, Def. 3.2]. In fact our Waldhausen categoryMsd

A (of strongly dualizable objects) contains [EKMM]
category fCA of finite cell A-modules ([EKMM, III, Def. 2.1]) as a full subcategory; this follows from [EKMM,
III, Th. 7.9]. The Waldhausen structure on fCA ([EKMM, VI, §3]) is however different from the one induced
(via the just mentioned fully faithful embedding) by the Waldhausen structure we use onMsd

A : the cofibrations
in fCA are fewer. However, the same arguments used in [EKMM, p. 113] after Proposition 3.5, shows that the
two definitions give isomorphic Ki groups for i > 0 while not, in general, for i = 0. One should think of objects
in fCA as free modules while objects in Msd

A should be considered as projective modules.

2. Given any commutative S-algebra A, instead of considering the simplicial set K(A) =
∣∣wS•Msd

A

∣∣ whose Ω-
spectrum is the Waldhausen K-theory spectrum of the Waldhausen category Msd

A , we could as well have taken
this spectrum itself and have defined a spectra, or better an S-modules valued presheaf on AffS. Since S-modules
forms a nice simplicial model category, a careful inspection shows that all the constructions we made in the
previous section still make sense if we replace from the very beginning the model category of simplicial presheaves
(i.e. of contravariant functors from the source pseudo-model category to simplicial sets in V) with the model
category of MS-valued presheaves (i.e. of contravariant functors from the source pseudo-model category to the
simplicial model category of S-modules). This leads naturally to a theory of prestacks or, given a topology on
the source pseudo-model or simplicial category, to a theory of stacks in S-modules (or in any other equivalent
good category of spectra).

3. The objects K and K| are in fact underlying simplicial presheaves of presheaves of ring spectra, which encodes
the ring structure on the K-theory spaces. We leave to the reader the details of this construction.

4. A similar construction as the one given above, also yields a K-theory presheaf on the category of E∞-algebras
in a general symmetric monoidal model categoryM. It could be interesting to investigate further the output of
this construction when M is one of the motivic categories considered in [Sp, 14.8].

Definition 5.1.5 Let τ (resp. τ ′) be a model pretopology on the model category AffS (resp. on the pseudo-model
category Affconn

S ), as in Def. 4.3.1, and let Aff∼,τS (resp. (Affconn
S )∼,τ

′
) the associated model category of stacks

(Thm. 4.6.1). Let K −→ Kτ (resp. K| −→ K|τ ′) be a fibrant replacement of K (resp. of K|) in Aff∼,τS (resp.
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in (Affconn
S )∼,τ

′
). The Kτ -theory space of a commutative S-algebra A (resp. the restricted Kτ ′-theory space of a

commutative connective S-algebra A) is defined as Kτ (A) := Kτ (SpecA) (resp. as K|τ ′(A) := K|τ ′(SpecA)). The
natural morphism K −→ Kτ (resp. K| −→ K|τ ′) induces a natural augmentation (localization morphism) K(A) −→
Kτ (A) (resp. K|(A) −→ K|τ ′(A)).

Remark 5.1.6 Though we will not give all the details here, one can define also an algebraic K-theory and Kτ -theory
space of any stack X ∈ Aff∼,τS . The only new ingredient with respect to the above definitions is the notion of 1-Segal
stack PerfX of perfect modules over X, that replaces Msd

A in the definition above. This notion is defined and studied
in the forthcoming paper [To-Ve 5]. Of course, a similar construction is also available for the restricted K-theory.

5.2 The étale topology on commutative S-algebras

In this section we define an analog of the étale topology in the category of commutative S-algebras, by extending
homotopically to these objects the notions of formally étale morphism and of morphism of finite presentation.

The notion of formally étale morphisms we will use has been previously considered by John Rognes [Ro] and by
Randy McCarthy and Vahagn Minasian [Min], [MCM].

We start with the following straightforward homotopical variation of the algebraic notion of finitely presented
morphism between commutative rings (compare to [EGAI, Ch. 0, Prop. 6.3.11]).

Definition 5.2.1 A morphism f : A→ B in Ho(AlgS) will be said to be of finite presentation if for any filtered direct
diagram C : J → AlgA, the natural map

hocolimj∈JMapAlgA
(B,Cj) −→ MapAlgA

(B, hocolimj∈JCj)

is an equivalence of simplicial sets. Here MapAlgA
(−,−) denotes the mapping space in the model category AlgA.

Remark 5.2.2

1. It is immediate to check that the condition for MapAlgA
(−,−) of commuting (up to equivalences) with hocolim

is invariant under equivalences. Hence the definition of finitely presented is well posed for a map in the homotopy
category Ho(AlgS).

2. Since any commutative A-algebra can be written as a colimit of finite CW A-algebras, it is not difficult to show
that A→ B is of finite presentation if and only if B is a retract of a finite CW A-algebra. However, we will not
use this characterization in the rest of this section.

We refer to [Ba] for the definition and basic properties of topological André-Quillen cohomology of commutative
S-algebras. Recall ([Ba, Def. 4.1]) that if A → B is a map of commutative S-algebras, and M a B-module, the
topological André-Quillen cohomology of B relative to A with coefficient in M is defined as

TAQ∗(B|A,M) := π−∗FB(ΩB|A,M) = Ext∗B(ΩB|A,M),

where ΩB|A := LQRI(B ∧LA B), Q being the module of indecomposables functor ([Ba, §3]) and I the augmentation
ideal functor ([Ba, §2]). We call ΩB|A the topological cotangent complex of B over A. In complete analogy to the
(discrete) algebraic situation where a morphism of commutative rings is formally étale if the cotangent complex is
homologically trivial (or equivalently has vanishing André-Quillen cohomology), we give the following (compare, on
the algebro-geometric side, with [Ill, Ch. III, Prop. 3.1.1])

Definition 5.2.3 • A morphism f : A → B in Ho(AlgS) will be said to be formally étale if the associated
topological cotangent complex ΩB|A is weakly contractible.

• A morphism f : A → B Ho(AlgS) is étale if it is of finite presentation and formally étale. A morphism
SpecB → SpecA in Ho(AffS) is étale if the map A→ B in Ho(AlgS) inducing it, is étale.

Remark 5.2.4

1. Note that if A′ → B′ and A′′ → B′′ are morphisms in AlgS, projecting to isomorphic maps in Ho(AlgS), then
ΩB′|A′ and ΩB′′|A′′ are isomorphic in the homotopy category of S-modules. Therefore, the condition given above
of being formally étale is well defined for a map in Ho(AlgS).
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2. THH-étale morphisms. If A is a commutative S-algebra, B a commutative A-algebra, we recall that AlgA is
tensored and cotensored over Top or equivalently over SSet; therefore it makes sense to consider the object
S1⊗LB in Ho(AlgA), where the derived tensor product is performed in AlgA. By a result of McClure, Schwänzl
and Vogt (see [EKMM, IX, Th. 3.3]), S1 ⊗L B is isomorphic to THHA(B;B) ≡ THH(B|A) in Ho(AlgA) and is
therefore a model for topological Hochschild homology as defined e.g in [EKMM, IX.1]. Moreover, note that any
choice of a point ∗ → S1 gives to S1 ⊗L B a canonical structure of A-algebra.
A map A→ B of commutative S-algebras, will be called formally THH-étale if the canonical map B → S1⊗LB
is an isomorphism in Ho(AlgA); consequently, a map A → B of commutative S-algebras, will be called THH-
étale if it is formally THH-étale and of finite presentation. As shown by Vahagn Minasian ([Min]) THH-étale
morphisms are in particular étale.

3. It is easy to see that a morphism of commutative S-algebras A→ B is formally THH-étale if and only if B is a
co-discrete object in the model category AlgA i.e., if for any C ∈ AlgA the mapping space MapAlgA

(B,C) is a
discrete (i.e. 0-truncated) simplicial set. From this description, one can produce examples of étale morphisms
of S-algebras which are not THH-étale. The following example was communicated to us by Michael Mandell.
Let A = HFp = K(Fp, 0) (H denotes the Eilenberg-Mac Lane S-module functor, see [EKMM, IV, §2]), and
perform the following construction. Start with F1(A), the free commutative A-algebra on a cell in degree −1.
In π−1(F1(A)) there is a fundamental class but also lots of other linearly independent elements as for example
the Frobenius F . We let B to be the A-algebra defined by the following homotopy co-cartesian square

F1(A)
1−F //

��

F1A

��
A // B.

The morphism 1−F being étale, we have that B is an étale A-algebra. However, one has π1(MapAlgA(B,A)) '
Z/p 6= 0, and therefore A −→ B is not THH-étale (because MapAlgA(B,A) is not 0-truncated).

Proposition 5.2.5 If C ← A→ B is a diagram in Ho(AlgS) and A→ B is étale, then the homotopy co-base change

map C → B
∐h
A C is again étale.

Proof: The co-base change invariance of the finite presentation property is easy and left to the reader. The co-base
change invariance of the formally étale property follows at once from [Sp, p. 41, after Lemma 9.14] and the “flat base
change” formula for the cotangent complex ([Ba, Prop. 4.6])

ΩB∧L
AC|C ' ΩB|A ∧A C.

2

As an immediate consequence we get the following corollary.

Corollary 5.2.6 Let A be a commutative S-algebra. The subcategory Aff ét
A of AffA consisting of étale maps SpecB →

SpecA, is a pseudo-model category.

For any (discrete) commutative ring R, we denote by HR = K(R, 0) the Eilenberg-Mac Lane commutative S-algebra
associated to R ([EKMM, IV, §2]).

Proposition 5.2.7 A morphism of discrete commutative rings R→ R′ is étale iff HR→ HR′ is étale

Proof: By [Pi-Ri] and [Ba-MC], we can apply to topological André-Quillen homology and André-Quillen homology
the two spectral sequences at the end of [Schw, §7.9] to conclude that the algebraic cotangent complex LR′/R is acyclic
iff the topological cotangent complex ΩHR′|HR is weakly contractible; therefore the two formal etaleness do imply
each other. Also the two finite presentation condition easily imply each other, since the functor π0 is left adjoint and
therefore preserves finitely presented objects. So we only have to observe that a finitely presented morphism of dis-
crete commutative rings R −→ R′ is étale iff it has an acyclic algebraic cotangent complex ([Ill, Ch. III, Prop. 3.1.1]). 2

The following proposition compare the notions of étale morphisms of commutative rings and commutative S-
algebras in the connective case.

Proposition 5.2.8 Let k be a commutative ring (in U), and Hk −→ B be an étale morphism of connective commu-
tative S-algebras. Then, the natural map B −→ H(π0(B)) ([EKMM, Prop. IV.3.1]) is an equivalence of commutative
S-algebras. Therefore, up to equivalences, Hk −→ B is of the form Hk −→ Hk′ where k → k′ is an étale extension of
discrete commutative rings.
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Proof: Consider the sequence of maps of commutative S-algebras Hk −→ B −→ Hπ0(B); this gives a fundamental
cofibration sequence ([Ba, Prop. 4.3])

ΩB|Hk ∧B Hπ0(B) −→ ΩHπ0(B)|Hk −→ ΩHπ0(B)|B .

Since Hk −→ B is étale, by [MCM, Prop. 3.8 (2)] also Hk −→ Hπ0(B) is étale; therefore the first two terms are
contractible, hence ΩHπ0(B)|B ' ∗, too. Now, the map B −→ Hπ0(B) is a 1-equivalence (see also [Ba, Proof of
Thm. 8.1]) and therefore, ΩHπ0(B)|B ' ∗ and [Ba, Lemma 8.2], tell us that π1B ' 0. Then, B −→ Hπ0(B) is also a
2-equivalence and the same argument shows then that π2B ' 0, etc. Therefore πiB ' 0, for any i ≥ 1 and we get the
first statement. The second one follows from this and Proposition 5.2.7. 2

Remark 5.2.9 Note that Proposition 5.2.8 is false if we remove the connectivity hypothesis. In fact, the HFp-algebra
B described in Remark 5.2.4 (3) is étale but has, by construction, non-vanishing homotopy groups in infinitely many
negative degrees. Actually, even restricting to thh-etale characteristic zero will not be enough in order to avoid this
kind of phenomenon (see e.g. [To-Ve 6, Rem. 2.19]).

Definition 5.2.10 For each SpecA ∈ Ho(AffS), let us define Covét(SpecA) as the set of finite families {fi : SpecBi −→
SpecA}i∈I of morphisms in Ho(AffS), satisfying the following two conditions:

1. for any i ∈ I, the morphism A −→ Bi is étale;

2. the family of base change functors

{Lf∗i : Ho(MA) −→ Ho(MBi)}i∈I

conservative, i.e. a morphism in Ho(MA) is an isomorphism if and only if, for any i ∈ I, its image in Ho(MBi)
is an isomorphism.

We leave to the reader the easy task of checking that this actually defines a model pre-topology (ét) (see Def.
4.3.1), called the étale topology on AffS. By restriction to the sub-pseudo-model category (see Prop. 5.1.2) Affconn, S
of connective objects, we also get a pseudo-model site (Affconn, S, ét), called the restricted étale site.

If A is a commutative (resp. commutative and connective) S-algebra, the pseudo-model category (see Cor. 5.2.6)
Aff ét/A (resp. Affconn, ét/A), together with the “restriction” of the étale topology, will be called the small étale site
(resp. the restricted small étale site) over A. More precisely, let us consider the obvious forgetful functors

F : Aff ét/A −→ AffS

F ′ : Affconn, ét/A −→ AffS.

By definition of the pseudo-model structures on Aff ét/A (resp. on Affconn, ét/A), F (resp. F ′) preserves (actually,
creates) equivalences. Therefore, we say that family of morphisms {Spec(Ci)→ Spec(B)} in Ho(Aff ét/A) (resp. in
Ho(Affconn, ét/A)) is an étale covering family of (SpecB → SpecA) in Aff ét/A (resp. Affconn, ét/A) iff its image via
Ho(F ) (resp. via Ho(F ′)) is an étale covering family of Spec(B) in AffS i.e. belongs to Covét(SpecA) (Def. 5.2.10).

We finish this paragraph by the following corollary that compare the small étale sites of a ring k and of its associated
Eilenberg-Mac Lane S-algebra Hk.

Corollary 5.2.11 Let k be a discrete commutative ring, (affét/k, ét) be the small étale affine site over Spec(k) con-
sisting of affine étale schemes Spec(k′)→ Spec(k), and H : affét/k −→ Affconn, ét/Hk be the Eilenberg-Mac Lane space
functor. Then H induces a continuous equivalence of étale pseudo-model sites

H : (affét/k, ét)→ (Affconn, ét/A, ét).

Proof: Propositions 5.2.8 and 5.2.7 imply that the conditions of Proposition 4.8.7 are satisfied. 2

5.3 Étale K-theory of commutative S-algebras

The following one is the main definition of this section.

Definition 5.3.1 • For any A ∈ AlgS, we define its étale K-theory space Két(A) by applying Definition 5.1.5 to
τ = (ét).

• For any A ∈ Algconn
S , we define its restricted étale K-theory space K|ét(A) by applying Definition 5.1.5 to

τ ′ = (ét).
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The following Proposition shows that, as in the algebraic case (compare [Ja1, Thm. 3.10]), also in our context,
étale K-theory can be computed on the small étale sites.

Proposition 5.3.2 Let A be a commutative (resp. commutative and connective) S-algebra and (Aff ét/A)∼, ét (resp.

(Affconn, ét/A)∼, ét) the model category of stacks on the small étale site (resp. on the restricted small étale site) over A.
For any presheaf F on AffS, we denote by F sm (resp. F sm| ) its restriction to Aff ét/A (resp. to Affconn, ét/A). Then the

map Ksm → Ksm
ét (resp. Ksm

| → Ksm
ét | ) induced via restriction by a fibrant replacement K → Két (resp. K| → K|ét)

in (AffS)∼, ét (resp. in (Affconn,S)∼, ét), is a fibrant replacement in (Aff ét/A)∼, ét (resp. in (Affconn, ét/A)∼, ét).

Proof: We prove the proposition in the non-connective case, the connective case is the similar.
Let us consider the natural functor

f : Affét/A −→ AffS,

from the small étale site of SpecA to the big étale site. It is clear that the associated restriction functor

f∗ : Aff∼,ét
S −→ Aff∼,ét

ét/A

preserves equivalences (one can apply for example Lemma 4.5.4). Furthermore, if SpecB −→ SpecA is a fibrant
object in Affét/A, then the pseudo-representable hypercovers (see Definition 4.4.1) of SpecB are the same in Affét/A

and in AffS/A (because each structure map of a pseudo-representable hypercover is étale). This implies by Corollary

4.6.3, that the functor f∗ preserves fibrant objects. In particular, if K −→ Két is a fibrant replacement in Aff∼,ét
S ,

so is its restriction to Aff∼,ét
ét/A. 2

As a consequence, we get the following comparison result to algebraic étale K-theory for fields; if R is a (discrete)
commutative ring, we denote by Két(R) its étale K-theory space (e.g. [Ja1]).

Corollary 5.3.3 For any discrete commutative ring k, we have an isomorphism K|ét(Hk) ' Két(k) in Ho(SSet).

Proof: This follows from corollaries 5.2.11, 5.3.2 and from the comparison between algebraic K-theory of a com-
mutative ring R and algebraic K-theory of the S-algebra HR (see [EKMM, VI, Rmk. 6.1.5(1)]). 2

A Model categories and universes

In this appendix we have collected the definitions of U-cofibrantly generated, U-cellular and U-combinatorial model
categories for a universe U, that have been used all along this work.

Throughout this appendix, we fix a universe U.

A.1 U-cofibrantly generated model categories

Recall that a category is a U-category, or equivalently a locally U-small category, if for any pair of objects (x, y) in C
the set HomC(x, y) is a U-small set.

Definition A.1.1 A U-model category is a category M endowed with a model structure in the sense of [Ho, Def.
1.1.3] and satisfying the following two conditions

1. The underlying category of M is a U-category.

2. The underlying category of M has all kind of U-small limits and colimits.

Let α be the cardinal of a U-small set (we will simply say α is a U-small cardinal). Recall from [Ho, Def. 2.1.3]
that an object x in a U-model category M , is α-small, if for any U-small α-filtered ordinal λ, and any λ-sequence

y0 → y1 → . . . yβ → yβ+1 → . . .

the natural map
colimβ<λHom(x, yβ) −→ Hom(x, colimβ<λyβ)

is an isomorphism.
We will use (as we did in the main text) the following variation of the notion of cofibrantly generated model category

of [Ho, Def. 2.1.17].

Definition A.1.2 Let M be a U-model category. We say that M is U-cofibrantly generated if there exist U-small sets
I and J of morphisms in M , and a U-small cardinal α, such that the following three conditions are satisfied
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1. The domains and codomains of the maps of I and J are α-small.

2. The class of fibrations is J-inj.

3. The class of trivial fibrations is I-inj.

The main example of a U-cofibrantly generated model category is the model categories SSetU of U-small simplicial
sets.

The main “preservation” result is the following easy proposition (see [Hi, §13.8, 13.9, 13.10]).

Proposition A.1.3 Let M be a U-cofibrantly generated model category.

1. If C is a U-small category, then the category MC of C-diagrams in M is again a U-cofibrantly generated model
category in which equivalences and fibrations are defined objectwise.

2. Let us suppose that M is furthermore a SSetU-model category in the sense of [Ho, Def. 4.2.18] (in other words, M
is a simplicial U-cofibrantly generated model category), and let T be a U-small S-category. Then, the category MT

of simplicial functors from T to M is again a U-cofibrantly generated model category in which the equivalences
and fibrations are defined objectwise. The model category MT is furthermore a SSetU-model category in the
sense of [Ho, Def. 4.2.18].

A standard construction we have been using very often in the main text is the following. We start by the model
category SSetU of U-small simplicial sets. Now, if V is a universe with U ∈ V, then the category SSetU is V-small.
Therefore, the category

SPr(SSetU) := SSet
SSetopU
V

of V-small simplicial presheaves on SSetU, is a V-cofibrantly generated model category.
This is the way we have considered, in the main text, model categories of diagrams over a base model category

avoiding any set-theoretical problem.

A.2 U-cellular and U-combinatorial model categories

The following notion of combinatorial model category is due to Jeff Smith (see, for example, [Du2, §2], [Bek, I, §1]).

Definition A.2.1 1. A category C is called U-locally presentable (see [Du2]) if there exists a U-small set of objects
C0 in C, which are all α-small for some cardinal α in U and such that any object in C is an α-filtered colimit
of objects in C0.

2. A U-combinatorial model category is a U-cofibrantly generated model category whose underlying category is
U-locally presentable.

The following localization theorem is due to J. Smith (unpublished). Recall that a model category is left proper if
the equivalences are closed with respect to pushouts along cofibrations.

Theorem A.2.2 Let M be a left proper, U-combinatorial model category, and S ⊂M be a U-small subcategory. Then
the left Bousfield localization LSM of M with respect to S exists.

Let us recall from [Hi, §12.7] the notion of compactness. We will say that an object x in a U-cofibrantly generated
model category M is compact is there exists a U-small cardinal α such that x is α-compact in the sense of [Hi, Def.
13.5.1]. The following definition is our variation of the notion of cellular model category of [Hi].

Definition A.2.3 A U-cellular model category M is a U-cofibrantly generated model category with generating U-small
sets of cofibrations I and of trivial cofibrations J , such that the following two conditions are satisfied

1. The domains and codomains of maps in I are compact.

2. Monomorphisms in M are effective.

The main localization theorem of [Hi] is the following.

Theorem A.2.4 (P. Hirschhorn, [Hi, Thm. 4.1.1]) Let M be a left proper, U-cellular model category and S ⊂M be
a U-small subcategory. Then the left Bousfield localization LSM of M with respect to S exists.

Finally, let us mention the following “preservation” result.

Proposition A.2.5 If in Proposition A.1.3, M is U-combinatorial (resp. U-cellular), then so are MC and MT .
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[To4] B. Toën, Homotopical and higher categorical structures in algebraic geometry, Thèse d’habilitation, Université
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[To-Ve 3] B. Toën, G. Vezzosi, Segal topoi and stacks over Segal sites, to appear in Proceedings of the program “Stacks,
Intersection theory and Non-abelian Hodge Theory”, MSRI Berkeley, January-May 2002.
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[To-Ve 6] B. Toën, G. Vezzosi, “Brave New” algebraic geometry and global derived moduli spaces of ring spectra,
Preprint math.AT/0309145, September 2003.

[Wa] F. Waldhausen, Algebraic K-theory of spaces, pp. 318-419 in Algebraic and Geometric Topology, ed. A. Ranicki,
N. Levitt, F. Quinn, Lecture Notes in Mathematics 1126, Springer 1985.

71


