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Abstract

The Principal Component Analysis (PCA) is a famous technique from multivariate statis-
tics. It is frequently carried out in dimension reduction either for functional data or in a high
dimensional framework. To that aim PCA yields the eigenvectors (ϕ̂i)i of the covariance oper-
ator of a sample of interest. Dimension reduction is obtained by projecting on the eigenspaces
spanned by the ϕ̂i’s usually endowed with nice properties in term of optimal information. We
focus on the empirical eigenprojectors in the functional PCA of a n-sample and prove several
non asymptotic results. More specifically we provide an upper bound for their mean square
risk. This rate does not depend on the rate of decrease of the eigenvalues which seems to be a
new result. We also derive a lower bound on the risk. The latter matches the upper bound up
to a log n term. The results are applied to improve a technique of nonparametric functional
estimation.

Index Terms — Funtional principal Component Analysis, Dimension reduction, Nonparamet-
ric functional regression, Covariance operator, Perturbation theory.

AMS 2010 Classification: primary : 62H25, 62G08 ; secondary : 47A55.

1 Introduction

The theoretical covariance operator and its empirical analogue are objects of fundamental impor-
tance in the theory of functional data. Principal component analysis is of importance in its own
right, and as a dimension reduction technique is often the first step to make finite-dimensional
procedures suitable for high dimensional or functional data. In this paper we will elaborate on
both aspects.

Let H denote a real separable Hilbert space endowed with inner product 〈·, ·〉 and subsequent
norm ‖·‖ and let X1, X2, ...Xn be a sample of independent and identically distributed random
elements with values in H Our first purpose is to establish sharp bounds on the prediction error
of functional principal components in terms of the sample size n on the one hand and the index
of the component on the other. These bounds allow us to obtain rates of convergence to zero of
the prediction errors when the number of components increases to infinity. Secondly this result
is applied to nonparametric functional regression. Biau and Mas (2012) reduce the dimension of
the regressor by exploring a fixed, finite number of principal components. This naturally causes
some information loss. In this paper we will be able to let the number of components and the
corresponding dimension of the panel increase with the sample size.

As has been pointed out by Watson (1983) for matrices and by Dauxois Pousse and Romain
(1982) for operators, the elegant techniques of perturbation theory (Dunford and Schwartz (1988)
and Kato (1976)) seem to be tailored to the analysis of the spectral characteristics of random
operators when they can be considered as small perturbations of an underlying target operator, as
in the case with the sample covariance operators. For general theory with a special view towards
applications in statistics we refer, for instance to Ruymgaart, Yang (1997) Mas, Menneteau (2003)
or Cupidon et al. (2007). The interested reader should also note that kernel PCA was also
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investigated with similar tools in Koltchinskii (1998) and in Blanchard, Bousquet and Zwald (2007)
for instance.

It is known that the covariance operator is Hermitian, positive and trace-class, and hence com-
pact. It will be assumed to be strictly positive with all eigenvalues simple and, as usual, arranged
in decreasing order with zero as limit. An essential difficulty which is typical for the infinite di-
mensional case is that the spacings between the eigenvalues become arbitrarily small. Relations
between the spectral characteristics of the sample covariance operator such as the cumulative
eigenprojector of order k and those of the population covariance operator are based on a Neu-
mann series expansion for the sample covariance operator. For this expansion to be valid, however,
the perturbation should be sufficiently small and in the present situation ’how small’ depends on
the spacing between the kthand the (k + 1)

st
eigenvalue. Because these spacings tend to zero,

for a given sample size n sufficiently small prediction errors can only be obtained for cumulative
projections up to a finite order k = k (n). We will see however that k (n) → +∞ as n → +∞.

The organization of this article is as follows : in the next section we provide basic material
about operators and perturbations, then in Section 3 the main theorems about random projectors
are given and applied to nonparametric regression in a high dimensional or functional framework.
The last section collects the proofs.

2 Notation, elements of operator theory and functional cal-

culus

The space H plays a crucial role since the data will be sampled in such a space. It is clearly suited
to high dimensional Euclidean data. But many functional datasets may be also embedded in a
Hilbert space : either in a space of non smooth functions such as L2 ([0, 1]) or with tunable degree
of regularity like the Sobolev space of functions Hm ([0, 1]) =

{
f ∈ L2 ([0, 1]) : f (m) ∈ L2 ([0, 1])

}
.

Another reason rather of mathematical nature highlights this choice. We focus here on the co-
variance structure and PCA for functional data. The trouble is that, for a Banach-valued random
element X ∈ B, the covariance operator is an operator from B∗ the dual of B onto B (see, for in-
stance, Ledoux and Talagrand (1991) or Vakhania, Tarieladze, Chobanyan (1987)). The structure
of the dual space B∗ may not be simple (not even for rather basic examples of B such as the space
of continuous functions on a compact set) except in the case when B = H is a Hilbert space where
B∗ = H.

2.1 Linear and covariance operators

We introduce the following two operator spaces and associated norms. The Banach spaceL (H,H) =
L is the classical space of bounded linear operators mapping H onto itself endowed with the norm
defined for each T in L by :

‖T ‖∞ = sup
x∈B1

‖Tx‖ ,

where B1 is the unit sphere of H. The Hilbert space L2 is the space of Hilbert-Schmidt operators,
(L2 ⊂ L) i.e. the space of those operators T such that, for any basis (ek)k∈N

of H,

‖T ‖2 =

+∞∑

k=1

‖Tek‖2 < +∞.

It is a well-known fact that L2 is a separable Hilbert space whenever H is. The inner product in
L2 is 〈T, S〉2 =

∑+∞
k=1 〈Tek, Sek〉 and does not depend on the choice of the basis. The space L1 of

finite trace (or nuclear) operators will be mentioned sometimes in the paper but is of secondary
importance. We just mention that L1 ⊂ L2; The two norms mentioned above are not equivalent
and

‖·‖∞ ≤ ‖·‖2 .
Consequently the canonical injection from L2 onto L is continuous. For further information on
linear operators we refer to Schmeidler (1965), Weidman (1980), Dunford and Schwartz (1988),
Gohberg, Goldberg and Kaashoek (1991) amongst many others.
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Let the tensor product between u and v in H stand for the one-rank operator from H to H by :

(u⊗ v) (t) = 〈u, t〉 v,

for all t in H.
Since we are concerned with functional PCA we will for the most part be dealing with covariance

operators, and a precise definition and presentation of some of their main features is in order.
Whenever E ‖X1‖2 < +∞, the theoretical covariance operator Σ and its empirical counterpart, Σ̂,
based on the sample are symmetric, positive, trace-class operators from H to H defined by :

Σ = E ((X1 − EX1)⊗ (X1 − EX1)) , (1)

Σ̂ =
1

n

n∑

k=1

(
Xk −Xn

)
⊗
(
Xk −Xn

)
, (2)

where

Xn =
1

n

n∑

k=1

Xk.

When X is centered -which will be assumed throughout for mathematical convenience- EX = 0,

Σ = E (X ⊗X) and Σ̂ =
1

n

∑n
k=1 Xk⊗Xk. By (λk, ϕk) we denote the k

th eigenelement (eigenvalue

and eigenvector) of Σ. The λk’s are positive and we set λ1 > λ2 > ..., and (λk)k∈N
∈ l1.

In the Hilbert setting, the distribution of a centered random element X may be characterized
in a very simple way. Indeed if =d denotes equality in distribution, we have :

X =d

+∞∑

j=1

√
λjηjϕj (·) (3)

where the ηj ’s are centered non-correlated real random variables with unit variance. The above
decomposition is often referred to as the Karhunen-Loève development or development of X with
respect to its reproducing kernel Hilbert space (RKHS). Besides the ηj ’s are independent when X
is a Gaussian random function. For definition and studies of RKHS we refer to Berlinet, Thomas-
Agnan (2004).

We add hats to denote the empirical versions of the eigenelements and we get Σ̂ϕ̂i = λ̂iϕ̂i for
all i ∈ N, with all λ̂i = 0 except foir a finite number not exceeding n or n− 1.

2.2 Basics of functional calculus for operators

We refer the reader to Kato (1976), Weidman (1980), Dunford and Schwartz (1988), Gohberg,
Goldberg and Kaashoek (1991) for complete presentation of the perturbation-based functional
clauclus for operators. Roughly speaking this theory allows to define f (T ) where T is a linear
operator and f is function defined on and with values in a suitable part of the complex plane.
Note that the mathematical nature of f and T make them incompatible so that a special definition
of f (T ) is needed. It will be in particular possible to consider the eigenprojections of T as functions

of this operator For this purpose the resolvent (ζI − T )
−1

defined for each ζ outside the spectrum
of T will be needed.

Let ∂Ωk be the contour of the complex plane associated to the connected domain Ωk separating
the k first eigenvalues of Σ from the others and defined in the following way : Ωk = ∪k

j=1Cj where

Cj is a circle centered at λj and with radius δj = 1
2 min (λj − λj+1, λj−1 − λj). In the proofs we

will introduce another contour but at this point we just need to focus on ∂Ωk in order to illustrate
the definitions of projectors by perturbation techniques.

Results from perturbation theory yield :

Pk =
1

2πι

∫

∂Ωk

(ζI − Σ)
−1

dζ =
1

2πι

k∑

j=1

∫

∂Cj

(ζI − Σ)
−1

dζ =

k∑

j=1

πj , (4)

where πj is the orthogonal projector associated with the single eigenvector ϕj . This may be
rewritten πj = ϕj ⊗ ϕj when λj is of order one. The empirical counterpart of (4) involves a
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Figure 1: Rectangular contour
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Figure 2: Contour made of disjoint circles

random contour, say, ∂Ω̂k similar in shape to ∂Ωk which contains the k first eigenvalues of Σ̂. In
fact only the left vertex of Ω̂k may be considered as random :

P̂k =
1

2πι

∫

∂Ω̂k

(
ζI − Σ̂

)−1

dζ. (5)

In fact P̂k as defined in (5) equals the sum of all eigenprojections of Σ̂ with eigenvalues inside ∂Ω̂k

each denoted π̂j .

3 Main results

We state first the assumptions needed to derive our results. Throughout the sequel the symbols c
and C will denote universal constants.

Assumptions on X
ConsiderX a centered random function with Karhunen-Loeve development (3). We assume that

the ηi’s are independent, that the eigenvalues λi are all of order one and that the sequence (λi)i∈N

is decreasing. We also denote δi = (λi − λi+1) /2. We need higher moment assumptions because

we need to apply Bernstein’s exponential inequality to functionals of Σ̂− Σ. More specifically we
assume that for all j, ℓ ∈ N there exists a constant b such that

max
j

E

(
|ηj |2ℓ

)
≤ ℓ!bℓ−1. (6)

These assumptions hold for instance for Gaussian X (with b = 4 for instance) and when the ηj ’s
are compactly supported.

Assumptions on the spectrum of Σ
Let the function λ : R+ → R

+ be defined by λ (j) = λj for any j ∈ N and by continuous
interpolation between j and j+1. From the assumption above we already know that

∑
j λj < +∞.

Indeed the summability of the eigenvalues of Σ is ensured whenever E ‖X‖2 < +∞. Moreover, we
assume that one of the two following assumptions hold for the eigenvalues

λj = cj−1−α, (7)

λj = c exp (−αj) , (8)
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where c and α are some strictly positive constants. The spacings δj can be obtained easily. These
last conditions are rather mild and match a large class of eigenvalues. The generalization to
other classes of eigenvalues sequences like Laurent series λj = cj−1−α (log j)

−β
or even λj =

cj−1 (log j)
−1−β

with β > 0 is straightforward and will be omitted.

3.1 Eigenprojectors

We start with a first result. Consider ϕ̂k the k-th empirical eigenvector associated with the k-th
empirical eigenvalue. With ϕ̂k at hand it is possible to construct the projector π̂k = ϕ̂k ⊗ ϕ̂k

associated to the kth principal space of the functional PCA. We derive a rate of convergence for
π̂k.

Proposition 1 Let (6) and (7) or (8) hold. Then :

E ‖π̂k − πk‖2∞ ≤ exp
(
−c1 log

2 n
)
+

c2k
2 log2 n

n

The proof of Proposition 1 is omitted because the derivation is essentially included in the proof
of Theorem 5 below about the approximation of the projection involving the k first eigenvectors.
It is easy to derive a similar result with the eigenfunctions or eigenvectors. Recall that π̂k = ϕ̂k⊗ϕ̂k.

Corollary 2 Under the assumptions of Proposition 1

E ‖ϕ̂k − ϕk‖2 ≤ 4 exp
(
−c1 log

2 n
)
+ 4

c2k
2 log2 n

n
.

This result could be compared with Theorem 1 p.114 in Hall and Hosseini-Nasab (2006). These
authors obtained in a similar framework but under milder moment assumptions ‖ϕ̂k − ϕk‖ ≤
c/ (δk

√
n) with high probability. The corollary above may be viewed as some kind of improvement

because the right hand side does not depend on the eigenvalue decay rate and is always sharper
since k2δk → 0 when k → +∞.
However an important question arises about the previous Proposition : is this approximation
rate sharp ? We try to develop an answer below. To that end we focus on the simple projector
encountered above π̂k. We get :

Proposition 3 When (7) or (8) hold :

E ‖π̂k − πk‖2∞ ≥ c5
k2

n
.

This proves that the upper bound obtained in Proposition 1 is sharp and cannot be improved
up to a log2 n term, at least in our framework and with our set of assumptions.

Remark 4 The proof of Proposition 3 is strongly connected to functional calculus techniques for

operators. We write π̂k = fk

(
Σ̂
)
and πk = fk (Σ) . Then considering Σ̂ as a (random) perturbation

of Σ the lower bound is derived through some development up to the second order of π̂k−πk, namely

fk

(
Σ̂
)
− fk (Σ) = g1k

(
Σ̂− Σ

)
+ g2k

(
Σ̂− Σ, Σ̂− Σ

)
.

We show that the second order term g2k (·, ·) is negligible with respect to the first g1k

(
Σ̂− Σ

)
and

we compute the exact value of E
∥∥∥g1k

(
Σ̂− Σ

)∥∥∥
2

∞
.

We are almost ready to give the main results about the cumulative projectors P̂k and Pk. But
for the sake of clarity we need to distinguish three situations.

Case 1 : (7) with α > 1 or (8) hold,
Case 2 : (7) holds with 0 < α ≤ 1,
Case 3 : (7) holds.
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Theorem 5 Let (6) hold. Take u =Xi or u =Xn+1 or u nonrandom with the additional assump-
tion that supi |〈u, ϕi〉| /λi < +∞ then for all n :

In Case 1 : E
∥∥∥
(
P̂k −Pk

)
u
∥∥∥
2

≤ exp
(
−c3 log

2 n
)
+

c4k
2 log2 n

n

In Case 2 : E
∥∥∥
(
P̂k −Pk

)
u
∥∥∥
2

≤ exp
(
−c3 log

2 n
)
+

c′4k
2 log2 k log2 n

n

In Case 3 : E
∥∥∥P̂k −Pk

∥∥∥
2

∞
≤ exp

(
−c3 log

2 n
)
+

c′4k
2 log2 k log2 n

n

Remark 6 We have to underline that the perturbation techniques carried out to get the right hand
side in the theorem above are specific. They are an efficient way to link the covariance sequence with

the projection sequence. However since P̂k and Pk are orthogonal projectors
∥∥∥P̂k

∥∥∥ = ‖Pk‖ = 1

and
∥∥∥P̂k −Pk

∥∥∥
∞

≤ 2. The problem is that nothing ensures that the bound derived in Theorem 5

is (significantly) smaller than 2. However this remark may be done about most of the results about
eigenprojectors or unit eigenvectors .

Remark 7 It is important to notice that we could not assess Theorem 5 in Case 3 when the
eigenvalues decay very rapidly i.e. with exponential rate. Actually this result may be attainable but
we could not get it with our method of proof. Roughly speaking, the assumption supi |〈u, ϕi〉| /λi <
+∞ is crucial to get the bound above with a fast decay of the λp’s. This assumption prevents us
to obtain the uniform bound. This pathology is closely connected with the inverse problems aspects
of the estimation of ϕ̂k hence of π̂k.

3.2 Application to high-dimensional kernel estimation

We propose to apply the preceding results in the specific context of a two-step estimation algorithm
adapted to the regression when X lies in a high-dimensional or functional space. Let (y,X) be a
couple of random elements and let r (x) = E (y|X = x) be the regression function evaluated at a
fixed x. From the sample (yi, Xi)1≤i≤n ∈ R×H where H stands like above for a Hilbert space of

functions or the Euclidean space R
d where d is large (typically with respect to the sample size)

we investigate the classical issue of the estimation of r (x). General regression estimation has been
intensively studied along the past years (Masry (2005), Ferraty and Vieu. (2004, 2006), Ferraty,
Mas, Vieu (2007), Ferraty, Laksaci, Tadj, Vieu (2010). Several methods may be carried to solve
numerical or implementation issues like the computation of small ball probabilites, a crucial step
in asymptotic theory. However the complexity of the general model leads to degenerate minimax
rates of convergence, typically of order [logn]

−α
for some positive α as shown in Mas (2012). This

may be seen as the ultimate side effect of the curse of dimensionality. This fact should lead to
different strategies when modelling a nonlinear link with a functional data variable as predictor,
paving to way to alternatives such as additive models, multiple indices models or mixed approach
such as projection pursuit.

However here The method is the following. First compute the (potentially functional) PCA of

the sample (Xi)1≤i≤n and retrieve the projectors P̂k with a prescribed k. Here k will be chosen
so that k ≪ d. Then compute an estimate of r (x) inspired from the classical Nadarya-Watson
approach :

r̂NW (x) =

∑n
i=1 YiK (‖Xi − x‖ /h)∑n
i=1 K (‖Xi − x‖ /h) .

By replacing the usual norm on the space H by the ’projection’ semi-norm ‖·‖k defined by ‖u‖k =∥∥∥P̂ku
∥∥∥
Rk

the estimate becomes :

r̂ (x) =

∑n
i=1 YiK

(∥∥∥P̂k (Xi − x)
∥∥∥ /h

)

∑n
i=1 K

(∥∥∥P̂k (Xi − x)
∥∥∥ /h

) .

This proposal is intuitive and rather simple to implement through standard statistical pakages
from most softwares. The problems arise from the mathematical properties of this estimate. First
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if k is fixed r̂ (x) will not estimate r (x) in general. The best we may expect is to estimate fairly
E [y|Pk (X) = Pk (x)] or even r ◦Pk (x). As a consequence a bias occurs in general. This bias may
be modest, if r ◦Pk (x) were a good approximation of r (x) for instance which in turn will be true
if either x is close to Pk (x) or if r ◦ Pk approximates r well. This would justifiy an asymptotic
framework, that is when k tends to infinity. But we intend here again to give non-asymptotic
results.

Furthermore the numerator and denominator of r̂ (x) are not sums of independent random
variables and the dependence structure is, up to the authors, very confused. However, convergence
theorems could be stated at the expense of assumptions on the dependence structure of the sequence

of random variables
[∥∥∥P̂k (Xi − x)

∥∥∥
]
1≤i≤n

.

We introduce

r∗ (x) =

∑n
i=1 YiK (‖Pk (Xi − x)‖ /h)∑n
i=1 K (‖Pk (Xi − x)‖ /h) .

Contrary to r̂ (x) the random variable r∗ (x) is not an estimate since Pk is the population projector
of the PCA and is consequently unknown. But its numerator and denominator ar both sums of
independent random variables. It may be viewed as an oracle in the sense that the risk for r∗ (x)
is expected to bound below the risk for r̂ (x). A good way for investigating this issue would be to
show that for some target rk (x) :

r∗ (x)− rk (x)

r̂ (x)− rk (x)
→ 1,

for some stochastic mode of convergence such as almost sure convergence or convergence in mean
square. But as we underlined just above the target rk (x) may not be well defined. It is not either
precisely the goal of our work to address this issue. Biau and Mas (2012) proceed differently.
They introduce τn the minimax rate of convergence in the non-parametric regression model over
a well-chosen class of functions and show that :

r̂ (x)− r∗ (x)

τn
→

n→+∞
0, (9)

as the sample size increases and for a fixed dimension of projection D (denoted here by k and
that may increase with the sample size in our framework). We cannot follow the same route here
because the dimension is not fixed and consequently the minimax rate τn is unknown. Besides
in (9) constants depending on D are used for bounding (r̂ (x) − r∗ (x)) /τn. These constants are
made explicit here and we must take them into account because they usually tend to infinity when
k does.

For later use let :

S∗ =
n∑

i=1

K (‖Pk (Xi − x)‖) , Ŝn =
n∑

i=1

K
(∥∥∥P̂k (Xi − x)

∥∥∥
)
,

Z∗ =

n∑

i=1

YiK (‖Pk (Xi − x)‖ /h) , Ẑn =

n∑

i=1

YiK
(∥∥∥P̂k (Xi − x)

∥∥∥ /h
)
.

We introduce now the set of assumptions we need to derive our main Proposition.
Assumptions on the small ball probabilities [A1] : Fk (s) = P (‖Pk (Xi − x)‖ < s) with

Fk (s) > 0 in a right neighborhood of 0 and suph∈[0,1]
Fk(hu)
Fk(h)

≤ cFu
p with p ≤ k.

Assumptions on the kernel K [A2] : The kernel K is bounded above and below on its
support [0, 1] with 0 < infu∈[0,1] K (u) =K≤ |K|∞, upK ′ (u) ∈ L1 ([0, 1)) where p as in [A1].

Assumptions on the regression function [A3] : r is bounded.
At this point some comments are needed about the assumptions : [A2] and [A3] are classi-

cal. The reader familiar with nonparametric methods will remark that we do not need regularity
assumptions about r. This is due to the fact that below we are only interested in bounding the
difference r̂ (x) − r∗ (x) and not r̂ (x) − r (x). As a consequence the approximation of r -in its
functional analysis sense- is not our aim here and ensuing smoothness conditions are no more
required. Assumption [A1] though not quite standard is rather mild. Indeed we consider there
the cumulative density function (in a neighborhood of zero) of the positive real random variable
‖Pk (Xi − x)‖ which in turn is the norm of the Rk valued random vector Pk (Xi − x). It is natural
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to think that the local behaviour of Fk (s) is polynomial with degree less than s in a neighbor-
hood of 0. Smoothness of the density of PkXi evaluated at Pkx would ensure this fact. And if
Fk (s) ∼ spL (s) with L a slowly-varying function at 0 then [A1] holds.

Proposition 8 The following non asymptotic bound holds under the assumptions (6), (8) or (7)
with α > 1 and [A1-3] above :

E [r̂ (x)− r∗ (x)]2 ≤ c6
k4

nh2
log2 n log

(
h
√
n

k2

)
. (10)

A first difference appears with Biau and Mas (2012). The bound of Proposition 8 displays
explicitely the dimension k whereas this dimension was fixed and did not appear in the work of
these authors. A comparison with their Corollary 4.1 shows that, up to a log n term, the numerator
k2 log2 k is new. It accounts for the price to pay to let the dimension increase with the sample size.

Like in Biau and Mas (2012) a crucial issue consists in comparing the bound above with a sort
of benchmark rate. For instance the comparison with the minimax rate was pertinent then but it
is no more clear if this comparison is still possible. We develop this point in the Remark below.
We remind that in a non asymptotic framework the minimax rate for the risk in nonparametric
regression (see for instance the monograph by Tsybakov (2004) and references therein) is up to
constants τ∗n (α, k) = n−2α/(2α+k) where α is a smoothness parameter unimportant here. When a
Nadarya-Watson estimate is selected the optimal bandwidth is an h∗ = O

(
n−1/(2α+k)

)
, and we

can write τ∗n (p, k) =
[
n · (h∗)k

]−1

.

Remark 9 Plugging directly a kn in th rate τ∗n (α, ·) may not necessarily make sense. If kn is too
large τ∗n (α, kn) may not tend to zero (in an asymptotic sense) or even become small. Typically here
for τ∗n (α, kn) to tend to zero we should take kn := k∗n = o (logn). Plugging this k∗n into (10) we see

that E [r̂ (x)− r∗ (x)]2 is up to a power of logn negligible with respect to τ∗n (p, kn). But the route
described here is specific. It presupposes that the bandwidth is picked -and optimal here- before the
dimension is selected. Besides the minimax approach is not clear in this context as shown in the
beginning of this remark.

We propose to base the next result on another argument. After the remark above we intend
not to priviledge any of the bandwidth or the projection dimension. The ideal would be to check
that uniformly with respect to h and k (10) does not finally change much the pointwise risk

E [r̂ (x)− r (x)]
2
. Note that :

r (x) = E (Y |X = x) = r (x)− r ◦Pk (x) + r ◦Pk (x)

= Ak + r ◦Pk (x)

where Ak is clearly an approximation error and r ◦ Pk (x) is the conditional expectation of y
when the data are projected onto the image of Pk and will be approximated empirically by
E (y|PkX1, ...,PkXn). In addition we should consider here that we undergo a blurred context
where Pk is an unknown operator and estimated. The decomposition above becomes

r (x) = Ak + r ◦ P̂k (x) + r ◦Pk (x)− r ◦ P̂k (x) ,

where r ◦Pk (x)− r ◦ P̂k (x) = ηk may be viewed as an additional noise. Besides r̂ (x) is a natural

candidate to estimate r ◦ P̂k (x). Consequently the initial model could be rewritten in additive
form and with an abuse of notation :

y = r ◦ P̂k (x) +Ak + ηk + ε, (11)

where ε is the initial noise y − E (Y |X = x). The preceding decomposition of y is split in three

terms : the unknown parameter r ◦ P̂k (x) which is artificially depending on the data here, a
nonrandom approximating Ak and the noise part shared between ε and ηk. It turns out that
Proposition 8 bounds the second moment of ηk. Now the classical Bias-Variance decomposition
gives us some tracks to deal accurately with (10) : we should just make sure that the variance
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part due to ηk does not exceed or is even negligible with respect to the variance part due to ε and
whatever the values of h and k. In other words a fair way to go is to prove that :

sup
h,k

nhk
E [r̂ (x)− r∗ (x)]2 ≤ c7.

Proposition 10 Under the assumptions of the previous proposition and assuming that k > 2,
0 ≤ h ≤ hmax < 1 and that hτ log3 n is uniformaly bounded with respect to n for any τ > 0 there
exists a constant c7 (hmax) such that :

sup
h,k

nhk
E [r̂ (x)− r∗ (x)]2 ≤ c7.

In an asymptotic perspective nhk
E [r̂ (x)− r∗ (x)]2 →n→+∞ 0 whenever kn/ log logn is bounded

above and for any bandwidth h depending either on kn or n such that h → 0.

The proof of Proposition 10 is omitted. For the first part it suffices to see that hk−2k4 log3 n ≤
hk−2−τk4hτ log3 n � hk−2−τ

max k4 ≤ c7 where here and elsewhere x � y means that x ≤ cy for some
constant c. The second part follows from straigthforward calculations.

Remark 11 This avoids the considerations of Remark 9 and allows independent choices of h and
k by comparing E [r̂ (x)− r∗ (x)]2 only with the variance part of the estimate in the ideal model
y = r ◦Pk (x) + ε and not with the bias and the purely deterministic approximation error.

4 Mathematical derivations

We introduce the following events for later use. Let 0 < c0 < 1

Ak =
{
λ̂k ∈ Ωk

}
∩
{
λ̂k+1 /∈ Ωk

}
,

Bk (c0) =

{
sup

ζ∈∂Ωk

∥∥∥(ζI − Σ)
−1/2

(
Σ̂− Σ

)
(ζI − Σ)

−1/2
∥∥∥
∞

< c0

}
.

The event Bk (c0) will be introduced within the proof of our main result. It will be shown just
below in Lemma 14 that for a well-chosen and small enough c0 < 1/2, Bk (c0) ⊂ Ak. When Ak

holds (hence when Bk (c0) does) the k first empirical eigenvalues (and only the k first) are inside
Ωk. Then subject to these events we can derive the linearization :

P̂k −Pk =
1

2πι

∫

∂Ωk

[(
ζI − Σ̂

)−1

− (ζI − Σ)
−1

]
dζ. (12)

The formula above comes down to removing the random contour ∂Ω̂k in the definition of P̂k at
(5). But we have to condition with repect to Ak first. On Ak the strategy will be to see that

E

∥∥∥P̂k −Pk

∥∥∥
∞

1Ak
≤ 2P

(
Ak

)
and to bound accurately the latter probability. Consequenlty we

will restrict ourselves to bounding P
(
Bk (c0)

)
.

4.1 Proof of Theorem 5

The proof takes two steps. First we apply the linearization formula (12) above but we have to
control P

(
Ak

)
non asymptotically which is achieved at Lemma 13 below. Second we will use

perturbation theory to bound accurately the linearized difference between P̂k and Pk.
We state or recall now two technical Lemmas.

Lemma 12 When (7) or (8) hold there exists a constant cα such that for all k ≥ 1

∑

i6=k

λi

|λi − λk|
+

λk

δk
≤ cαk. (13)
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The two next Lemmas aim at proving that the events Ak and Bk (c0) hold with a high prob-
ability. We derive in fact two exponential inequalities of the same kind showing finally that
P
(
Bk (t)

)
≃ P

(
Ak

)
≃ exp

(
−k2/n

)
.

Lemma 13 Denote ak =
[∑

i6=k
λi

|λi−λk| +
λk

δk

]
. We have :

P
(
Bk (t)

)
≤ 2 exp

(
− nt2

2a2k

1

(2b− 1) + 256b3

(2b−1)ak
t

)
.

Proof of Lemma 13 : In this subsection, we use Bernstein’s exponential inequality for Hilbert-
valued random variables (see for instance Bosq (2000) p.49) and references therein). First denote

µk = λk − δk and Π̃ (µk) = (µkI − Σ)−1/2
(
Σ̂− Σ

)
(µkI − Σ)−1/2 and rewrite :

(ζI − Σ)−1/2
(
Σ̂− Σ

)
(ζI − Σ)−1/2 = Gk (ζ) Π̃ (µk)Gk (ζ) ,

with Gk (ζ) = (ζI − Σ)−1/2 (µkI − Σ)1/2 we get :

sup
ζ∈∂Ωk

∥∥∥(ζI − Σ)−1/2
(
Σ̂− Σ

)
(ζI − Σ)−1/2

∥∥∥
∞

≤ sup
ζ∈∂Ωk

‖Gk (ζ)‖∞ ·
∥∥∥Π̃ (µk)

∥∥∥
∞

,

and note that supk supζ∈∂Ωk
‖Gk (ζ)‖∞ ≤ 1 whatever the contour (rectangle or union of circles)

chosen. Then :
∥∥∥Π̃ (µk)

∥∥∥
2

∞
≤
∥∥∥Π̃ (µk)

∥∥∥
2

2

=

+∞∑

p,q 6=k

〈(Σn − Σ) (ϕp) , ϕq〉2
|µk − λp| |µk − λq|

+
〈(Σn − Σ) (ϕk) , ϕk〉2

δ2k

≤ 2

+∞∑

p,q 6=k

〈(Σn − Σ) (ϕp) , ϕq〉2
|λk − λp| |λk − λq|

+ 2
〈(Σn − Σ) (ϕk) , ϕk〉2

δ2k
, (14)

since for p 6= k |µk − λp| ≥ |λk − λp| − δk ≥ |λk − λp| /2.
Finally our only task is to give an exponential bound for the probability :

P




+∞∑

p,q 6=k

〈(Σn − Σ) (ϕp) , ϕq〉2
|λk − λp| |λk − λq |

+
〈(Σn − Σ) (ϕk) , ϕk〉2

δ2k
> t


 .

Consider the linear bounded symmetric operator Sk defined in the basis (ϕi)1≤i by Sk (ϕi) =

ϕi/
√
|λk − λi| for i 6= k and Sk (ϕk) = ϕk/

√
δk. It is plain that :

+∞∑

p,q 6=k

〈(Σn − Σ) (ϕp) , ϕq〉2
|λk − λp| |λk − λq|

+
〈(Σn − Σ) (ϕk) , ϕk〉2

δ2k
= ‖Sk (Σn − Σ)Sk‖22 ,

with Sk (Σn − Σ)Sk = (1/n)
∑n

i=1 Zi,k with Zi,k = SkXi ⊗ SkXi − SkΣSk hence EZi,k = 0. In
order to apply Theorem 2.5 in Bosq (2000) mentioned above we have to identify lk and bk such
that for all integer m, n−m+1

E ‖Z1,k‖m2 ≤ m!l2kb
m−2
k /2. We claim that the previous inequality

holds with bk = ak256b
3/ [(2b− 1)n] and lk = (2b− 1)a2k/n. We prove it now.

Let m = 2 we get E ‖Z1,k‖22 = E ‖SkX1‖4 − ‖SkΣSk‖22 where ‖SkΣSk‖22 =
∑+∞

i=1 λ2
i / |λk − λi|2

and :

E ‖SkX1‖4 = E

(
+∞∑

i=1

λiη
2
i / |λk − λi|

)2

=

+∞∑

i=1

λ2
iEη

4
i

|λk − λi|2
+

+∞∑

i6=j

λiλj

|λk − λi| |λk − λj |

≤ 2b

+∞∑

i=1

λ2
i

|λk − λi|2
+

(
+∞∑

i

λi

|λk − λi|

)2

−
+∞∑

i=1

λ2
i

|λk − λi|2
.

10



Then

E ‖SkX1‖4 − ‖SkΣSk‖22 = 2 (b− 1)

+∞∑

i=1

λ2
i

|λk − λi|2
+

(
+∞∑

i

λi

|λk − λi|

)2

≤ (2b− 1)

(
+∞∑

i

λi

|λk − λi|

)2

.

From this we see that we can choose l2k = (2b− 1)a2k/n.
By classical properties of the norm in Hilbert spaces and Minkowski’s inequality we get :

E ‖Z1,k‖m2 ≤ 2m/2
E

(
‖SkX1‖4 + ‖SkΣSk‖22

)m/2

≤ 2mE

(
‖SkX1‖2m + ‖SkΣSk‖m2

)
. We keep this

inequality in mind. Now we bound more generally E ‖SkX1‖2m. We have to compute :

∑

i1,...,im

λi1 ...λim

|λk − λi1 | ... |λk − λim |E
[
η2i1 ...η

2
im

]

We focus on E
[
η2i1 ...η

2
im

]
and recall that we assumed just above (6) that the ηj ’s are independent.

In order to bound accurately this expectation we consider the rearrangement of the ηi’s involved
and introduce D as the numbers of distincts indices in the product η2i1 ...η

2
im
. Clearly 1 ≤ D ≤ m.

We write η2i1 ...η
2
im

= ΠD
l=1η

2αl
pl

where pl are all distinct indices (hence the ηpl
are independent)

and the sequence of exponents (α1, ..., αD) adds up to m. Hence E
[
η2i1 ...η

2
im

]
= ΠD

l=1Eη
2αl
pl

≤
ΠD

l=1 (αl!) · bαl−1 = bm−DΠD
l=1αl!. Since ΠD

l=1αl!/m! ≤ 1 we get

E
[
η2i1 ...η

2
im

]
≤ m!bm

1

bD
.

From the moment bound (6) and by Jensen’s inequality we get 1 = E

(
|η1|2

)2
≤ E

(
|η1|4

)
≤

maxj E
(
|ηj |4

)
≤ 2b hence 1/bD ≤ 2D ≤ 2m. Collecting all these facts we get first :

E ‖SkX1‖2m ≤ m! (2b)
m

(
∑

i

λi

|λk − λi|

)m

From ‖SkΣSk‖m2 =
(∑+∞

i=1 λ2
i / |λk − λi|2

)m/2

we can derive the moment inequality involving Z1,k

E ‖Z1,k‖m2 ≤ 2m


m! (2b)

m


∑

i6=k

λi

|λk − λi|




m

+

(
+∞∑

i=1

λ2
i / |λk − λi|2

)m/2



≤ 2mm! (2b)
m


∑

i6=k

λi

|λk − λi|




m

1 +

(∑+∞
i=1 λ2

i / |λk − λi|2
)m/2

m! (2b)
m
(∑

i
λi

|λk−λi|

)m




≤ 2m+1m! (2b)m
(
∑

i

λi

|λk − λi|

)m

= 2m+1m! (2b)m [ak]
m .

It is now a simple computation to identify this last term with bk and we get bk = ak256b
3/ [(2b− 1)n] .

The exponential inequality in the Lemma is derived from Theorem 2.21 p.49, equation (2.21) in
Bosq (2000).

Lemma 14 We have :
P
(
Ak

)
≤ C exp

(
−c

n

k2

)
.

whenever Ωk is the contour drawn at figures 1 or 2.
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Proof of Lemma 14 :
We should make sure that, with a high probability of order about 1 − exp

(
k2/n

)
Ak ={

λ̂k ∈ Ωk

}
∩
{
λ̂k+1 /∈ Ωk

}
holds. The event Ak is defined here for Ωk rectangle but the method

will (should) apply with only slight modifications to the union of k circles centered on the λk and
with radii δk.

Since P
(
Ak

)
≤ P

(
λ̂k ≤ λk − δk

)
+ P

(
λ̂k+1 ≥ λk − δk

)
we focus and giving a bound for

P

(
λ̂k ≤ λk − δk

)
and we let the reader check that the method applies to proving a bound for

the other probability involving λ̂k+1.

So we focus on P

(
λ̂k ≤ λk − δk

)
and are going to apply the minimax theorem for compact

operators eigenvalues namely here :

λ̂k = max
dimEk=k

min
x∈Ek,‖x‖=1

〈Σnx, x〉

where Ek is any k-dimensional vector space in H. Define E∗
k = span {ϕi : 1 ≤ i ≤ k} then

λ̂k ≥ min
x∈E∗

k
,‖x‖≤1

〈(Σn − Σ)x, x〉 + min
x∈E∗

k

〈Σx, x〉

= min
x∈E∗

k
,‖x‖≤1

〈(Σn − Σ)x, x〉 + λk

hence P

(
λ̂k ≤ λk − δk

)
≤ P

(
minx∈E∗

k
〈(Σn − Σ) x, x〉 ≤ −δk

)
. Notice that even in Σn and Σ are

positive operators Σn−Σ is not, though symmetric and minx∈E∗

k
〈(Σn − Σ)x, x〉 may take negative

values.
Let Mn be the k dimensional matrix defined by [Mn]i,j = 〈(Σn − Σ)ϕi, ϕj〉 and Dλ be the

diagonal matrix of size k with [Dλ]ii =
√
|λk+1 − λi|. It is a well known fact from matrix analysis

that
min

x∈E∗

k
,‖x‖≤1

〈(Σn − Σ)x, x〉 = lk (Mn)

where lk (Mn) stands for the smallest eigenvalue of Mn. Now we get successively :

P

(
λ̂k ≤ λk − δk

)
≤ P (lk (Mn) ≤ −δk) ≤ P (|lk (Mn)| ≥ δk)

We follow the proof of Proposition 1.3 page 98 in Gohberg, Goldbert and Kaashoek (1991)
which is close to our Lemma. Let M be a k − 1-dimensional space in R

k and pick a u ⊥ M with
unit norm :

〈Mnu, u〉 =
〈
D−1

λ MnD
−1
λ Dλu,Dλu

〉

=

〈
D−1

λ MnD
−1
λ Dλu,Dλu

〉

‖Dλu‖2
‖Dλu‖2

Hence
max
u∈M⊥

|〈Mnu, u〉| ≤
∥∥D−1

λ MnD
−1
λ

∥∥
∞ max

u∈M⊥

‖Dλu‖2

Taking the min for all k − 1-dimensional subspaces M we get :

|lk (Mn)| ≤ min
dimM=k−1

max
u∈M⊥

|〈Mnu, u〉| ≤ δk
∥∥D−1

λ MnD
−1
λ

∥∥
∞

because mindimM=k−1 maxu∈M⊥ ‖Dλu‖2 = |λk+1 − λk| . So that now we have

P

(
λ̂k ≤ λk − δk

)
≤ P

(∥∥D−1
λ MnD

−1
λ

∥∥
∞ ≥ δk/ |λk+1 − λk|

)

≤ P
(∥∥D−1

λ MnD
−1
λ

∥∥
∞ ≥ c

)

for some fixed c.
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We can focus on
∥∥D−1

λ MnD
−1
λ

∥∥2
∞ ≤

∑

j,l

〈(Σn − Σ)ϕi, ϕl〉2
|λk+1 − λj | |λk+1 − λl|

It is proved in the previous Lemma (see equation (14) ) that

P
(∥∥D−1

λ MnD
−1
λ

∥∥
∞ ≥ c

)
≤ exp(−cn/k2).

This finishes the proof.

Proof of Proposition 5:
The outline of the proof is the following. We split the situation in two sets. We first choose an

accurate lk,n = ak√
n
logn < 1/2 and consider Bk (lk,n). When Bk (lk,n) does not hold we can bound

roughly
∥∥∥P̂k −Pk

∥∥∥
∞

by 2P
(
Bk (lk,n)

)
and use Lemma 13 above to get the exponential inequality

P
(
Bk (lk,n)

)
≤ 2 exp

(
− log2 n

2

1

(2b− 1) + 256b3

(2b−1)
logn√

n

)
≤ 2 exp

(
−c� log2 n

)

where c� is a positive constant.
Now when Bk (lk,n) holds we take advantage of the linearization formula (12). Denote R (ζ) =

(ζI − Σ)
−1

and R̂ (ζ) =
(
ζI − Σ̂

)−1

. It is easy to see that R̂ (ζ) = R1/2 (ζ)T (ζ)R1/2 (ζ) with

T (ζ) = (ζI − Σ)1/2 R̂ (ζ) (ζI − Σ)1/2 ,

hence T (ζ) − I = T (ζ)
[
R1/2 (ζ)ΠR1/2 (ζ)

]
and T (ζ) =

[
I −R1/2 (ζ)ΠR1/2 (ζ)

]−1
whenever

supζ∈∂Ωk

∥∥∥Π̃ (ζ)
∥∥∥
∞

≤ lk,n < 1 where Π̃ (ζ) = R1/2 (ζ) ΠR1/2 (ζ). Then :

R̂ (ζ)−R (ζ) = R1/2 (ζ)
[
I − Π̃ (ζ)

]−1

Π̃ (ζ)R1/2 (ζ) . (15)

We underline here that at this point the contour considered in the lines below is given in Figure
2. As announced earlier :

∥∥∥
(
P̂k −Pk

)
u
∥∥∥ ≤ 2 ‖u‖ 11Bk(lk,n)

+

∥∥∥∥
1

2πι

∮

∂Ωk

R1/2 (ζ)
[
I − Π̃ (ζ)

]−1

Π̃ (ζ)R1/2 (ζ)udζ

∥∥∥∥ 11Bk(lk,n).

(16)
We focus on the second term in the left hand side of the above equation :

∥∥∥∥
1

2πι

∮

∂Ωk

R1/2 (ζ)
[
I − Π̃ (ζ)

]−1

Π̃ (ζ)R1/2 (ζ)udζ

∥∥∥∥ 11Bk(lk,n)

≤ lk,n
2π (1− lk,n)

∮

∂Ωk

∥∥∥R1/2 (ζ)
∥∥∥
∞

∥∥∥R1/2 (ζ)u
∥∥∥ dζ.

At this point we must consider different situations depending on the nature of u. First notice that∥∥R1/2 (ζ)
∥∥
∞ = supp |ζ − λp|−1/2 ≤ c′ |ζ − λk|−1/2

due to the design of the contour ∂Ωk. Taking

expectation and applying Cauchy-Schwartz inequality to E

[
‖u‖2 11Bk(lk,n)

]
we get :

E

∥∥∥
(
P̂k −Pk

)
u
∥∥∥
2

≤ 4E
[
‖u‖4

]1/2
P
1/2
(
Bk (lk,n)

)
+ 2

(
lk,n

2π (1− lk,n)

)2

E

[∮

∂Ωk

|ζ − λk|−1/2
∥∥∥R1/2 (ζ)u

∥∥∥ dζ
]2

≤ 4 exp
(
−c log2 n

)
+

2

π2
l2k,nE

[∮

∂Ωk

|ζ − λk|−1/2
∥∥∥R1/2 (ζ)u

∥∥∥ dζ
]2

, (17)

for some c and c′. Now we split the contour ∂Ωk and compute the integral in the brackets for each
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circle ∂Cj . We have :

∮

∂Cj

|ζ − λj |−1/2
∥∥∥R1/2 (ζ)u

∥∥∥ dζ =

∮

∂Cj

√√√√
+∞∑

p=1

〈u, ϕp〉2
|ζ − λj | |ζ − λp|

dζ

≤
∫ 2π

0

√√√√
+∞∑

p=1

〈u, ϕp〉2
δj |λj − λp + δjϕiθ |δjdθ

=
√
δj

∫ 2π

0

√√√√
+∞∑

p=1

〈u, ϕp〉2
||λj − λp| − δj|

dθ ≤ C

√√√√
+∞∑

p=1

δjλp

|λj − λp|
〈u, ϕp〉2

λp
,

where we set abusively |λj − λp| = δj when p = j. Plugging this bound into (17) we obtain :

E

∥∥∥
(
P̂k −Pk

)
u
∥∥∥
2

≤ 4 exp
(
−c log2 n

)
+ C · l2k,nE




k∑

j=1

√√√√
+∞∑

p=1

δjλp

|λj − λp|
〈u, ϕp〉2

λp



2

. (18)

A last effort is needed : we develop the square in the second right hand side term and use a simple
Cauchy-Schwartz inequality to obtain successively :

E




k∑

j=1

√√√√
+∞∑

p=1

δjλp

|λj − λp|
〈u, ϕp〉2

λp



2

=




k∑

j=1

+∞∑

p=1

δjλp

|λj − λp|
E 〈u, ϕp〉2

λp




+

k∑

j 6=m=1

δjδmE

√√√√
+∞∑

p=1

λp

|λj − λp|
〈u, ϕp〉2

λp

+∞∑

p=1

λp

|λm − λp|
〈u, ϕp〉2

λp
,

where

E

√√√√
+∞∑

p=1

λp

|λj − λp|
〈u, ϕp〉2

λp

+∞∑

p=1

λp

|λm − λp|
〈u, ϕp〉2

λp

≤

√√√√
+∞∑

p=1

λp

|λj − λp|
E 〈u, ϕp〉2

λp

+∞∑

p=1

λp

|λm − λp|
E 〈u, ϕp〉2

λp

≤ C

√√√√
+∞∑

p=1

λp

|λj − λp|

+∞∑

p=1

λp

|λm − λp|
,

and it is reminded that supp E 〈u, ϕp〉2 /λp < +∞ if u has the same distribution as X , and

supp 〈u, ϕp〉2 /λp < +∞ if u is a non random point. Finally :

E




k∑

j=1

√√√√
+∞∑

p=1

δjλp

|λj − λp|
〈u, ϕp〉2

λp



2

≤




k∑

j=1

√
jδj




2

which can be plugged in (18) :

E

∥∥∥
(
P̂k −Pk

)
u
∥∥∥
2

≤ 4 exp
(
−c log2 n

)
+ C · l2k,n




k∑

j=1

√
jδj




2

.

Obviously this bound is of interest when
∑k

j=1

√
jδj is reasonably low (typically bounded

uniformly with respect to k or O (log k)) which in turns occurs when λj = c exp (−αj) or when
λj = cj−1−α with α ≥ 1. However when λj = cj−1−α with 0 < α < 1 or when λj = cj−1 log1+α j∑k

j=1

√
jδj ≥ k(1−α)/2 and gets large when k does the bound above loses some interest.

14



It is possible to circumvent this problem just by changing the contour used to define and com-

pute the projectors. It turns out that this new contours yields a control of the norm E

∥∥∥P̂k −Pk

∥∥∥
2

∞
,

which is a deeper result than the pointwise control above in the special situation : λj = cj−1−α

with 0 < α.
Indeed consider the new contour ∂Ωk obtained as the boundary of the rectangle of the complex

plane with left vertice at x = λk−δk , right vertice at λ1+1 and horizontal vertices at y = ±1. This
contour is drawn at Figure 1. The initial formula (12) remains unchanged changed to P̂k −Pk =

1
2πι

∫
∂Ωk

[(
ζI − Σ̂

)−1

− (ζI − Σ)−1

]
dζ. It is also obvious that all the preliminiary computations

carried out to control the probability of the events Ak =
{
λ̂k ∈ Ωk

}
∩
{
λ̂k+1 /∈ Ωk

}
hence Bk (lkn)

remain true when changing the contour. Consequently we can turn to the bound (17) where this
time :

∮

∂Ωk

|ζ − λk|−1/2
∥∥∥R1/2 (ζ)u

∥∥∥ dζ ≤ A+B

∫ 1

0

√√√√
+∞∑

p=1

〈u, ϕp〉2
(y + δk) (y + |λk − λp|)

dy.

The number 1 in the integral of the right hand side is unimportant. We have :

∫ 1

0

√√√√
+∞∑

p=1

〈u, ϕp〉2
(y + δk) (y + |λk − λp|)

dy =

∫ 1/δk

0

√√√√
+∞∑

p=1

δk 〈u, ϕp〉2
(s+ 1) (δks+ |λk − λp|)

ds

≤
∫ 1

0

√√√√
+∞∑

p=1

δk 〈u, ϕp〉2
(δks+ |λk − λp|)

ds+

∫ 1/δk

1

√√√√
+∞∑

p=1

δk 〈u, ϕp〉2
δks2

ds

≤
∫ 1

0

√√√√
+∞∑

p=1

δk 〈u, ϕp〉2
|λk − λp|

ds+ ln (1/δk)

√√√√
+∞∑

p=1

〈u, ϕp〉2

≤ 2 ln (1/δk)

√√√√
+∞∑

p=1

〈u, ϕp〉2,

and (17) becomes :

E

∥∥∥
(
P̂k −Pk

)
u
∥∥∥
2

≤ 4 exp
(
−c log2 n

)
+ cl2k,n ln

2 (1/δk)E ‖u‖2 .

This time the bound obtained is of interest when the assumption in (7) holds. Then ln (1/δk) ≤
c lnk.

As a consequence of the line above and of (16) we see that for all nonrandom u with norm 1,∥∥∥
(
P̂k −Pk

)
u
∥∥∥
2

≤ 211Bk(lk,n)
+ cl2k,n ln

2 (1/δk) hence that

∥∥∥
(
P̂k −Pk

)∥∥∥
2

∞
≤ 211Bk(lk,n)

+ cl2k,n ln
2 (1/δk) .

This finishes the proof of Proposition 5.

Proof of Corollary 2 :
First notice that ‖(π̂k − πk) (ϕk)‖2 ≤ ‖π̂k − πk‖2∞ where (π̂k − πk) (ϕk) = 〈ϕ̂k, ϕk〉 ϕ̂k −ϕk but

we also have 〈(π̂k − πk)ϕk, ϕk〉 = 〈ϕ̂k, ϕk〉2 − 1. Now

‖ϕ̂k − ϕk‖ ≤ ‖ϕ̂k − 〈ϕ̂k, ϕk〉 ϕ̂k‖+ ‖〈ϕ̂k, ϕk〉 ϕ̂k − ϕk‖
≤ 1− 〈ϕ̂k, ϕk〉+ ‖π̂k − πk‖∞

At last ‖ϕ̂k − ϕk‖2 ≤ 2 (1− 〈ϕ̂k, ϕk〉)2 + 2 ‖π̂k − πk‖2∞ and we obtain the desired bound.

Proof of Proposition 3.
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From all that was done above we restrict ourselves to proving the lower bound for (π̂k − πk)

when supζ∈Ck

∥∥∥(ζI − Σ)
−1/2

(
Σ̂− Σ

)
(ζI − Σ)

−1/2
∥∥∥
∞

< ak/
√
n. So that we get :

π̂k − πk = Sk (Σn − Σ)πk + πk (Σn − Σ)Sk + Tk,n (19)

Tk,n =
1

2πι

∮

Ck

R1/2 (ζ)
[
I − Π̃ (ζ)

]−1

Π̃2 (ζ)R1/2 (ζ) dζ,

with Sk =
∑

j 6=k ϕj ⊗ϕk/ (λj − λk) . Below we just developed π̂k − πk up to the order two instead
of the first order used to derive the bound in Theorem 5. The second order term is Tk,n with

‖Tk,n‖∞ ≤ δk

∥∥∥Π̃ (ζ)
∥∥∥
2

∞

1−
∥∥∥Π̃ (ζ)

∥∥∥
∞

sup
ζ∈Ck

‖R (ζ)‖∞ =

∥∥∥Π̃ (ζ)
∥∥∥
2

∞

1−
∥∥∥Π̃ (ζ)

∥∥∥
∞

≤ ak√
n

ak√
n

1− ak√
n

= dk,n,

since we assume that supζ∈Ck

∥∥∥Π̃ (ζ)
∥∥∥
∞

< ak/
√
n < 1.We turn to the first order term namely

Sk (Σn − Σ)πk + πk (Σn − Σ)Sk. It is simple to see that its norm is exactly

2 ‖πk (Σn − Σ)Sk‖∞ = 2 ‖Sk (Σn − Σ)ϕk‖ = 2 ‖SkΣnϕk‖ = 2

√√√√ 1

n

∥∥∥∥∥

n∑

i=1

〈Xi, ϕk〉SkXi

∥∥∥∥∥

2

.

Then from (19) we get

2 ‖SkΣnϕk‖ ≤ ‖π̂k − πk‖∞ + dk,n,

2 ‖SkΣnϕk‖2 ≤ ‖π̂k − πk‖2∞ + d2k,n.

Taking expectation we finally get

E ‖π̂k − πk‖2∞ ≥ 2E ‖SkΣnϕk‖2 − d2k,n.

Now from calculations similar to those carried out within the proof of Lemma 13 we get ESkΣnϕk =
0, E ‖SkΣnϕk‖2 = 1

nλk

∑
j 6=k λj/ (λj − λk)

2 hence

E ‖π̂k − πk‖2∞ ≥ 2

n
λk

∑

j 6=k

λj/ (λj − λk)
2 − d2k,n.

Besides when (7) holds a2k ≍ λk

∑
j 6=k λj/ (λj − λk)

2 ≍ k2. This together with the fact that d2k,nis

negligible with respect to a2k/n yields the desired result :

E ‖π̂k − πk‖2∞ ≥ c
a2k
n
,

for some absolute constant c.

4.2 Derivation of results of Section 3.2

The next two lemmas aim at providing the reader with basic inequalities which will be extensively
used in the sequel.

Lemma 15 We have for all h > 0

KFk (h) ≤ EK (‖Pk (Xi − x)‖ /h) ≤
[
cF

∫
uk |K ′ (u)| du

]
Fk (h) ≤ cFk (h) ,

KnFk (h) ≤ ES∗ ≤ cnFk (h) .

16



The proof of the Lemma is simple. The lower bound in the equation above is obtained from
EK (‖Pk (Xi − x)‖ /h) ≥ EK (‖Pk (Xi − x)‖ /h) 1I{‖Pk(Xi−x)‖<h}. The upper bound is derived
from Fubini’s theorem

EK (‖Pk (Xi − x)‖ /h) = −
∫

K ′ (u)Fk (hu)du

≤ Fk (h)

∫
|K ′ (u)| Fk (hu)

Fk (h)
du ≤

[
cF

∫
up |K ′ (u)| du

]
Fk (h)

We refer to Ferraty, Mas, Vieu (2007) and Biau, Mas (2012) where this method was already used
in an asymptotic framework.

Lemma 16 For all t > 0,

P

(∣∣∣∣
S∗ − ES∗

ES∗

∣∣∣∣ > t

)
≤ 2 exp−

[
nFk (h) t

2K2/2 |K|∞ (c+ tK)
]
.

The proof is a simple consequence of Bernstein’s theorem, of the boundedness of K and of
Lemma 15 hence omitted.

Preliminary facts for the proof of Proposition 8 :

We deal with r̂ (x) − r∗ (x) = Ẑ

Ŝ
− Z∗

S∗ . It is simple to get the four following lines given here
without proof for further purpose :

r̂ (x) − r∗ (x) = r̂ (x)
S∗ − Ŝ

S∗ − Z∗ − Ẑ

S∗ ,

max {|r̂ (x)| , |r∗ (x)|} ≤ |r|∞ +

n∑

i=1

|εi| ,

E

[
n∑

i=1

εiK (‖Pk (Xi − x)‖ /h) |X1, ..., Xn

]2
= σ2

ε

n∑

i=1

K2 (‖Pk (Xi − x)‖ /h) ≤ σ2
ε |K|∞ S∗.

We have

r̂ (x)− r∗ (x) = [r̂ (x) − r∗ (x)]
S∗ − Ŝ

S∗ + r∗ (x)
S∗ − Ŝ

S∗ − Z∗ − Ẑ

S∗ . (20)

It is straightforward to see that G =
{∣∣∣S

∗−ES∗

S∗

∣∣∣ < 1/4
}
=
{
3/4 < ES∗

S∗ < 5/4
}
=
{
−1/5 < S∗−ES∗

ES∗ < 1/3
}

and that G ⊂
{∣∣∣S

∗−ES∗

ES∗

∣∣∣ > 1/5
}
.We split r̂ (x) − r∗ (x) in two parts. We start with :

E |r̂ (x)− r∗ (x)|2 1G ≤ 2 |r|2∞ P
(
G
)
+ 2E


1G

(
n∑

i=1

|εi|
)2



= 2P
(
G
) [

|r|2∞ + nEε2 + n (n− 1) (E |ε|)2
]

(21)

≤ 2P

(∣∣∣∣
S∗ − ES∗

ES∗

∣∣∣∣ > 1/5

)[
|r|2∞ + nEε2 + n (n− 1) (E |ε|)2

]
,

where the last line is controlled by the exponential inequality in Lemma 16. When nFk (h) / logn

is larger than a prescribed and universal constant we get n2
P

(∣∣∣S
∗−ES∗

ES∗

∣∣∣ > 1/5
)
≤ 1/n and the

line above becomes negligible.
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On the other hand it is simple to get :

|r̂ (x)− r∗ (x)| 1G ≤ 4

3

∣∣∣∣∣r
∗ (x)

S∗ − Ŝ

S∗ − Z∗ − Ẑ

S∗

∣∣∣∣∣ 1G

≤ 4

3
|r∗ (x)|

∣∣∣∣∣
S∗ − Ŝ

S∗

∣∣∣∣∣ 1G +
4

3

∣∣∣∣∣
Z∗ − Ẑ

S∗

∣∣∣∣∣ 1G

≤ 5

3
|r∗ (x)|

∣∣∣∣∣
S∗ − Ŝ

ES∗

∣∣∣∣∣ 1G +
5

3

∣∣∣∣∣
Z∗ − Ẑ

ES∗

∣∣∣∣∣ 1G

≤ 5

3
|r∗ (x)|

∣∣∣∣∣
S∗ − Ŝ

ES∗

∣∣∣∣∣ 1G +
5

3

∣∣∣∣∣
Z∗ − Ẑ

ES∗

∣∣∣∣∣ 1G . (22)

In view of (22) and (21) the conclusion will follow from an appropriate control of both terms :

E

∣∣∣r∗ (x)
(
S∗ − Ŝ

)∣∣∣
2

1G , E
∣∣∣Z∗ − Ẑ

∣∣∣
2

1G . These are addressed in the forthcoming Lemmas. For

further purpose we notice that

E |r̂ (x)− r∗ (x)|2 1G ≤ 50

9K2n2F 2
k (h)

[
E

∣∣∣r∗ (x)
(
S∗ − Ŝ

)∣∣∣
2

1G + E

∣∣∣Z∗ − Ẑ
∣∣∣
2

1G

]
. (23)

Lemma 17

E

[∣∣∣r∗ (x)
(
S∗ − Ŝ

)∣∣∣
2

1I{|S∗−ES∗

ES∗ |≤1/3}|X1, ..., Xn

]
≤
∣∣∣S∗ − Ŝ

∣∣∣
2
[
2 |r|2∞ +

5

4

σ2
ε |K|∞
ES∗

]
a.s.

Proof :
Keep in mind that G holds :

E

[∣∣∣r∗ (x)
(
S∗ − Ŝ

)∣∣∣
2

|X1, ..., Xn

]

≤ 2 |r|2∞
∣∣∣S∗ − Ŝ

∣∣∣
2

+ 2

(
S∗ − Ŝ

S∗

)2

E



(

n∑

i=1

εiK (‖Pk (Xi − x)‖ /h)
)2

|X1, ..., Xn




= 2
∣∣∣S∗ − Ŝ

∣∣∣
2
[
|r|2∞ +

σ2
ε |K|∞
S∗

]
.

Taking into account that G holds we get the announced result.

Lemma 18 We have

E

∣∣∣S∗ − Ŝ
∣∣∣
2

≤ A · nk
4

h2
F 2
k (h) log2 n log

(
h
√
n

k2

)
,

E

∣∣∣Z∗ − Ẑ
∣∣∣
2

≤ |r|∞ B · nk
4

h2
F 2
k (h) log2 n log

(
h
√
n

k2

)
,

where A and B are constants depending only on K.

Proof :
We deal first with S∗− Ŝ and limit ourselves to carrying out computations when K is the naive

kernel defined by K (u) = 1I0≤u≤1. The interested reader will easily check that the derivation may
be adapted to more general kernels under assumption A2. The method by Biau and Mas (2012)
is not enough to get the bound annouced and we have to follow another route with sharper bound
:

E

∣∣∣S∗ − Ŝ
∣∣∣
2

= E

(
n∑

i=1

1I‖Pk(Xi−x)‖≤h − 1I‖P̂k(Xi−x)‖≤h

)2

= E

(
n∑

i=1

1I‖Pk(Xi−x)‖≤h,‖P̂k(Xi−x)‖>h − 1I‖Pk(Xi−x)‖>h,‖P̂k(Xi−x)‖≤h

)2

.
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Then

E

∣∣∣S∗ − Ŝ
∣∣∣
2

≤ 2E

(
n∑

i=1

1I‖Pk(Xi−x)‖≤h,‖P̂k(Xi−x)‖>h

)2

+2E

(
n∑

i=1

1I‖Pk(Xi−x)‖>h,‖P̂k(Xi−x)‖≤h

)2

.

Let 0 < η < h to be fixed later. We treat only the first series since our method applies to the
other :

n∑

i=1

1I‖Pk(Xi−x)‖≤h,‖P̂k(Xi−x)‖>h ≤
n∑

i=1

1Ih−η≤‖Pk(Xi−x)‖≤h+

n∑

i=1

1I‖(Pk−P̂k)(Xi−x)‖>η,‖Pk(Xi−x)‖≤h.

The distribution of the new first series above is Binomial hence E
(∑n

i=1 1Ih−η≤‖Pk(Xi−x)‖≤h

)2
=

npk + n2p2kwith pk = Fk (h)− Fk (h− η) ≤ cηkFk (h) /h and

E

(
n∑

i=1

1Ih−η≤‖Pk(Xi−x)‖≤h

)2

� n2η2k2
F 2
k (h)

h2
. (24)

We turn to the other term. From
{∥∥∥
(
Pk − P̂k

)
(Xi − x)

∥∥∥ > η, ‖Pk (Xi − x)‖ ≤ h
}

⊂ {‖(Xi − x)‖ > M logn} ∪
{∥∥∥Pk − P̂k

∥∥∥ >
η

M logn
, ‖Pk (Xi − x)‖ ≤ h

}
,

and the fact that E exp (λ ‖X‖) < +∞ for some λ we get that E
(∑n

i=1 1I‖(Xi−x)‖>M logn

)2
is

bounded by a n−p for some large p (depending on a good choice of M). Then

n∑

i=1

1I‖(Pk−P̂k)(Xi−x)‖>η,‖Pk(Xi−x)‖≤h ≤ 1I‖(Pk−P̂k)‖>η/M log n

n∑

i=1

1I‖Pk(Xi−x)‖≤h

= 1I‖(Pk−P̂k)‖>η/M log n

n∑

i=1

[
1I‖Pk(Xi−x)‖≤h − P (‖Pk (Xi − x)‖ ≤ h)

]

+ n1I‖(Pk−P̂k)‖>η/M lognP (‖Pk (X1 − x)‖ ≤ h) .

Denote Ui = 1I‖Pk(Xi−x)‖≤h − P (‖Pk (Xi − x)‖ ≤ h),

(
n∑

iE=1

1I‖(Pk−P̂k)(Xi−x)‖>η,‖Pk(Xi−x)‖≤h

)2

≤ 2n2
P
2 (‖Pk (X1 − x)‖ ≤ h)P

(∥∥∥
(
Pk − P̂k

)∥∥∥ > η/M logn
)

+ 2E1I‖(Pk−P̂k)‖>η/M logn

{
n∑

i=1

[
1I‖Pk(Xi−x)‖≤h − P (‖Pk (Xi − x)‖ ≤ h)

]
}2

≤ 2n2F 2 (h) exp
(
−nη2/Mk2 log2 n

)
+ 2P1/2

(∥∥∥Pk − P̂k

∥∥∥ > η/M logn
)
E
1/4

(
n∑

i=1

Ui

)4

≤ cn2F 2 (h) exp
(
−nη2/Mk2 log2 n

)
,

because the second term is negligible with respect to the first. The optimal η is chosen now so
that :

n2η2k2F 2
k (h)

h2
≍ n2F 2 (h) exp

(
−nη2/Mk2 log2 n

)
,

which yields

η∗ ≍ k√
n
logn log1/2

h
√
n

k2
.

Plugging this optimal η∗ in (24) gives the first result of the Lemma.
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Recall that we left initially Z∗ − Ẑ to treat S∗ − Ŝ. We have

E

∣∣∣Z∗ − Ẑ
∣∣∣
2

= E

{
n∑

i=1

r (Xi)
[
K (‖Pk (Xi − x)‖ /h)−K

(∥∥∥P̂k (Xi − x)
∥∥∥ /h

)]}2

+ σ2
ε

n∑

i=1

E

[
K (‖Pk (Xi − x)‖ /h)−K

(∥∥∥P̂k (Xi − x)
∥∥∥ /h

)]2
.

Focusing here again on the specific important case of a naive kernel we check that

n∑

i=1

E

[
K (‖Pk (Xi − x)‖ /h)−K

(∥∥∥P̂k (Xi − x)
∥∥∥ /h

)]2

= nE
[
1I‖Pk(X1−x)‖≤h,‖P̂k(X1−x)‖>h − 1I‖Pk(X1−x)‖>h,‖P̂k(X1−x)‖≤h

]2

may be treated with exactly the same tools as above so that we can upper bound it up to constants
with nηkFk (h) /h + nF (h) exp

(
−nη2/Mk2 log2 n

)
. These terms are unimportant since they are

negligible with respect to the contribution of the other part of the decomposition of Z∗−Ẑ namely :

E

{
n∑

i=1

r (Xi)
[
K (‖Pk (Xi − x)‖ /h)−K

(∥∥∥P̂k (Xi − x)
∥∥∥ /h

)]}2

= E

{
n∑

i=1

r (Xi)
[
1I‖Pk(Xi−x)‖≤h,‖P̂k(Xi−x)‖>h − 1I‖Pk(Xi−x)‖>h,‖P̂k(Xi−x)‖≤h

]}2

≤ 2E

{
n∑

i=1

r (Xi) 1I‖Pk(Xi−x)‖≤h,‖P̂k(Xi−x)‖>h

}2

+ 2

{
n∑

i=1

r (Xi) 1I‖Pk(Xi−x)‖>h,‖P̂k(Xi−x)‖≤h

}2

≤ 2 |r|∞

[
n∑

i=1

1I‖Pk(Xi−x)‖≤h,‖P̂k(Xi−x)‖>h

]2
+ 2 |r|∞

[
n∑

i=1

1I‖Pk(Xi−x)‖>h,‖P̂k(Xi−x)‖≤h

]2
,

and we are faced with exactly the same computations as above for S∗ − Ŝ.

Proof of Proposition 8:
Combining (20) with Lemma 18 we get :

E |r̂ (x)− r∗ (x)|2 1G ≤ 50

9K2n2F 2
k (h)

[
E

∣∣∣r∗ (x)
(
S∗ − Ŝ

)∣∣∣
2

1G + E

∣∣∣Z∗ − Ẑ
∣∣∣
2

1G

]

≤ C · k4

nh2
log2 n log

(
h
√
n

k2

)
.

This finishes the proof of the proposition.
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