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Abstract

The Principal Component Analysis (PCA) is a famous technique from multivariate statis-
tics. It is frequently carried out in dimension reduction either for functional data or in a high
dimensional framework. To that aim PCA yields the eigenvectors (@;); of the covariance oper-
ator of a sample of interest. Dimension reduction is obtained by projecting on the eigenspaces
spanned by the @;’s usually endowed with nice properties in terms of optimal information. We
focus on the empirical eigenprojectors in the functional PCA of a n-sample and prove several
non asymptotic results. More specifically we provide an upper bound for their mean square
risk. This rate does not depend on the rate of decrease of the eigenvalues which seems to be
a new result. We also derive a lower bound on the risk. The latter matches the upper bound
up to a logn term. The results are applied in a nonparametric functional estimation model.

Index Terms — Funtional principal Component Analysis, Dimension reduction, Nonparamet-
ric functional regression, Covariance operator, Perturbation theory.

AMS 2010 Classification: primary : 62H25, 62G08 ; secondary : 47A55.

1 Introduction

The theoretical covariance operator and its empirical analogue are objects of fundamental impor-
tance in the theory of functional data. Principal component analysis is of importance in its own
right, and as a dimension reduction technique is often the first step to make finite-dimensional
procedures suitable for high dimensional or functional data. In this paper we will elaborate on
both aspects.

Let H denote a real separable Hilbert space endowed with inner product (-,-) and associated
norm |-|| and let X3, Xo,...X,, be a sample of independent and identically distributed random
elements with values in H. Since we are concerned with functional PCA we will for the most part
be dealing with covariance operators, and a precise definition and presentation of some of their
main features is in order. Whenever E || X;||* < +oco, the theoretical covariance operator ¥ and
its empirical counterpart, >,,, based on the sample are symmetric, positive, trace-class operators
from H to H defined by :

E=E((Xi1 —-EX1) ® (X1 —EX1)), (1)
2= LX) e (n X, @)
k=1

where the tensor product between u and v in H stands for the one-rank operator from H to H
defined by (u ® v) (t) = (u,t) v, for all t in H and X, = 2 >0 | X;.
When X is centered -which will be assumed throughout for mathematical convenience- EX =
1
0, =E(X®X) and %, = 52221 X ® Xi. By (M, o) we denote the k" eigenelement

(eigenvalue and eigenvector) of ¥. The A;’s are positive and simple by assumption and hence
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satisfy Ay > Ao > ... > 0, and (Ag),cy € /1. The eigenprojectors are of major importance in the
sequel. Since the eigenvalues are of order one we may define m; = ; ® ¢; the rank one projection
operator onto the vector space spanned by ¢; and Py, the projector onto span{ys, ..., ¢ }. We add
hats to denote the empirical versions of the eigenelements and we get ¥,p; = Xz@ for all © € N,
with all \; = 0 except for a finite number not exceeding n. We also set 7; = ¢; ® @; and Py.

Let § (-, ) be some distance, pseudo distance or dissimilarity measure for projectors. The initial
purpose of this work is to provide sharp upper and lower non asymptotic bounds for Ed (7;, 7;)

and for Ed (f’k, Pk>. We intend to display the dependence in ¢ and k in the previous expectations.

We also expect these bounds to be adaptive with respect to the eigenvalues decay rate.

Secondly these results will be applied to nonparametric functional regression. Biau and Mas
(2012) reduce the dimension of the regressor by exploring a fixed, finite number of principal com-
ponents. This naturally causes some information loss. In this paper we will be able to let the
number of components and the corresponding dimension of the panel increase with the sample
size.

As has been pointed out by Watson (1983) for matrices and by Dauxois, Pousse and Romain
(1982) for operators, the elegant techniques of perturbation theory (Dunford and Schwartz (1988)
and Kato (1976)) seem to be tailored to the analysis of the spectral characteristics of random
operators when they can be considered as small perturbations of an underlying target operator,
as in the case of the sample covariance operators. For general theory with a special view towards
applications in statistics we refer, for instance to Mas, Menneteau (2003), Cupidon et al. (2007), or
Gilliam et al. (2009). The interested reader should also note that kernel PCA was also investigated
with similar tools in Koltchinskii (1998) and in Blanchard, Bousquet and Zwald (2007) for instance.
We make an intensive use of perturbation techniques in the proofs.

An essential difficulty which is typical for the infinite dimensional case is that the spacings
between the eigenvalues become arbitrarily small. Relations between the spectral characteristics
of the sample covariance operator such as the cumulative eigenprojector of order k£ and those
of the population covariance operator are based on a Neumann series expansion for the sample
covariance operator. For this expansion to be valid, however, the perturbation should be sufficiently
small and in the present situation ’how small’ depends on the spacing between the k' and the
(k+ 1)St eigenvalue. Because these spacings tend to zero, for a given sample size n sufficiently
small prediction errors can only be obtained for cumulative projections up to a finite order k = k,,.
We will see however that we can let k, — 400 as n — +o0.

At this point let us briefly elaborate on one of the main theoretical results of the paper : the rate
of convergence of the risk of the k*" sample eigenprojector (i.e the eigenprojector corresponding to
the k" largest eigenvalue). For each n and k an upper bound for this risk is given in Proposition
7. This upper bound is, moreover, shown to be essentially optimal apart from a logarithmic factor
in Proposition 2. Apparently the upper bound for the risk depends directly on k but turns out to
be independent of the particular decay of the eigenvalues of the population covariance operator as
long as some mild conditions are fulfilled. This seems to be new and an improvement over similar
results by Hall and Hosseini-Nasab (2005) and Zwald and Blanchard (2005). These authors show
dependence on the inverse of the k' spacing of the eigenvalues. Since these spacings can become
very small, this dependence may have a serious negative effect on the convergence rate of the risk.
The reason for the discrepancy between our result and that in Hall and Hosseini-Nasab (2005)
probably lies in differences of approach. Our method of proof is based on an exact expansion of
the empirical eigenprojector in terms of the theoretical covariance operator and the perturbation,
exploiting the associated Neumann series. As has already been observed above the norm of the
perturbation operator ¥,, — 3 should be sufficiently small for the expansion to be valid. Since this
perturbation is random we need to single out the part of the sample space where this requirement is
fulfilled. Although, indeed, the requirement for the k" eigenprojection depends on the k" spacing,
very precise concentration inequalities allow us to get rid of this dependence in our final result.

The organization of this article is as follows : in the next section we provide basic material
about operators and perturbations, then in Section 3 the main theorems about random projectors
are given and applied to nonparametric regression in a high dimensional or functional framework.
The last section collects the proofs.



2 Notations, elements of operator theory and functional cal-
culus for operators

The space H plays a crucial role since the data will be sampled in such a space. It is clearly suited
to high dimensional Euclidean data. But many functional datasets may be also embedded in a
Hilbert space : either in a space of non smooth functions such as L2 ([0, 1]) or with tunable degree
of regularity like the Sobolev space of functions H™ ([0,1]) = {f € L ([0,1]) : f™ € L2([0,1])}.
Another reason rather of mathematical nature highlights this choice. We focus here on the co-
variance structure and PCA for functional data. The trouble is that, for a Banach-valued random
element X € B, the covariance operator is an operator from B*, the dual of B onto B (see, for in-
stance, Ledoux and Talagrand (1991) or Vakhania, Tarieladze, Chobanyan (1987)). The structure
of the dual space B* may not be simple (even for rather basic examples of B such as the space of
continuous functions on a compact set) except in the case when B = H is a Hilbert space where
B*=H.

We introduce the following two operator spaces and associated norms. The Banach space
L (H,H) = L is the classical space of bounded linear operators mapping H onto itself endowed
with the norm defined for each T in £ by :

1T o = sup [Tz,
rE€B,

where B is the unit sphere of H. The Hilbert space L5 is the space of Hilbert-Schmidt operators,
(L2 C L) i.e. the space of those operators 1" such that, for any orthonormal basis (ex), <y of H,

+oo
2 2
T3 = D ITexl® < +oc.
k=1

It is a well-known fact that Lo is a separable Hilbert space whenever H is. The inner product
in Lo is (T,5), = ;:i (Tey, Sey) and does not depend on the choice of the basis either. The
space L1 of finite trace (or nuclear) operators will be mentioned sometimes in the paper but is of
secondary importance. We just mention that £; C Lo; The two norms mentioned above are not
equivalent and

oo < 111lo -

Consequently the canonical injection from Lo onto L is continuous. For further information on
linear operators we refer to Schmeidler (1965), Weidman (1980), Dunford and Schwartz (1988),
Gohberg, Goldberg and Kaashoek (1991) amongst many others.

Finally we briefly introduce some basic facts about functional calculus for operators since all
this material makes the core of the mathematical techniques involved in the proofs. The notion of
functional calculus for operators is twofold. We mention the book by A.V. Skorohod (1984) dealing
with random spectral measures and leading to a specific theory. Here by functional calculus we
will strictly allude to perturbation theory and the functions f(7T') we consider have to be analytic
in a neighborhood of the spectrum of T'.

We refer the reader to Kato (1976), Weidman (1980), Dunford and Schwartz (1988), Gohberg,
Goldberg and Kaashoek (1991) for a complete presentation of the perturbation-based functional
calculus for operators. Roughly speaking this theory allows to define f (7') where T is a linear
operator and f is function defined on and with values in a suitable part of the complex plane.
Note that the mathematical nature of f and T" make them incompatible so that a special definition
of f (T) is needed. It will be in particular possible to consider the eigenprojections of T" as functions
of this operator. For this purpose the resolvent ({1 — T)_1 defined for each ¢ outside the spectrum
of T' will be needed.

Let OAj be the rectangular contour of the complex plane defined at Figure 1. And let 09y
be the contour of the complex plane associated to the connected domain §2; separating the k first
eigenvalues of ¥ from the others and defined in the following way : Q) = u;?:lcj where C; is a

1

circle centered at \; and with radius d; = 5 min (A\; — Xjy1, Aj—1 — Aj).
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Figure 1: Rectangular contour
ant

Figure 2: Contour made of disjoint circles

Results from perturbation theory yield :

k k

1 . 1 .

8 AR RS =) O BCED E St 3)

2L o, 21 ; ac; Jzzl J

1 -1

P.=— I1-%)"d
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where ? = —1 and 7; is the orthogonal projector associated with the single eigenvector ¢;. This

may be rewritten m; = ¢; ® ¢; when \; is of order one. The empirical counterpart of (3) involves
a random contour, say, O, (resp. OAy) similar in shape to 0 (resp. dAy) which contains the k
first eigenvalues of ¥,,. In fact only the left edge of A, may be considered as random :

1
27 J o,

o

k= I -%,)7"de, (4)

and f’k as defined in (4) equals the sum of all eigenprojections of 3, with eigenvalues inside 8§k
each denoted 7;.

3 Main results

We state first the assumptions needed to derive our results. Throughout the sequel the symbols ¢
and C will denote universal constants.

Assumptions on X

In this Hilbert setting, the distribution of a centered random element X may be characterized
in a very simple way. Indeed if =; denotes equality in distribution, we have :

X =q Z Ve () (5)

where the 7;’s are centered non-correlated real random variables with unit variance. The above
decomposition is often referred to as the Karhunen-Loeve development or development of X with



respect to its reproducing kernel Hilbert space (RKHS). Besides the 7;’s are independent when X
is a Gaussian random function. For definition and studies of RKHS we refer to Berlinet, Thomas-
Agnan (2004).

Consider X a centered random function with Karhunen-Loeve development (5). We assume
that the 7;’s are independent, that the eigenvalues \; are all of order one and that the sequence
(Xi);en is decreasing. We need higher moment assumptions because we need to apply Bernstein’s
exponential inequality to functionals of ¥,, — X. More specifically we assume that for all j,/ € N
there exists a constant b such that

max E (|17j\2€> < 0L (6)
j

These assumptions hold for instance for Gaussian X (with b = 4 for instance) and when the n;’s
are compactly supported.

Remark 1 Assuming the independence of the n;’s is a rather strong assumption. It stems here
from the use of well-known exponential inequalities. The computations may be possible however by
replacing independance by cross moments conditions or by invoking exponential bounds for mizing
sequences. These issues go beyond the scope of the article.

Assumptions on the spectrum of X
Let the function A : Rt — R* be defined by A(j) = A; for any j € N and by continuous
interpolation between j and j+ 1. From the assumption above we already know that j Aj < +oo.

Indeed the summability of the eigenvalues of 3 is ensured whenever E || X||> < +o00. Moreover, we
assume that one of the two following assumptions hold for the eigenvalues :

A= (7)
Aj = cexp (—aj), (8)

where c and o are some strictly positive constants. The spacings d; can be deduced easily. These
last conditions are rather mild and match a large class of eigenvalues. The generalization to
other classes of eigenvalues sequences like Laurent series A\; = cj =17 (log j)fﬁ or even \; =

cjt (logj)fl*ﬂ with § > 0 is straightforward and will be omitted.

3.1 Eigenprojectors

As announced in the Introduction we aim at estimating the risk for principal projectors and recall
that in our framework 7, is associated to the k** principal space of the functional PCA and defined
by T, = Pr ® @ where @y, is the k-th empirical eigenvector associated with the k-th empirical
eigenvalue.

Introducing risk or loss functions for projectors should be carried out with caution. Indeed
proximity between projection operators is intimately connected with proximity between subspaces
which in turn may be slightly more intricate to measure than for vectors or even functions. To
briefly illustrate these facts consider a fixed basis in H say (ij)j ey and consider Py, that projects
on span{p; : 1 < j < k}. Obviously for all z in H we have Pyx — = when k increases to infinity
but |Py —I||, =1 for all k. The same arguments holds when comparing Pj and Py for large
k. Consequently the choice of a proximity measure between 7, and m for instance may have a
major influence on the final rates. We provide below a lower bound and several upper bounds for
the differences 7 — 7 and Py — Py, and investigate the usual sup norm and evaluation semi-norms
at fixed or random points. In the following a series plays a crucial role. Let :

B A Ak
k= §|)\i—>\k|+5k

Our main results may be generally stated by means of a; and with no specific assumption on the
eigenvalues. We will prove in Lemma 15 that under (7) or (8), a; < ck for some positive constant
c. This will provide a simpler statement of the theorems. We start with a lower bound for 7.



Proposition 2 The following lower bound holds :

~ 2 1 2 a4
El|7 — melo > %ZAk)\j/()\j = Ak) —4;’;-
itk

When (7) or (8) holds it becomes :

~ 2 k?
E |7, — mills = 03;.

We notice that the lower bound seems to be non-sensitive to the eigenvalue decay rate.

Remark 3 The proof of Proposition 2 is strongly connected to functional calculus techniques for
operators. We write T, = fi, (£,,) and m, = f, (3). Then considering ¥y, as a (random) perturba-
tion of ¥ the lower bound is derived through some development up to the second order of T — mp,
namely

T (En) = Jx (E) :gli (Zn _E) +gl§ (En =33, _E)'
We show that the second order term gi (-,-) is negligible with respect to the first g (X, — X) and
we compute the exact value of E Hg,i =, - Z)Hio .

Remark 4 Dauzois, Pousse and Romain (1982) in their pioneering work derived the asymptotic
distribution of projectors such as w,. The covariance operator of the Gaussian limiting distribution
appears at page 145 and is detailed on page 146 of their article. It is intimately connected with the
first order term of our lower bound given above.

Now we are ready to turn to the issue of the upper bound. We start with the main results
about the cumulative projectors P, and Pj,. But for the sake of clarity we need to distinguish
three situations.

Case 1 : (7) with a > 1 or (8) hold,

Case 2 : (7) holds with 0 < a < 1,

Case 3 : (7) holds.

Theorem 5 Let (6) hold. Take u =X; or u =X, 1 or u nonrandom with the additional assump-
tion that sup; |(u,@;)|* /A; < 1 then for alln > 2 and k > 2:

2

. 2 2 k
E[[(Br—Py)ul| < nepexp (—cl’;) +es- Elog?n- [ 3 4/56,
- > \/id

=1

i n

where k= (2b—1) Y, A2 + (trT)®. Then we can derive :

-~ 2 k21 2
In Case 1 : E H (Pk _ Pk) uH < Cc4k” logmn
n
~ 2 127002 2
In Case 2: E H (P,C - Pk) uH < cyk”log” klog™n
n
¢4k? log” klog™n

In Case 3: E Hf’k — PkHQ <
o] n

Remark 6 [t is important to notice that we could not assess Theorem 5 in sup norm in Cases 1
and 2, when the eigenvalues decay very rapidly i.e. with exponential rate. Actually this result may
be attainable but we could not get it with our method of proof. Roughly speaking, the assumption
sup; [(u, @;)| /Ai <1 is crucial to get the bound above with a fast decay of the A, ’s. This assumption
prevents us to obtain the uniform bound. This pathology is closely connected with the inverse
problems aspects of the estimation of ¢y hence of Tx. However the forthcoming Proposition 7
overcomes this problem when Py, is replaced by Ty,.

The two next results may be viewed as consequences of Theorem 5. Their proofs are conse-
quently omitted.



Proposition 7 Let (6) hold. Then :

~ 2 / ; / ai 2
E|7e — |l < cpexp | —ci— ) + ¢35 - —=log”n.
a; n

When (7) or (8) hold this bound becomes :

/1.2 2
E ||[7x — mil%, < exp (—c} log®n) + W%
This latter bound is rather sharp when compared with the lower bound derived in Proposition
2 at least in our framework and with our set of assumptions. It differs from a log? n term.
We turn to the eigenvectors in the next Corollary and recall that 7T = @ ® P where @y is
determined up to a sign. In order to fix this point @, must be chosen so that the sign of (P, @)
is positive (see Hall and Hosseini-Nasab (2006)).

Corollary 8 Select ¢y, so that the sign of (P, k) s positive the under the assumptions of Propo-
sition 7 :
N 2 9 cak?log® n
E||Zr — prll” < 4dexp (—cl log n) + Y
This result could be compared with Theorem 1 p.114 in Hall and Hosseini-Nasab (2006). These
authors obtained in a similar framework but under milder moment assumptions || — @i <
¢/ (0k+/n) with high probability. The corollary above may be viewed as some kind of improvement
because the right hand side does not depend on the eigenvalue decay rate and is always sharper
since k28, — 0 when k — +o00. In the framework of Kernel PCA, Bousquet, Blanchard and Zwald
(2007) obtain similar results involving 5,;1 in their Theorem 3.7. It would be an interesting issue
to know if our approach extends to Kernal PCA but it is out of the scope of the current paper.
Their bounds however were somewhat surprising in the following sense : if the eigenvalues decay
quickly to zero so do the §;’s and this means that the data are close to a finite dimensional sample.
Then we would expect a rate always closer to v/n for the convergence rate of these eigenprojectors.
Yet these bound based on ;' get always worse. In the case of situation (8), resp. (7) these
bounds are O (ek/\/ﬁ) resp. O (k2+a/\/ﬁ) . This problem does not remain here, at least under the
assumptions we consider for the Ag’s.

Remark 9 The method of proof adapts to projections on any set of eigenvectors chosen amongst
the k first. This will not significantly improve the rate of convergence however. This fact, underlined
by a referee, paves the way to introducing some kind of high-pass filters (with an obvious Fourier
analogy) by projecting on (Ym,...x) with m = |ak], o € (1/2,1) for instance. This may be
of interest when studying spectrometric curves for which the high-frequency components are higly
informative.

3.2 Application to high-dimensional kernel estimation

We propose to apply the preceding results in the specific context of a two-step estimation algorithm
adapted to the regression when X lies in a high-dimensional or functional space. Let (Y, X) be
a couple of random elements and let r () = E (Y|X = z) be the regression function evaluated
at a fixed x. From the sample (Y;, X;);.,.,, € RxH where H stands like above for a Hilbert
space of functions or the Euclidean space R? where d is large (typically with respect to the sample
size) we investigate the classical issue of the estimation of r (z). General regression estimation has
been intensively studied in the past years (Masry (2005), Ferraty and Vieu. (2004, 2006), Ferraty,
Mas, Vieu (2007), Ferraty, Laksaci, Tadj, Vieu (2010). Several methods may be carried to solve
numerical or implementation issues like the computation of small ball probabilites, a crucial step
in asymptotic theory. However the complexity of the general model leads to degenerate minimax
rates of convergence, typically of order [logn]™* for some positive a -which may be seen as the
ultimate side effect of the curse of dimensionality- as shown in Mas (2012). This paves the way to
different strategies for nonlinear models involving functional data. Such alternatives are additive
models, multiple indices models or mixed approach such as projection pursuit. Several authors



studied these variants of the general regression : Amato, Antoniadis, De Feis (2006) and Ferraty
(2011) for the single index model, Chen, Hall and Miiller (2011) for the multiple index model
and Ferraty, Gola, Salinelli, Vieu (2012) for the Functional Projection Pursuit Regression amongst
others.

However here the method is the following. First compute the (potentially functional) PCA of
the sample (X;),<;<,, and retrieve the projectors f’k with a prescribed k. Here k£ will be chosen
so that k < d. Then compute an estimate of 7 (z) inspired from the classical Nadarya-Watson
approach :

_ 2 YiK (X — ]| /h)

i K (I1Xs — =l /)

This is not really fair to call Tiyw (x) above an estimate of r (x) since the norm ||-|| cannot be
practically calculated and should be numerically approximated for instance when H =L? ([0, 1]).
By replacing the theoretical norm on the space H by the "projection’ semi-norm ||-||, defined by

?NW (1‘)

lull, = Hf’kuH the estimate becomes :
Rk

S VK ([Pu =) /n)
Sk (pe )

This proposal is intuitive and rather simple to implement through standard statistical packages
from most softwares. The problems arise from the dependence between X; and Py, : the numerator
and denominator of 7(x) are not sums of independent random variables and the dependence
structure is, in our opinion rather confusing.

We introduce :
S YK ([P (X — @) /)
Yo K(|Py (Xi — )| /)

Contrary to 7 () the random variable r* (x) is not an estimate since Py, is the population projector
of the PCA and is consequently unknown. But its numerator and denominator ar both sums of
independent random variables. It may be viewed as an oracle in the sense that the risk for r* (x)
is expected to remain below the risk for 7 (z). In order to investigate 7 (z) Biau and Mas (2012)
introduce 7, the minimax rate of convergence in the non-parametric regression model over a well-
chosen class of functions and show that :

?(.’E) - (il?) N 07 (9)

Tn n—-+oo

T (x)

()

as the sample size increases and for a fixed dimension of projection D (denoted here by k and that
may increase with the sample size in our framework). We have to adapt their method here because
the dimension k is not fixed. Besides in (9) constants depending on D are used for bounding
(7 (x) — r* (x)) /7. These constants are made explicit here and we must take them into account
because they usually tend to infinity when & does.

Remark 10 A more classical route would be to investigate the risk for the estimate 7 (x) and by
the way to prove the convergence of T (x) . Considering (9) circumuvents this difficult issue which is
beyond the scope of the paper.

For later use let :

n

S* = zn:K (IPx (X5 — 2)]]) Sp = ZK (Hf’k (X — x)H) ’
i=1 i=1

7 = im((npk (Xi— o) /h), Zn= iw ([Pw i = ) /1)

We introduce now the set of assumptions we need to derive our main Proposition.
Assumptions on the small ball probabilities [A1l] : F (s) =P (||Px (X; — 2)|| < s) with

u)

Fj; (s) > 0 in a right neighborhood of 0 and supj,¢(g 1 % < cpuP with p < k.



Assumptions on the kernel K [A2] : The kernel K is bounded above and below on its
support [0,1] with 0 < inf,ep,1) K (u) =K< | K|, u?K’ (u) € L' ([0,1)) where p appears in [A1].

Assumptions on the regression function [A3] : r is bounded.

At this point some comments are needed about the assumptions : [A2] and [A3] are classi-
cal. The reader familiar with nonparametric methods will remark that we do not need regularity
assumptions about r. This is due to the fact that below we are only interested in bounding the
difference 7 (x) — r* () and not 7(x) — r (x). As a consequence the approximation of r -in its
functional analysis sense- is not our aim here and ensuing smoothness conditions are no more
required. Assumption [A1] though not quite standard is rather mild. Indeed we consider there
the cumulative density function (in a neighborhood of zero) of the positive real random variable
Py (X; — 2)|| which in turn is the norm of the R¥ valued random vector Py, (X; — z). It is natural
to think that the local behaviour of Fj, (s) is polynomial with degree less than p in a neighbor-
hood of 0. Smoothness of the density of P X; evaluated at Prx would ensure this fact. And if
Fy (s) ~ sPL (s) with L a slowly-varying function at 0 then [A1] holds.

Proposition 11 The following non asymptotic bound holds under the assumptions (6), (8) or (7)
with o > 1 and [A1-3] above :

k4 hy/o
E[F(z) — * (z)]° < cs— log?nl : 10
[F() =7 (@)]” < cos log? nlog (% (10)

A first difference appears with Biau and Mas (2012). The bound of Proposition 11 displays
explicitly the dimension k£ whereas this dimension was fixed and did not appear in the work of
these authors. A comparison with their Corollary 4.1 shows that, up to a logn term, the numerator
k*logk is new. It accounts for the price to pay to let the dimension increase with the sample size.

We remind that in a non asymptotic framework the minimax rate for the risk in nonparametric
regression (see for instance the monograph by Tsybakov (2004) and references therein) is up to
constants 7;° (a, k) = n=2%/(22FF) where « is a smoothness parameter unimportant here. When a
Nadarya-Watson estimate is selected the optimal bandwidth is an h* = O (7f1/(20‘+k))7 and we

can write 7% (p, k) = [n . (h*)k} B

The next Proposition develops the comparison between E [ (z) — r* (z)]* and 7 (p, k).

Proposition 12 Under the assumptions of the previous proposition and assuming that k > 2,
0 < h < hpax <1 and that A™ log3n is uniformly bounded with respect to n for any T > 0 there
exists a constant ¢z (hmax) such that :

sup nh*E [F (z) — * (2)]* < er.
Rk

In an asymptotic perspective nh*E [7 (z) — r* (2)]> —n— 400 0 for any bandwidth h depending either
on k, or n such that h — 0.

The proof of Proposition 12 is omitted. For the first part it suffices to see that h*~2k%log® n <
R*=2=TkAh7 log® n < hE-2-"k* < ¢; where here and elsewhere x < y means that = < ¢y for some

constant ¢. The second part follows from straigthforward calculations.

Remark 13 The statement of Proposition 12 allows independent choices of h (tending to 0) and
k (going to infinity) by comparing B[ (x) — r* (ac)]2 only with the variance part of the estimate in
the new projected model Y = r o Py (z) + €.

Remark 14 As pointed out by a referee our results remain true when Y is functional-valued, say
Y € H where H is some Hilbert space. Obviously the mean squares such as E[F(x) — r* (z)]°
should then be replaced by E |7 (x) — r* (x)||§_[ where ||-||,, is the norm on H.



4 Mathematical derivations

We introduce the following events for later use. Let 0 < ¢g < 1/2

Ay, = {Xk € Qk} N {XkJrl ¢ Qk},

By (co) = { sup

(eI,

-2 @ -D - < } .

The event By, (¢p) will be introduced within the proof of our main result. Lemma 18 will detail the
connection between By (¢p) and Ai. When A holds the k first empirical eigenvalues (and only
the k first) are inside Q. Then subject to these events we can derive the linearization :

~ 1 _ —
Po-Pi= g | 1=z - @ -n)7 (11)

The formula above comes down to removing the random contour 8§k in the definition of f’k at
(4). But we have to condition with repect to Ay first. On Aj the strategy will be to see that

E Hf’k - PkH Iz, <2P (Xk) and to bound accurately the latter probability. Thanks to lemma

18 we will restrict ourselves to bounding P (Bj (co)).
We also assuume in all the sequel that a;logn/v/n < 1/2.

4.1 Proof of Theorem 5

The proof takes two steps. First we apply the linearization formula (11) above but we have to
control P (Ak) non asymptotically which is achieved at Lemma 16 below. Second we will use

perturbation theory to bound accurately the linearized difference between f’k and Py.
We state or recall now two technical Lemmas.

Lemma 15 When (7) or (8) hold there exists a constant ¢, such that for all k > 1
/\k
—|— — < cuk. 12
2w ow (12)

The proof stems from classical Riemann approximations. The two next Lemmas aim at proving
that the events Ay and Bj (co) hold with a high probability. We derive in fact two exponential
inequalities of the same kind showing finally that P (Bk (t)) ~P (.Ak) ~ exp (sz /n)

Lemma 16 Denote a, = {Z#k ﬁ + :;\7’:} We have :

P (Bi (1) < 2exp [~ 15 !
R = SO Toa2 oy — 1) 4 20y |

(2b—1)ay

Remark 17 FEarlier work focus on a probabilistic control of ¥, — ¥ to obtain bounds on the
projectors. Here the idea consists in studying a normalized -through perturbation and resolvent-
variant of the latter to derive a more precise result.

Proof of Lemma 16 : In this subsection, we use Bernstein’s exponential inequality for Hilbert-
valued random variables (see for instance Bosq (2000) p.49) and references therein). First denote

e = A — 0 11 =%, — % and I (ju,) = (il — 2)71/2 X, =) (ul — 2)71/2 and rewrite :

(CI-%) (S =) (-2 = G (O T (k) G (€)
with G, (€) = (I — )2 (I — 2)** we get :

sup ||(cT =) V% (2, - %) ((I—E)‘”QH

CeEON [ee]

< sup (G (O - [T )| < 0T
CeNN, 00

10



since supy, sup;epq, |Gk (¢)llo < 3 whatever the contour chosen. Then :

Hﬁ(ﬂk)Hl < Hﬁ(ﬂk)Hz
400 2 2
- %k e~ Al — Aql 7
+Z ©p) ; <Pk>2
p# \Mk - >\ pl Ok
) ‘Pq>2 (Zn —X) (vr) <Pk>2
<4Z |)\k—)\\|)\k—)\| + 52 (13)

+o00 2
Zn -2 )
2} (( 5 )()\@Tzs ©k) ,
Pk el
since for p# k | — Ap| > | A — Apl — 0k > [ A — Apl /2.
Finally, ignoring the constants 4 and 2 in (13) and 9 that appeared above, our only task is to
give an exponential bound for the probability :

b i" ((En = %) (00) , 00)”

(2 2) <Pk k)’ +Z ep) s on)’
|>‘k_)‘p||)‘k_)‘q|

>t
\)\k—)\ | Ok

_|_

p#k
Consider the linear bounded symmetric operator s; defined in the basis (¢;);-, by sk (i) =

©i/\/IAk — Ai| for i # k and sk, (pr) = 0/ Ok It is plain that :

+o0 2 2 +oo 2
(B =2) (p),0q)” | (B0 =2) (0r),0k) o x (Bn —2) (pp) s k)
> Ak = Apl [Ak = Al * o7 2 Ak — Apl Ok

p,qF£k
= |lsk (S0 — ) sil3

with sj, (3, — X) s, = (1/n) Y1 Zix with Z; , = s, X; ® s, X; — s, Xsy, hence EZ; , = 0. In order
to apply Theorem 2.5 in Bosq (2000) mentioned above we have to identify I, and by such that for
all integer m, n=™HE || Z x|y’ < mlZb]* /2. We claim that the previous inequality holds with
by, = ak256b3/ [(2b—1)n] and I}, = (2b -1) ak/n We prove it now.

Let m = 2 we get E[|Zy ]2 = E|se X1||* — [|seZsell5 where [[s;Sspll3 = S5 A2/ Ak — M|
Set abusively |A\; — A\x| = dx when ¢ = k along the next five lines then :

+oo 2 +oo 2T, 4 +o0
A En;

4 § M2 Y. _ 2 : i LTy 2 :
i=1 | k z|

=1
+o0 2 4o
e (Enty) X
< 2b — 4
- Z|A,¢7A| |)\k_)\| — [\ — A

p#k

Then

+oo 2
A2
E /s, X1 ||* = llsxZssll? =2(b—1
sk X1ll" = sk Zsklly = 2( )§:|/\k_)\| (ZM_)\>

0o A 2
2 <; | Ak — )\i|> '

From this we see that we can choose [2 = (2b — 1) a3 /n.
By classical properties of the norm in Hilbert spaces and Minkowski’s inequality we get :

m/2
E || Zyilll < 2m/2E<||st1H4+ ||3k25k||§) < sz(nstlHQ’u ||skzsk\\§). We keep this

11



inequality in mind. Now we bound more generally E ||s,X1[|>”". We have to compute :

>\71)\1m ) )
X:Zm Ak — Xig| oo [ AE — A [7]11 mm]

where we set abusively |\; — Ap| = 0; when p = j for the sake of simplicity. We focus on E [77?1 ...nfm]
and recall that we assumed just above (6) that the 7;’s are independent. In order to bound
accurately this expectation we consider the rearrangement of the 7;’s involved and introduce D
as the numbers of distincts indices in the product »7 ..n7 . Clearly 1 < D < m. We write

ng..n7, = T2 n2% where p; are all distinct indices (hence the 7, are independent) and the

sequence of exponents (a, ...,ap) adds up to m. Hence E [n7 .07 | = T2, En2 < TI2 | (o)) -
b=t = pm=PIIL !, Since TP oy!/m! < 1 we get :

E [n?l...nfm} < m!bmbiD.

2
From the moment bound (6) and by Jensen’s inequality we get 1 = E (|n1|2) <E (|171|4> <

max; E (|77j|4) < 2b hence 1/bP < 2P < 2™, Collecting all these facts we get first :
E|[seX1[*™ < m! (2b)™ a}.

m/2
From ||s;Xsglly = ( j:f#k A2/ A — AP+ )\%/5,3) we can derive the moment inequality
involving Z; j, :

m/2
“+o00
E|[Zily <2 |ml@0)"ay + | Y AT/ [ = Mif* 4+ AR/67
i=1,i%k
+oo 2 2 2 /52 m/2
( ik N 1Ak = AT+ )\k/5k)
m! (2b)™ a*

< 2™m! (26)™ a |1+

< 2mtlpl (20)™ a

It is now a simple computation to identify this last term with b, and we get by, = ax256b/ [(2b — 1) n] .
The exponential inequality in the Lemma is derived from Theorem 2.21 p.49, equation (2.21) in
Bosq (2000).

Lemma 18 For some ¢y < 1/2 we have :
P (Ax) < 3P (B (o)) -

Proof of Lemma 18 :

The proof of the Lemma consists essentially in proving Ay, C By, (co) for some ¢y where B, (¢o)
is a set containing at least By, (cg). The proof is similar to Lemmas E1 and E2 pages 7 and 8 of the
supplementary material of Hilgert, Mas, Verzelen (2013). The contour used by these authors differs
slightly from 2, (another circle was added to make sure that any X]- j < k falls inside the contour).
We recall that the choice of the contour does not change the projector whenever k eigenvalues are
located inside (see for instance Lemma XVIII.2.31 p.2255 of the part III in Dunford, Schwartz
(1988)).

Proof of Theorem 5:

The outline of the proof is the following. We split the situation in two sets. We first choose an
ag

accurate 1y, , = = logn < 1/2 and consider By (1i,»). When By, (1 ) does not hold we can bound

roughly Hf’k — PkH by 2P (Ek (lk,n)) and use Lemma 16 above to get the exponential inequality
(oo}

— log?n 1
P (Bk (lk’n)) S 2€Xp <_ 2 (2b _ 1) + 256b3 logn

) < 2exp (—c’ log? n)
(26—-1) Vn

12



where ¢* is a positive constant.
Now when By, (1) holds we take advantage of the linearization formula (11). Recall that

M=3,—%and I (1) = (el — ) 2 (S, = %) (] — ) *Denote R(¢) = (¢I — )" and
R(¢) = (CI —%,)" " It is easy to see that R (¢) = RY/2(¢) T (¢) R/2 () with

T(Q)=(I-2)"?R(Q)(CI-%)"?,

hence T'(¢) — I = T(¢) [RY?(Q)IIRY2(¢)] and T (¢) = [I — RY?(()IIR/? (g)]‘1 whenever
ﬁ(()” <lyn < 1. Then:

SUD¢eoy

RO -RQ=RZQI-T1(Q)] QR (14)

We underline here that at this point the contour considered in the lines below is given in Figure
2. As announced earlier :

1

27

|(Pe~Pu)uf < 2wl 15,4, + ‘

foREQ[1-T0] QR 0w a0,
Oy,

(15)
We focus on the second term in the left hand side of the above equation :

< 0 B IR O R

At this point we must consider different situations depending on the nature of u. First notice that
||R1/2 H = sup,, [( — A |_1/2 <d|I¢C— A |_1/2 due to the design of the contour 0. Taking

expectation and applying Cauchy-Schwartz inequality to E [||u|| 15, q, n)} we get :

1
21

~ -1 .
§ R [-T©] O R O wi | 1ao,
0Qy,

B (Pe- ) u < 48 jul] B2 (Bee)

o <2ﬁ(1lkflk,n>>2E PR e LR dCr
< cexp (= log? n) + %linE {f;mk |¢ — )\k\_l/Q HR1/2 ©) uH dC]Z, (16)

for some ¢ and ¢’. Now we split the contour 9§, and compute the integral in the brackets for each
circle 0C;. Consider two cases. First if j =k :

B g 1c- xR Ol ac =162 4
oCy 9Ck

<162 sup
CeoCy

+oo

< c|ou? A A g2

< 0| Z x 7)\|+ c|kdk|
p=Lp#k ¥

13



since sup; |(u, p;)|* /A; < 1. Now if j # k we have quite similarly :

Eg lo- w7 ROu]d < f \Ag—fAkr”QEHR“Q(Oquc
aC; aC;

<A — A *Wf E
< g aC; ZK >\|

—1/2 = (u, <Pp>2 (u, ‘Pj>2
<=M TEGE ] Y s
p=lp#j q J

<N = A TH26 f N
> j — \k j N N | ~
! N, =2l 9

<y =Ml TV2050/5 < V55

Plugging these bounds into (16) we obtain :

2
k

IEH(f’k—Pk)qugcexp( ¢ log? n —|—C’ lkn Z . (17)

Obviously this bound is of interest when Z§:1 j0; is reasonably low (typically bounded
uniformly with respect to k or O (log k)) which in turns occurs when \; = cexp (—aj) or when
Aj = cj 17 with a > 1. However when A =c¢j 17 with 0 < @ < 1 or when \; = cjlogtt™ j

=1 Jjoj > k(1=)/2 and gets large when k does the bound above loses some interest.

It is possible to circumvent this problem just by changing the contour used to define and com-
N 2

pute the projectors. It turns out that this new contours yields a control of the norm E HPk — Py H ,

(oo}

which is a deeper result than the pointwise control above in the special situation : \; = ¢j =17
with 0 < a.

Indeed consider the new contour Ay obtained as the boundary of the rectangle of the complex

plane with left edge at * = A — 0 , right edge at A\; + 1 and horizontal edge at y = +1.

This contour is dravvn at Figure 1. The initial formula (11) remains unchanged P, — P =

27” fBAk [ (I—-X% ) —(¢I - E)fl} d¢. Tt is also obvious that all the preliminary computations
carried out to control the probability of the events Ay = {Xk € Qk} N {/):k;+1 ¢ Qk} hence By, (1)

remain true when changing the contour. Consequently we can turn to the bound (16). Denote
oA, = BAZi UOALU 3Aff where JA} denotes the right edge, 8A§€ the left edge and BAZi the union
of the two disjoint horizontal edges. It is plain that

j{hi \C—Akrl”HRl/Q(g)quggc
OAIFUOAY

where C' is some constant since |¢ — )\k|71/2 <|1- )\k|71/2 for ¢ € 5‘/\2i U OA},. The remaining
term is :

oy -12 / %4’)2
}2%'4 Ml B2 (€) ] dc = / Zuy 5 Ly+|§kf o)™

PR (u ‘Pp>
< P e AR L

=1

14



where c¢ is a universal constant and we used bounds like |ty — dx| > (y + d) /2. We have :
+o00 too
/1 Z < S0P> d /1/6k Z 6k <u7 S0P>2 dS
o\ T e Tl G G+ =D

1 +o00 1/6
O (u, /
< E ds +
—/0 (5ks+\)\k—)\|

and (16) becomes :
D 2 2 2 2 2
EH(P;C—P;C) uH <dexp (—clog®n) +clf ,, In* (1/6;) E [[u]|®.

This time the bound obtained is of interest when the assumption in (7) holds. Then In (1/d;) <
clnk.
As a consequence of the line above and of (15) we see that for all nonrandom u with norm 1,

N 2
H (Pk — Pk) uH <2lg.q,.)t clim In? (1/6,) hence that

~ 2
[(Br—Pu) | <215, + e, w2 (/6.
This finishes the proof of Theorem 5.

Proof of Corollary 8 :
First notice that ||(7 — 7x) (c,ok)||2 <|I7% — ﬂ-kHio where (T, — m%) (pr) = (Pk, Yk) Pk — @k but
we also have (T — k) Yk, k) = <g5k,gpk>2 — 1. Now

1Bk — orll < @k — (ks k) Pl + [[{Pr> 0k) i — k]|
= (1= {@r> o)) 1@kl + 175 (o) — 7 (1) |
<1 = (Prs o) + 17 — mhll o

since (Pr,or) < 1. At last |Gk — wrll® < 2(1 — (Bk, 0x))° + 2|7k — 7|, and we obtain the
desired bound.

Proof of Proposition 2.
From all that was done above we restrict ourselves to proving the lower bound for (7y — 7)

(I —%) (2, - 2) (¢ - 2)‘1/2H < ay/y/n that is when we can readily lin-

earize T — T up to order 2 :

when supcc,

1

T — Tk = —

s [T =207 = -9 ac
=g =)

E D) (- D) A+ T

with T}, = 5 fe. RY2(¢) [I - ﬁ(C)} I12 (¢) RY2 (¢) d¢. So that we get

T — k= Sk (B =) + 7 (8, — 2) Sk + T (18)

15



with S}, = zﬁﬁk ©; ¢/ (Aj — A) . The computation of S appears in several papers dealing with
projectors or resolvent-based computations (e.g. p.347 in Cardot, Mas, Sarda (2007)). The second
order term is T}, with :

[ Thnll o0 <

since we assume that sup.cc, (()H < ag/v/n < 1/2.We turn to the first order term namely
Sk (X — X) g + 7 (X5, — 2) Sk.It is plain that :

||Sk (En - Z) Tk + Tk (Zn - Z) SkHoo Z HSk (Zn - E) TPk + Tk (En - Z) Sk@k“
=[Sk (B0 — ) Tkl = Sk Znex |

since 7, = @i ® @i and

n 2

Z Xi, o) S Xi

HSkEn(pkHQ

Then from (18) we get :
1Sk Xneell < 1Tk — Tkl o + din,
ISk Eneell® < 217 — w2, + 247 ,,
Taking expectation we finally get
E |7k — mil3 > (1/2)E | SkSaewl® — di

Now from calculations similar to those carried out within the proof of Lemma 16 we get :

2

E ||SkSaerl® = X, or) Xi

= —]E Z Xy or) (Xj, 1) (Sk (Xi), Sk (X5)) =

7,7=1

1
= 51[‘3 (X1, 06)% 1Sk (X1)]°

(X1, 1) (X2, 0x) (Sk (X1), Sk (X2))] -

Conditioning by X5 and taking expectation with respect to X3 it is simple to see that the second
term in the right hand side above is null. The first one is :

1
—E (X1, o) ISk (X)|I” = EHSk (Xl *MZ)\/ A= M)’
" 7k
because Sk (X1) = @k D4, (@5, X1) / (Aj — Ax). Hence :
~ 1
E |7 — w2, > o5 M DN/ =) =R,
itk

Besides when (7) holds a7 < A\, i Nl (N — Ak)? = k2. This together with the fact that dk nis
negligible with respect to ai /n yields the desired result :

~ 2 ai
E |7y — mell5 > e

for some absolute constant c.

16



4.2 Derivation of results of Section 3.2

The next two lemmas aim at providing the reader with basic inequalities which will be extensively
used in the sequel.

Lemma 19 We have for all h > 0
KFy (h) < EK ([P (X; — 2)]| /) < [F [ <u>|du} Fi(h) < 2F4 (h).
KnFy (h) < ES* < enFy, (h).

The lower bound in the equation above is obtained from :

EK (|[Py (Xi — 2)[| /h) > BE ([[Pg (Xi = 2)[| /h) Wgpy (X, )| <h}-

The upper bound is derived from Fubini’s theorem :

BK (|Pe (X; — )| /) = = [ K (u) Fi (hu) du
< Fy (h) / K ()] };fk((h:))dug {CF / K (u)|du] Fi (h)

We refer to Ferraty, Mas, Vieu (2007) and Biau, Mas (2012) where this method was already used
in an asymptotic framework.

Lemma 20 For allt > 0,
S* —ES*
I[D -
(&=

The proof is a consequence of Bernstein’s theorem, of the boundedness of K and of Lemma 19
hence omitted.

> t) < 2exp— [nF), (h)PK?/2|K| (e +tK)].

Preliminary facts for the proof of Proposition 11 :

We deal with 7(x) — r* (z) = % - g—: It is simple to get the four following lines given here
without proof for further purpose :

S -8 zr-Z
S* S* ?

max {|7 ()], [r* (2)[} < |rlo + D leil.
i=1

2 n
Z€z (1P ( '—x)ll/h)lewan} =02 K*(|Py(X; — )| /h) <02 |K| S
i=1
We have :
" NS =S8 =8 7 -Z
Ple) = (@) = Fl) =7 ()] T 477 () g = T (19)

It is straightforward to see that

g:{’y;ES* <1/4}:{ }:{—1/5<S*H;y<1/3}

and that G C {‘S*IES]E*S* ’ > 1/5} . We split 7 (z) — 7* (x) in two parts. We start with :

S
S*

E|F(z) —r* (2)]* 15 < 2|72 P (G) + 2E |15 (ZM)

= 2P (G) [|r|io +nEe? +n(n—1)(E |e|)2} (20)
< 2P <’S*ESIES* > 1/5> [|r\ +nEe? +n(n—1)(Ele|)?
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where the last line is controlled by the exponential inequality in Lemma 20. When nFj, (k) /logn

is larger than a prescribed and universal constant we get n?P (‘ S*IESE*S*) > 1/5) < 1/n and the

line above becomes negligible.
On the other hand it is simple to get :

) - @)1 < 5 |r* () T 5. < 21,
S T | P i P
| ] P i AP
<SS+ 2 AL . 1)

In view of (21) and (20) the conclusion will follow from an appropriate control of both terms :

(2 2
r* (z) (S* — S) ‘ 1g,E ‘Z* — Z’ 1g. These are addressed in the forthcoming Lemmas. We also
notice that :

50

E|7(z) —r* () 1g < —5——5— |E
7 (z) — ™ (2)] g_ngnQFlg(h)[

r* (x) (S*—?)‘zﬂnglE]Z*—?‘zlg]- (22)
Lemma 21
e} (s -8) 1

Proof :
Keep in mind that G holds :

E [ ™ (2) (S* - §)‘2 |X1,...,Xn}

A 2
2 S* —
<o |s - 5[ +2 ( ) (Z@ (IPx (X; — )] /h)) X1,y X

= 2|5t 5] [mio " (’3';5'00] .

~ 502 |K|
* 2 £ [}
S*]ESES*SI/3}|X1"”’X7L:| < ‘S —S’ |:27“|OO+4ES*:| a.s.

Taking into account that G holds we get the announced result.

Lemma 22 We have

4
S‘ <A. n:2 2 (h)log? nlog(h

)
. 5 k4 hy/n
E’Z —Z‘ < |rloo Bz P (h) log? nlog( >

where A and B are constants depending only on K.

Proof :

We deal first with S* — S and limit ourselves to carrying out computations when K is the naive
kernel defined by K (u) = Lo<u<1. The interested reader will easily check that the derivation may
be adapted to more general kernels under assumption A2. The method by Biau and Mas (2012) is

18



not sufficient to get the bound annouced and we have to follow another route with sharper bound

2
2 &
Els* -8 =E (Z Lipy(xi-2)l<h — IL||13k<X1‘I)<h>
=1
- 2
" <; Lipxi—aisn |[Bexi-o)|>n ~ Lpwoxi-ali>n, ﬁk(xi"’”)”<h> '
Then :

2 2
2 n n
. ‘S N S‘ =2k <Z; ]llPk<Xi—w>lISh7lll3k<Xi—w>|>h> 2R (Z; ]l|Pk<xi—w>||>h7||l3k<xi—w>||Sh>

Let 0 < 1 < h to be fixed later. We treat only the first series since our method applies to the
other :

n

Z ILHPk(Xi*«T)HSh’Hf)k(Xz‘*I)H>h < Z lh_”SHPk(Xi_m)HShJFZ 1||(Pk*13k)(Xi*I)H>"7’”Pk(xi*x)”§h.
i=1 i=1 i=1

The distribution of the new first series above is Binomial hence E (Z?:l ]]-h—ngﬂPk(Xi—w)HSh)Q =

npi + n’piwith py, = Fy (h) — Fy, (h —n) < enkFy, (h) /h and

n 2
F2(h
E (Z 1hn<|Pk<xiz>u<h> = ”277%2722 ) (23)
=1

We turn to the other term. From :

{|(Pe=Ps) (xXi = 2)|| > m.Pw (s = @) < 1}

c {l(X;: — 2)|| > Mlogn} U {HP’“ _ﬁkH > Py (X — 2)|| < h}

n
Mlogn

and the fact that Eexp (A [|X]]) < +oo for some A we get that E (3!, ]l”(Xi_x)H>M10gn)2 is
bounded by a n~P for some large p (depending on a good choice of M). Then

n n

Z ]1||(Pk—f’k)(xi—x)H>n,|\Pk(Xi—z)|\gh = ]1||(Pk—13k)||>n/M log n Z Lip.(xi-a)l<h
=1 =1

= 1)|(p, =B, ||>n/ar 10gn D [LIP(xi—a)j<n — P(IPx (Xi = 2)|| < h)]

i=1

+ 11} (p,—5,)||>n/ar 10g P (IPE (X1 = 2)| < h).

Denote U; = ]lHPk(Xifm)HSh —P(||Px (X; — 2)|| < h),

n 2
(Z ILII(Pkf%)(&aﬁ>>n,|1°k<xiac>|<h>

1E=1
< 20%P2 (|Py (X1 — )| < )P (|| (Pi = Be) | > n/M 10g )

n

2
+2EL | (p, B,)|[5n/M 0 n {Z [Lppucxi-mi<n = P(IPe (Xi —2)] < h)]}

=1
n 4
< 2n2F? (h) exp (—71772/Mk2 log? n) + 2P/ (HPk — ﬁkH > n/Mlogn) EY/4 (Z Ui>
i=1

< en®F? (h) exp (—nn? /Mk? log® n) ,
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because the second term is negligible with respect to the first. The optimal 7 is chosen now so
that :

n?n?k2F2 (h

Tk() = n?F? (h) exp (—nn?/Mk*log®n),
which yields :

* k 1/2 h\/ﬁ
Plugging this optimal n* in (23) glves the first result of the Lemma.
Recall that we left initially Z* — 7 to treat S* — S. We have :

|2
E‘Z*—Z‘ :E{

2
+o;

NE

(30 [ (1P (% = )l /1) — K ([P (6, =) /h)]}

1

E[K(nPk(er)H/h) (HPk *”CH/h)]

.
Il

-

Il
-

?

Focusing here again on the specific important case of a naive kernel we check that

Z]E (1 (1P (%~ )l /1) — K (||Bi (5, )| /)]

=nlk [IL ’

1P (X1 —2) <A [P (Xa—0) || >0~ LPs Xy —a) >, | Br (i =) || <h

may be treated with exactly the same tools as above so that we can upper bound it up to constants
with nnkFy (h) /h + nF (h) exp (—nn?/Mk? log? n). These terms are unimportant since they are

negligible with respect to the contribution of the other part of the decomposition of Z* — 7 namely :

E {fjrom K (IPw (X =)l /1) = K ([P (s =) /h)}}

n 2
=E {ZT (Xi) |:]1HPk(Xifzv)HSh,”lgk(Xifw)||>h - 1\|Pk(Xi7a:)\|>h,||13k(er)||Sh} }

n

n 2 2
<2E {ZT (X:) ]l|Pk(Xi—z)|§h7||13k(Xi—x)||>h} +2 {ZT (Xi) ]llPk(Xi—$)||>h,||i5k(X1‘—$)|§h}

i=1
2
i—x)||Sh] ’

n
+2[rfo [Z Lip,(x,
=1

2

n
< 2[rls [ Lipy (X, |[Br(Xima) | 51
1=1

and we are faced with exactly the same computations as above for S* — S.

Proof of Proposition 11:
Combining (19) with Lemma 22 we get :

Ef(z) - r* (@) 1g < — 0 {]E ™ () (S*—§)‘21 +E’Z*—2‘21 }
9= 9Kn2F? (h) g g

I hy/n
<C- e log? nlog( ;{)

This finishes the proof of the proposition.
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