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Abstract. The coercive field statistics in FePt nanostructures reveals the existence of

multiple switching probability sub-distributions that can be asymmetric with respect to

the field orientation. Each sub-distribution is correlated to an individual magnetization

reversal path whose selection can not happen at the magnetization reversal in negative

(positive) field but rather at the moment of applying the initial positive (negative)

magnetic field. This serves to determine the reference magnetic state from which

reversal in negative (positive) field will develop. The disappearance of the asymmetric

sub-distributions upon increasing the initial magnetic field µ0Hmax supports this

model. However, the sub-distributions remaining at high µ0Hmax are not necessarily

those characterized by the highest coercive field. This is attributed to the fact that

the initial magnetization state hierarchy and the coercive field hierarchy are essentially

decorrelated.
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The high uniaxial magnetic anisotropy in FePt[1, 2, 3] makes it a promising

candidate for extending the current limits of magnetic recording densities without

compromising the necessary thermal stability[4, 5, 6, 7, 8, 9, 10]. Driven by the

interest in potential applications in perpendicular magnetic recording and bit-patterned

media[11, 12] technologies this system has been the subject of various studies concerning

magnetization reversal processes. The high efficiency of spin-transfer associated to the

high perpendicular magnetic anisotropy makes the control of coercivity due to domain

wall pinning a key point for the development of DW-propagation based memories and

logic systems[13, 14, 15].

Field and current driven magnetic domain wall dynamics in FePt nanostructures have

been examined focusing on thermally activated depinning processes. Domain wall

depinning under applied magnetic fields investigated down to the single pinning defect

limit was found to occur via a multiple path mechanism[16].

In this work, the coercive field statistics in FePt nanostructures is derived from magneto-

transport and Kerr microscopy measurements. Multiple switching probability sub-

distributions and asymmetric magnetization reversals are identified and shown to depend

on the amplitude of the maximum positive (negative) initial magnetic field, µ0Hmax.

This field is applied before studying the magnetization reversal in negative (positive)

fields and serves to establish the magnetic state from which reversal develops.

The samples studied were 4 nm thick epitaxial FePt L10 films grown on Pt(001)(20

nm)/Cr (2nm)/MgO(001), further details regarding the material growth can be found

in Ref.[17]. The films were capped with a 5 nm MgO layer and patterned into Hall bar

structures by electron beam lithography. The main channel of the Hall bar structures

was 500 nm wide and 10 µm long. All the magnetization loops were obtained by

extraordinary Hall effect measurements using a bias current of 1 mA and a constant

magnetic field rate of 0.1 T/min.

The positive and negative field switching probability distributions obtained at different

temperatures are shown in Fig. 1 as a function of the applied magnetic field Hap where

µ0Hmax = ±0.6 T. The distributions have been determined from sets of 30 to 100

loops[18]. At 300 K the switching probability distributions found in both positive and

negative fields can be described in terms of a single distribution function. In contrast,

the measurements at 200 K show a splitting of the switching probability distribution

for the reversal in positive fields with one sub-distribution between 0.26 T and 0.3 T

and a second between 0.3 T and 0.34 T. The low field sub-distribution is absent for

the reversal under negative fields revealing a marked switching field asymmetry. A

similar scenario is found at 100 K where three sub-distributions are present for the

reversal under negative fields and only one for the reversal under positive fields (see

Fig. 1). Multiple sub-distributions as well as switching asymmetries were observed in

all samples measured. The number of sub-distributions and the features characterizing

the switching field asymmetry varied from sample to sample. Note that the shape of the

switching probability distribution (number and position of symmetric/asymmetric sub-

distributions) is independent from the polarity of the starting saturation field (namely,
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Figure 1. Switching probability distribution as a function of the applied magnetic field

(µ0Hmax = ± 0.6T) at (a) 300 K, (b) 200 K and (c) 100 K. Multiple sub-distributions

appear at lower temperatures where also a marked switching asymmetry is evidenced

between positive and negative fields at 200 K and 100 K. A continuous line indicates

an estimation of the switching probability (sub)distribution considering a model with

a single energy barrier of 3.3×10−19 J. The magnetization loops corresponding to each

switching probability distribution are shown in the insets.

no differences were found between starting from Hmax or -Hmax).

At 300 K, the single peak switching probability distribution resembles that
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characterizing a magnetization reversal involving a single energy barrier. The energy

barrier as a function of the magnetic field is expected to be ruled by the expression:

E = E0(1−
Hap

H0

)α (1)

where E0 is the energy barrier in zero magnetic field and µ0H0 is the coercive field in the

absence of thermal activation. The value of the exponent α depends on the coercivity

mechanism. It ranges from 1 to 2, where α = 1 accounts for reversals governed by

domain wall nucleation/propagation and α = 2 for ideally textured systems in which

the magnetization reversal occurs by Stoner-Wohlfarth coherent rotation [19, 20, 21]. It

is worth noting that a process involving overcoming an energy barrier leads necessarily

to a nucleation event from which the process is triggered, regardless of the dominating

micromagnetic process, namely, magnetic domain nucleation or domain wall pinning.

The distinction between a domain nucleation and a domain wall pinning process will be

discussed in the last part of this manuscript.

The characteristic switching time in a constant field is:

τ = τ0 exp[E/kT ] (2)

where τ0 is a pre-exponential factor fairly independent of the magnetic field[22]. The

mathematical expression accounting for the switching probability distribution in the

whole field range p(µ0Hap) evaluates the product of the switching rate at a given applied

field µ0Hap multiplied by the probability of the magnetization reversal not having yet

occurred (in the interval between 0 and µ0Hap) [23, 24, 25]:

p(µ0Hap) = (τv)−1 exp[−
∫ µ0Hap

0

(τv)−1dµ0Hap]. (3)

where v = µ0dHap/dt = 0.1 T/min. Eq. 3 was employed to model the measured

switching probability distributions as shown in Fig. 1 (solid line). The parameters were

optimized to account simultaneously for the experimental distribution functions for both

positive and negative applied fields. The values obtained are α = 1, τ0 = 8×10−11 s,

µ0H0 = 0.390 T and E0 = 3.3×10−19 J which is of the order of the zero field energies

found in other FePt studies[16]. Except for a change from 0.390 to 0.399 in µ0H0 the

curves at lower temperatures have been obtained with the same values of α, τ0, and E0.

In the room temperature results the modeled peaks have the same area/amplitude for

negative and positive applied fields since only one and the same distribution accounts

for the entire switching probability for both polarities of the applied field. In the case of

the the low temperature measurements it is the sum of the area of the sub-distributions

that amounts to a switching probability of one. At low temperatures the model fits one

of the multiple sub-distributions for each polarity of the applied magnetic field. In this

case, given the asymmetry in the magnetization reversal, the amplitudes are allowed to

differ.

Upon reducing the temperature the coercive field value µ0Hc at the center of the main

(sub)distribution increases from 0.262 T at 300K to 0.314 T and 0.355 T at 200K and

100K, respectively. This common behaviour can be attributed to the usual increase in
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magnetocrystalline anisotropy as well as to the reduction of thermal activation effects

with decreasing temperature. Simultaneously, the difference between µ0Hc and µ0H0

significantly decreases (∆µ0H = µ0(H0 - Hc), ∆µ0H(300K) = 0.128 T, ∆µ0H(200K)

= 0.085 T, ∆µ0H(100K) = 0.044 T) accompanied by a reduction in the width of the

distribution. The single energy barrier model successfully predicts the evolution of the

distribution width as a function of temperature. Additionally, the (unique) distribution

found at 300K corresponds to the sub-distribution of larger amplitude at lower temper-

atures. This can be observed in the positive switching probability distribution at 200

K and its negative field counterpart at 100 K. Therefore, a decrease in thermal energy

allows for the observation of not only the magnetization reversal path present at 300 K

but also of other reversal paths.

If the difference in the values of the energy barriers of two possible processes is small

compared to the thermal energy a clear differentiation between the statistics of these

two processes will not be observable. This may account for the single peak distribution

found at 300K. As the temperature decreases, the switching field differences would start

to show due to the decrease in thermal energy. However, the large differences (compared

to the width of the sub-distributions) between the energy barriers estimated from the

coercive field values (E0 = µ0HMv where v≈ d3 and d is the domain wall width) would

not allow multiple processes to occur. Thus, we are led to conclude that the simulta-

neous appearance of multiple sub-distributions can not be explained using statistical

arguments and that the sub-distributions reflect independent reversal paths that have

a non-trivial correspondence with their respective coercive field values. This can be

understood by considering that the selection of the reversal mechanism is determined

at the moment of the creation of the initial magnetization state, namely, at the moment

of the application of µ0Hmax.

The conclusion that the reversal path depends on the initial magnetization state, which

is in turn determined by µ0Hmax, leads to investigate the dependence of the switching

probability distribution on µ0Hmax. In Fig. 2 the positive field side of the switching

probability distribution measured at 200 K (a) and the negative field side of the switch-

ing probability distribution at 100 K (b) are presented for two different values of µ0Hmax:

±0.6 T (same plots as in Fig. 1) and ± 2 T. The asymmetric sub-distributions found

for µ0Hmax = 0.6 T can be entirely suppressed by increasing to µ0Hmax to 2 T. This is

shown in Fig. 2 (a) for measurements at 200 K and in Fig. 2 (b) for measurements at

100 K.

Upon increasing µ0Hmax, it could have been expected that low field switching events

would disappear. However, the asymmetric sub-distributions that disappear in high sat-

uration field measurements can be centered at either higher or lower fields with respect

to the symmetric sub-distributions, as shown in Fig. 2 (b): the initial magnetization

state that prevails in a large saturation field is not necessarily the one that will lead to

the highest coercive field. This shows that the initial magnetization state hierarchy does

not have a one to one correspondence with the coercive field hierarchy. This behaviour

confirms the decorrelation between the magnitude of Hmax and that of the coercive field.
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Figure 2. Positive field side of the switching probability distribution measured at 200

K (a) and negative field side of the switching probability distribution at 100 K (b) are

presented for two different values of µ0Hmax: ±0.6 T (same plots as in Fig. 1) and ±

2 T. At ± 2 T the switching probability distribution shows only one peak.

Such a decorrelation between initial applied field and coercive field is known to occur in

the ‘nucleation-type’ hard magnets such a NdFeB. It is explained by considering that the

reversal develops from a small preformed nucleus at the surface of the grains. There are

several differences between eliminating a domain wall from a grain (to reach saturation)

and propagating a domain wall inside a grain (to reverse its magnetization). The first

of these differences is the intrinsic asymmetry of the coercive barrier. It is immediately

apparent for a Stoner-Wolhfarth particle: the coercive field is equal to the anisotropy

field whereas the field required to saturate a grain’s magnetization is equal to the de-

magnetizing field of this grain. Another difference is in the value of the internal field

which ultimately determine the magnetization processes. During the phase of satura-

tion, the grain demagnetizing field is antiparallel to Hap. During magnetization reversal

both fields are parallel. In the case of the NdFeB magnets, there is ample experimental

evidence that the same asymmetry in the coercive barrier exists[26, 27]. Extending this

reasoning to the FePt films here considered, we suggest that pinning of domain walls
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Figure 3. Kerr microscopy images at room temperature of a magnetic structure

equivalent to that used for Hall measurements. Inside the highlighted area the

magnetization is reversed in (a) by a domain wall coming from the contact pad and in

(b) by a domain wall coming from the Hall cross.

occur at a few sites, which are intrinsically asymmetric. This, together with the above

discussed effect of the demagnetizing field, provide the conditions for establishing dif-

ferent energy barrier hierarchies during sample saturation and magnetization reversal,

respectively.

The possibility of switching the same magnetic unit via the propagation of domain

walls generated at different sources (initial states), in turn giving rise to distinct switch-

ing probability sub-distributions, has been confirmed by Kerr microscopy. In these

experiments the domain pattern has been observed after applying a pulsed magnetic

field. In particular, the images in Fig. 3 (a) and (b) reveal two different intermediate

states in the magnetization reversal at 300 K of a magnetic structure equivalent to that

used for Hall measurements. These images show a domain wall mediated magnetiza-

tion reversal involving 180◦ domain walls. The reversal has been observed to occur by

the propagation of a few domain walls across the FePt nanostructure rather than by

an extended pattern of small domains. The domain wall thickness is of the order of 4

nm, this value is defined by the strong uniaxial magnetic anisotropy in FePt which also

explains the propagation dominated reversal typical of high anisotropy materials.[16].

The highlighted area shows a part of the magnetic structure where a segment of one

of the 500 nm wide side channels is reversed in (a) by a domain wall coming from the

contact pad and in (b) by a domain wall coming from the Hall cross. Thus, the present

observations indicate that several independent energy barriers (de-pinning centers) can
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be involved also in the magnetization reversal at room temperature even though the Hall

measurements presented in Fig. 1 can be described by a single energy barrier process.

We attribute this to the different responses of the sample to the changes in the dynamics

of the magnetic field application, namely 0.1 T/min during Hall measurements and ∼

105 T/min during Kerr observations[30]. This aspect of the magnetization reversal calls

for a separate study which is beyond the scope of this work, nevertheless, it serves as

evidence of the appearance of multiple reversal paths not only at low temperatures but

also in room temperature fast switching experiments. This may play an important role

in field-driven fast magnetization switching applications and is, therefore, in line for

further investigation.

Studies in the literature have proposed different models to account for multiple switch-

ing probability sub-distributions. The ‘alternative path’[16] model proposes that the

initial state of a depinning process can evolve into the final state either in a direct

manner or via an intermediate state leading to the observation of a switching probabil-

ity distribution with more than one peak. Alternatively, the ‘multiple injected domain

wall’[28] model proposes a situation where the reversal can be driven by the propagation

of domain walls injected in the system from different sources. Instead of an intermediate

step between the initial and final states this model proposes multiple independent initial

states with different statistics accounting for multiple peaks in the switching probability

distribution. The measurements presented in this work suggest that the appearance

of multiple peaks in the switching probability distributions can be related to different

initial magnetization states generated at the moment when the initial magnetic field

is applied. This is in agreement with the existence of multiple domain wall injection

sources.

Longitudinal magneto-resistance measurements performed in a two-point configuration

using the bias current probes (not shown) show that the magnetization reversal occurs

in a single step, namely, that domain walls propagate freely during the magnetization

reversal. However, since the domain walls reaching the Hall cross can also be generated

outside the main Hall-bar channel the nature of the micro-magnetic event preceding

the onset of propagation (nucleation or pinning) can not be unambiguously determined.

Nevertheless, our findings regarding the existence of several processes acting in parallel

giving rise to coercive field sub-distributions holds for both pinning and nucleation pro-

cesses. Note that nucleation here refers to a reversal starting from a small preformed

nucleus of non-saturated magnetization.

Domain nucleation has been shown to account for asymmetric magnetization reversal

processes in other magnetic materials[29] where certain nucleation centers are active

exclusively for one direction of the applied field, an effect attributed to domain wall

chirality. In the cited work the asymmetric nucleation can be effectively suppressed

by saturation at relatively low fields which is in agreement with the observations pre-

sented in this study. This scenario is compatible with the multiple injected domain wall

model and constitutes a possible explanation for the observed coercive field asymmetry

in our system. It is interesting to remark that asymmetric nucleation centers account
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for the existence of asymmetric coercive field distributions with or without considering

the presence of chirality-dependent pinning[31].

In conclusion, the existence of multiple switching probability sub-distributions and an

asymmetric switching behaviour have been evidenced in FePt nanostructures. Both

phenomena can be understood by considering that the selection between simultaneously

available magnetization reversal paths does not happen in the vicinity of the coercive

field but rather at the formation of the initial magnetization state under the saturation

field. These findings have been related to an experimental realization of the multiple

injected domain wall model.
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