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Abstract

These are expended notes of my talk at the summer institute in al-
gebraic geometry (Seattle, July-August 2005), whose main purpose is to
present a global overview on the theory of higher and derived stacks. This
text is far from being exhaustive but is intended to cover a rather large
part of the subject, starting from the motivations and the foundational
material, passing through some examples and basic notions, and ending
with some more recent developments and open questions.
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1 Introduction

The notion of algebraic (1-)stack was introduced in the late sixties, and since
then it has been highly developed and has now become a full theory by its
own: it is based on solid foundational material (existence of a nice 2-category
of algebraic stacks, notion of sheaves and derived categories . . . ), it contains
many interesting and geometrically meaningful examples (the stack of stable
maps, the stack of coherent sheaves on a variety . . . ), many theories have been
developed for stacks themselves (intersection theory, l-adic formalism, vanishing
theorems, motivic cohomology, Riemann-Roch formula, motivic integration . . . )
and these theories have applications to several other contexts (Gromov-Witten
invariants, birational geometry, arithmetic geometry, Hodge theory . . . ). I think
everyone would agree today that the theory of algebraic stack is an important
theory.

Approximately ten years ago C. Simpson introduced in [S3] a notion of al-
gebraic n-stack, and more recently notions of derived scheme and of derived
algebraic n-stacks have been introduced in [To-Ve3, HAGII, Lu1]. The purpose
of this text is to give an overview on the recent works on the theories of higher al-
gebraic stacks and of higher derived algebraic stacks, and to show that although
these theories are not as developed as the theory of algebraic 1-stacks, they
are based on solid foundational material, contain interesting and geometrically
meaningful examples, and also have interesting developments and applications.

This work is organized in three sections. The first part (§2) is devoted to the
general theory of higher stacks (which is used all along this work), in which I
tried to explain the motivations and to give some ideas of the foundations of the
theory. As there exist several ways to motivate the theory of higher stacks I had
to make a choice and have decided to take the point of view of moduli theory,
but contemplating the theory from another point of view would maybe emphasis
different motivations. I also had to make a choice concerning the foundations
of the theory of higher stacks, as there also exist several possible approaches. I
have decided to use the theory of Segal categories (as it seems to me the best
model for higher categories available today) but also have tried to systematically
make a bridge with model category theory which provides another approach to
higher stacks.

In the second part of this work (§3) I discuss higher Artin stacks (or algebraic
n-stacks). I first present the basic notions of the theory, such as the definition
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of higher Artin stacks and some fundamental notions such as different proper-
ties of morphisms (etale, smooth, flat), some sheaf theory (quasi-coherent and
l-adic) . . . . Then some examples are discussed, trying to present the most sig-
nificant ones. Finally I present some developments and applications of higher
Artin stacks. Most of them appear already in the literature but some of them
are only ideas of possible applications and have not been fully investigated. The
third part of this work (§4) is devoted to derived Artin stacks. It starts by some
motivations, and then follows the same presentation as the part on higher Artin
stacks.

To finish this short introduction I would like to thank C. Simpson, G. Vezzosi
and J. Lurie for numerous conversations about this subject and from which I
have learned a lot. I am also grateful to J. Kock and to H.H. Tseng for their
comments.
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Conventions: The expression stacks always refer to the notion of∞-stacks
(in groupoids). To denote the usual notion of stacks in groupoids as presented
in [La-Mo] we will use the expression 1-stacks.

All along this text we assume that the reader knows some basic notions of
algebraic (1-)stacks (e.g. as presented in the first chapters of [La-Mo]), and also
has some intuitive knowledge of higher category theory (see e.g. the introduction
of [Le2]).

2 Higher stacks

The main references for this section are [S1, To-Ve1, HAGI, Lu2] (see also [Br]
for a different approach to 2-stacks).

2.1 Why higher stacks ?

Moduli theory is about classification of objects and families of objects. Its
fundamental concept is that of a moduli problem. A moduli problem is a (con-
travariant) functor F , defined on a certain category C of geometric objects (e.g.
schemes, smooth manifolds, topological spaces . . . ), and whose value F (S) is
a structure which is supposed to classify families of objects parameterized by
the geometric object S ∈ C. In the ancient times the values F (S) of a moduli
problem were taken to be sets, and thus it was implicitly assumed that objects
were classified up to equality (two points in a sets are or are not equal). How-
ever, many moduli problems intend to classify objects non only up to equality
but also up to isomorphisms, and it was early recognized that the existence of
objects having non trivial automorphisms makes the set of isomorphism classes
of objects badly behaved. Because of this, many interesting moduli problems
could not be representable by conventional geometric objects such as schemes,
smooth manifolds, topological spaces . . . . The theory of 1-stacks (in groupoids)
proposes a solution to this problem by enhancing the classical notion of moduli
functors from set valued functors into groupoid valued functors.

One possible starting point of higher stack theory is the observation that
there exist natural and interesting moduli problems for which objects are clas-
sified up to a notion of equivalence which is weaker than the notion of iso-
morphisms. Typical examples are complexes of abelian groups (or sheaves of
abelian groups) up to quasi-isomorphisms, topological spaces up to weak homo-
topy equivalences, or abelian categories up to equivalences of categories. These
moduli problems naturally arise as functors F : Cop −→ Cat, for which F (S)
must be thought as the category of objects parameterized by S and equiva-
lences between them. In these new situations, the values of the moduli functor
F are not sets or groupoids anymore but categories. Moreover, the morphisms
in these categories must be ”inverted”, or ”localized”, in some sense in order to
truly classify objects up to equivalences. There exist well known constructions
to ”invert” a set of morphisms in a category, characterized by universal prob-
lems in a 2-categorical context. For instance, the Gabriel-Zisman localization
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is a solution of a universal problem in the 2-category of categories. There also
exists a localization as a solution to a universal problem in the 2-category of
”dérivateurs” (see [Cis]). However, in the same way that the construction send-
ing a groupoid to its set of objects is badly behaved, none of these 2-categorical
constructions are well behaved. It turns out that the meaningful way to ”invert”
a set of morphisms in a category is by stating a universal problem in the context
of ∞-categories (the precise meaning of this, which requires to fix a theory of
∞-categories, will be discussed in the next paragraph, and the motivated reader
can also consult [To1] for a general discussion of the localization problem). In
particular, ”inverting” the equivalences in our moduli functor F provides an
∞-groupoid valued functor. As a conclusion of this short discussion it seems to
me important to emphasis the following principle:

Principle 1: As 1-stacks appear as soon as objects must be classified up to
isomorphism, higher stacks appear as soon as objects must be classified up to a
notion of equivalence which is weaker than the notion of isomorphism.

2.2 Segal categories as models for higher categories

From very far away an n-category1 is a structure consisting of a set of objects
and sets of i-morphisms for any 0 < i ≤ n, together with various kinds of
composition (here and later the integer n can be infinite). A useful inductive
point of view consists of seeing an n-category A as being some sort of category
enriched over (n-1)-categories, i.e. of a set of objects Ob(A) and for any two
objects a and b an (n-1)-category of morphisms A(a, b), together with composi-
tion A(a, b)×A(b, c) −→ A(a, c) which is a morphism of (n-1)-categories and is
associative and unital in some sense (to make precise in which sense the asso-
ciativity and unity axioms hold is one of the main problem of higher category
theory). There exists many precise definitions of higher categories, and I refer
the interested reader to [Le1] for a list of definitions and references. Among ∞-
categories we will mainly be interested in (1,∞)-categories, which by definition
are the ∞-categories whose i-morphisms are invertible for any i > 1. These
sorts of higher categories are extremely important in many contexts as any ∞-
category obtained by localization from a 1-category is automatically a (1,∞)-
category. Another way to say that an ∞-category A is a (1,∞)-category is by
stating that for any two objects a and b the ∞-category of morphisms A(a, b)
is an ∞-groupoid (i.e. all its i-morphisms are invertible for any i > 0). Thus,
roughly speaking a (1,∞)-category is a category enriched over ∞-groupoids.
Moreover, as the theory of ∞-groupoids is supposed to be (and is for several
definitions of [Le1]) equivalent to the theory of simplicial sets (through some in-
finite fundamental groupoid construction), a (1,∞)-category is more or less the
same thing as a category enriched over simplicial sets (also called S-categories).

1The expression higher category will always refer to the weak notion, we will never consider
strict higher categories which are somehow useless for the purpose of stack theory.
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This philosophy will explain our choice of using S-categories and more generally
Segal categories as models for (1,∞)-categories.

An S-category A is a category enriched over the category of simplicial sets,
i.e. consists of the data of a set of objects Ob(A), and for any two objects a and
b in Ob(A) a simplicial set of morphisms A(a, b), and composition morphisms
A(a, b) × A(b, c) −→ A(a, c) which are associative and unital (on the nose). A
Segal category A is a weak form of an S-category. It consists of a set of objects
Ob(A), for any two objects a and b a simplicial set of morphisms A(a, b), for
any three objects a, b and c a diagram of simplicial sets

A(a, b, c) //

��

A(a, c)

A(a, b)×A(b, c),

for which the vertical morphism is a weak equivalence of simplicial sets, as well
as higher structures that I will not make precise. For precise definitions I refer
to [H-S, Pe, Ber1]. The main difference between an S-category and a Segal
category is that the composition in a Segal category is only defined up to a
weak equivalence. The S-categories are precisely the Segal categories for which
the vertical morphism above is an isomorphism (as well as similar conditions
for the higher structures), and thus Segal categories generalize S-categories. In
fact, the two notions are equivalent in some sense (see [Ber1]) and the reader
can think only in terms of S-categories, keeping in mind that Segal categories
behave better for certain purposes and that using S-categories could be rather
technical at some point.

The theory of Segal categories works in a very similar manner to usual
category theory and most (if not all) of the standard categorical notions can
be reasonably defined in the Segal setting. Here follows a sample of examples
(once again we refer to the overview [To-Ve1] for more details).

1. Categories, S-categories and Segal categories: Segal categories form
a category SeCat for the obvious notion of morphisms. We will use inter-
changeably the expression morphisms between Segal categories and func-
tors between Segal categories.

There is a fully faithful functor S − Cat −→ SeCat from the category of
S-categories into the category of Segal categories, and thus any S-category
will be considered as a Segal category. Moreover, as there is a fully faithful
functor Cat −→ S − Cat, we also get a full embedding of the category of
categories to the category of Segal categories, and will consider categories
as a special kind of Segal categories (they are the ones for which the
simplicial sets of morphisms are discrete).

2. Homotopy categories: Any Segal category A possesses a homotopy
category Ho(A) (which is a category in the usual sense), having the same
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objects as A, and for two objects a and b morphisms in Ho(A) are given
by Ho(A)(a, b) = π0(A(a, b)). The composition is induced by the diagram

π0(A(a, b, c)) //

'
��

π0(A(a, c))

π0(A(a, b))× π0(A(b, c)).

The fact that this composition is associative follows from the higher struc-
tures on A. The functor SeCat −→ Cat sending A to Ho(A) is left adjoint
to the embedding Cat −→ SeCat.

A morphism (between two objects a and b) in a Segal category A is a zero
simplex of the simplicial set A(a, b). A morphism is an equivalence in A
if its image in Ho(A) is an isomorphism.

3. Equivalences of Segal categories: For a morphism of Segal categories
f : A −→ B, we say that f is essentially surjective (resp. fully faithful)
if the induced functor Ho(f) : Ho(A) −→ Ho(B) is essentially surjective
(resp. if for any two objects a and b in A the induced morphism fa,b :
A(a, b) −→ B(f(a), f(b)) is an equivalence of simplicial sets). We say that
f is an equivalence if it is both fully faithful and essentially surjective.
When A and B are categories, and thus Ho(A) = A and Ho(B) = B, this
notion of equivalence is the usual notion of equivalences of categories.

4. The model category of Segal categories: The foundational result
about Segal categories is the existence of a model structure whose weak
equivalences are the equivalences above (see [H-S, Pe, Ber1]). To be precise
this model structure does not exist on the category of Segal categories itself
but on a slightly larger category of Segal precategories, but I will simply
neglect this fact. For this model structure, every object is cofibrant, but
not every Segal category is a fibrant object, and in general fibrant objects
are quite difficult to describe (see however [Ber2]). The existence of this
model structure is far from being formal and has many consequences. First
of all it can be used to state that the theory of S-categories and of Segal
categories are equivalent in some sense, as it is known that their model
categories are Quillen equivalent (see [Ber1]). The model category of Segal
categories can be shown to be enriched over itself (i.e. is an internal model
category in the sense of [H-S, §11], see also [Pe, Ber1]). This implies that
given two Segal categories A and B it is possible to associate a Segal
category of morphisms

RHom(A,B) := Hom(A,RB),

where RB is a fibrant model for B and Hom denotes the internal Hom’s in
the category of Segal categories. From the point of view of ∞-categories,
RHom(A,B) is a model for the∞-category of (lax) functors from A to B.
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In general, the expression f : A −→ B is a morphism of Segal categories
will mean that f is an object in RHom(A,B), or equivalently a morphism
in the homotopy category Ho(SeCat). In other words we implicitly al-
low ourselves to first take a fibrant replacement of B before considering
morphisms into B.

5. The 2-Segal category of Segal categories: Considering fibrant Segal
categories and their internal Homs as above provides a category enriched
over SeCat, denoted by SeCat. This is a 2-Segal category (see [H-S]),
and is a model for the ∞-category of (1,∞)-categories. I will not really
use the 2-Segal category SeCat in the sequel, but it is a good idea to keep
in mind that it exists.

6. Segal groupoids and delooping: There is a notion of Segal groupoid :
by definition a Segal category A is a Segal groupoid if its homotopy cate-
gory Ho(A) is a groupoid in the usual sense.

For any Segal category A, we can define its geometric realization |A|,
which is the diagonal simplicial set of the underlying bi-simplicial of A (see
[H-S, §2], where |A| is denoted by R≥0(A)). The construction A 7→ |A|
has a right adjoint, sending a simplicial set X to its fundamental Segal
groupoid Π∞(X) (it is denoted by Π1,se(X) in [H-S, §2]). By definition,
the set of objects of Π∞(X) is the set of 0-simplex in X, and for two
points (x, y) ∈ X2

0 the simplicial set of morphisms Π∞(X)(x, y) is the

subsimplicial set of X∆1

sending the two vertices of ∆1 to x and y. A
fundamental theorem states that the constructions A 7→ |A| and X 7→
Π∞(X) provide an equivalence between the homotopy theories of Segal
groupoids and of simplicial sets (see [Pe, §6.3]). This last equivalence is
a higher categorical version of the well known equivalence between the
homotopy theories of 1-truncated homotopy types and of groupoids.

7. Localization of Segal categories: Given a Segal category A and a set
of morphisms S in Ho(A), there exists a Segal category L(A,S) obtained
by inverting the arrows in S. This construction is the Segal analog of
the Gabriel-Zisman localization for categories. By definition, the Segal
category L(A,S) comes with a localization morphism l : A −→ L(A,S)
satisfying the following universal property: for any Segal category B, the
induced morphism

l∗ : RHom(L(A,S), B) −→ RHom(A,B)

is fully faithful, and its essential image consists of morphisms A −→ B
sending morphisms of S into equivalences in B (i.e. isomorphisms in
Ho(B)). The fact that L(A,S) always exists is not an easy result (see
e.g. [H-S], or [To2] for a linear analog). When applied to the case where
A is a category considered as a Segal category, the construction L(A,S)
described above coincides, up to an equivalence, with the simplicial local-
ization construction of [Dw-Ka1]. It is important to note that Ho(L(A,S))
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is naturally equivalent to the Gabriel-Zisman localization S−1A, but that
in general the natural morphism

L(A,S) −→ S−1A

is not an equivalence (examples will be given below).

8. Model categories and Segal categories: Given a model category M ,
we can construct a Segal category LM := L(M,W ) by localizing M (in
the sense as above) along its subcategory of equivalences W . This provides
a lot of examples of Segal categories. Using the main result of [Dw-Ka2]
the Segal categories LM can be explicitly described in terms of map-
ping spaces in M . In particular, when M is a simplicial model category
LM is equivalent to Int(M), the S-category of fibrant-cofibrant objects
in M . For the model category of simplicial sets we will use the notation
Top := LSSet, for which one model is the S-category of Kan simplicial
sets. For a simplicial set X, considered as an object in Top, we have a
natural equivalence Top(∗, X) ' X, showing that Top is not equivalent
to Ho(Top) the homotopy category of spaces. This is the generic situa-
tion, and for a general model category M the Segal category LM is not
equivalent to its homotopy category Ho(M) = Ho(LM).

The construction M 7→ LM can be made functorial with respects to
Quillen functors as follows. For f : M −→ N a right Quillen functor,
its restriction to fibrant objects f : Mf −→ Nf preserves equivalences,
and thus induces a morphism of Segal categories LMf −→ LNf . The ex-
istence of fibrant replacements implies that the natural inclusion functors
LMf −→ LM and LNf −→ LN are equivalences. We thus obtain a mor-
phism of Segal categories Lf2 : LM −→ LN , well defined in the homotopy
category of Segal categories, which is often enough for applications.

The functor Lf : LM −→ LN above can be characterized by a univer-
sal property in the Segal category RHom(LM,LN), showing that it is
uniquely determined by f and equivalences in M and N (in particular
it does not depend on choices of fibrant replacement functors in M and

N). For this we consider the composite functor M
f // N

l // LN ,
as an object l ◦ f ∈ RHom(M,LN). In the same way, we have Lf ◦ l ∈
RHom(M,LN). By construction there exists a natural morphism l ◦ f →
Lf in the Segal category RHom(M,LN). It is possible to show that
l ◦f → Lf is initial among morphism from l ◦f to functors g : M −→ LN
sending equivalences in M to equivalences in LN . In other words, the
functor Lf is the total right derived functor of f , in the sense of Segal
categories.

9. Classifying spaces of model categories: For a model category M
with subcategory of equivalences W , we can consider LM as well as its

2Be careful that the ”L” in ”Lf” stands for ”localization” and not for ”left derived”. In
fact, as f is right Quillen the morphism Lf is a model for the right derived functor Rf . In
order to avoid confusion left derived stuff will be denoted using the symbol L.
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maximal sub-Segal groupoid LM int ⊂ LM defined as the pull-back of
Segal categories

LM int //

��

LM

��
Ho(M)int // Ho(M),

where Ho(M)int is the maximal subgroupoid of Ho(M). As LM int is a
Segal groupoid it is determined by its geometric realization by the formula
LM int ' Π∞(|LM int|). It is possible to show that there exists a natural
equivalence of simplicial sets |LM int| ' |W |, where |W | is the nerve of the
category W (it is also its geometric realization as a Segal category). Thus,
we have LM int ' Π∞(|W |), and the Segal groupoid LM int is essentially
the same thing as the simplicial set |W |. This fact explains that topologists
often refer to the simplicial set |W | as the classifying space of objects in
M : it truly is a model for the ∞-groupoid obtained from M by inverting
the morphisms in W . This fact will be highly used in the construction
and the description of higher stacks.

10. The Yoneda embedding: Given a Segal category A there is a Yoneda
embedding morphism

h : A −→ RHom(Aop, T op),

which is known to be fully faithful (this is the Segal version of the Yoneda
lemma). Any morphism Aop −→ Top in the essential image of this mor-
phism is called representable. Dually, there is a notion of corepresentable
morphism.

11. Adjunctions: Given a morphism of Segal categories f : A −→ B, we say
that f has a right adjoint if there exists a morphism g : B −→ A and a
point h ∈ RHom(A,A)(Id, gf), such that for any two objects a ∈ A and
b ∈ B the natural morphism induced by h

A(f(a), b)
g∗ // A(gf(a), g(b))

h∗ // A(a, g(b))

is an equivalence of simplicial sets. This definition permits to talk about
adjunction between Segal categories. An important fact is that a Quillen
adjunction between model categories

f : M −→ N M ←− N : g

gives rise to a natural adjunction of Segal categories

Lf : LM −→ LN LM ←− LN : Lg.

12. Limits: Given two Segal categories A and I, we say that A has lim-
its (resp. colimits) along I if the constant diagram morphism A −→
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RHom(I, A) has a right adjoint (resp. left adjoint). This gives a notion
of Segal categories having (small) limits (resp. colimits), or finite limits
(resp. colimits). In particular we can talk about fibered and cofibered
squares, final and initial objects, left and right exactness . . . .

13. The strictification theorem: Let M be a cofibrantly generated model
category, and C a category with a subcategory S ⊂ C. We consider the
category MC of functors from C to M , and M (C,S) the subcategory of
functors sending morphisms in S to equivalences in M . The notion of
equivalences in M induces a levelwise notion of equivalences in M (C,S).
An important theorem, called the strictification theorem, states that there
exists a natural equivalence of Segal categories

L(M (C,S)) ' RHom(L(C, S), LM).

A proof can be found in [H-S] (see also [To2] in the context of dg-categories
that can easily be translated to the simplicial setting). This theorem is
very important as it provides a rather good dictionary between construc-
tions in the context of model categories and constructions in the context
of Segal categories. For instance, for a model category M the existence of
homotopy limits and colimits in M implies that the Segal category LM
possesses limits and colimits in the sense of (12).

Another important consequence of the strictification theorem and of the
Yoneda lemma (12) states that any Segal category A possesses fully faith-
ful embedding A −→ LM for some model category M . This remark im-
plies that model categories and Segal categories are essentially the same
thing, and this relation can be made precise by showing that Segal cate-
gories of the form LM for M a cofibrantly generated model category are
exactly the locally presentable Segal categories (i.e. the cocomplete Segal
categories having a set of small generators, see [S4]).

Finally, the strictification theorem also possesses a relative version, for
presheaves of model categories on Cop (the absolute version above being
for the constant presheaf with values M), but we will not reproduce it here.
This generalized strictification theorem is important for stack theory as it
allows to describe certain homotopy limits (see e.g. [HAGII, App. B]) of
Segal categories in terms of model categories, and is often a key statement
to check that something is a stack.

The previous list of facts shows that through the construction M 7→ LM ,
model category theory is somehow an approximation of Segal category theory,
and thus of the theory of (1,∞)-catgeories. The main advantage of passing
from model categories to Segal categories is the existence of the internal Hom
object RHom, as well as a gain of functoriality. However, model categories are
1-categorical structures, and thus it is reasonable to say that model categories
are in some sense strict forms of (1,∞)-categories. We finish this paragraph by
stipulated this as another important principle:
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Principle 2: Model categories are strict forms of (1,∞)-categories, and
model category theory is a strict form of the theory of (1,∞)-catgeories.

This principle is not only a conceptual one, and it can be verified dramati-
cally in practice. Typically, general constructions are done using Segal categories
as they are more functorial, but explicit computations are usually done using
model category techniques. I personally like to think that choosing a model
category which is a model for a given Segal category (i.e. strictifying the Segal
category) is very much like choosing a system of local coordinates on a mani-
fold: the intrinsic object is the Segal category, but the model category is useful
to have hands on it. For an example of application of the principle 2 to the
construction of higher stacks see the end of the next section.

To finish this part on Segal categories we introduce the following notations
for a Segal category A and two objects a and b

MapA(a, b) := A(a, b) [a, b]A := π0(A(a, b)) = Ho(A)(a, b).

When A is clear from the context we will simply write Map(a, b) for MapA(a, b)
and [a, b] for [a, b]A.

2.3 Higher stacks

We are now ready to explain what are higher stacks (in groupoids). For this let
me first remind the following characterization of the category Sh(C) of sheaves
of sets on a Grothendieck site C. There exists a functor, which is the Yoneda
embedding followed by the associated sheaf functor, h : C −→ Sh(C). This
functor can be characterized by a universal property in the following way. First
of all for two categories A and B with colimits we will denote by Homc(A,B)
the category of functors commuting with colimits (”c” stands for ”continuous”).
Also, recall from [DHI] the notion of an hypercovering in C (and noticed that an
hypercovering in C is not a simplicial object in C but only in presheaves of sets
over C). Then the functor h : C −→ Sh(C) is characterized up to equivalence
by the following properties.

• The category Sh(C) has colimits.

• For any category with colimits B, the induced functor

h∗ : Homc(Sh(C), B) −→ Hom(C,B)

is fully faithful and its image consists of functors F : C −→ B such that
for any object X ∈ C and any hypercovering U∗ → X in C the natural
morphism in B

Colim[n]∈∆opF (Un) −→ F (X)
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is an isomorphism3.

Such a characterization also exists for the 2-category of 1-stacks, but in the
setting of 2-categories. The definition of the Segal category of stacks on C is
simply the Segal analog of these two properties.

Definition 2.1 Let C be a Grothendieck site. A Segal category of stacks on
C is a Segal category A together with a morphism h : C −→ A such that the
following two properties are satisfied.

1. The Segal category A has colimits.

2. For any Segal category with colimits B, the induced morphism

h∗ : RHomc(A,B) −→ RHom(C,B)

is fully faithful and its image consists of morphisms F : C −→ B such that
for any object X ∈ C and any hypercovering U∗ → X in C the natural
morphism in B

Colim[n]∈∆opF (Un) −→ F (X)

is an equivalence (i.e. an isomorphism in Ho(B)).

When it exists a Segal category of stacks over C will be denoted by St(C).

A fundamental result states that for any Grothendieck site C a Segal cate-
gory of stacks on C exists and is unique up to equivalence. Once enough of the
basic categorical constructions are extended to the Segal category setting and
proved to behave correctly, this theorem is not difficult to prove and is proved
in a similar way as the corresponding statement for categories of sheaves. We
start by considering the Segal category of prestacks Ĉ := RHom(Cop, T op), and

we define St(C) a localization of Ĉ in order to invert all the morphisms of the
form

colim[n]∈∆opUn −→ X

for all hypercovering U∗ −→ X in C. The fact that this satisfies the correct
universal property follows from the definition of the localization and from the
fact that the Yoneda embedding C −→ Ĉ induces for any cocomplete Segal
category B an equivalence

RHomc(Ĉ, B) ' RHom(C,B),

(this last equivalence can be proved from the strictification theorem, point (13)
of §2.2).

3Here, as well as in the sequel, we make an abuse of language which is commonly used
in the literature. The hypercovering U∗ is not a simplicial object in C as each Un is only a
disjoint union of representable presheaves over C, and must be understood as a formal disjoint
union of objects in C. For U =

∐
Ui such a formal disjoint union the notation F (U) stands

for
∏

F (Ui).
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The Segal category of stacks St(C) possesses of course a model category
counterpart, which is extremely useful in practice. By definition, we start by the
projective model structure on SPr(C), the category of simplicial presheaves on
C (equivalences and fibrations are levelwise). We then define the model category
SPrτ (C) of stacks over C as being the left Bousfield localization of SPr(C)
along the set of morphisms U∗ −→ X for any hypercovering U∗ → X (here U∗ is
considered as simplicial presheaf and thus as an object in SPr(C), and is a model
for Hocolim[n]∈∆opUn computed in SPr(C)). Using the strictification theorem
(point (13) of §2.2) it is possible to prove that there are natural equivalences of
Segal categories

L(SPr(C)) ' Ĉ L(SPrτ (C)) ' St(C).

This last equivalences explain that stacks are modeled by simplicial presheaves.
This important fact has been first stressed by C. Simpson in [S1], and then has
been used by several author (see e.g. [Hol, Ja2]). Another model for St(C) is
the model category of simplicial sheaves, originally introduced by A. Joyal and
revisited by J. Jardine (see [Joy, Ja1]). This last model shows that the Segal
category St(C) only depends on the topos Sh(C), and not of the choice of the
site C.

By universal properties there exists a natural morphism π0 : St(C) −→
Sh(C) which can be thought of as a truncation functor. This morphism has a
fully faithful right adjoint Sh(C) −→ St(C) identifying Sh(C) with the full sub-
Segal category of St(C) consisting of discrete objects (i.e. objects x for which
for any other object y the simplicial set St(C)(y, x) is equivalent to a set). In
the same way, the 2-category of 1-stacks can be seen as a full sub-Segal category
of St(C) consisting of 1-truncated objects (see [Hol, HAGI]). More generally,
the full sub-Segal category St≤n(C) of St(C) consisting of n-truncated objects
is a model for the (n+1)-category of n-stacks in groupoids, and the inclusion
St≤n(C) −→ St(C) possesses a right adjoint t≤n : St(C) −→ St≤n(C) called
the n-th truncation functor (of course t≤0 coincides with π0 described above).

As for categories of sheaves the localization morphism (which must be con-
sidered as the associated stack functor)

a : Ĉ −→ St(C),

has a fully faithful right adjoint i : St(C) −→ Ĉ. Concrete models for St(C) and

Ĉ can then be described as follows. A model for Ĉ is the S-category SPr(C)cf

of cofibrant and fibrant objects in SPr(C). A model for St(C) is the full sub-
S-category of SPr(C)cf consisting of functors F : Cop −→ SSet such that for
any hypercovering U∗ −→ X in C the natural morphism

F (X) −→ Holim[n]∈∆F (Un)

is an equivalence. Even more concrete models for the homotopy categories
Ho(Ĉ) and Ho(St(C)) are given by the homotopy category of presheaves of sim-
plicial sets on C and its full subcategory consisting of functors satisfying the de-
scent condition above. With this models, the functor π0 : Ho(St(C)) −→ Sh(C)
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mentioned above simply sends a simplicial presheaf F to its sheaf of connected
component (i.e. the sheaf associated to the presheaf X 7→ π0(F (X))).

An important fact is that the morphism a is left exact (i.e. commutes with
finite limits). This has many interesting exactness consequences on the Segal
category St(C), as for instance the existence of internal Hom objects (i.e. exis-
tence of stacks of morphisms). These exactness properties are formally the same
as the one satisfied by the Segal category Top, and can be summarized as Segal
category versions of the standard Giraud’s axioms for Grothendieck topos. The
three fundamental properties are (see [HAGI, To-Ve1]):

1. The Segal category St(C) has colimits and a set of small generators (this
implies that it also has limits, which can also be seen directly).

2. Sums in St(C) are disjoint: for any family of objects {xi}i∈I in St(C) and
any i1 6= i2 in I the following diagrams

∅ //

��

xi2

��

xi1 //

��

xi1

��
xi1 //

∐
i∈I xi xi1 //

∐
i∈I xi

are cartesian.

3. Equivalence relations are effective in St(C): for any groupoid object X1 ⇒
X0 with quotient |X∗|, the natural morphism X1 −→ X0 ×|X∗| X0 is an
equivalence in St(C).

These three properties can be taken as the definition of a Segal topos. I refer
to [To-Ve1, Lu2] for more on this notion. It can be proved that Segal topos are
precisely the Segal categories which are exact localizations of Segal categories
of the form RHom(T, Top) for some Segal category T . An important remark
however is that there exists Segal topos which are not exact localizations of
Segal categories of the form RHom(C, Top) for some category C, showing that
there exists exotic Segal topos (i.e. which are not determined by a topos in
the usual sense). Such an exotic Segal topos will be used to develop the theory
of derived stacks later in this paper. Another example is the Segal category
St(k)/F , for a stack F which is not a sheaf, which is a Segal topos not gener-
ated by a Grothendieck site in general.

To finish this section on higher stacks I would like to give one particular
example of principle 2 of §2.2 in action, concerned with the construction of
higher stacks from model category data.

Let C be a Grothendieck site. We are looking for a general procedure to
construct stacks over C, i.e. simplicial presheaves with the descent conditions.
From the point of view of moduli theory, a stack F , which is modeled by a
simplicial presheaf F : Cop −→ SSet, represents a moduli problem: for an

15



object X ∈ C, the simplicial set F (X) is a classifying space of families of objects
over X. From the dictionnary between Segal categories and model categories
(see points (8) and (9) of §2.2), we can expect F (X) to be the nerve of the
subcategory of equivalences in a model category M(X), depending on X, and
being a model for the homotopy theory of families of objects parameterized by
X4. The starting point is thus a presheaf of model categories M on C, also called
a Quillen presheaf : it consists for any X ∈ C of a model category M(X), and
for any morphism f : X −→ Y of a left Quillen functor f∗ : M(Y ) −→ M(X)
satisfying f∗ ◦ g∗ = (g ◦ f)∗ (there is of course a dual notion with right Quillen
functors). From such a Quillen presheaf we construct a prestack sending X to
F (X) := |WM(X)c|, the nerve of equivalences in M(X)c (i.e. between cofibrant
objects), and f : X −→ Y to the induced morphism f∗ : F (Y ) −→ F (X). Note
that the restriction to cofibrant objects is necessary to insure that f∗ preserves
equivalences. However, as for any model category N the nerve of equivalences
in N and in N c are naturally equivalent to each others, F (X) is a classifying
space of objects in M(X), as required.

In this way, for any presheaf of model categories M we obtain a simplicial
presheaf F , which by point (9) of §2.2 can be see as the∞-prestack of objects in
M up to equivalences. The next step is to add conditions on M to insure that
the prestack F is a stack, i.e. satisfies the descent condition for hypercoverings.
For any hypercovering U∗ −→ X in C, we can consider the the cosimplicial
diagram of model categories n 7→ M(Un) (we make here the same abuse of
notation as before, as Un is not an object in C but only a formal disjoint union
of such, and M(Un) means the product of the values of M over the various
components of Un). We consider Sect(U∗,M), the category of global section of
this cosimplicial category: its objects are families of objects xn ∈ M(Un) for
any n, together with morphisms u∗(xm)→ xn in M(Un) for any simplicial map
u : Un −→ Um, satisfying the usual cocycle condition (see [HAGII, App. B]).
There exists a natural Quillen model structure on Sect(U∗,M) for which the
equivalences and fibrations are defined levelwise. It is then possible to construct
a natural adjunction

φ : Ho(M(X)) −→ Ho(Sect(U∗,M)) Ho(M(X))←− Ho(Sect(U∗,M)) : ψ.

We say that M satisfies homotopical descent (the reader will notice the anal-
ogy with usual cohomological descent for complexes of sheaves) if the above
adjunction satisfies the following two conditions:

• The functor φ : Ho(M(X)) −→ Ho(Sect(U∗,M)) is fully faifthul.

• An object x∗ ∈ Ho(Sect(U∗,M)) is in the essential image of φ if and only
if for any u : Un −→ Um the induced morphism

Lu∗(xm) −→ xn

is an isomorphisms in Ho(M(Un)).

4In general F (X) is only expected to be a full subsimplicial set (i.e. union of connected
components) of the nerve of equivalences in M(X) consisting of objects satisfying certain
additional conditions (typically finiteness conditions)
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An important consequence of the strictification theorem (see point (13) of
§2.2 as well as [HAGII, App. B]) states that with the notations above, the
prestack F is a stack if M satisfies homotopical descent. As far as I know this
is the most powerful way to construct examples of stacks, and many of the
examples of stacks presented in the sequel are based on this construction.

3 Higher Artin stacks

Let k be a commutative ring and k − Aff the category of affine k-schemes
endowed with the faithfully flat and quasi-compact topology. The Segal category
of stacks St(k−Aff) will simply be denoted by St(k), and its objects called k-
stacks. The ffqc topology being subcanonical the natural morphism k−Aff −→
St(k) is fully faithful, and we will simply identify k − Aff with its essential
image in St(k) (so any stack equivalent to an affine scheme will be called an
affine scheme).

Recall that a model for St(k) is the model category of presheaves of simplicial
sets with the local model structure as in [Ja1, DHI], and thus that objects in
St(k) might be described concretely as functors

F : k −Affop = k − CAlg −→ SSet,

from the opposite of the category of affine k-schemes or equivalently the category
of commutative k-algebras, such that for any ffqc hypercovering of affine schemes
U∗ −→ X the natural morphism

F (X) −→ Holim[n]∈∆F (Un)

is an equivalence (once again we make the abuse of notation, as Un is only a
formal disjoint union of affine schemes). We will often use this description in
terms of simplicial presheaves in order to construct explicit objects in the Segal
category St(k).

Recall also that we have introduced the following notations

MapSt(k)(F,G) := St(k)(F,G) [F,G]St(k) := π0(Map(F,G)).

Moreover, the subscribe St(k) will not be mentioned when there are no ambigu-
ities. From a model category theory point of view, if F and G are represented
by simplicial presheaves we have

Map(F,G) ' RHom(F,G) = Hom(QF,RG),

whereHom are the natural simplicial Hom’s of the category of simplicial presheaves,
and Q and R are cofibrant and fibrant replacement functors inside the category
of simplicial presheaves endowed with its local projective model structure (see
[Ja1, DHI])

The main references for higher Artin stacks are [S3] and [HAGII, §2.1].
The approach of [HAGII] uses model categories, and concerning notation the
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homotopy category of the Segal category St(k) is denoted by St(k) = Ho(St(k))
in [HAGII]. In the sequel we will work with the Segal category St(k), but the
constructions and statements given below can also be translated into a model
category language and considered in St(k) (e.g. the fiber product in the Segal
category St(k) corresponds to the homotopy fiber products in St(k), denoted
in [HAGII] by ×h).

3.1 Basic notions

Higher Artin stacks will form a certain sub-Segal category of St(k) of objects
obtained as nice quotients from affine schemes. The definition of an n-Artin
stack goes by induction on n as follows.

• A (-1)-Artin stack is an affine scheme. A morphism f : F −→ G between
stacks is (-1)-representable, or affine, if for any affine scheme X and any
morphism X −→ G the pull back F ×G X is a (-1)-Artin stack.

• Let us assume that the notion of (n-1)-Artin stacks has been defined, as
well as the notion of (n-1)-representable morphisms (one also says (n-1)-
geometric morphisms) and smooth (n-1)-representable morphisms.

– A stack F is an n-Artin stack if there exists a disjoint union of affine
schemes X and a smooth (n-1)-representable and surjective mor-
phism X −→ F (here surjective must be understood in a sheaf-like
sense, that for any affine scheme Y , any morphism Y −→ F factors
through X locally on the ffqc on Y ). Such a morphism X −→ F is
called a smooth n-atlas for F .

– A morphism f : F −→ G between stacks is called n-representable (or
n-geometric) if for any affine scheme X and any morphism X −→ G
the pull back F ×G X is an n-Artin stack.

– An n-representable morphism f : F −→ G between stacks is called
smooth if for any affine scheme X and any morphism X −→ G, there
exists a smooth n-atlas U −→ F ×G X such that the composition
U −→ X is a smooth morphism of schemes.

• A stack F which is an n-Artin stack for some n is simply called an Artin
stack. If furthermore F is n-truncated (i.e. its values as a simplicial
presheaf are n-truncated simplicial sets, πi(F (X)) = 0 for all i > n and
all X ∈ k − Aff) then F is called an Artin n-stack. In the same way, a
morphism f : F −→ G between stacks is called representable (or geomet-
ric) if it is n-representable for some n.

The reader is warned that there is a small discrepancy for the indices in the
notions of n-Artin stack and Artin n-stack. For example a scheme is always an
Artin 0-stack, but is only a 1-Artin stack. It is a 0-Artin stack if and only if
its diagonal is an affine morphism (see [HAGII] for more details on this). To
avoid confusion we will not use the terminology n-Artin stack which has been
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introduced only for the need of the inductive definition, and we will stay with
the notion of Artin stack and Artin n-stack which are the pertinent ones for
our purpose.

Most of the very basic properties of Artin 1-stacks can be shown to extend
to the case of Artin stacks. Here follows a sample of results.

1. Properties of morphisms: Any property P of morphisms of schemes
which is local for the smooth topology extends naturally to a property P
of morphisms between Artin stacks (see [HAGII, 1.3.6]). This provides
notions of unramified, smooth, etale and flat morphisms. A morphism of
Artin stacks F −→ G is an open (resp. closed) immersion if for any affine
scheme X and any morphism X −→ G the stack F ×GX is a scheme and
the induced morphism F×GX −→ X is an open (resp. closed) immersion.

An Artin stack F is quasi-compact if it can be covered by an affine scheme
(i.e. there exists a surjective morphism of stacks X −→ F with X affine).
A morphism f : F −→ G between Artin stacks is quasi-compact if for
any affine scheme X and any morphisms X −→ G the stack F ×G X
is quasi-compact. Finally, by induction on n, we say that an n-geometric
stack F is strongly quasi-compact if it is quasi-compact and if the diagonal
F −→ F × F is strongly quasi-compact (with the convention that a 0-
geometric stack is strongly quasi-compact if it is quasi-compact).

Finally, an Artin stack F is locally of finite presentation if it has a smooth
atlas U −→ F such that the scheme U is locally of finite presentation.
An Artin stack F is strongly of finite presentation if it is strongly quasi-
compact and locally of finite presentation.

2. Presentation as quotient stacks: The full sub-Segal category of St(k)
consisting of Artin stacks is stable by finite limits and disjoint unions.
Moreover, a stack F is an Artin n-stack if and only it is equivalent to the
quotient stack of a groupoid object X1 ⇒ X0 with X0 and X1 being Artin
(n-1)-stacks and the morphisms X1 −→ X0 being smooth (see [HAGII,
§1.3.4]). As in the usual case of Artin 1-stacks, the geometry of such
a quotient stack is the equivariant geometry of the groupoid X1 ⇒ X0.
This also provides a systematic way to construct examples of higher stacks
by taking quotient of schemes by Artin group stacks. For instance, the
quotient stack of a scheme by an action of an Artin group 1-stack is in
general an Artin 2-stack.

3. Gerbes: An Artin stack F is a gerbe if its 0-truncation π0(F ) is an
algebraic space and if the natural morphism F −→ π0(F ) is flat. It can
be shown that an Artin stack F is a gerbe if and only if the projection

IF := F ×F×F F −→ F

is flat (IF is called the inertia stack of F , and is the stack of morphisms
from the constant stack S1 := K(Z, 1) to F ) (see [To3]).
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By generic flatness it can thus been shown that any Artin n-stack F
strongly of finite presentation over Spec k possesses a finite decreasing
sequence of closed substacks

Fr = ∅ // Fr−1
// . . . F1

// F0 = F,

such that each stack Fi − Fi+1 is a gerbe.

4. Deligne-Mumford stacks: An Artin stack F is a Deligne-Mumford
stack if there exists a smooth altas U −→ F which is an etale morphism.
This is equivalent to the fact that the diagonal morphism F −→ F × F
is unramified. However, the notion of a Deligne-Mumford n-stack is not
very interesting for n > 1, as the 1-truncation τ≤1F is always a Deligne-
Mumford 1-stack and the natural morphism F −→ τ≤1F is an etale mor-
phism. Indeed, we can write F as the quotient of a groupoid object
X1 ⇒ X0 where X0 is a scheme, X1 is a Deligne-Mumford (n-1)-stack
and the morphism X1 −→ X0 is etale. The morphism X1 −→ X0 be-
ing etale, it is easy to check that the 0-truncation π0(X1) is an algebraic
space etale over X0, and that furthermore π0(X1) ⇒ X0 defines an etale
groupoid whose quotient is equivalent to τ≤1F . This shows that τ≤1F is
a Deligne-Mumford 1-stack, and the diagram X0 −→ F −→ τ≤1F shows
that the projection F −→ τ≤1F is etale.

5. Flat and smooth atlases: A stack F is an Artin stack if and only there
exists a scheme X and a a faithfully flat and locally finitely presented
representable morphism p : X −→ F . This means that we would not gain
anything by defining a generalized notion of being an Artin stack by only
requiring the existence of a flat atlas. To show this we define X to be the
stack of quasi-sections of the morphism p, as follows: for an affine scheme
S a morphism S −→ X is by definition given by a commutative diagram
in St(k)

S′

f

��

// X

��
S // F,

where f is a finite flat morphism. The stack X can be seen to be an Artin
stack together with a natural projection X −→ F . We denote by X lci
the open substack of consisting of points for which the relative cotangent
complex of the morphism S′ −→ X is perfect of amplitude contained in
[−1, 0]. Then, an argument of obstruction theory shows that the morphism
X lci −→ F is smooth (note that it is automatically representable because
of the condition on the diagonal of F ). Finally, the morphism X lci −→ F
is surjective as it is so on points with values in algebraically closed fields
(because any scheme locally of finite type over an algebraically closed field
contains a point which is Cohen MacCauley).
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6. Homotopy groups schemes: For any affine scheme and any morphism
X −→ F of stacks we define the loop stack at x to be

ΩxF := X ×F X,

which is a stack over X. The natural morphism

ΩxF ×X ΩxF ' X ×F X ×F X −→ X ×F X

makes ΩxF into a group stack over X (i.e. ΩxF is a group object in
the Segal category St(k)/X of stacks over X. Equivalently we can view
ΩxF as an object in the homotopy category of group objects in SPr(k −
Aff/X), that is a presheaf of simplicial groups over the site k−Aff/X)
. The n-th iterated loop stack is defined by induction

Ω(n)
x F := Ωx(Ω(n−1)

x F ),

which is again a group stack over X. The n-th homotopy sheaf of F at
the point x is defined to be

πn(F, x) := π0(Ω(n)
x F )

and is a sheaf of groups (abelian for n > 1) on X.

It can be shown that if F is an Artin stack strongly of finite presentation
then for any k-field K and any morphism x : SpecK −→ F , the sheaf of
groups πn(F, x) is representable by a group scheme of finite presentation
over SpecK (see [To3]). The group scheme πn(F, x) is the group of n-
automorphisms of the points x in F , and are higher analogs of the isotropy
groups of Artin 1-stacks.

7. Derived categories of O-modules: To each stack F we can associate a
Segal topos St(F ) := St(k)/F of stacks over F . The Segal topos possesses
a natural ring object OF := A1 × F −→ F making it into a ringed Segal
topos (i.e. a Segal topos St(F ) together with a colimit commuting mor-
phism from St(F ) to the opposite category of commutative rings). As to
any ringed topos (T,O) is associated a derived category D(T,O) of (un-
bounded) complexes O-modules, the ringed Segal topos (St(F ),OF ) gives
rise to a derived Segal category L(F,OF ) of OF -modules (see [To-Va-Ve]).
Its homotopy category will be denoted by D(F,OF ) := Ho(L(F,OF )) and
is called the derived category of F .

However, the notion of derived category of a ringed Segal topos is bit
beyond the scope of this overview and we will rather give an explicit
description of L(F,OF ) as follows. The stack F can be written as a
colimit (in St(k)) of a simplicial scheme X∗. For any n, the category
C(X,OXn

) of complexes of (big)OXn
-modules onXn can be endowed with

a cofibrantly model category structure for which the equivalences are the
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quasi-isomorphisms (see [Ho2]). Moreover, for any transition morphism
a : Xn −→ Xm the adjunction

a∗ : C(X,OXm) −→ C(X,OXn) C(X,OXm)←− C(X,OXn) : a∗

is a Quillen adjunction. Passing to the localizations (in the sense of point
(7) of §2.2) of the subcategories of cofibrant objects we obtain a cosimpli-
cial diagram of Segal categories

∆ −→ SeCat
n 7→ L(C(X,OXn

)c).

The homotopy limit of this diagram, taken in the homotopy theory of
Segal categories gives a Segal category L(F,O) which is the derived Segal
category of OF -modules. Its homotopy category is by definition D(F,OF ).
The Segal category L(F,OF ) is stable in the sense of [To-Ve2, To1], and
thus its homotopy categoryD(F,OF ) inherits a natural triangulated struc-
ture.

It is important to note that D(F,OF ) is in general not the derived category
of a ringed topos (as soon as F is not 0-truncated, i.e. a sheaf of sets),
and this is directly related to the fact that the topos St/F is in general
not generated by a Grothendieck topos. The derived category D(F,OF )
can also be identified with the full sub-category of the derived category of
the simplicial scheme X∗ consisting of objects satisfying the cohomological
descent condition. When F is a scheme, L(F,OF ) is the Segal category
of complexes of big OF -modules, and thus D(F,OF ) is the usual derived
category of sheaves of OF on the big ffqc site of F .

We define a full sub-Segal category Lqcoh(F ) of L(F,OF ) consisting of
objects E such that for any affine scheme X and any morphism u : X −→
F , the object u∗(E) ∈ D(X,OX) is a quasi-coherent complex. Objects in
Lqcoh(F ) will be called quasi-coherent complexes of OF -modules. When
F is an Artin stack, it is possible to define a t-structure on Lqcoh(F ), by
defining objects with non positive amplitude to be E ∈ Lqcoh(F ) such
that for any affine scheme X and any morphism u : X −→ F , the complex
u∗(E) has no non zero positive cohomology sheaves. Dually, an object E
is of non negative amplitude if for any affine scheme and flat morphism
u : X −→ F , the quasi-coherent complex u∗(E) on X has no non zero
negative cohomology sheaves (as sheaves on the small Zariski site of X).
The heart of this t-structure is denoted by QCoh(F ), and is called the
abelian category of quasi-coherent sheaves on F .

For any morphism of stacks f : F −→ F ′ there exists an adjunction of
Segal categories

f∗ : L(F ′,OF ′) −→ L(F,OF ) L(F ′,OF ′)←− L(F,OF ) : f∗

The functor f∗ preserves quasi-coherent complexes, and induces a functor

f∗ : Lqcoh(F ′) −→ Lqcoh(F ).
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It can be shown that this functor admits a right adjoint fqoch∗

fqcoh∗ : Lqcoh(F ′) −→ Lqcoh(F ).

However, in general f∗ does not preserves quasi-coherent complexes and
thus fqcoh∗ is not induced by the functor f∗ in general. However, if f :
F −→ F ′ is a strongly quasi-compact morphisms between Artin stacks,
and if E Lqcoh(F ) is bounded below, then there exists a natural equivalence

in L(F ′,OF ′) between f∗(E) and fqcoh∗ (E).

8. The l-adic formalism: Let l be a number invertible in k. For any
Artin stack F , we consider Et/F the full sub-Segal category of St(k)/F
consisting of morphisms u : F ′ −→ F with F ′ an Artin stack and u an
etale morphism. The Segal category Et/F possesses a natural topology
induced from the one on St(k)/F , and is thus a Segal site (see [To-Ve1]).
The Segal category of stacks over Et/F will be denoted by St(Fet), and
is called the small etale topos of F .

The constant sheaf of rings Z/li on Et/F endows St(Fet) with a structure
of a ringed Segal topos. The derived Segal category of this ringed Segal
topos will be denoted by L(Fet,Z/li) (see [To-Va-Ve]). Once again, the
notion of a derived Segal category of ringed Segal topos is outside of
the scope of this overview, so it is preferable to give the following more
explicit description of L(Fet,Z/li). We write F as the colimit in St(k) of
a simplicial diagram of schemes X∗. For each n, we consider the category
C((Xn)et,Z/li) of (unbounded) complexes of sheaves of Z/li-modules on
the small etale site of X. The localization of C((Xn)et,Z/li) along the
quasi-isomorphisms is by definition the Segal category L((Xn)et,Z/li).
For each simplicial morphism Xn −→ Xm there is a natural pull back
morphism

L((Xm)et,Z/li) −→ L((Xn)et,Z/li).

We get that way a cosimplicial diagram n 7→ L((Xn)et,Z/li) of Segal
categories and we set

L(Fet,Z/li) = Holimn∈∆L((Xn)et,Z/li),

where the homotopy limit in taken in the model category of Segal cat-
egories. Finally, the natural morphisms Z/li −→ Z/li−1 induce natural
morphisms of Segal categories

L(Fet,Z/li) −→ L(Fet,Z/li−1),

and by definition the l-adic derived Segal category of F is

L(Fet,Zl) = HolimiL(Fet,Z/li).

As for the case of complexes of OF -modules, the associated homotopy
category D(Fet,Z/li) := Ho(L(Fet,Z/li)) is not the derived category of a
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Grothendieck topos, and this related to the fact that Et/F is not generated
by a Grothendieck site except when F is an algebraic space.

For any morphism of Artin stacks f : F −→ F ′ there exists a natural
adjunction

f∗ : L(F ′et,Zl) −→ L(Fet,Zl) L(F ′et,Zl)←− L(Fet,Zl) : f∗.

It is also possible to define a direct image with compact supports

f! : L(Fet,Zl) −→ L(F ′et,Zl),

at least when the morphism f is strongly of finite type. This morphism
has a right adjoint

f ! : L(F ′et,Zl) −→ L(Fet,Zl).

These four operations can be completed into six operations by introducing
a tensor product and a corresponding internal Hom operations. The six
operations can then be used to prove a base change formula as well as a
trace formula for certain kind of l-adic complexes satisfying some finiteness
conditions. These results are out of the scope of the present overview, and
the reader will find the details in the forthcoming work [To-Va-Ve]. I
would also like to mention [Be] and [La-Ol] where the l-adic formalism has
been studied for Artin 1-stacks, and [To3] for a particular case of the trace
formula for special Artin stacks (see below for the definition).

9. Tangent and cotangent spaces: Let F be an Artin stack, X = SpecA
an affine scheme and x : X −→ F be a morphism of stacks. We define a
morphism of Segal categories

DerF (X,−) : A−Mod −→ Top

in the following way. For an A-module M we consider the trivial square
zero extension A⊕M , and the natural closed embedding of affine schemes
X −→ X[M ] := SpecA⊕M . We set

DerF (X,M) := MapX/St(k)(X[M ], F ).

It can be shown that there exists a unique objects Ω1
F,x ∈ D≥0(A), in the

positive derived category of A-modules with natural equivalences

DerF (X,M) 'Map(Ω1
F,x,M),

where the mapping space on the right hand side is taken in the model
category of unbounded complexes of A-modules (see [Ho1]). The complex
Ω1
F,x is called the cotangent space of F at x, thought its not an A-module

but only a complex of A-modules. The negative part of the dual complex
of A-modules is called the tangent space of F at x and is denoted by

TxF := RHom(Ω1
F,x, A)≤0 ∈ D≤0(A).
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The relation between Ω1
F,x and the tangent stack is the following. We

define a stack TF −→ F by setting TF := Map(Spec k[ε], F ), where k[ε]
is the k-algebra of dual numbers and where Map are the internal Homs
of St(k) (i.e. the stacks of morphisms). For a point x : X −→ F as above
we have a natural equivalence of stacks over X

X ×F TF ' V(Ω1
F,x),

where V(Ω1
F,x) is the linear stack associated to Ω1

F,x as defined in the
example (2) of the section §3.2 below.

It is also possible to glue all the complexes Ω1
F,x for x : X −→ F varying

in the Segal category of smooth morphisms to F and to obtain an object
ΩF ∈ L≥0

qcoh(F ), called the cotangent sheaf of F , thought its not a sheaf
but a complexes of sheaves. The negative part of the dual of ΩF , as a
complex of OF -modules, is called the tangent sheaf of F and is denoted
by TF . In general TF is not quasi-coherent anymore (except when Ω1

F is
perfect). There is of course a natural equivalence of stacks over F

TF ' V(ΩF ).

Finally, in the section on derived stacks (see §4) we will see that ΩF is
only the truncated version of a cotangent complex encoding important
informations about the deformation theory of F .

10. Complex Artin stacks and analytic stacks: Assume now that k = C.
We can define a Segal category St(C)an of analytic stacks, as well as a
notion of Artin analytic n-stacks. We start with Stein, the site of Stein
analytic spaces endowed with natural transcendent topology. The Segal
category of stacks on Stein is denoted by St(C)an. The notion of Artin n-
stacks in St(C)an is defined using a straightforward analog of the algebraic
notion.

The analytification functor provides a functor a : C − Aff −→ Stein,
which is a continuous morphism of sites. It induces an adjunction on the
Segal categories of stacks

a! : St(C) −→ St(C)an St(C)←− St(C)an : a∗,

where on the level of simplicial presheaves the functor a∗ is defined by
the formula a∗(F )(X) := F (Xan). The functor a! is denoted by F 7→
F an and is called the analytification functor. Being an inverse image
functor induced from a continuous morphism of sites it commutes with
finite limits. Moreover, as it sends smooth morphisms between affine C-
schemes it is easy to check that it preserves Artin n-stacks.

3.2 Some examples

1. Eilenberg-MacLane stacks: For a sheaf of abelian groups A (on the
site of affine k-schemes), we can consider the stack K(A,n) ∈ St(k).
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The stack K(A,n) is characterized, up to equivalence in St(k), by the
following universal property: for any affine k-schemeX there are functorial
bijections

π0(Map(X,K(A,n))) ' Hn
ffqc(X,A).

More generally, there exist functorial equivalences of simplicial sets

Map(X,K(A,n)) ' DK(Hffqc(X,A)),

where Hffqc(X,A) is the complex of cohomology of X with coefficients in
the sheaf A, and DK is the Dold-Kan functor from complexes to simplicial
sets. This implies in particular that we have πi(Map(X,K(A,n))) '
Hn−i
ffqc(X,A).

The Eilenberg-MacLane stacks can be used to define the cohomology
groups of any stack F ∈ St(k) with coefficients in the sheaf of abelian
groups A by the formula

Hn(F,A) := π0(Map(F,K(A,n)) = [F,K(A,n)].

This gives a good notion of cohomology for any Artin stacks with co-
efficients in some sheaf of abelian groups. Of course, as we use the ffqc
topology this is ffqc cohomology, and for a scheme X and a sheaf of groups
A we have Hn(X,A) = Hn

ffqc(X,A).

Finally, when the sheaf of groups A is represented by a an algebraic space
which is flat and locally of finite presentation over Spec k, then K(A,n) is
an Artin n-stack. In this case the stack K(A,n) is moreover smooth over
Spec k, as this can been checked inductively on n (the case n = 1 being
treated in [La-Mo]).

2. Linear stacks: Let F be an Artin stack and let E ∈ L(F,OF ) be a
quasi-coherent complex over F . We define a stack V(E) over F by

V(E) : St(k)/F −→ Top
(f : F ′ → F ) 7→ MapL(F ′,OF ′ )

(f∗(E),OF ′).

The stack V(E) is an generalization of the total affine space associated to
a quasi-coherent sheaf, and is called the linear stack associated to E. By
construction, it is characterized by the following universal property

π0(MapSt(k)/F (F ′,V(E))) ' Ext0(f∗(E),OF ′),

for any f : F ′ −→ F in St(k)/F , and where the Ext0 is computed in the
derived category of complexes of OF ′ -modules.

The stack V(E) is an Artin stack if E is a perfect complex (i.e. its pull-
backs to any affine scheme is quasi-isomorphic to a bounded complex of
vector bundles of finite rank), and the morphism V(E) −→ F is then
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strongly of finite presentation. If moreover E is perfect with amplitude
contained in [a, b] then V(E) is an Artin (b+1)-stack. Finally, if E is per-
fect and of positive amplitude then the morphism V(E) −→ F is smooth
(see [To-Va]).

3. The stack of abelian categories: (see [An]) For any k′ ∈ k−CAlg we
consider k′−Ab the category whose objects are abelian k′-linear categories
A which are equivalent to B −Mod, for some associative k′-algebra B
which is projective and of finite type as a module over k′. The morphisms
in k′ − Ab are taken to be the k′-linear equivalences. For a morphism
k′ → k′′ in k − CAlg, there exists a base change functor

k′ −Ab −→ k′′ −Ab

sending a category A to the category of k′′-modules in A. This defines
a presheaf of categories on k − Aff , and passing to the nerve provides a
simplicial presheaf

Ab : k − CAlg −→ SSet
k′ 7→ Ab(k′) := N(k′ −Ab).

The homotopy groups of the simplicial set Ab(k′) can been described ex-
plicitly in the following way. The set π0(Ab(k′)) is the set of equivalences
classes of abelian k′-linear categories in k′ −Ab. For a given A ∈ Ab(k′),
the group π1(Ab(k′), A) is naturally isomorphic to the group of isomor-
phisms classes of autoequivalences of A. The group π2(Ab(k′), A) is the
group of invertible elements in the center of A (i.e. the automorphism
group of the identity functor of A). Finally, for any i > 2 we have
πi(Ab(k′), A) = 0.

The object Ab is considered as a simplicial presheaf over k − Aff , and
thus as a stack Ab ∈ St(k). The simplicial presheaf itself is not a stack,
and thus the natural morphism

Ab(k′) −→MapSt(k)(Spec k
′,Ab)

is not an equivalence in general. This is due to the fact that there exist
non trivial twisted form of abelian categories for the etale topology. The
object Ab ∈ St(k) should therefore be truly considered as the associated
stack to the simplicial presheaf described above.

It has been proved by M. Anel that Ab is an Artin 2-stack locally of finite
presentation over Spec k (see [An]). Moreover, for an abelian k-linear
category A, considered as a global point A ∈ Ab(k), then the tangent
space of Ab at A is given by

TAAb ' HH(A)[2]≤0,

where HH(A) is the complex of Hochschild cohomology of A. There-
fore, the Artin 2-stack Ab is a global geometric counterpart of the formal
moduli of abelian categories studied in [Lo-VdB1, Lo-VdB2].
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4. The stack of perfect complexes: For any k′ ∈ k − CAlg, we consider
Parf(k′) the category of flat perfect complexes of k′-modules and quasi-
isomorphisms between them. As we restricted to flat complexes for any
morphism k′ → k′′ there exists a well defined base change functor

−⊗k′ k′′ : Parf(k′) −→ Parf(k′′).

Passing to the nerve we get a simplicial presheaf

Parf : k − CAlg −→ SSet
k′ 7→ N(Parf(k′)),

that we consider as an object in St(k). Using the techniques of left Quillen
presheaves presented at the end of §2.3, it is possible to prove that the
above simplicial presheaf is already a stack, and therefore that Parf(k′)
is equivalent to Map(Spec k′,Parf), and is a classifying space for perfect
complexes of k′-modules. The set π0(Parf(k′)) is in natural bijection with
the set of isomorphisms classes ofDparf (k′), the perfect derived category of
k′. For a given perfect complex E ∈ Parf(k′), the group π1(Parf(k′), E)
is naturally isomorphic to the automorphism group of the object E ∈
Dparf (k′). Moreover, the higher homotopy group πi(Parf(k′), E) can
be identified with Ext1−i(E,E) for any i > 1. This provides a rather
complete understanding of the stack Parf .

The stack Parf is not truncated as it classifies perfect complexes of arbi-
trary amplitude, and thus can not be an Artin n-stack for any n. However,
it can be written as a union of substacks Parf [a,b] of complexes of ampli-
tude contained in [a, b]. It is a theorem that the stacks Parf [a,b] are Artin
n-stacks for n = (b− a + 1) and locally of finite presentation over Spec k

(see [To-Va]). Moreover, the natural inclusions Parf [a,b] ↪→ Parf [a′,b′] are
Zariski open immersion, and therefore the whole stack Parf is an increas-
ing union of open Artin substacks. Such a stack is called locally geometric.
The tangent space of Parf taken at a perfect complex E is given by

TEParf ' REnd(E,E)[1]≤0.

The stack Parf can be generalized in the following way. Let B be an as-
sociative and unital dg-algebra over k. We assume that B is saturated, i.e.
that it is perfect as complex of k-modules, but also as a bi-dg-module over
itself. Then, for any k′ ∈ k−CAlg we define ParfB(k′) to be the nerve of
the category of quasi-isomorphisms between perfect B ⊗L

k k
′-dg-modules

(see [To-Va]). This defines a stack ParfB ∈ St(k). As above, the set
π0(ParfB(k′)) is in natural bijection with the set of isomorphisms classes
of Dparf (B ⊗L

k k
′), the perfect derived category of B ⊗L

k k
′. For a given

E ∈ ParfB(k′), the group π1(ParfB(k′), E) is naturally isomorphic to the
automorphism group of the object E ∈ Dparf (B⊗L

k k
′). The higher homo-

topy groups πi(Parf(k′), E) can be identified with Ext1−i(E,E) for any
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i > 1, where the Ext-groups are computed in the triangulated category
Dparf (B⊗L

k k
′). It is useful to note that the stack ParfB only depends on

the dg-category T of perfect B-dg-modules (i.e. is invariant under derived
Morita equivalences). Therefore if T is a dg-category equivalent to the
dg-category of perfect B-dg-modules for a saturated dg-algebra B we will
simply write ParfT instead of ParfB . Using the notations of [To-Va],
ParfT is the truncation of the derived stack MT .

The stack ParfB can be proved to be locally geometric (see [To-Va]).
An important consequence of this theorem is the existence of a locally
geometric stack of perfect complexes on a smooth and proper scheme X
over k. Indeed, the derived category Dqcoh(X) is known to have a compact
generator E (see [Bo-VdB]). Therefore, if we set B := REnd(E), B is a
saturated dg-algebra such that Dparf (X) ' Dparf (B), and thus ParfB
can be identified with Parf(X) the moduli stack of perfect complexes
on X. An important corollary of the geometricity of ParfB is thus the
geometricity of Parf(X).

As a remark, the maximal sub-1-stack Parf(X)1−rig ⊂ Parf(X), con-
sisting of perfect complexes on X with non negative Ext-groups between
themselves, is easily seen to be an open substack. The stack Parf(X)1−rig

is therefore an Artin 1-stack. The stack Parf(X)1−rig has previously been
shown to be an Artin 1-stack by M. Leiblich in [Lie].

5. Mapping stacks: The Segal category of stacks St(k) possesses internal
Homs: for any two objects F and G in St(k), the morphism

St(k) −→ Top
H 7→ Map(H × F,G)

is representable by an object Map(F,G) ∈ St(k).

For a smooth and proper scheme X, and an Artin n-stack F locally of
finite presentation, it can be proved that the stack Map(X,F ) is again an
Artin n-stack locally of finite presentation. The proof of this general fact
follows from a generalization of Artin’s representability criterion to higher
stacks which can be found in [Lu1]. In some cases (i.e. for some particular
choices of X and/or F ), it can be proved directly that Map(X,F ) is an

Artin n-stack. This is for instance the case when F = Parf [a,b] as we
mentioned in the last example. Also, when X is finite over Spec k, the
geometricity of Map(X,F ) can be proved by an explicit construction of
an atlas.

A much easier situation is for K a finite simplicial set (weakly equivalent
to a finite simplicial set is enough), considered as a constant simplicial
presheaf over k − Aff and thus as an object in St(k). For any Artin
n-stack F the stack Map(K,F ) can be written as a finite limit of the
stack F itself, and thus is again an Artin n-stack. When K represents the
homotopy type of a compact CW complex X, then Map(K,F ) should be
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understood as the stack of non-abelian cohomology of X with coefficients
in F . The fact that Map(K,F ) is an Artin n-stack when F is so is in
some sense a generalization of the fact that the 1-stack of local systems of
X is an Artin 1-stack.

6. The stack of saturated dg-categories: Recall from [To-Va] and from
the point 4 above the notion of a saturated dg-category over the ring k.
They are the dg-categories quasi-equivalent to the dg-category of perfect
B-dg-module for an associative dg-algebra B which is perfect as a complex
of k-module and as (B ⊗L

k B
op)-dg-module.

For k′ ∈ k−CAlg we consider dgCatk′ the category of small dg-categories
over k′. There exists a model category structure on dgCatk′ whose equiv-
alences are the quasi-equivalences (see [Tab]). We consider dgCatcofk′ the
subcategory of dgCatk′ consisting of cofibrant objects. We set dgCatsat(k′)
to be the nerve of the category of quasi-equivalences between saturated
dg-categories over k′. This defines a simplicial presheaf over k−Aff and
thus an object dgCatsat ∈ St(k).

Question 3.1 Is the stack dgCatsat locally geometric ?

I believe that the answer to this question is positive. For an integer n > 0,
we define a substack dgCatsat,n ⊂ dgCatsat of dg-categories T such
that HHi(T ) = 0 for all i ≤ −n (here HH(T ) denotes the Hochschild
cohomology of the dg-category T ). It follows from the results of [To2]
that the substack dgCatsat,n is an (n + 2)-stack. Moreover, as for a
given saturated dg-category T the Hochschild complex HH(T ) is perfect,
we clearly have that dgCatsat is the union of dgCatsat,n. To answer
positively the above question it is then enough to show that dgCatsat,n

is an Artin (n+ 2)-stack. This can be approached for example by a direct
application of the Artin’s representability criterion, or even better by its
extension by J. Lurie to the derived case (see [Lu1]). As expected, the
tangent complex should be given by

TTdgCatsat ' HH(T )[2]≤0.

3.3 Some developments

1. Some representability statements: Recall from the example (4) of
§3.2 that for any saturated dg-category T of the form Parf(B) for a
saturated dg-algebra B, there exists a locally geometric stack ParfB clas-
sifying perfect B-dg-modules (or equivalently objects in T ). As the stack
ParfB only depends on T and not on B itself we will denote it by ParfT .

As a first consequence of the geometricity of ParfT , if k is a field then the
group aut(T ) of self-equivalences of T up to homotopy (aut(T ) is really
a sheaf of groups) can be seen to be representable by an algebraic group
scheme locally of finite type over k. Moreover, it can be shown that this
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group only has a countable number of connected components and thus can
be written as an extension

1 // aut(T )e // aut(T ) // Γ // 1

where Γ is a countable discrete group and aut(T )e is a connected algebraic
group of finite type over k (see [To-Va]).

Another interesting consequence is the existence of an algebraic space of
simple objects in T . For this, we consider the open substack ParfsimpT ⊂
ParfT consisting of objects E in T such that

Exti(E,E) = 0 ∀ i < 0 Ext0(E,E) = k,

where the Ext-groups are computed in the triangulated category associ-
ated to T . The substack ParfsimpT is an Artin 1-stack which is a gerbe

over an algebraic space π0(ParfsimpT ) denoted by Msimp
T . This algebraic

space Msimp
T is a coarse moduli space for simple objects in T . It can be

identified with the quotient stack

Msimp
T ' [ParfsimpT /K(Gm, 1)].

We now suppose that k = C. When T is the dg-category of perfect
complexes on a smooth and proper variety X, the algebraic space Msimp

T

contains X as a closed and open sub-algebraic space. Indeed, an embed-
ding X ↪→ Msimp

T consists of sending a point x ∈ X to the class of the
skyscraper sheaf k(x). Assume now that T is a dg-model for the Fukaya
category of a Calabi-Yau variety X. It is expected that T is saturated,
and thus the algebraic space Msimp

T is expected to exist. If a mirror X ′

of X exists, then by what we have just seen X ′ is a sup-space of Msimp
T .

Therefore, it might be tempting to try to construct X ′ has a well chosen
sub-space of Msimp

T . In order to be able to say exactly which sub-space
X ′ is it is needed to have a reasonable stability condition on T , and to try
to define X ′ as the sub-space of Msimp

T classifying stable simple objects
E in T such that Ext∗(E,E) ' Sym(Ext1(E,E)[−1]). This approach
suggests that the construction of the mirror only depends on a good un-
derstanding of the Fukaya category of X (i.e. showing that it is saturated
and constructing a meaningful stability structure on it).

2. Motivic invariants: We will say that an Artin stack F is special if it
is strongly of finite presentation and if for any field K and any point
x : SpecK −→ F the sheaf πi(F, x) is represented by an affine group
scheme which is unipotent when i > 1. The class of special Artin stacks
already contains several interesting examples, and they seem to be the
reasonable coefficients for non-abelian Hodge cohomology (see [S1]).

We define an abelian group K(CHsp(k)) by taking the quotient of the
free abelian group over equivalence classes of special Artin stacks by the
following three relations:
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(a)

[F
∐

F ′] = [F ] + [F ′]

(b) Let f : F −→ F ′ be a morphism between special Artin stacks,
such that for any algebraically closed field K the induced morphism
Map(SpecK, F ) −→ Map(SpecK, F ′) is an equivalence. Then we
have [F ] = [F ′].

(c) LetF0 be stack which is either an affine scheme, or K(Ga, n) for some
n > 0. Let f : F −→ F ′ be a morphism between Artin special stacks
such that for any morphism X −→ F ′ with X an affine scheme, there
exists a Zariski open covering U −→ X such that F×FU is equivalent
as a stack over U to F0 ×U −→ U (we say that f is a Zariski locally
trivial F0-fibration). Then [F ] = [F ′ × F0].

The group K(CHsp(k)) is made into a ring by setting [F ].[F ′] := [F ×
F ′]. The ring K(CHsp(k)) is called the Grothendieck ring of special Artin
stacks. It receives a natural morphism from the Grothendieck ring of
varieties K(V(k)) −→ K(CHsp(k)). Here we define K(V(k)) to be the
quotient of the free abelian group over isomorphism classes of schemes of
finite type over Spec k by the following two relations:

(a)

[X
∐

Y ] = [X] + [Y ]

(b) Let f : X −→ Y be a morphism between special Artin stacks,
such that for any algebraically closed field K the induced morphism
X(K) −→ Y (K) is an equivalence. Then we have [X] = [Y ].

This definition of the Grothendieck ring K(V(k)) only differs from the
usual one in non-zero characteristic. In general our group K(V(k)) is the
quotient of the usual Grothendieck group obtained by also inverting the
purely inseparable morphisms.

It can be proved, that if L = [A1] then the natural inclusion morphism

K(V(k))[L−1, {(Li − 1)−1}i>0] −→ K(CHsp(k))[L−1, {(Li − 1)−1}i>0]

is an isomorphism (see [To3]). As a consequence we obtain that any
additive invariant for schemes (i.e. an invariant factorizing through the
ring K(V(k))) extends uniquely as an additive invariant of special Artin
stacks). It is possible this way to define the motivic Euler characteristic
χmot(F ) of any special Artin stack as a class in the Grothendieck ring of
motives (suitably localized). Taking the Hodge realization we obtain a
definition of the Hodge numbers for any special Artin stack. Taking the
l-adic realization we obtain a version of the trace formula expression the
number of rational point of special Artin stacks over finite field in termes
of the trace of the Frobenius acting on some complex of l-adic cohomology
with compact supports.
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As an example, for any compact CW complex X, represented by a finite
simplicial set K, and for any special Artin stack F , the stack Map(K,F )
is again a special Artin stack. The Hogde numbers of Map(K,F ) provide
interesting homotopy invariants of X, measuring in some sense the size of
the space of non-abelian cohomology of X with coefficients in F .

3. Hall algebras for dg-categories: We let F be a stack and we assume
that it is locally special in the sense that it is the union of its open special
Artin sub-stacks. We define a relative Grothendieck ring K(CHsp(F )) by
taking the free abelian group over equivalence classes of morphisms F ′ −→
F with F ′ a special Artin stack, and imposing the same three relations.
The fiber product over F makes K(CHsp(F )) into a commutative ring
(without unit unless F itself special and not only locally special).

For any morphism f : F −→ G between locally special stacks there exists
a natural push-forward

f! : K(CHsp(F )) −→ K(CHsp(G)),

obtained by sending F ′ −→ F to the composite with f , which is a mor-
phism of abelian groups. When f is strongly of finite type, then there also
exists a pull-back

f∗ : K(CHsp(G)) −→ K(CHsp(F )),

sending F ′ −→ G to F ′ ×G F −→ F , which is a morphism of rings. The
functorialities f! and f∗ satisfy the base change formula when this makes
sense.

Let T be a saturated dg-category and ParfT the stack of objects in T as
presented in example (4) of §3.2. The stack ParfT is locally special, and
thus we can consider its Grothendieck group K(CHsp(ParfT )). We will
use the notation

Habs(T ) := K(CHsp(ParfT )).

We also consider the dg-category T (1) of morphisms in T , which is again
a saturated dg-category (see [To-Va]). There exists a diagram of stacks

ParfT (1)
c //

π

��

ParfT

ParfT ×ParfT .

The morphism c sends a morphism x → y in T to the object y. The
morphism π sends a morphism x → y to the pair (x, y/x), where y/x is
the cone of the morphism. The morphism π can be seen to be strongly of
finite type and thus we obtain a natural morphism

K(CHsp(ParfT ×ParfT ))
c!◦π∗ // K(CHsp(ParfT )) ,
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and therefore a multiplication

µ : Habs(T )⊗Habs(T ) −→ Habs(T ).

It can be checked that this multiplication makes Habs(T ) into an associa-
tive and unital algebra (by the same argument as in [To4]). The algebra
Habs(T ) is called the absolute Hall algebra of T .

The algebra Habs(T ) is a two-fold generalization of the usual Hall algebra
studied in the context of representation theory (see e.g. [De-Xi]). First of
all it is defined for dg-categories instead of abelian categories, and more-
over the base ring k needs not to be a finite field anymore. But it is
also defined by geometric methods and is in some sense a universal object
mapping to several possible incarnations by means of realization functors.
As an example, if k = Fq is a finite field, then there exists a morphism of
algebras (surjective up to torsion)

Habs(T ) −→ DH(T ),

where DH(T ) is the derived Hall algebra defined in [To4]. This morphism
simply sends an object p : F ′ −→ ParfT to the function on ParfT (Fq)
which counts the number of rational points in the fiber of p. When T
is a dg-model for the bounded derived category of an abelian category
A, then DH(T ) contains a copy of the usual Hall algebra of A. This
explains how Habs(T ) is a geometric counterpart of DH(T ), and thus how
it generalizes usual Hall algebras. An important advantage of Habs(T )
compare to DH(T ) is that it is defined over Z. It is expected that a
suitable generalization of the construction T 7→ Habs(T ) to the case of 2-
periodic dg-categories (i.e. dg-categories for which the translation functor
x 7→ x[2] comes equiped with an equivalence with the identity) would give
a direct construction of quantum enveloppping algebras, generalizing the
fact that Hall algebras can be used to reconstruct the positive nilpotent
part of quantum envopping algebras (see [De-Xi, To4] for more on the
subject).

4. The Riemann-Hilbert correspondence: Let X be a smooth and pro-
jective complex variety. We associate to it two stacks XB and XDR

in St(C) as follows. The stack XB is the constant stack with values
Sing(X(C)), the simplicial sets of singular simplicies of the topological
space of complex points of X. The stack XDR is defined by its functor of
points by XDR(A) := X(Ared) for any A ∈ C−CAlg. We assume that F
is a special Artin stack (as defined above in point (2)) which is connected
(i.e. the sheaf π0(F ) is isomorphic to ∗). By example (5) of §3.2 we know
that the stack Map(XB , F ) is an Artin stack strongly of finite type. It
can also be proved that the stack Map(XDR, F ) is an Artin stack strongly
of finite type (e.g. by using a Postnikov decomposition of F ). A version
of the Riemann-Hilbert correspondence states that there exists a natural
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equivalence of analytic stacks (see [S1])

φ : Map(XB , F )an 'Map(XDR, F )an.

This equivalence is the starting point of a theory of higher non-abelian
Hodge structures: the stack Map(XDR, F ) is considered as the de Rham
non-abelian cohomology of X with coefficients in F , and the morphism φ
as some kind of integral structure on it (at least when F is defined over
Z). It is then possible to say what are the Hodge and weight filtrations on
Map(XDR, F ), and to state a definition of a non-abelian mixted Hodge
structure (see [Ka-Pa-Si]).

5. Schematic homotopy types: Let us assume that k is now a field. We
let CHsp(k) ⊂ St(k) be the full sub-Segal category consisting of special
Artin stacks (as defined in point (2)). For any connected simplicial set K,
we consider the functor between Segal categories

CHsp(k) −→ Top

sending F to Map(K,F ). This morphism is not corepresentable by a
special Artin stack in general, but it can be proved to be corepresentable
by an object (K ⊗ k)sch ∈ St(k) which is local with respect to the set
of objects CHsp(k). In other words, there exists a morphism of stacks
u : K −→ (K ⊗ k)sch satisfying the following two conditions:

(a) For any F ∈ CHsp(k), the induced morphism

u∗ : Map((K ⊗ k)sch, F ) −→Map(K,F )

is an equivalence.

(b) If f : G −→ G′ is a morphism of stacks such that for any F ∈
CHsp(k), the induced morphism

f∗ : Map(G′, F ) −→Map(G,F )

is an equivalence, then the induced morphism

f∗ : Map(G′, (K ⊗ k)sch) −→Map(G, (K ⊗ k)sch)

is also an equivalence.

The existence of such a morphism K −→ (K⊗k)sch can easily be deduced
from the results of [To5], and the two above properties characterizes (K⊗
k)sch uniquely as a stack under K. The stack (K ⊗ k)sch is called the
schematization of K over Spec k, and is somehow an envelope of K with
respect to the objects of CHsp(k).

The stack (K ⊗ k)sch can be proved to satisfy the following properties.
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(a) We have π0((K ⊗ k)sch) = ∗, and for any point x ∈ K, the sheaf
πi((K ⊗ k)sch, x) is representable by an affine group scheme which
is unipotent for i > 1. Therefore, thought (K ⊗ k)sch is not an
Artin stack (its diagonal is not locally of finite type in general), it is
rather close to be a special Artin stack. In fact it can be shown that
(K ⊗ k)sch is a limit of special Artin stacks, and in some sense it can
be considered as a pro-object in CHsp(k).

(b) The affine group scheme π1((K ⊗ k)sch, x) is isomorphic to the pro-
algebraic completion of the discrete group π1(K,x) over the field k.
Moreover, for a finite dimension linear representation V of π1((K ⊗
k)sch, x), corresponding to a local system L of k-vector spaces on K,
we have

H∗((K ⊗ k)sch, V ) ' H∗(K,L).

(c) When K is simply connected and finite (i.e. each Kn is finite), then
there are isomorphisms

πi((K ⊗ k)sch) ' πi(K)⊗Ga if char(k) = 0

πi((K ⊗ k)sch) ' πi(K)⊗ Zp if char(k) = p > 0.

This shows that in this case (K ⊗ k)sch is a model for the rational
homotopy type when k = Q and for the p-adic homotopy type when
k = Fp.

In [To5] the construction K 7→ (K⊗k)sch has been proposed as a solution
to the schematization problem stated in [Gr]. In [Ka-Pa-To] the schema-
tization construction over C has been used in order to give an alternative
to non-abelian Hodge theory. More precisely, for a smooth and projective
complex manifold X, we take K to be the simplicial set of singular simpli-
cies of the underlying topological space Xtop of X. The schematization of
K is simply denoted by (Xtop ⊗ C)sch = (K ⊗ C)sch. The main theorem
of [Ka-Pa-To] states that there exists an action of the discrete group C∗
on the stack (Xtop ⊗ C)sch, called the Hodge filtration. This action can
be used to recover all previously known constructions of the Hodge filtra-
tion on cohomology, fundamental group and rational homotopy groups.
It is also possible to prove a purity condition for this action, that have
rather strong consequences on the stack (Xtop ⊗ C)sch and thus on the
homotopy type of Xtop. New examples of homotopy types which are not
realizable by smooth projective varieties can be constructed that way. I
should also mention [Ol1, Ol2] in which a crystalline and a p-adic analog
of the constructions above have been studied.

6. The period map to the moduli of dg-categories: Let Varsmp be
the stack of smooth and proper schemes over Spec k. It is a 1-stack and
thus an object in St(k). The construction sending a smooth and proper
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scheme X to the dg-category Lparf (X) of perfect complexes on X induces
a morphism of stacks

φ : Varsmp −→ dgCatsat.

This morphisms factors through the maximal sub-2-stack dgCatsat,0 and
thus provides a morphism

φ : Varsmp −→ dgCatsat,0.

When k is a field of characteristic zero, the tangent of the stack dgCatsat,0

at the point φ(X) can be identified with Hochschild cohomology of X
shifted by 2, and thus we have

Tφ(X)dgCatsat,0 '
⊕
p,q

Hp(X,∧qTX)[2− p− q].

The map induced on the zero-th cohomology of the tangent spaces by φ
is the natural embedding

H1(X,TX) −→ H0(X,∧2TX)⊕H1(X,TX)⊕H2(X,OX).

This suggests that the morphism φ is somehow unramified, and thus is
a local immersion at least locally on Varsmp where Varsmp is an Artin
1-stack. In particular we should get that the fibers of φ are discrete (this
is not really true because of stacky phenomenon, but anyway). I think
this is a possible geometric approach to a conjecture (attributed to J.
Kawamata) stating that given a given triangulated category T there exists
a most finitely many smooth and projective varieties having T as perfect
derived category.

4 Derived stacks

The main references for derived stacks are [To-Ve3, HAGII, Lu1].

4.1 Why derived stacks ?

We suppose that we are given a moduli functor

F : k −Affop −→ SSet,

which is represented by a scheme X, or even an Artin n-stack also denoted by
X. The classical problem of obstruction theory can be stated as follows: given
any surjective morphism A −→ A0 in k−CAlg, with kernel I such that I2 = 0,
study the fibers of the induced morphism

F (A) −→ F (A0).
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When F is given by a concrete moduli problem, there exists a complex L ∈
D(A0), which is somehow ”natural” (in the psychological sense of the word),
and for any point x ∈ F (A0) a class e ∈ Ext1(L, I), such that the fiber at x is
non-empty if and only if e = 0.

The first observation is that the complex L is by no means unique. In fact,
there are situations for which there exist different possible choices for L, all of
them being ”natural” in some sense. Once again, they are natural only in the
psyclolgical sense of the word and are definitely not natural in any mathematical
sense, unless there will not be any choices. For instance, a morphism between
moduli functors might not induce morphisms on the corresponding complexes.
Moreover, forgetting the moduli functor F and only keeping the scheme, or
Artin stack, X, there also exists the cotangent complex of X at the point x,
LX,x ∈ D(A0), and a natural obstruction class e ∈ Ext1(LX,x, I), such that
the fiber at x is non-empty if and only if e = 0. A striking remark is that in
practice, when F is a concrete moduli problem, then the two objects L and LX,x
are in general not the same. Even more striking is the fact that for a concrete
moduli problem F the complex LX,x is in general very hard (if not impossible)
to compute in terms of F , whereas L has very concrete geometrical description.

Here is a typical example: let S be a smooth and proper scheme over
k, and F = Vect(S) be the 1-stack of vector bundles on S, which is an
Artin 1-stack. For a point x : X0 := SpecA0 −→ Vect(S), corresponding
to a vector bundle E on S × X0, the natural candidate for L is the complex
REnd(E,E)∨[−1] ∈ D(A0). However, REnd(E,E)∨[−1] being perfect and not
of amplitude contained in [−1,∞[ in general, it can not be the cotangent com-
plex of any Artin stack locally of finite presentation. Moreover, the cotangent
complex of the stack Vect(S) at the point x is not known. This example is not
a pathology, and reflects the general situation.

What this example, and many other examples, shows is that in general the
right complex to consider to understand obstruction theory is L, not LX,x, but
also that L is not the cotangent complex of any Artin stack (locally of finite
presentation). One purpose of the notion of derived Artin stack is precisely to
provide a new geometric context in which the complex L is truly the cotangent
complex of some geometric object. In this new context, L being the cotangent
complex of some geometric object will be natural, now in the mathematical
sense of the word, and thus obstruction theory will become unambiguous.

Principle 3: Derived algebraic geometry is a generalization of algebraic ge-
ometry for which obstruction theory becomes natural.

Of course the price to pay is that the correct moduli space associated to F
can not be a scheme or an Artin stack anymore, and other kind of geometrical
objects are needed, called derived Artin stacks. In order to guess what these
are I would like to come back to our example of a moduli functor F and to the
infinitesimal lifting problem.

The problem is to understand the obstruction class e ∈ Ext1(L, I) from a
geometric point of view. For this, recall that for any A0-module M , if A0 ⊕
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M denotes the trivial square zero extension of A0 by M , then the fibers of
F (A0⊕M) −→ F (A0) are isomorphic to [L,M ] = Ext0(L,M) (we assume here
that F is a set valued functor for the sake of simplicity). This suggest that
Ext1(L, I) = [L, I[1]] should be the fiber of the morphism F (A0 ⊕ I[1]) −→
F (A0). Of course A0 ⊕ I[1] does not make sense in rings anymore, but can
be defined as a commutative dg-algebra, or better as a simplicial commutative
algebra with π0(A0 ⊕ I[1]) = A0, π1(A0 ⊕ I[1]) = I and πi(A0 ⊕ I[1]) = 0 for
i > 1. Therefore we already see that the obstruction space Ext1(L, I) will have a
functorial description in terms of F as soon as F is extended from commutative
rings to simplicial commutative rings. Moreover, there exists a homotopy pull
back diagram of simplicial rings (see for instance [HAGII, Lem. 2.2.1.1])

A //

��

A0

��
A0

// A0 ⊕ I[1],

suggesting that when F is reasonable there exists a pull back diagram

F (A) //

��

F (A0)

��
F (A0) // F (A0 ⊕ I[1]).

The fact that this last diagram is homotopy cartesian is not a general fact but
it is obviously true when F is affine and by extension when F is obtained by
gluing affine schemes (for a reasonably enough gluing procedure), for instance
when F is an Artin stack.

The obstruction class e is then expected to be the image of the point x ∈
F (A0) in F (A0 ⊕ I[1]), which naturally lives in the fiber of the projection to
F (A0) and thus in Ext1(L, I).

We conclude that the obstruction theory of F can be explained as soon
as F is extended to a functor defined on the category of simplicial rings. If
such an extension is given, we clearly expect that Exti(L, I) is the fiber of

F (A0 ⊕ I[i]) −→ F (A0). This suggest that once an extension F̃ to simplicial
rings is given then L becomes uniquely determined by F , and should be thought
of as the cotangent complex of F̃ . The non uniqueness of L with respect to F
is then related to the non uniqueness of the extension of F to simplicial rings.

The conclusion of this small discussion is: as stacks are functors defined on
the category of commutative rings, derived stacks are functors defined on the
category of simplicial rings. I like to draw the following picture, relating sheaves,
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1-stacks, higher stacks and derived stacks all together

k − CAlg
1−stacks

))SSSSSSSSSSSSSSS

stacks

##HHHHHHHHHHHHHHHHHHHHHH
sheaves //

j

��

Set

Groupoids

π0

OO

sk − CAlg
derived stacks

// SSet.

Π1

OO

In this picture, sk−CAlg is the category of simplicial objects in k−CAlg, j is
the natural inclusion functor seeing a k-algebra as a constant simplicial object,
π0 is the functor sending a groupoid to its set of isomorphism classes and Π1

sends a simplicial set to its fundamental groupoid.
An important new feature in the theory of derived stacks is that the category

sk − CAlg of commutative simplicial k-algebras has a natural model category
structure, and naturally the weak equivalences have to be ”inverted” or ”local-
ized”. Therefore, derived stacks should truly be morphisms of Segal categories

L(sk − CAlg) −→ Top,

and are not modeled by simplicial presheaves on some Grothendieck site any-
more. We will see however that the Segal category L(sk−CAlg) has a natural
extension of the usual ffqc topology, and that derived stacks can then be viewed
as stacks on the Segal site (L(sk − CAlg), ffqc).

4.2 Basic notions

We start with the category sk − CAlg of simplicial commutative k-algebras.
There is a natural notion of weak equivalences between objects in sk − CAlg,
defined as the morphisms inducing weak equivalences on the underlying simpli-
cial sets (by forgetting the ring structure). The Segal category L(sk−CAlg)op,
obtained by localizing the equivalences in sk−CAlgop is defined to be the Segal
category of derived affine schemes and is denoted by

dk −Aff := L(sk − CAlg)op.

As there exists a simplicial model category structure on sk − CAlg, for which
the equivalences and fibrations are defined on the underlying simplicial sets, the
Segal category dk −Aff can be concretely described as Int(sk − CAlg)op (see
point (8) of §2.2).

The Segal category of derived pre-stacks is then defined to be

̂dk −Aff := RHom(dk −Affop, T op).

Using the dictionary between model categories and Segal categories (see point

(8) of §2.2) the Segal category ̂dk −Aff can be described by the homotopy
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theory of equivalence preserving functors sk − CAlg −→ SSet. More precisely,
we can define a model category M , by first considering the model category of
functors SSetsk−CAlg endowed with the levelwise projective model structure,
and then define M as the left Bousfield localization of SSetsk−CAlg along the
equivalences in sk − CAlg (see [HAGI] for details). We then have a natural

equivalence between ̂dk −Aff and Int(M).
The next step is to endow dk − Aff with a topology. It can be shown

that the natural notion of a Grothendieck topology on a Segal category A is
nothing else than a Grothendieck topology on its homotopy category Ho(A)
(see [HAGI, To-Ve1] for a justification). For this we will need the following
important definitions. The fact that these definitions are reasonable extensions
of the usual notions is explained in [HAGII, §2.2.2].

Definition 4.1 A morphism f : A −→ B in sk − CAlg is flat (resp. smooth,
resp. etale, resp. a Zariski open immersion) if it satisfies the following two
conditions:

1. The induced morphism of affine scheme Spec π0(B) −→ Spec π0(A) is flat
(resp. smooth, resp, etale, resp. a Zariski open immersion).

2. For any i > 0, the natural morphism

πi(A)⊗π0(A) π0(B) −→ πi(B)

is an isomorphism.

A finite family of morphisms {fi : A −→ Bi} in sk − CAlg is a ffqc covering,
if each fi is flat and if the induced morphism of affine schemes∐

Spec π0(Bi) −→ Spec π0(A)

is surjective.

We now define a Grothendieck topology onHo(dk−Aff) = Ho(sk−CAlg)op

by defining a sieve to be a covering sieve if it contains a ffqc covering in the
sense of the definition above. It can be checked that this defines a topology on
Ho(dk−Aff) and thus by definition a topology on the Segal category dk−Aff .
The ffqc topology on dk−Aff induces a notion of hypercoverings in dk−Aff ,
and the Segal category of stacks over dk − Aff can then be defined in the
following way.

Definition 4.2 The Segal category of derived stacks (also called D−-stacks)

is the full sub-Segal category of ̂dk −Aff consisting of morphisms

F : dk −Affop −→ Top

such that for any ffqc hypercovering U∗ −→ X in dk − Aff , the induced mor-
phism

F (X) −→ Limn∈∆F (Un)
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is an equivalence in Top5. It is denoted by dSt(k).

Like in the case of Segal categories of stacks over a Grothendieck site (see
§2.3), the Segal category dSt(k) can be characterized by a universal property.
Also, using the dictionary between Segal categories and model categories (see
point (8) of §2.2), a concrete model for dSt(k) is the homotopy theory of functors

F : sk − CAlg −→ SSet

satisfying the following three properties:

1. For any equivalenceA −→ B in sk−CAlg the induced morphism F (A) −→
F (B) is an equivalence of simplicial sets.

2. For any coaugmented co-simplicial object A −→ B∗ in sk − CAlg, which
correspond to a ffqc hypercovering in dk −Aff , the induced morphism

F (A) −→ Holimn∈∆F (Bn)

is an equivalence of simplicial sets.

3. For any finite family of objects {Ai} in sk−CAlg, the natural morphism

F (
∏

Ai) −→
∏

F (Ai)

is an equivalence of simplicial sets.

The homotopy theory of these functors can be described by a natural model
category, called the model category of derived stacks and which is denoted by
D−k − Aff∼,ffqc in [HAGII, §2.2]. To construct derived stacks we will often
construct explicit objects in D−k−Aff∼,ffqc and then consider them as objects
in dSt(k) through the equivalence

dSt(k) ' L(D−k −Aff∼,ffqc).

The natural inclusion morphism dSt(k) ↪→ ̂dk −Aff has an exact left ad-

joint a : ̂dk −Aff −→ dSt(k), called the associated derived stacks functor.
The exactness of a implies that dSt(k) does have the same exactness properties
as the Segal category Top and that it is a Segal topos (see [To-Ve1]). As a
consequence it possesses all small limits and colimits, and has internal Homs.

Moreover, the ffqc topology can be seen to be subcanonical, and thus the
Yoneda embedding provides a fully faithful functor

dk −Aff ' L(sk − CAlg)op ↪→ dSt(k).

On the level of simplicial commutative k-algebras this functor will be denoted
by

RSpec : L(sk − CAlg)op ↪→ dSt(k).

5We make here the same abuse of notations as at the beginning of §2.3
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For any A ∈ sk − CAlg, the derived stack RSpecA is explicitly given by

RSpecA : sk − CAlg −→ SSet
B 7→ Mapsk−CAlg(A,B).

The natural embedding i : k − CAlg ↪→ sk − CAlg, sending a commutative
k-algebra to the associated constant simplicial object, induces a morphism on
Segal categories of stacks

t0 := j∗ : dSt(k) −→ St(k)

called the truncation functor (it is not the same as the truncation t≤0 defined
from (underived) stacks to sheaves and discussed in §2.3). This functor has a
left adjoint

i := j! : St(k) −→ dSt(k)

which can be shown to be fully faithful. In particular, any stack can be seen as
a derived stack. However, the functor i is not compatible with finite limits, and
therefore certain construction (such as fiber products or internal Homs) will not
preserve stacks inside the Segal category of derived stacks. Because of this it is
important to keep the notation i(F ), when a stack F is considered as a derived
stack.

Definition 4.3 Let F be a stack. A derived enhancement of F is a derived
stack F̃ together with an equivalence t0F̃ ' F .

Of course, a given stack F has many different derived enhancement, includ-
ing the trivial one i(F ).

Using the notion of smooth morphism defined in def. 4.2, the notion of n-
geometric stack can be naturally extended to the notion of n-geometric derived
stack. As this is a formal generalization we will not give the precise definition
here (the reader can consult [HAGII] for more details on the general notion of
n-geometric stacks in various contexts). The two functors i and t0 above are
compatible with the geometricity notions in the sense that i sends n-geometric
stacks to n-geometric derived stacks, and t0 sends n-geometric derived stacks
to n-geometric stacks. Moreover, a stack F is n-geometric if and only if i(F )
is an n-geometric derived stack. Finally, i and t0 are also compatible with the
notions of flat morphisms, smooth morphisms, etale morphisms and open Zariski
morphisms.

Definition 4.4 A derived stack is a derived Artin n-stack if it is an m-geometric
derived stack for some m, and if t0(F ) is an (Artin) n-stack. A derived Artin
stack is an Artin n-stack for some n.

Here is a sample of basic notions and results concerning derived Artin stacks.
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1. Properties of morphisms and presentations by groupoids: Both
points (1) and (2) of the general properties stated in §3.1 generalize im-
mediately to the case of derived Artin stacks. Only two remarks have to
be made concerning unramified morphisms and closed immersions. First
of all, the notion of formally unramified morphisms in the context of de-
rived Artin stacks is equivalent to the notion of formally etale morphism
(see [HAGII, Prop. 2.2.2.9]). Also, the closed immersions of derived
Artin stacks are not monomorphisms. In fact, a monomorphism of de-
rived Artin stacks is automatically formally unramified and thus formally
etale, which explains why it would not be reasonable that closed immer-
sions be monomorphisms. As a consequence the notion of closed sub-stack
does not make very much sense in the derived setting.

2. Truncation: For any derived Artin stack F , the adjunction morphim
it0F −→ F is a closed immersion. If fact, if F is locally of the form
RSpecA, for someA ∈ sk−CAlg, then it0 is locally of the form i(Spec π0(A)).
Therefore, any derived Artin stack F can be thought of as some kind of
derived thickening of its truncation it0(F ). This derived thickening truly
behaves as a formal thickening, and for instance the small etale sites of F
and it0(F ) coincide (see [HAGII, Cor. 2.2.2.13]). According to definition
4.3, a derived enhancement of a stack can then be thought of as the data
of a formal derived thickening.

3. Derived schemes and Deligne-Mumford stacks: A derived Artin
stack F is a derived scheme (resp. a a derived Deligne-Mumford stack) if
there exists a smooth atlas U −→ F which is a Zariski open immersion
(resp. etale). It can be shown that if F is a derived Artin stack then F is
a derived scheme (resp. a derived Deligne-Mumford stack) if and only if
its truncation t0 is a scheme (resp. a Deligne-Mumford stack) in the non
derived sense.

4. Derived categories of O-modules:

Like in the underived case any derived stack F has a Segal category
L(F,OF ) of (unbounded) complexes of OF -modules (see [To-Va-Ve] for
more details). First of all the Segal topos dSt(k) has a natural ring ob-
ject, denoted by O and represented by A1. The object O can also be seen
as a colimit preserving functor

O : dSt(k) −→ L(sk − CAlg),

from dSt(k) to the Segal category of simplicial commutative k-algebras.
The pair (dSt(k),O) is a ringed Segal topos (see [To-Va-Ve]). In the
same way, for any derived stack F , A1 × F represents a ring object OF
in dSt(k)/F , and the pair (dSt(k)/F,OF ) is a ringed Segal topos. The
derived Segal category of (dSt(k)/F,OF ) is denoted by L(F,OF ) (see
[To-Va-Ve] for a precise definition).
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We also have a sub-Segal category Lqcoh(F ) ⊂ L(F,OF ) of quasi-coherent
complexes, which can be described in the following way. We write F as
the colimit of affine derived schemes F ' ColimXi, where Xi = RSpecAi.
For any i, we can consider the commutative dg-algebra N(Ai) obtained
by normalizing Ai, and thus its unbounded Segal category of modules
L(N(Ai)−Mod). One possible definition is

Lqcoh(F ) = HolimiL(N(Ai)−Mod),

where this homotopy limit is taken in the model category of Segal cat-
egories (see [To-Va] where this is done using dg-categories). Like in the
underived situation, any morphism f : F −→ F ′ induces an adjunction

f∗ : Lqcoh(F ′) −→ Lqcoh(F,OF ) Lqcoh(F ′)←− Lqcoh(F,OF ) : fqcoh∗ ,

but again fqcoh∗ is not the functor induced by the direct image on the level
of all complexes of O-modules.

When F is a derived Artin stack then the Segal category Lqcoh(F ) has
a natural t-structure. By definition, an object E ∈ Lqcoh(F ) is of non
positive amplitude if for any flat morphism u : X = RSpecA −→ F with
A ∈ sk −CAlg, the corresponding object u∗(E) ∈ Lqcoh(X) ' L(N(A)−
Mod) is cohomolgically concentrated in non positive degrees (as a complex
over k). The heart of this t-structure is denoted by QCoh(F ) is called
the category of quasi-coherent sheaves over F . The natural morphism
it0(F ) −→ F induces by direct images an equivalence

QCoh(F ) ' QCoh(t0(F )).

In particular we see that the two Segal categories Lqcoh(F ) and Lqcoh(t0F )
are both endowed with a t-structure and have the same heart, but are
different in general. In this way, the derived enhancement F of t0F can
also be considered as a modification of the derived category Dqcoh(t0F ),
keeping the heart unchanged.

Let us assume that we have a pull-back square of derived Artin stacks

F ′
q //

v

��

G′

u

��
F ′ p

// G.

Then there exists a base change natural transformation

α : u∗ ◦ pqcoh∗ ⇒ qqcoh∗ ◦ v∗.

The natural transformation α is an equivalence in many interesting ex-
amples, for instance when F , G, F ′ and G′ are all quasi-compact derived
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schemes with an affine diagonal (more generally when F , G, F ′ and G′ are

all strongly quasi-compact and pqcoh∗ and qqcoh∗ are of finite t-amplitude).
That the base change formula is satisfied without any flatness assumptions
on u is an important feature of derived algebraic geometry.

5. Tangent and cotangent complexes: For any derived Artin stack F
there exists an object LF ∈ Lqcoh(F ) called the cotangent complex of
F . It is characterized by the following universal property: for any A ∈
sk − CAlg, any morphism x : X = RSpecA −→ F and any simplicial A-
module M , there exists a natural equivalence between the homotopy fiber
of F (A⊕M) −→ F (A) at x, and MapN(A)−Mod(x

∗(LF ), N(M)) (here N
is the normalization functor going from simplicial algebras and simplicial
modules to dg-algebras and dg-modules). Of course, when F = i(X) for
X a scheme, then LX ∈ Dqcoh(X) is the usual cotangent complex of X
(e.g. as defined in [Il]). For x : X = RSpecA −→ F we define the tangent
complex of F at x to be

TxF := RHom(x∗(LF ), A),

the dual of x∗(LF ).

For any morphism of derived Artin stacks f : F −→ F ′ we define a relative
cotangent complex by the following triangle in Lqcoh(F )

f∗(LF ′) −→ LF −→ LF/F ′ .

It can be shown that f is smooth if and only if it is locally of finite presen-
tation and if LF/F ′ is of non negative t-amplitude (i.e. if [LF/F ′ , E[i]] =
Exti(LF/F ′ , E) = 0 for all i > 0 and for all E belonging to the non pos-
itive part of the t-structure on Lqcoh(F )). In the same way f is etale if
and only if it is locally of finite presentation and LF/F ′ ' 0 (see [HAGII,
2.2.5]).

6. The virtual structure sheaf: Let F be a derived Artin stack and t0F
its truncation. For a smooth morphism U = RSpecA −→ F , we can
consider the graded π0(A)-module π∗(A) as a graded quasi-coherent sheaf
on Spec π0(A). When U varies over smooth morphisms to F , the var-
ious graded quasi-coherent sheaves π∗(A) glue together (this follows di-
rectly from the definition of smoothness given in Def. 4.1) and descend
to a global graded quasi-coherent sheaf π∗(Ovirt) on the stack t0F . This
graded sheaf is called the virtual structure sheaf of F . In any case it is
an important invariant living on t0F and remembering some information
about the derived enhancement F of t0F .

4.3 Some examples

1. Derived fiber products of schemes and stacks: As we have said the
natural inclusion functor

i : St(k) −→ dSt(k)
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is not left exact an in particular does not preserve fiber products. There-
fore, a very first example of derived Artin stacks is given by considering a
diagram of Artin stacks

F

��
G // H,

and then considering i(F )×i(H) i(G). The natural morphism

i(F ×H G) −→ i(F )×i(H) i(G)

is in general not an equivalence, thought the induced morphism on the
truncations

t0(i(F ×H G)) −→ t0(i(F )×i(H) i(G))

is an equivalence of stacks. Therefore, the derived Artin stack i(F )×i(H)

i(G) is a derived enhancement (in the sense of Def. 4.3) of the usual fiber
products of stacks.

A very simple, but fundamental, example is when F , G and H are all
affine schemes given by a diagram of commutative k-algebras

A

B Coo

OO

Then, the derived stack i(F )×i(H) i(G) is RSpec (A⊗L
C B), where A⊗L

C B
is the derived tensor product computed in simplicial commutative rings.
We see that πi(A⊗L

CB) = TorCi (A,B), and thus that the virtual structure
sheaf (see point (6) of the last section) on Spec (A⊗C B) is TorC∗ (A,B).
When H is a regular scheme scheme and F and G are closed subschemes
intersecting properly, then this virtual structure sheaf on Spec (A ⊗C B)
precisely compute the correct intersection number.

An interesting general construction involving fiber products is the inertia
stack. Recall that for a stack F , the inertia stack is IF := Map(S1, F ) =
F ×F×F F , and that it classifies objects endowed with an automorphism
in F . Considering F as a derived stack i(F ) we get a derived inertia stack

RIF := Ii(F ) := i(F )×i(F )×i(F ) i(F ) ∈ dSt(k).

The derived stack RIF is of course a derived enhancement of the stack IF ,
and is naturally a derived group stack over F . When F is a scheme, then
IF = F and thus RIF is a natural non trivial derived enhancement of F .
For instance, when F = SpecA is an affine scheme, then we have

RIF = RSpec (A⊗L
A⊗LA A)
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whereas IF = F . As A ⊗L
A⊗LA A is known to be Hochschild homology of

A, RIF is some sort of global version of Hochschild homology of the stack
F .

2. Derived schemes vs dg-schemes: Assume that k has characteristic
zero. A dg-scheme is a pair (X,AX), consisting of a scheme X together
with a sheaf of quasi-coherent commutative dg-OX -algebras AX such that
A0
X = OX and AiX = 0 for i > 0. This notion has been introduced some

years ago as models for derived schemes in order to construct derived
moduli spaces (see [Ci-Ka1, Ci-Ka2]). There exists an obvious notion
of morphisms of dg-schemes and of a quasi-isomorphisms between them.
The Segal category of dg-schemes, obtained by localizing along quasi-
isomorphisms will be denoted by L(dg − Sch). As explained in [To-Ve3]
it is possible to construct a functor

Θ : L(dg − Sch) −→ dSt(k),

and taking its values inside the sub-Segal category of derived schemes.
When X = SpecA is affine and AX is given by a non positively graded
commutative dg-algebraAX , then Θ(X,AX) is defined as being RSpecD(AX),
where D(AX) denotes the commutative simplicial algebra obtained by de-
normalization from AX . In general Θ(X,AX) is defined using some cov-
ering of X by affine schemes and gluing in a rather straightforward way.

Essentially nothing is known about the functor Θ but I tend to think it is
not well behaved (e.g. is not fully faithful). The reason for this feeling is
that by definition for any dg-scheme (X,AX) there exists a natural closed
immersion of dg-schemes

(X,AX) −→ (X,OX) = X.

Moreover, any morphism between dg-schemes (X,AX) −→ (Y,AY ) in-
duces a commutative square of derived schemes

(X,AX) //

��

X

��
(Y,AY ) // Y.

This most probably implies that Θ is not essentially surjective on de-
rived schemes, because there are no reasons for a given derived scheme
Z to be embeddable as a closed sub derived scheme of some ambient
scheme (though such an embedding always exists locally). If we think
of derived schemes as being somehow analogs of formal schemes, the
ones that have such embedding are analogs of the algebraizable formal
schemes. Moreover, following this analogy, the morphisms of derived
schemes Θ(X,AX) −→ Θ(Y,AY ) compatible with a morphism X −→
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Y as above are analogs of the algebraizable morphisms between formal
schemes. This analogy also suggests that Θ is probably not full.

Even though the functor Θ is probably not well behaved it can be used to
produce examples of derived schemes as already some interesting example
of dg-schemes have been constructed. This is for example the case of the
derived Quot and Hilbert schemes, defined in [Ci-Ka1, Ci-Ka2]. These dg-
schemes have been defined in a rather ad-hoc manner, and they have not
been constructed to represent any moduli functors (actually, dg-schemes
do not seem to be well suited for the functorial point of view, due to
the lack of a model structure on them that would allow to compute the
maps in the localization L(dg − Sch)). A natural question is therefore
to describe moduli characterizations of derived schemes arising from dg-
schemes via the functor Θ. The two major examples are the derived
schemes Θ(RQuot(X)) and Θ(RHilb(X)). The case of Θ(RQuot(X)) has
been recently studied by J. Gorski in his thesis [Go].

To conclude this comparison between dg-schemes and derived schemes:
dg-schemes seem to be only approximation of the correct notion of what
a derived scheme is. Moreover, it seems there is nothing doable with
dg-schemes that can not be done with derived schemes, but there are
things doable with derived schemes that can not be done with dg-schemes
(e.g. the construction of some derived moduli such as vector bundles on
some smooth proper scheme, or also having functorial description of these
derived moduli). It is therefore reasonable to suggest to simply forget
about the notion of dg-schemes (and this has actually been suggested
once to me by M. Kontsevich).

3. Linear derived stacks: As in example (2) of §3.2 it is possible to define
the notion of linear stacks in the context of derived stacks. Let F be any
derived Artin stack, and E ∈ Lqcoh(F ). We define a derived stack RV(E)
over F by

RV(E) : dSt(k)/F −→ Top
(f : F ′ → F ) 7→ MapL(F ′,OF ′ )

(f∗(E),OF ′).

The derived stack RV(E) is called the linear stack associated to E. By
construction, it is characterized by the following universal property

π0(MapdSt(k)/F (F ′,RV(E))) ' Ext0(f∗(E),OF ′),

for any f : F ′ −→ F in dSt(k)/F , and where the Ext0 is computed in
the derived category of complexes of OF ′ -modules.

The stack RV(E) is a derived Artin stack if E is perfect (i.e. its pull-backs
to any derived affine scheme X = RSpecA −→ F ′ is a compact object in
D(N(A)), the derived category of N(A)-dg-modules), and the morphism
RV(E) −→ F is then strongly of finite presentation. The main difference
with the notion of linear stacks in the underived situation is that RV(E)
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depends on the full complex E, and not only on its positive part. We have
t0RV(E) ' V(E), and thus RV(E) is a natural derived enhancement of
V(E).

For any derived Artin stack F , locally of finite presentation, the cotangent
complex LF is perfect. The derived Artin stack RV(LF ) can then be
identified with the derived tangent stack RTF := RMap(Spec k[ε], F ),
defined as the derived stack of morphisms from Spec k[ε] to F (see point
(4) below). It is important to note that when F is an Artin stack (i.e.
F ' it0F ), then RTF is no longer an Artin stack except when F is itself
smooth. Therefore, even though F is an Artin stack, RTF is in general a
non trivial derived enhancement of the usual tangent stack TF .

4. Derived mapping stacks: As the Segal category dSt(k) is a Segal
topos it has internal Homs objects. These objects are denoted by RMap,
in order to avoid confusions with the one defined for underived stacks.
The functor i : St(k) −→ dSt(k) does not commute with taking internal
Homs, but its right adjoint t0 does. In particular, for two Artin stacks
F and G, the derived stack RMap(i(F ), i(G)) ∈ dSt(k) is such that
t0RMap(i(F ), i(G)) ' Map(F,G), and is thus a derived enhancement
of Map(F,G). This provides a systematic way to construct non trivial
examples of derived stacks starting from underived stacks. For instance,
the derived inertia stack RIF mentioned in example 1 is naturally equiv-
alent to RMap(i(S1), i(F )) (this follows from the identification, up to

homotopy, between S1 and ∗
∐L∐

∗ ∗).
For a stack X and an Artin stack F there exist criteria ensuring that
RMap(i(X), i(F )) is a derived Artin stack. The most powerful follows
from Lurie’s representability criterion (see [Lu1]), and states that this is
the case as soon as X is a flat and proper scheme and F is an Artin stack
locally of finite presentation. A simpler, but less powerful, criterion is
given in [HAGII, App. C], and states that this is the case if it is already
known that Map(X,F ) is an Artin stack and under some additional mild
conditions. These two criteria can be used to prove the existence of the
following derived Artin stacks:

(a) For a finite and connected simplicial set K, the derived stack

RLocn(K) := RMap(K, i(BGln))

is a derived Artin stack strongly of finite presentation and is called
the derived moduli stack of rank n local systems on K (or on its
geometric realization). Its truncation

Locn(K) := Map(K,BGln)

is the usual Artin 1-stack of rank n local systems onK, or equivalently
of rank n linear representations of the group π1(K). Given a local
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system V ∈ Locn(K)(k), the tangent complex of RLocn(K) at the
point V is

TV RLocn(K) ' C∗(K,V ⊗ V ∨)[1],

where C∗(K,V ⊗ V ∨) is the complex of cohomology of K with coef-
ficients in the local system of endomorphisms of V . This implies in
particular that RLocn(K) depends on more than π1(K) alone, and
also captures higher homotopical invariants of K.

(b) For a flat and proper scheme X, the derived stack

RVectn(X) := RMap(i(X), i(BGln))

is a derived Artin stack strongly of finite presentation and is called the
derived moduli stack of rank n vector bundles on X. Its truncation

Vectn(X) := Map(X,BGln)

is the usual Artin 1-stack of rank n vector bundles on X. Moreover,
for a vector bundle V on X we have

TV RVectn(X) ' C∗(X,V ⊗ V ∨)[1].

(c) Let k be a field of characteristic zero and X a smooth and projective
scheme over Spec k. We consider XDR as defined in point (4) of §3.3.
The derived stack

RVectn(XDR) := RMap(i(XDR), i(BGln))

is a derived Artin stack strongly of finite presentation and is called
the derived moduli stack of rank n flat vector bundles on X. Its
truncation

Vectn(XDR) := Map(XDR, BGln)

is the usual Artin 1-stack of rank n flat vector bundles on X. More-
over, for a flat vector bundle V on X we have

TV RVectn(XDR) ' C∗(XDR, V ⊗ V ∨)[1],

where C∗(XDR, V ⊗ V ∨) is the complex of de Rham cohomology of
W with coefficients in the flat bundle of endomorphisms of V .

(d) Let Mpre

g,n be the Artin 1-stack of prestable curves of genus g and
with n marked points, and let X be a smooth and proper scheme.
We consider the universal prestable curve Cg,n −→M

pre

g,n . We define
the derived stack of prestable maps to be

RMpre

g,n(X) := RMapdSt(k)/i(Mpre
g,n)(i(Cg,n), X × i(Mpre

g,n)),

where RMapdSt(k)/i(Mpre
g,n) denotes the internal Homs of the comma

Segal category of derived stacks over i(Mpre

g,n).
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The derived stack RMpre

g,n(X) is naturally a derived stack over i(Mpre

g,n).

Moreover, for any Y = RSpecB −→ i(Mpre

g,n) we have

RMpre

g,n(X)×i(Mpre
g,n) Y ' RMapdSt(k)/Y (i(Cg,n)×i(Mpre

g,n) Y,X × Y ).

This implies that the morphism RMpre

g,n(X) −→ i(Mpre

g,n) is a relative

derived Artin stack and thus that RMpre

g,n(X) is a derived Artin stack.

The derived stack of stable maps RMg,n(X) is the open derived

substack of RMpre

g,n(X) consisting of stable maps. In other words,
there exists a cartesian square

i(Mg,n(X)) //

��

RMg,n(X)

��
i(Mpre

g,n(X)) // RMpre

g,n(X),

where Mg,n(X) ⊂Mpre

g,n(X) is the substack of stable maps.

The truncation of RMg,n(X) is by construction the usual stack of
stable maps to X, and therefore we see that RMg,n(X) is a derived
Deligne-Mumford stack. The tangent of RMg,n(X) at a morphism
f : C −→ X, is given by

TfRMg,n(X) ' C∗(C, TC(−
∑

xi)→ f∗(TX))[1],

where TC(−
∑
xi) → f∗(TX) is a complex of sheaves on C con-

centrated in degrees [0, 1]. As a consequence of point (6) of §4.3 we
immediately get a virtual structure sheaf π∗(Ovirt) on the usual stack
of prestable mapsMpre

g,n(X) and therefore on the usual stack of stable

maps Mg,n(X).

5. Objects in a dg-category: For a saturated dg-category T , the locally
geometric Artin stack ParfT described in example (4) of §3.2 has a natu-
ral derived enhancement denoted byMT (see [To-Va] for a precise defini-
tion of the derived stack MT ). It can also be proved that MT is locally
geometric (i.e. union of open derived Artin sub-stacks locally of finite pre-
sentation). In fact, the original proof of the local geometricity of ParfT is
deduced from the one ofMT which is somehow simpler, has explicit com-
putations of cotangent complexes help proving the existence of a smooth
atlas. For a given object E in T , the tangent complex is given by

TEMT ' Ext∗(E,E)[1],

where Ext∗(E,E) = T (E,E) is the complex of endomorphisms of E.

An important consequence of the local geometricity of MT is the exis-
tence of a local geometric derived stack RParf(X), of perfect complexes

52



on some smooth and proper scheme. The derived stack RParf(X) is of
course a derived enhancement of Parf(X) described in example (4) of
§3.2. Inside the stack Parf(X) sits as an open sub-stack Coh(X) the
1-stack of coherent sheaves on X. As the stack Parf(X) and RParf(X)
have the same topology (and in particular the same open substacks), there
exists a unique open derived sub-stack RCoh(X) ⊂ RParf(X) such that
the diagram

i(Coh(X)) //

��

i(Parf(X))

��
RCoh(X) // RParf(X)

is cartesian.

This implies that RCoh(X) is a derived Artin stack. The derived stack
RCoh(X) itself contains a derived open sub-stack RVectn(X) of vec-
tor bundles on X of rank n. This provides another direct proof of the
geometricity of RVectn(X) without referring to any representability cri-
terion. An interesting example is RPic(X) = RVect1(X), the derived
Picard stack of X. Indeed, the truncation t0RPic(X) is the usual Picard
stack of line bundles on X, and thus is smooth. However, though its trun-
cation is smooth it is not true that RPic(X) = it0(RPic(X)) as this can
be seen on the tangent complexes. This example shows that the usual
intuition that moduli spaces are singular because of the existence of a non
trivial derived structure is not always true in practice.

6. Dg-categories: The stack dgCatsat has a natural derived enhancement
RdgCatsat defined in the following way. For any A ∈ sk−CAlg, we con-
sider the commutative dg-algebra N(A) obtained by normalizing A. The
category ofN(A)-dg-modules has a natural symmetric monoidal structure,
and therefore it make sense to talk about N(A)-dg-categories. Moreover,
the notion of being saturated naturally extends from dg-categories over
k to dg-categories over N(A). The functor sending A to the nerve of
the category of quasi-equivalences between saturated N(A)-dg-categories
is denoted by RdgCatsat. We clearly have t0RdgCatsat ' dgCatsat.
As in the underived case, I believe that RdgCatsat is a locally geometric
derived stack, and I think a direct approach using Lurie’s representability
criterion should be possible.

Question 4.5 Is the derived stack RdgCatsat locally geometric ?

Of course a positive answer to this question would also provide a positive
answer to question 3.1. Naturally, it is expected that for a given saturated
dg-category T the tangent complex is given by

TTRdgCatsat ' HH(T )[2],

where HH(T ) is the full Hochschild cohomology of T .
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4.4 Some developments

1. Representability criterion: Probably the most important recent de-
velopment in the theory of derived stack is the representability criterion
proved by J. Lurie in [Lu1], that we already mentioned several times but
that we will not reproduce here. It is a generalization of the standard
Artin’s representability criterion for algebraic spaces and 1-stacks. How-
ever, the criterion in the derived setting is simpler as the part concerning
having a good infinitesimal theory is now truly a property of the moduli
functor and not an extra structure as we explained during the introduction
of this section (see §4.1). This criterion is extremely powerful, though it is
not always very easy to check the infinitesimal properties in practice, and
it is sometimes easier to prove directly the geometricity and then deduced
the infinitesimal theory from it (this is what is done for example in several
examples in [HAGII]).

2. Formal theory and derived inertia stacks: Assume that k has char-
acteristic zero. Let F be a derived Artin stack locally of finite presentation
and RIF = RMap(S1, F ) be its derived inertia stack. The composition of
loops makes RIF into a group object over F (that is RIF is a group object
in the Segal category dSt(k)/F of derived stacks over F , which follows for-
mally from the fact that S1 is a cogroup object in the Segal category Top∗
of pointed simplicial sets). In particular for any point x : SpecK −→ F ,
with K a field, we obtain RIF ×F SpecK, which is a derived group Artin
stack over SpecK. This group object has a tangent Lie algebra Lx (which
is well defined in the homotopy category of dg-Lie algebras over K). The
precise relation between derived group stack and dg-Lie algebra has not
been investigated yet, and there might be some foundational work to be
done to explain what Lx truly is. In any case, I will assume that we know
how to do this. It is easy to see that, as a complex, Lx is naturally quasi-
isomorphic to TxF [−1], the shifted tangent complex of F at x. Therefore,
we obtain a natural structure of dg-Lie algebra (or at least L∞-Lie alge-
bra) on TxF [−1]. From this dg-Lie algebra Lx we can define a formal
derived moduli functor, defined on the category of augmented Artinian
dg-algebras over K (see [Hin])

MC(Lx) : dg −Art/K −→ SSet.

On the other hand, the restriction of the derived stack F on dg−Art/K,
pointed at x also provides a functor

F̂x : dg −Art/K −→ SSet

which is by definition the formal completion of F at the point x. It is
expected that the two formal derived stacks MC(Lx) and F̂x are in fact
equivalent. In other words, the tangent complex TxF together with the
dg-Lie algebra structure on TxF [−1] determines the formal completion
of the derived stack at x. This statement seems to have been proved
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for derived schemes and derived Deligne-Mumford stacks as it can be
essentially reduced to the case of an affine derived stack which is somehow
treated in [Hin, Man]. However, the general statement for higher derived
stacks does not seem to be known.

Question 4.6 Compare the two formal derived stacks MC(Lx) and F̂x.

The local picture around the point x also has a global counterpart, as the
group object RIF has a global sheaf of quasi-coherent dg-Lie algebras L
on F , whose underlying complex is TF [−1] the shifted tangent complex of
F . The sheaf of dg-Lie algebras L on F is supposed to control the formal
completion of F × F along the diagonal (thought the precise meaning of
this in the stack context is not completely clear).

3. Virtual fundamental classes: Let F be a derived Artin stack, t0F
its truncation and π∗(OvirtF ) the graded virtual structure sheaf on t0F as
defined in point (6) of §4.2. When the quasi-coherent sheaves πi(OvirtF )
are all coherent and vanish for i big enough, we can define a virtual class
in G-theory

[OF ]virt :=
∑

(−1)i[πi(OvirtF )] ∈ G0(t0F ).

Note that when it0F ' F then [OF ]virt = [OF ].

The condition that the sheaves πi(OvirtF ) are coherent and vanish for i
big enough is not often satisfied and is a rather strong condition. It is
known to be satisfied when k is noetherian and of characteristic zero, F is
locally of finite presentation and the cotangent complex LF is of amplitude
contained in [−1,∞[. When F satisfies these two conditions we will say
that F is quasi-smooth.

Assume now that k is noetherian of characteristic zero and and that F is
a quasi-smooth derived Deligne-Mumford stack. On one hand we have the
virtual class in G-theory [OF ]virt ∈ G0(t0F ), from which we can construct
via the Grothendieck-Riemann-Roch transformation a class in the rational
Chow groups τ([OF ]virt) ∈ CH∗(t0F )Q. On the other hand, we can pull-
back the cotangent complex via the morphism j : it0F −→ F . The
complex j∗(LF ) is a perfect obstruction theory of amplitude [−1, 0] in the
sense of [Be-Fa], and thus we can also construct a virtual fundamental
class [F ]virt ∈ CH∗(t0F )Q. As far as I know the following question is still
open.

Question 4.7 What is the relation between τ([OF ]virt) and [F ]virt ?

It seems that it is expected that these two classes only differ by a Td(T virtF ),
where TF is the virtual tangent sheaf defined to be the dual of j∗(LF ) (see
[Be-Fa]). Some results in that direction are proved in [Jo].
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Finally, when F is not quasi-smooth anymore, and more generally when
the virtual structure sheaf has infinite non zero sheaves, it is very much
unclear how to use this virtual sheaf in order to get interesting invariants
generalizing the virtual class.

4. A holomorphic Casson invariant: Suppose now that k = C, and that
X is a Calabi-Yau 3-fold. We consider RCoh(X) and its derived open sub-
stack RCohst,ν(X) consisting of stable coherent sheaves with some fixed
numerical invariants ν ∈ Knum

0 (X). We also assume that ν is chosen in
such a way that semi-stable implies stable. Finally, we set

M(X) := [RCohst,ν(X)/RPic0(X)],

the quotient derived stack of RCohst,ν(X) by the natural action of RPic0(X)
the derived group stack of line bundles of degree zero. The derived stack
M(X, ν) is a proper derived algebraic space. Moreover, the tangent com-
plex at a coherent sheaf E on X can be seen to fit in a triangle

C∗(X,O)[1] −→ C∗(X,E ⊗ E∨)[1] −→ TEM(X, ν).

Using the trace morphism tr : C∗(X,E ⊗ E∨) −→ C∗(X,O) we see that
the above triangle splits, and that the tangent complex at E is given by

TEM(X, ν) ' C∗(X,E ⊗ E∨)0[1],

where C∗(X,E ⊗ E∨)0 is the kernel of the morphism tr.

The conclusion is that M(X, ν) is a quasi-smooth and proper derived
algebraic space over SpecC, which is furthermore of virtual dimension
zero. We can therefore define a holomorphic Casson invariant to be the
length of M(X, ν) by the formula

χ(X, ν) :=
∑

(−1)ihi(M(X, ν),OM(X,ν)).

As the derived stack M(X, ν) is proper and quasi-smooth, we see that
χ(X, ν) is well defined. It is also equal to

p∗([OM(X,ν)]
virt) ∈ G0(SpecC) = Z,

where p : t0M(X, ν) −→ SpecC is the projection and [OM(X,ν)]
virt is the

virtual class in G-theory defined above in point (6) of §4.2.

By construction, the invariant χ(X, ν) counts the virtual number of stable
sheaves with numerical invariants ν, with fixed determinants. It is natural
to call it the holomorphic Casson invariant. It is probably very close to the
one defined in [Th], as it surely satisfies the same deformation invariance
property (this is an application of the base change formula, point (4)
of §4.2 ). However, a precise comparison between these two invariants
requires an answer to the question 4.7.
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5. Concerning the geometric Langlands correspondence: As far as
I understand the geometric version of the Langlands correspondence pre-
dicts that for any smooth and projective curve C over k = C, the existence
of an equivalence of triangulated categories

D(Vectn(C),D) ' Dcoh(LocDRn (C))

where the left hand side is the derived category of D-modules on the stack
Vectn(C) (with some finiteness conditions like being regular holonomic),
and LocDRn (C) := Map(CDR, BGln) is the stack of rank n flat bundles
on C. I have recently learned from V. Lafforgue (and apparently this is
a folklore knowledge shared by the experts) that in order for this equiv-
alence to have a chance to exist the right hand side should rather be
Dcoh(RLocDRn (C)), where RLocDRn (C) is the derived stack of rank n flat
bundles discussed in example (4− c) of §4.3. A striking example showing
why this is so is when n = 1.

The stack Vect1(C) is equivalent to Pic0(C) × Z × K(Gm, 1). On the
other hand, the stack LocDR1 (C) is equivalent to Pic0(C)† × K(Gm, 1),
where Pic0(C)† is the universal extension of the Jacobian Pic0(C) by the
vector space H0(C,Ω1

C). It is known that there exists an equivalence of
triangulated categories (see [La] for the first of these two equivalences)

D(Pic0(C),D) ' Dcoh(Pic0(C)†) D(Z,D) ' Dcoh(K(Gm, 1)).

Combining these two this shows that there exists an equivalence (one way
to combine these two equivalences is to use techniques from dg-category
theory in order to understand derived categories of products as the tensor
product of the derived categories of the two factors, see for instance [To2,
Thm. 8.9] for results in that direction)

D(Pic0(C)× Z,D) ' Dcoh(LocDR1 (C)).

Therefore, we see that the partD(K(Gm, 1),D) is not reflected inDcoh(LocDR1 (C))
and that the originial predicted equivalence does not seem to exist.

Let RLocDR1 (C) be the derived moduli stack of rank 1 flat bundles on C.
It can be seen that we have

RLocDR1 (C) ' Pic0(C)† ×K(Gm, 1)× RSpecC[C[1]],

where C[C[1]] is the trivial square zero extension of C by C[1] (as a com-
mutative dg-algebra it is freely generated by an element in degree -1).
Moreover, it can be shown that there exists an equivalence of derived
categories

D(K(Gm, 1),D) ' Dcoh(RSpecC[C[1]]).

Indeed, D(K(Gm, 1),D) is equivalent to the derived category of S1-equivariant
complexes of C-vector spaces, which is well known (via some bar-cobar
construction) to be equivalent to the derived category of C[C[1]]-dg-modules.
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The conclusion is that the statement of the geometric Langlands corre-
spondence is truly about the derived category of the derived stack RLocDRn (C).
In the example above we also see that the ”stacky part” K(Gm, 1) of
Vect1(C) correspond through the Langlands correspondence to the ”de-
rived part” RSpecC[C[1]] of RLocDR1 (C). This seems to be a general
phenomenon, and explains somehow that there exists some kind of duality
between the stacky direction and the derived direction. On the infinitesi-
mal level these two directions can be respectively observed as the negative
part and the positive part of the tangent complex. In general, this duality
between the stacky and the derived part can be understood in terms of
characteristic cycles of D-modules on higher stacks. Indeed, for a given
Artin stack F , and a D-module E on F , the characteristic cylce of E is
supposed to live on the total cotangent stack of F . A reasonable candidate
to be the cotangent stack would be V(TF ), the linear stack associated to
the tangent complex of F . But, when F has a non trivial stacky direction
(i.e. when it is at least a 1-Artin stack), then the complex TF has non
trivial negative cohomology sheaves, and thus we have seen in example (3)
of §4.3 that V(TF ) has a natural non trivial derived enhancement RV(TF ).
The correct cotangent stack of F is therefore a derived Artin stack, and
the characteristic cycle of E is now expected to live on RV(TF ).

6. Categorified quantum cohomology: Let RMg,n+1(X) be the de-
rived stack of stable maps to a smooth and projective complex variety
X (see example (4 − d) of §4.3). Let us fix a class β ∈ H2(X,Z), and
let RMg,n+1(X,β) the derived sub-stack of maps having β as fundamen-
tal class. Forgetting the map to X and evaluating at the marked points
provide a natural diagram of derived stacks

RMg,n+1(X,β) //

��

X

Mg,n ×Xn.

This diagram induces by pull-back and push-forward a functor on the
Segal categories of quasi-coherent complexes

Lqcoh(Mg,n)× Lqcoh(X)n −→ Lqcoh(X).

This should be thought of as some kind of action of the system of Segal
derived categories {Lqcoh(Mg,n)}n,g on Lqcoh(X). The precise meaning of
this action must be made precise, and should be somehow an ”action” of
some kind of operad objects in Segal categories (here it is preferable to use
dg-categories instead of Segal categories in order to keep track of the linear
structure). Note that the fact that this ”action” satisfies the expected
associativity axioms will follow from the base change formula (point (4) of
§4.2), showing the importance to use the derived stacks RMg,n+1(X,β)
in the construction.
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This ”action” of {Lqcoh(Mg,n)}n,g on Lqcoh(X) can be thought of as a
categorified version of quantum cohomology, as passing from Segal cat-
egories to their Hochschild homology group would give back something
close to the quantum cohomology of X. What seems interesting with this
construction is that the action of {Lqcoh(Mg,n)}n,g on Lqcoh(X) makes
sense even though X is not smooth (one problem though is that the ac-
tion of {Lqcoh(Mg,n)}n,g on Lqcoh(X) does not preserve bounded coherent
complexes anymore).
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