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Descente fidèlement plate pour les n-champs d'Artin

Nous montrons deux résultats de descente fidèlement plate de présentation finie dans le cadre des n-champs d'Artin. Tout d'abord, un champ pour la topologie étale et qui est un n-champ d'Artin au sens de [Si, HAGII] est aussi un champ pour la topologie fppf. De plus, un n-champ pour la topologie fppf et qui possède un n-atlas fppf est un n-champ d'Artin (i.e. possède aussi un n-atlas lisse). Nous déduisons de ces deux résultats un théorème de comparaison entre cohomologies étale et fppf (à coefficients dans des schémas en groupes non nécessairement lisses ou encore non-abéliennes). Ce travail est écrit dans le contexte des champs dérivés de [HAGII, To1], et ces résultats vallent donc aussi pour des n-champs d'Artin dérivés.

Introduction

L'objectif de ce travail est de démontrer l'équivalence de deux notions, à priori différentes, de n-champs algébriques1 . Comme cela est expliqué dans [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]§1.3], il existe une notion générale de champs (n-)géométriques, qui dépend du choix d'un couple (τ, P), formé d'une topologie de Grothendieck τ sur le site des schémas affines, et d'une classe de morphismes P entre schémas affines, et satisfaisant à certaines conditions de compatibilité. Par définition, les champs géométriques pour le coupe (τ, P) sont obtenus en recollant des schémas affines le long de relations d'équivalences itérées de type P. Si τ = et est la topologie étale, et P = et la classe des morphismes étales, la notion de champs géométriques correspondante est celle de champs algébriques de Deligne-Mumford, ou plus précisément son extension au cadre des champs supérieurs. Si τ = et est la topologie étale et P = li est la classe des morphismes lisses, alors la notion de champs géométriques correspond à celle de champs algébriques d'Artin (au sens de [Si] et de [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]§2.1]). Dans ce travail nous nous intéresserons au cas du couple (f ppf, pl), formé de la topologie fidèlement plate et de présentation finie (notée f ppf ), et de la classe pl des morphismes plats de présentation finie. Notre résultat principal affirme que les champs géométriques pour le couple (f ppf, pl) sont exactement les champs géométriques pour le couple (et, li), c'est à dire les champs algébriques d'Artin.

Théorème 0.1 Le foncteur champ associé pour la topologie fppf induit une équivalence de la catégorie des champs géométriques pour le couple (et, li) avec celle des champs géométriques pour le couple (f ppf, pl).

De manière équivalente, le théorème précédent peut aussi s'énoncer en deux assertions, l'une concernant la pleine fidèlité et l'autre l'essentielle surjectivité:

1. Un champ géométrique pour le couple (et, li) est un champ pour la topologie f ppf .

2. Un champ pour la topologie f ppf , qui possède un atlas plat et localement de présentation finie, possède un atlas lisse.

La première assertion affirme que la cohomologie non-abélienne, pour la topologie étale et à valeurs dans un champs algébrique d'Artin, peut aussi se calculer en utilisant la topologie f ppf . Il s'agit donc d'un énoncé de comparaison entre cohomologie étale et f ppf , qui généralise le fait bien connu H i et (X, G) ≃ H i f ppf (X, G), pour X un schéma et G un schéma en groupes abéliens lisse (voir [START_REF] Grothendieck | Le groupe de Brauer III, dans Dix exposés sur la cohomologie des schémas[END_REF]App. 11]). La seconde assertion est une généralisation au cadre des champs supérieurs d'un théorème d'Artin qui affirme que le 1-champ quotient d'un groupoïde plat et de présentation finie dans les schémas peut aussi s'écrire comme le 1-champ quotient d'un groupoïde lisse (voir par exemple [La-Mo]). Comme nous le verrons, il se trouve que le point (1) est une conséquence du point (2) (voir notre lemme 2.2). Le contenu du théorème 0.1 est donc essentiellement le fait que l'existence d'un atlas plat et localement de présentation finie implique l'existence d'un atlas lisse.

Le théorème 2.1 possède plusieurs conséquences intéressantes. L'une est l'existence d'une théorie des ngerbes algébriques, généralisation d'ordre supérieur des gerbes algébriques de [La-Mo], et de l'existence de gerbes résiduelles (ce qui implique, entre autre, la représentabilité des faisceaux d'homotopie). Nous ne présenterons pas ces conséquences dans ce travail, et nous renvoyons le lecteur à [To3, §2.2, §2.3], où il trouvera, de plus, des applications aux invariants cohomologiques des n-champs d'Artin. En contre partie, nous avons inclu des applications à la comparaison entre cohomologies (non-abéliennes) étales et f ppf . Pour G un champ en groupes lisses, nous montrons que les espaces H 1 et (X, G) et H 1 f ppf (X, G) coincident, généralisant ainsi l'énoncé analogue pour des schémas en groupes. Travailler avec des champs supérieurs nous permet d'introduire la notion de champs en k-groupes G, qui possède des champs classifiants K(G, i) pour tout i ≤ k, ce qui permet ainsi de définir les espaces H i τ (X, G) pour tout i ≤ k (pour τ une des deux topologies et ou fppf). Lorsqu'un tel G est plat de localement de présentation finie le théorème 0.1 implique que K(G, i) est un champ géométrique, lisse lorsque i > 0. Nous tirons de cela, pour tout schéma en groupes abéliens plats et localement de présentation finie G, et tout schéma X, l'existence d'une suite exacte longue

H i-2 et (X, H 1 f ppf (-, G)) / / H i et (X, G) / / H i f ppf (X, G) / / H i-1 et (X, H 1 f ppf (-, G)) / / H i+1 et (X, G),
où H 1 f ppf (-, G) est le faisceau, pour la topologie étale, associé au préfaisceau U → H 1 f ppf (U, G). Ceci s'exprime aussi en disant que R i f * (G) = 0 pour tout i > 1, où f est le morphisme géométrique de passage de la topologie f ppf à la topologie étale. Dans le même genre d'idée, si A est un anneau hensélien excellent de corps résiduel k, et si G est un schéma en groupes plat et localement de présentation finie sur A, de fibre spéciale G 0 , alors nous montrons que le morphisme de restriction

H i f ppf (Spec A, G) -→ H i f ppf (Spec k, G 0 )
est un isomorphisme pour i > 1, et surjectif pour i = 1. Nous n'avons pas trouvé d'énoncés dans ce goût dans la littérature, et il est possible que ces deux résultats soit nouveaux.

La stratégie de preuve du théorème 0.1 est tout à fait analogue à celle utilisée dans [La-Mo] pour traiter le cas des 1-champs. Le point clé est la construction, à partir d'un recouvrement plat et localement de présentation finie entre schémas p : X ′ → X, d'un recouvrement lisse Y → X. Le schéma Y est le schéma des quasi-sections quasi-lisses de la projection p, qui classifie les extensions finies plates Z → X munies d'un morphisme l.c.i. Z → X ′ au-dessus de X. Le principal apport de ce travail est de montrer que cette construction reste raisonnable lorsque p est maintenant un atlas f ppf de n-champs, ce qui complique considérablement les détails techniques. Cependant, les étapes de la preuve que nous donnons suivent essentiellement celles dans le cas des schémas, avec même une simplification pour démontrer la lissité de Y , due à l'utilisation du langage de la géométrie algébrique dérivée (ce qui permet de ramener la preuve de la lissité de Y → X au simple calcul d'un espace cotangent). L'intégralité de ce travail est d'ailleur écrit dans le langage des champs dérivés de [HAGII], et notre théorème 0.1 est donc aussi valable dans ce contexte.

Remerciements: Le résultat principal de ce travail avait été annoncé, avec quelques rudiments de preuve, dans [START_REF] Toën | Higher and derived stacks: a global overview, Algebraic geometry-Seattle[END_REF]. C'est la remarque, ravivée récemment par une correspondance avec Chetan Balwe, que les constructions et résultats de [START_REF] Toën | Anneaux de Grothendieck des n-champs d'Artin[END_REF] en dépendent qui m'a insité à en rédiger une preuve complète. Je remercie donc Chetan pour son message (et je ne peux qu'inviter le lecteur à lire sa thèse [Ba]).

Par ailleurs, cet article a été rédigé à cheval entre Toulouse et Montpellier, en grande partie dans le fameux train CORAIL TEOZ de 17h45, et je souhaite remercier la SNCF pour avoir su garder des retards tout à fait raisonnables durant cette période. Ces va-et-viens font suite à mon changement d'affectation, de l'Institut de Mathématique de Toulouse vers l'Institut de Mathématiques et de Modélisation de Montpellier: je remercie le second pour un acceuil très chaleureux.

Notation et terminologie:

• k : un anneau commutatif de base fixé, ou plus généralement un anneau commutatif simplicial (pour les lecteurs braves).

• sk -CAlg : la catégorie des k-algèbres simpliciales.

• dAf f k := (sk -CAlg) op : la catégorie des k-schémas affines dérivés.

• τ : une topologie de modèles sur dAf f k , ou bien la topologie étale, ou bien la topologie f ppf .

• τ -champ dérivé : un champ sur le site de modèles (dAf f k , τ ).

• τ -champ non dérivé (ou tronqué) : un champ sur le site Af f k des k-schémas affines (non dérivés) munie de la topologie τ induite.

• dSt τ (k) : la catégorie des τ -champs dérivés.

• St τ (k) : la catégorie des τ -champs non dérivés, vue comme sous-catégorie pleine de dSt τ (k).

1 Deux notions de champs dérivés n-géométriques

Dans cette section nous rappelons la notion de n-champs géométriques introduite dans [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]§1.3]. Nous travaillerons au-dessus de la catégorie de modèles des k-algèbres simpliciales, dont nous ferons varier la topologie τ ainsi que la classe de morphismes P utilisée pour définir les atlas. Le lecteur trouvera le formalisme général des champs géométriques au-dessus d'un HAG contexte dans [HAGII], dont les notions présentées ici sont des cas particuliers.

Changement de topologie et de contextes pour les champs dérivés

Nous notons sk -CAlg la catégorie des k-algèbres simpliciales commutatives, que nous munissons de sa structure de modèles standard (voir par exemple [HAGII, §2.2.1]). Nous notons aussi dAf f k := sk -CAlg op la catégorie opposée, muni de la structure de modéles induite. Soit τ une (prè-)topologie de modèles sur dAf f k (voir [START_REF] Toën | Homotopical algebraic geometry I: Topos theory[END_REF]§4.3]). Cette topologie donne lieu à une topologies de Grothendieck sur Ho(dAf f k ) (encore notées τ ) ainsi qu'à la catégorie de modèles des champs sur dAf f k qui lui correspond (voir [START_REF] Toën | Homotopical algebraic geometry I: Topos theory[END_REF]§4.6]) dAf f ∼,τ k . La catégorie homotopique des champs dérivés pour τ (nous dirons aussi τ -champ dérivés, ou encore champ dérivé si la topologie τ est soit implicite, ou bien si l'énoncé ne dépend pas de la topologie choisie) est

dSt τ (k) := Ho(dAf f ∼,τ k ).
Rappelons que dSt τ (k) s'identifie naturellement à la sous-catégorie pleine de la catégorie homotopique Ho(SP r(dAf f k )), des préfaisceaux simpliciaux sur dAf f k , formée des objets qui d'une part préservent les équivalences, et d'autre part possèdent la propriété de descente pour les τ -hyper-recouvrements (voir [START_REF] Toën | Homotopical algebraic geometry I: Topos theory[END_REF]§4.4]). Par la suite nous verrons toujours dSt τ (k) comme plongée dans Ho(SP r(dAf f k )).

La catégorie des τ -champs dérivés contient une sous-catégorie pleine St τ (k) ⊂ dSt τ (k), formée des τ -champs non-dérivés (nous dirons aussi tronqués). La catégorie St τ (k) est équivalente à la catégorie homotopique des préfaisceaux simpliciaux sur le site des schémas affines (non-dérivés) Af f k , muni de la topologie τ restreinte aux kalgèbres non-simpliciales. Le foncteur d'inclusion St τ (k) ֒→ dSt τ (k) est alors obtenu par extension de Kan à gauche des préfaisceaux simpliciaux le long de l'inclusion naturelle Af f k ֒→ dAf f k induite par l'inclusion des k-algèbres dans les k-algèbres simpliciales (qui consiste à voir une k-algèbre comme une k-algèbre simpliciale constante). Ce foncteur d'inclusion i : St τ (k) -→ dSt τ (k) possède un adjoint à droite

t 0 : dSt τ (k) -→ St τ (k),
qui à un préfaisceaux simplicial sur dAf f k associe sa restriction à Af f k . Par la suite, nous identifierons systématiquement St τ (k) à une sous-catégorie pleine de dSt τ (k), formée des F tels que le morphisme naturel t 0 (F ) -→ F soit un isomorphisme. Nous renvoyons à [HAGII, §2.1] pour plus de détails sur les champs non-dérivés.

Soient maintenant une classe de morphismes P dans Ho(dAf f k ). Nous supposerons que la topologie τ satisfait les conditions [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]1.3.2.2]. Nous supposerons aussi que le couple (τ, P) satisfait les conditions [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]1.3.2.11]. Nous ne rappelons pas ces conditions ici, qui affirment, en gros, que la topologie τ est sous-canonique, compatible avec les sommes disjointes finies, et que les morphismes de P ont de bonnes propriétés de localité par rapport à τ . Par la suite nous nous intéresserons à deux exemples: τ sera la topologie étale et P les morphismes lisses, ou encore τ sera la topologie fppf et P sera les morphismes plats et de présentation presque finie (dont les définitions seront rappelées dans les deux paragraphes suivants).

La donnée du couple (τ, P) permet, comme cela est expliqué dans [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Def. 1.3.3.1], de définir une notion de champs dérivés (n, P)-géométriques. Les champs dérivés (n, P)-géométriques forment une sous-catégorie pleine de dSt τ (k), notée dSt n,P τ (k). On a des inclusions naturelles

dSt n,P τ (k) ⊂ dSt n+1,P τ (k) ⊂ dSt τ (k),
et la réunion de ces sous-catégories sera notée

dSt P τ (k) := ∪ n dSt n,P τ (k).
Rappelons la définition, par induction sur n, des catégories dSt P n,τ (k). Pour n = 0, la sous-catégorie dSt 0,P τ (k) consiste en tous les champs dérivés affines, c'est à dire de la forme RSpec A pour un A ∈ sk -CAlg2 . Les conditions sur τ impliquent que le foncteur RSpec : Ho(sk -CAlg) op -→ dSt τ (k) est pleinement fidèle. Ainsi, dSt 0,P τ est naturellement équivalent à la catégorie Ho(dAf f k ) (et se trouve donc être indépendante du choix de P et de τ ). Un morphisme entre champs dérivés f : F -→ G est dit 0-géométrique (ou affine), si pour tout X affine et tout X -→ G, le champ dérivé F × h G X est 0-géométrique. Un tel morphisme est de plus dans P si la projection induite X -→ F × h G X correspond à un morphisme de P dans Ho(dAf f k ).

Supposons maintenant n > 0 et que la catégorie dSt n-1,P τ (k) soit définie, ainsi que la notion de morphismes (n -1, P)-représentables et de morphismes (n -1, P)-représentables dans P. On définit alors la sous-catégorie dSt n,P τ (k), ainsi que les notions de morphismes (n, P)-représentables et de morphismes (n, P)-représentables et dans P, de la façon suivante. 

X i -→ F × h G X
tel que tous les morphismes induits X i -→ X entre champs affines soient dans P.

Supposons maintenant que l'on se donne deux topologies de modèles τ et τ ′ , et deux classes de morphismes P et P ′ , de sorte à ce que les couples (τ, P) et (τ ′ , P ′ ) satisfassent tous deux aux conditions [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]1.3.2.2,1.3.2.11]. Nous supposerons que le couple (τ, P) est plus fort que (τ ′ , P ′ ) au sens suivant.

1. Tout τ -champ dérivé est un τ ′ -champ dérivé.

2. On a P ′ ⊂ P.

La condition (1) ci-dessus dit qu'un préfaisceau simplicial F : dAf f op k -→ SEns, qui présèrve les équivalences et qui vérifie la condition de descente pour les τ -hyper-recouvrements, vérifie aussi la condition de descente pour les τ ′ -hyper-recouvrements. En identifiant les catégories dSt τ (k) et dSt τ ′ (k) à des sous-catégories pleines de Ho(SP r(dAf f k )), cette condition est équivalente au fait que dSt τ (k) ⊂ dSt τ ′ (k).

Considérons maitenant le foncteur d'inclusion

i : dSt τ (k) -→ dSt τ ′ (k).
Le foncteur de champs associé pour la topologie τ , restreint à dSt τ ′ (k), fournit un adjoint à gauche de ce foncteur d'inclusion a :

dSt τ ′ (k) -→ dSt τ (k).
Rappelons de plus que ce foncteur, ou plutôt son relevé naturel au niveau des catégories de modèles, commute aux limites homotopiques finies (voir [START_REF] Toën | Homotopical algebraic geometry I: Topos theory[END_REF]Prop. 3.4.10]). Cette propriété d'exactitude et la condition P ′ ⊂ P impliquent alors facilement (c'est à dire en utilisant les propriétés élémentaires des champs géométrique données dans [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]§1.3.3]), par induction sur n, que le foncteur a transforme les τ ′ -champs dérivés (n, P ′ )-géométriques en des τ -champs dérivés (n, P)-géométriques. Il induit ainsi, pour tout n ≥ 0, un foncteur

a : dSt n,P ′ τ ′ (k) -→ dSt n,P τ (k).
1.2 Champs dérivés (n, li)-géométriques et (n, pl)-géométriques

Nous spécifions dans ce paragraphe deux couples (τ, P) et (τ ′ , P ′ ) comme dans le paragraphe précédent. Le premier couple (τ, P) sera formé de la topologie fidèlement plate de présentation (presque) finie et des morphismes plats de présentation (presque) finie, et le second, (τ ′ , P ′ ), de la topologie étale et des morphismes lisses. Nous commencerons donc par rappeler les définitions des morphismes étales, lisses, plats et plats de présentation presque finie entre k-algèbres simpliciales commutatives. Soit donc f : A -→ B un morphisme dans sk-CAlg. On rappelle les notions suivantes, qui sont essentiellement tirées de [HAGII] (sauf la notion (1)), référence dans laquelle le lecteur trouvera aussi des définitions équivalentes en termes de complexes cotangents ou d'exactitude de foncteurs de changement de bases.

1. Le morphisme f est de présentation presque finie si le morphisme induit π 0 (A) -→ π 0 (B) est un morphisme de présentation finie d'anneaux commutatifs.

2. Le morphisme f est plat si le morphisme π 0 (A) -→ π 0 (B) est plat, et si de plus pour tout i > 0 le morphisme naturel

π i (A) ⊗ π0(A) π 0 (B) -→ π i (B)
est un isomorphisme.

3. Le morphisme f est lisse s'il est plat et si de plus π 0 (A) -→ π 0 (B) est un morphisme lisse (en particulier de présentation finie) d'anneaux commutatifs.

4. Le morphisme f est étale s'il est plat et si de plus π 0 (A) -→ π 0 (B) est un morphisme étale (en particulier de présentation finie) d'anneaux commutatifs.

On montre que les morphismes plats, plats de présentation presque finie, lisses et étales sont stables par changement de bases (homotopiques) dans Ho(dAf f k ) et par composition. Cela se déduit aisément du fait que lorsque A -→ B est plat, alors pour tout A-module simplicial M le morphisme naturel

π * (M ) ⊗ π0(A) π 0 (B) -→ π * (M ⊗ L A B)
est un isomorphisme.

Remarque Nous considérons maintenant pl, la classe des morphismes plats et de présentation presque finie dans dAf f k , et li celle des morphismes lisses. Les couples (et, li) et (f ppf, pl) satisfont aux conditions de [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]1.3.2.2,1.3.2.11]. De plus, le couple (f ppf, pl) est clairement plus fort que (et, li). On dispose donc d'un foncteur entre les catégories de champs dérivés n-géométriques correspondantes

φ n : dSt n,li et -→ dSt n,pl f ppf
induit par le foncteur de champ associé pour la topologie f ppf .

Pour terminer cette section signalons l'aspect local pour la topologie fppf de la lissité. Ce résultat nous sera utile par la suite.

Proposition 1.2 Soit X -→ Y un morphisme dans dAf f k . Alors, f est lisse si et seulement s'il existe un recouvrement f ppf {X i -→ X} tel que les morphismes composés X i -→ Y soit lisses.

Preuve: Seule la suffisance demande une preuve. Soit X = Spec B, Y = SpecA, et X i = Spec B i . On commence par voir que A -→ B est un morphisme plat. En effet, la famille de morphismes d'anneaux non simpliciaux {π 0 (B) -→ π 0 (B i )} est fidèlement plate par hypothèse, et les morphismes composés π 0 (A) -→ π 0 (B i ) sont plats. Cela implique que π 0 (A) -→ π 0 (B) est un morphisme plat. Il faut de plus montrer que le morphisme

f : π * (A) ⊗ π0(A) π 0 (B) -→ π * (B) est bijectif. Mais, par changement de base le long de π 0 (B) -→ π 0 (B i ) ce morphisme devient π * (A) ⊗ π0(A) π 0 (B) ⊗ π0(B) π 0 (B i ) ≃ π * (A) ⊗ π0(A) π 0 (B i ) -→ π 0 (B i ).
Par hypothèse ces morphismes sont bijectifs, et comme {π 0 (B) -→ π 0 (B i )} est fidèlement plate on en déduit que f est bijectif.

On vient de voir que A -→ B est un morphisme plat. Il nous reste à montrer que π 0 (A) -→ π 0 (B) est aussi lisse. Pour cela on peut sans perte de généralité supposer que

A = π 0 (A) (et donc B ≃ π 0 (B),B i ≃ π 0 (B i ))
, et l'énoncé se ramène alors à la localité pour la topologie f ppf des morphismes lisses entre anneaux non simpliciaux. On a donc un morphisme plat A -→ B, et un recouvrement f ppf {B -→ B i }, tel que chaque A -→ B i soit un morphisme lisse. En particulier A -→ B i est de présentation finie, et cela implique par descente fidèlement plate que A -→ B est un morphisme de présentation finie. On pourra donc, par l'argument standard, se ramener au cas où tous les anneaux sont de type fini sur Z, et en particulier noethériens (voir par exemple Cor. 11.2.6.1]). Il reste à montrer que A -→ B est aussi formellement lisse, ou de manière équivalente que pour tout corps algébriquement clos K et tout morphisme A -→ K, la K-algèbre B K := B ⊗ A K est lisse. On se ramène ainsi au cas où A = K est un corps algébriquement clos. On dipose ainsi de B une K-algèbre de type finie, d'un recouvrement f ppf {B -→ B i }, tel que chaque B i soit lisse sur K. Pour montrer que B est lisse, il suffit de montrer que B est de dimension homologique finie comme B ⊗ K B-module, ou de manière équivalente de T or-dimension finie. Or, par hypothèse cette Tor-dimension est localement, pour la topologie f ppf , finie sur Spec B, ce qui par descente f ppf de la platitude implique aussi qu'elle est localement finie pour la topologie de Zariski. Par quasi-compacité on conclut qu'elle est finie. 2

Le théorème de comparaison

Le résultat principal de ce travail est le théorème suivant.

Théorème 2.1 Pour tout entier n ≥ 0, le foncteur

φ n : dSt n,li et -→ dSt n,pl f ppf
est une équivalence de catégories.

Avant d'entrer dans les détails de la preuve signalons quelques réductions faciles.

Lemme 2.2 Soit n > 0.

1. Le foncteur φ n est pleinement fidèle si tout et-champ dérivé qui est (n, li)-géométrique est aussi un f ppfchamp dérivé.

2. Si le foncteur φ n-1 est une équivalence alors le foncteur φ n est pleinement fidèle.

Preuve: (1) Le foncteur φ n est la restriction du foncteur a, de champ associé pour la topologie f ppf , qui possède comme adjoint à droite le foncteur d'inclusion

dSt f ppf (k) ⊂ dSt et (k). Ainsi, φ n est pleinement fidèle si pour tout F ∈ dSt n,li et , le morphisme d'adjonction F -→ a(F ) est un isomorphisme dans dSt et (k). Or, F -→ a(F ) est un isomorphisme précisément lorsque F est un f ppf -champ dérivé.
(2) Soit F ∈ dSt n,li et . D'après (1) il nous suffit de montrer que le morphisme d'adjonction f :

F -→ φ n (F ) est un isomorphisme dans dSt et (k). Soient X et Y deux objets affines et considérons deux morphismes X, Y -→ F .
Alors, en utilisant que φ n-1 est pleinement fidèle, on voit que le morphisme induit

X × h F Y -→ φ n-1 (X × h F Y ) ≃ X × h φn-1(F ) Y
est un isomorphisme. Ceci implique que le morphisme f est un monomorphisme (voir [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Rem. 1.2.6.2]). Il nous reste donc à montrer que f est aussi un épimorphisme de champs dérivés pour la topologie étale. Soit X un objet affine, et x : X -→ φ n (F ) un morphisme. On doit montrer qu'il existe un recouvrement étale

Y -→ X et un relèvement Y -→ F du point x, c'est à dire que Y / / F X / / φ n (F ) commute dans dSt et . Soit U = U i -→ F un n-atlas lisse pour F . On considère le morphisme induit φ n (U ) ≃ U -→ φ n (F ), ainsi que U X := U × h φn(F ) X -→ X.
On remarquera que U X est le produit fibré homotopique de champs dérivés étales qui sont aussi des champs dérivés fppf, et donc est lui même un champs pour la topologie fppf. Comme

φ n (F ) est le f ppf -champ associé à F , il existe un recouvrement fppf X ′ -→ X et un relèvement X ′ -→ F de x. En utilisant que F -→ φ n (F ) est un monomorphisme, on trouve U X ′ := U X × h X X ′ ≃ U × h F X ′ , ce qui montre que U X ′ est dans dSt n-1,et et . Soit V = V i -→ U X ′ un (n -1, li)-atlas. Le composé V -→ U X est un morphisme de f ppf -champs dérivés qui est (n -2, pl)-représentable, plat de présentation presque fini et surjectif. Ainsi, U X ∈ dSt n-1,pl f ppf , et comme φ n-1 est une équivalence on voit que U X ∈ dSt n-1,li et . De plus, le morphisme U -→ F étant lisse surjectif, le morphisme induit U X ′ -→ X ′ est encore lisse surjectif. Comme le morphisme X ′ -→ X est fidèlement plat cela implique que U X -→ X est lisse et surjectif. Ainsi, il existe un recouvrement étale Y -→ X et un relèvement Y -→ U X de la projection U X -→ X. En composant avec les morphismes U X -→ U -→ F , on trouve le relèvement du point x cherché.
2 Ainsi, pour démontrer le théorème 2.1 nous procéderons par induction sur n. Pour n = 0 l'énoncé est évident car les champs dérivés 0-géométriques sont toujours les objets affines, et ce quelques soit le couple (τ, P) (toujours satisfaisant aux deux mêmes conditions). On se fixe alors n > 0, et on suppose que φ i soit une équivalence pour tout i < n. Par le lemme 2.2 il nous suffit donc de démontrer que φ n est essentiellement surjectif. La démonstration de cette dernière assertion se fera en plusieurs étapes. 

Le champ dérivé des extensions finies et strictement finies

A ′ ⊗ A -: sA -CAlg f in,m,cof -→ sA ′ -CAlg f in,m,cof . La construction A → sA -CAlg f in,m,
F in m (A) ≃ N (sA -CAlg f in,m,cof ).
On montre que le préfaisceau simplicial F in m est un champ dérivé pour la topologie fpqc, et en particulier pour les topologies étales et fppf (voir par exemple [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Thm. 1.3.7.2] pour les grandes étapes de la preuve). L'oubli de la structure multiplicative fournit, pour tout A ∈ sk -CAlg, un foncteur sA -CAlg f in,m,cof -→ sA -M od f in,m,cof , où sA -M od f in,m,cof est la catégorie des A-modules simpliciaux cofibrants, projectifs et de rang m. Cet oubli permet de construire un morphisme de et-champs dérivés

F in m -→ V ect m ≃ BGl m ,
où V ect m est le champ des fibrés vectoriels de rang n (voir [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Def. 1.3.7.5]). La fibre homotopique de ce morphisme, prise au fibré vectoriel trivial sera notée F in str m .

Proposition 2.3 Le et-champ dérivé F in str m est 0-géométrique (i.e. affine), et le et-champ dérivé F in m est (1, li)géométrique.

Preuve: Pour démontrer cette proposition nous utiliserons le lemme de représentabilité suivant (voir [HAGII, App. C] et [Lu] pour des versions plus générales).

Lemme 2.4 Soit F un et-champ dérivé. On suppose que les conditions suivantes sont satisfaites.

1. Le et-champ tronqué t 0 (F ) est affine. 2. Le morphisme diagonal F -→ F × h F est 0-représentable. 3. F est nilcomplet: pour tout objet A ∈ sk -CAlg, de tour de Postnikov A -→ / / . . . A ≤k / / A ≤k-1 / / . . . / / A ≤0 = π 0 (A) le morphisme naturel F (A) -→ Holim k F (A ≤k ) est une équivalence. 4. F est inf-cartésien: pour tout A ∈ sk -CAlg, tout A-module connexe M ∈ sA -M od (i.e. π 0 (M ) = 0), et toute k-dérivation d : A -→ A ⊕ M (voir [HAGII, §1.2.1]), le carré homotopiquement cartésien suivant A ⊕ d Ω * M / / A (id,0) A d / / A ⊕ M induit un carré homotopiquement cartésien F (A ⊕ d Ω * M ) / / F (A) F (A) / / F (A ⊕ M ).
Alors F est affine.

Preuve du lemme: Tout d'abord, les conditions (2) et (4) impliquent que F possède une théorie de l'obstruction au sens de [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]§1.4.2] (voir [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Prop. 1.4.2.7]). On choisit A 0 , une k-algèbre commutative et un isomorphisme RSpec A 0 -→ t 0 (F ). En composant avec l'inclusion naturelle t 0 (F ) -→ F on trouve un morphisme

u 0 : RSpec A 0 -→ F.
Ce morphisme induisant un isomorphisme sur les tronqués, on voit facilement que son complexe cotangent L u0 ∈ Ho(sA 0 -M od) est 1-connexe (i.e. π 0 (L u0 ) = π 1 (L u0 ) = 0). Nous allons construire par induction un diagramme commutatif

RSpec A 0 u0 / / F . . . RSpec A k u k D D Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù RSpec A k+1 u k+1 G G . . . où A k est k-tronquée, le morphisme A k+1 -→ A k induit un isomorphisme sur les π i pour i < k + 1, et de sorte à ce que L u k soit (k + 1)-connexe. On dispose donc d'un morphisme naturel de troncation L u k -→ π k+2 (L u k )[k + 2] (où (-)[m] désigne le foncteur de suspension itéré m-fois). Supposons que l'on ait construit A k ∈ sk -CAlg, et un morphisme u k : RSpec A k -→ F comme ci-dessus. On pose M k+1 := π k+2 (L u k ), qui est un π 0 (A k )-module. Le morphisme naturel L A k -→ L u k induit donc un morphisme L A k -→ M k+1 [k + 2], et donc une extension de carré nul A k+1 -→ A k , extension de A k par le A k -module simplicial Ω * M k [k + 2] ≃ M k [k + 1] (voir [HAGII, §1.2.1]). Par construction de A k+1 , l'obstruction d'étendre le morphisme RSpec A k -→ F le long de RSpec A k+1 -→ RSpec A k
s'annule de manière naturelle et il existe donc une extension bien définie (voir [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Prop. 1.4.2.5])

u k+1 : RSpec A k+1 -→ F.
Cette extension est telle que L u k+1 est de plus (k + 2)-connexe. Ceci fini de montrer l'existence de la tour des morphismes u k comme ci-dessus.

On pose alors A := holim k A k . D'après la condition (3), le systèmes des u k définit un morphisme u : RSpec A -→ F . Par construction ce morphisme induit un isomorphisme sur les tronqués RSpec π 0 (A) ≃ t 0 (F ), mais aussi un isomorphisme sur les complexes cotangents (i.e. L u ≃ 0). On déduit de cela et de (3)-(4), en utilisant les invariants de Postnikov (voir [HAGII, §2.2.1]) que le morphisme u induit, pour tout B ∈ sk -CAlg, une équivalence

(RSpec A)(B) = M ap(A, B) -→ F (B).

2

Nous allons maintenant appliquer le lemmes 2.4 au cas où F = F in str m . Soit A une k-algèbre commutative non simpliciale. On commence par remarquer que le foncteur π 0 induit un foncteur adjoint à gauche de la catégorie sA -CAlg f in,m,cof vers le groupoïde des A-modules projectifs de type fini. De cela on déduit aisément que le champ tronqué t 0 (sA -CAlg f in,m,cof ) est le champ usuel des schéma plats, finis et de longueur m. On déduit de cela aussi que t 0 (F in str m ) n'est autre que le faisceaux des structures de k-algèbres commutatives sur le module k m , dont l'ensemble des valeurs sur une k-algèbre non simpliciale A est l'ensemble des structures de A-algèbres commuatives sur le A-module A m . Ce foncteur est clairement représentable par un schéma affine. Pour pouvoir appliquer le lemme 2.4 il nous faut donc démontrer que les conditions (2), ( 3 Il n'est pas difficile de voir que B est fini de rang m comme B-module simplicial, et qu'un remplacement cofibrant de B fournit un antécédent, à homotopie près, du système {B k } par le morphisme F (A) -→ Holim k F (A ≤k ).

(4) Tout comme pour le point (3), le morphisme en question est un monomorphisme. Pour montrer qu'il est aussi surjectif sur les composantes connexes on utilise le lemme [START_REF] Toën | Derived Hall algebras[END_REF]Lem. 4.2] (ou plus précisèment sa version pour des sous-catégories de modèles stables par équivalence). Nous laissons le soin au lecteur de vérifier que le carré de foncteur de Quillen

s(A ⊕ d Ω * M ) -CAlg / / sA -CAlg (id,0) sA -CAlg d / / s(A ⊕ M ) -CAlg induit un carré homotopiquement cartésien N (s(A ⊕ d Ω * M ) -CAlg f in,m,cof ) / / N (sA -CAlg f in,m,cof ) (id,0) N (sA -CAlg f in,m,cof ) d / / N (s(A ⊕ M ) -CAlg f in,m,cof ).
Ceci termine la vérification que le champ dérivé F in m vérifie les conditions du lemme 2.4, et donc la preuve de la proposition 2.3.

2

Le complexe cotangent du champ F in m peut se décrire de la façon suivante. Il s'agit du fait, bien connu, que les déformations infinitésimales d'une A-algèbre commutative projective et de rang finie sont classifiées par la cohomologie d'André-Quillen. 

L F in m ,u ≃ L B/A [-1] ⊗ L B B ∨ .
Preuve: Soit Ω u F in m , le champ dérivé des lacets de base u dans F in m . Comme nous l'avons déjà vu lors de la preuve de la proposition 1.2, le champ dérivé Ω u F in m est un ouvert du champ Hom(B, B), des endomorphismes de B comme A-algèbre simpliciale. On a ainsi

L F in m [1] ≃ L ΩuF in m ,u ≃ L Hom(B,B),id .
Il est facile de voir, par définition du complexe cotangent et du champ dérivé Hom(B, B), qu'il existe des isomorphismes fonctoriel en M ∈ Ho(sA -M od)

[L Hom(B,B),id , M ] Ho(sA-M od) ≃ [L B/A , M ⊗ L A B] Ho(sB-M od) ≃ [L B/A , RHom sA-M od (B ∨ , M )] Ho(sB-M od) ≃ [L B/A ⊗ L B B ∨ , M
] Ho(sA-M od) , ce qui implique l'énoncé de la proposition. 2

Restriction des scalaires le long d'un morphisme fini

Soit p : G -→ H un morphisme de et-champs dérivés, et considérons les catégories de champs au-dessus de G et de

H dSt et (k/F ) := Ho(dAf f ∼,et k /G) dSt et (k/F ′ ) := Ho(dAf f ∼,et k /H).
Le changement de bases le long du morphisme p induit un foncteur 

p * : dSt et (k/H) -→ dSt et (k/G) qui envoie un objet (F → H) sur (F × h H G → G).
p * (F )(A ′ ) := F (A ′ ⊗ L A B) ∀ A ′ ∈ A -CAlg.
La preuve procède, comme il se doit, par induction sur n. Commençons par traiter le cas n = 0. Soit F = RSpec B ′ , affine au-dessus de RSpec B. On a

p * (F )(A ′ ) := F (A ′ ⊗ L A B) ≃ RHom B-CAlg (B ′ , A ′ ⊗ L A B).
Pour montrer que p * (F ) est affine, nous utiliserons le résultat de représentabilité des foncteurs définis sur des catégories de modèles combinatoire Prop. 1.9]. Il nous suffit donc de montrer les deux assertions suivantes.

1. Le foncteur p * (F ) commute avec les limites homotopiques dans A -CAlg.

2. Le foncteur p * (F ) commute avec les colimites λ-filtrantes pour λ un cardinal suffisemment grand.

Le point (1) se déduit du fait que B est libre de rang fini comme A-module. En effet, il suffit de voir que Le point (2) se déduit du fait que la catégorie de modèles B -CAlg est combinatoire. Dans une telle catégorie de modèles tout objet x est homotopiquement λ-petit pour un cardinal λ (i.e. M ap(x, -) commute aux colimites homotopiques λ-filtrantes, voir [Du]).

A ′ → A ′ ⊗ L A B commute
Cela termine la preuve de la proposition 2.5 pour le cas n = 0. Supposons maintenant qu'elle soit démontrée pour n et montrons qu'elle reste vraie au rand n + 1. Soit F ∈ dSt et (A) un et-champ dérivé (n + 1, li)-géométrique. 

Soit {U i } des affines et f : U := i U i -→ F un (n +
(B), et soit x ∈ p * (G ′ )(A ′ ) pour A ′ ∈ A -CAlg. Comme p * (G ′ )(A ′ ) ≃ G ′ (A ′ ⊗ L A B), il existe un recouvrement étale A ′ ⊗ L A B -→ C tel que x se relève, à homotopie près, à G(C).
Or, comme B est fini et plat sur A, on sait qu'il existe un recouvrement étale A ′ -→ C ′ , et un diagramme commutatif dans Ho(sk -CAlg)

A ′ ⊗ L A B / / C { { w w w w w w w w w C ′ ⊗ L A B.
(pour démontrer l'existence d'un tel C ′ on utilise [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Cor. 2.2.2.9] pour ramener l'énoncé au cas des kalgèbres commutatives non simpliciales, et on utilise qu'une algèbre finie sur un anneau local henselien strict et un produit d'anneaux locaux henséliens stricts). Cela montre que x se relève, à homotopie près, à un élément dans

G(A ′ ⊗ L A C ′ ) ≃ p * (G)(A ′
), ce qu'il fallait montrer. Comme le morphisme g est un épimorphisme, le champ dérivé p * (F ) est équivalent au quotient homotopique du groupoide de Segal nerf de g

p * (F ) ≃ Hocolim   [n] → V × h p * (F ) V × p * (F ) V . . . × h p * (F ) V n-f ois   
(voir [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]§1.3.4]). Ainsi, pour voir que p * (F ) est (n + 1, li)-géométrique il suffit de voir que ce nerf est un groupoide de Segal (n, li)-géométrique et lisse, c'est à dire la projection

V × h p * (F ) V -→ V
est un morphisme (n, li)-représentable et lisse. Comme le morphisme p * commute aux limites homotopiques (car c'est un foncteur dérivé à droite d'un foncteur de Quillen à droite) on a

V × h p * (F ) V ≃ i,j p * (U i × h F U j ),
et par induction on voit que la projection V × h p * (F ) V -→ V est (n, li)-représentable. Pour terminer la preuve de la proposition il nous reste à montrer que cette projection est lisse, c'est à dire que pour tout i, j la projection

p * (U i × h F U j ) -→ p * (U i )
est lisse. Pour cela nous utiliserons le critère infinitésimal de lissité [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Prop. 2.2.5.1]. Tout d'abord, le fait que p * (U i × h F U j ) -→ p * (U i ) soit localement de présentation finie se déduit par induction sur n et par le fait que p * préserve les objets affines et de présentation finie.

Soit donc

A ′ ∈ A -CAlg, M un A ′ -module connexe et d : A ′ -→ A ′ ⊕ M une A-dérivation. Notons, B ′ := A ′ ⊗ L A B, M B := M ⊗ L A B, ainsi que d B : B ′ -→ B ′ ⊕ M B la B-dérivation induite par changement de base le long de A → B. Soit A ′ ⊕ d Ω * M l'extension de carré nul associée à d, et considérons le morphisme p * (U i × h F U j )(A ′ ⊕ d Ω * M ) -→ p * (U i )(A ′ ⊕ d Ω * M ) × h p * (Ui)(A ′ ) p * (U i × h F U j )(A ′ ).
Il s'agit de montrer que ce morphisme est surjectif à homotopie près. Tout d'abord, comme B est plat sur A on a

(A ′ ⊕ d Ω * M ) ⊗ L A B ≃ B ′ ⊕ d B Ω * (M B ).
Ainsi, par adjonction le morphisme ci-dessus s'écrit aussi

(U i × h F U j )(B ′ ⊕ d B Ω * M B ) -→ U i (B ′ ⊕ d B Ω * M B ) × h Ui(B ′ ) (U i × h F U j )(B ′ ).
Or ce morphisme est surjectif sur les composantes connexes car U i × h F U j -→ U i est un morphisme (n, li)représentable et lisse (voir [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Prop. 2.2.5.1]). Ceci termine la preuve de la proposition 2.5. 2

Quasi-sections

Dans ce paragraphe nous introduisons le et-champ dérivé QSect f , des quasi-sections d'un morphisme fixé f : F ′ -→ F dans dSt et (k). Les quasi-sections sont des sections à extension finie près, et le champ QSect f classifie les diagrammes

X ′ / / F ′ f X / / F
avec X ′ -→ X un morphisme 0-représentable, plat et fini. La définition précise du champ dérivé QSect f va occuper toute la première partie de ce paragraphe. Nous étudierons ensuite la représentabilité de QSect f en fonction de celle de p, ce qui est une façon de combiner les résultats 2.3 et 2.5. Nous introduirons aussi un certain sous-champ ouvert des quasi-sections quasi-lisses.

Nous commencerons par le et-champ dérivé des carrés commutatifs, noté Car, et défini de la façon suivante. On note la catégorie classifiant les carrés commutatifs

:= ∆ 1 × ∆ 1 , où ∆ 1 est la catégorie avec deux objets 0 et 1, et un unique morphisme 0 → 1 ∆ 1 = (0 → 1) = (0 → 1) × (0 → 1) .
Pour A ∈ sk -CAlg, on considère la catégorie de modèles dAf f ∼,et A , ainsi que la catégorie des diagrammes (dAf f ∼,et A ) . On définit Car(A) comme étant le nerf de la catégorie des équivalences dans (dAf f ∼,et A )

Car(A) := N (w(dAf f ∼,et A ) ). Lorsque A → B est un morphisme dans sk -CAlg, on dispose d'un foncteur d'oubli dAf f B -→ dAf f A , qui induit un foncteur de restriction (dAf f ∼,et A ) -→ (dAf f ∼,et B
) . Ce foncteur de restriction préserve les équivalences et induit donc un morphisme d'ensembles simpliciaux Car(A) -→ Car(B). L'association A → Car(A) définit de cette façon un préfaisceau simplicial Car sur dAf f k . On vérifie que Car est un et-champ dérivé (en utilisant par exemple les techniques présentées à la fin du §2.3 de [START_REF] Toën | Higher and derived stacks: a global overview, Algebraic geometry-Seattle[END_REF]).

De la même façon, on définit M or, le et-champ dérivé des morphismes, qui envoie A sur le nerf des équivalences dans (dAf

f ∼,et A ) ∆ 1 .
Fixons maintenant f : F ′ -→ F un morphisme dans dSt et (k), que nous prenons soins de relever en un morphisme dans dAf f ∼,et k (quitte à prendre des remplacements fibrants et cofibrants). L'inclusion en l'objet 1

{1} × id : ∆ 1 ֒→ = ∆ 1 × ∆ 1 induit un morphisme de restriction
Car -→ M or.

Ce morphisme envoie un carré commutatif

G ′ / / F ′ G / / F sur le morphisme F ′ → F . Le morphisme f définit un point global * -→ M or, et on pose Car /f := * × h M or Car.
Le et-champ dérivé Car est le champ des carrés commutatifs dont le morphisme but est fixé égal à f . On considère un sous-champ Car ′ m ⊂ Car: pour A ∈ sk -CAlg, Car ′ m (A) est la réunion des composantes connexes de Car(A) formée des diagrammes commutatifs dans dSt et (A)

G ′ / / F ′ G / / F avec G ≃ RSpec A et G ′ -→ RSpec A plat
et fini de rang m (c'est un sous-champ car être affine est une condition locale, ainsi qu'être plat et fini). On considère alors le carré homotopiquement cartésien suivant

QSect f,m / / Car /f Car ′ m / / Car. Définition 2.7 Soit f : F ′ -→ F comme ci-dessus. Le et-champ dérivé des quasi-sections de f de rang m est QSect f,m ∈ dSt et (k) défini ci-dessus.
Notons qu'il existe une projection naturelle QSect f,m -→ F , qui à un diagramme

G ′ / / F ′ G / / F
avec G ≃ RSpec A, associe le A-point x de F correspondant (nous laissons au lecteur le soin de définir cette projection de manière rigoureuse).

On combine maintenant les deux résultats de représentabilité Prop. 2.3 et 2.6 en l'énoncé suivant.

Proposition 2.8 Si f : F ′ -→ F est un morphisme (n, li)-représentable dans dSt et (k), avec n > 0. Alors la projection QSect f,m -→ F est (n, li)-géométrique.

Preuve:

On dispose d'un morphisme QSect f,m -→ F in m , qui à un diagramme commutatif G ′ / / F ′ RSpec A / / F
associe le champ affine G ′ , de la forme RSpec B, pour B une A-algèbre plate et finie de rang m (nous laissons le soin au lecteur de revenir sur les définition de QSect f,m et F in m afin de définir proprement ce morphisme

QSect f,m → F in m dans dSt et (k)). Si l'on se fixe A → B plate et finie de rang m, on dispose d'un carré homotopiquement cartésien M ap /RSpec A (RSpec B, F ′ × L F RSpec A) / / QSect f,m RSpec A B / / F in m × h F.
La proposition 2.6, et l'hypothèse de représentabilité sur f , implique que M ap /RSpec A (RSpec B, F ′ × L F RSpec A) est (n, li)-représentable au-dessus de RSpec A. Ceci montre que le morphisme QSect f,m → F in m × h F est (n, li)-géométrique. Comme F in m est (1, li)-géométrique (prop. 2.3) il s'en suit que QSect f,m -→ F est (n, li)représentable (on utilise ici n > 0). 2

Nous aurons besoin d'un résultat un peu plus fin. Considérons le carré homotopiquement cartésien suivant

QSect str f,m / / QSect f,m F in str m / / F in m . Définition 2.9 Soit f : F ′ -→ F comme ci-dessus. Le et-champ dérivé des quasi-sections strictes de f de rang m est QSect str f,m ∈ dSt et (k) défini ci-dessus.
Proposition 2.10 Si f : F ′ -→ F est un morphisme (n, li)-représentable dans dSt et (k). Alors la projection naturelle QSect str f,m -→ F est (n, li)-géométrique.

Preuve: Au cours de la preuve de la proposition 2.8 nous avons vu que le morphisme QSect f,m -→ F in m × h F était (n, li)-représentable (ce point n'utilisait pas l'hypothèse n > 0). Il s'en suit par changement de bases que QSect str f,m -→ F in str m × h F est (n, li)-représentable. Comme F in str m est affine, on trouve que QSect str f,m -→ F est (n, li)-géométrique.

2

Pour terminer nous allons considérer un certain sous-champ QSect str,ql f,m ⊂ QSect str f,m , formée des quasi-sections quasi-lisses. Nous continuons avec un morphisme f : F ′ -→ F que nous supposons (n, li)-représentable. Soit A ∈ sk -CAlg, et soit q : RSpec A -→ QSect str f,m un morphisme correspondant à un carré commutatif

RSpec B u / / F ′ RSpec A / / F
Nous dirons que la quasi-section q est quasi-lisse (on pourrait aussi dire l.c.i.) si le complexe cotangent du morphisme u est parfait et d'amplitude contenue dans [-1, ∞[ (on rappelle que L u est la cofibre homotopique du morphisme L F,u → L B ). Nous noterons QSect str,ql f,m le sous-préfaisceau simplicial de QSect str f,m formé des quasi-sections qui sont quasi-lisses: pour A ∈ sk -CAlg, l'ensemble simplicial QSect str,ql f,m (A) est la réunion des composantes connexes de QSect str f,m (A) qui consistent est des carrés comme ci-dessus avec u quasi-lisse. [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Prop. 2.2.2.4] on voit qu'un tel morphisme est quasi-lisse si et seulement si π 0 (B) est une π 0 (A)-algèbre de présentation finie et si de plus L B/A est parfait et d'amplitude contenue dans [-1, 0]. On remarque que la notion de quasi-lissité est locale pour la topologie étale sur dAf f k , et s'étend donc de manière usuelle en une notion de morphismes entre et-champs dérivés (n, li)-géométriques (voir par exemple [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]§1.3.6]).

Pour démontrer la proposition on considère un carré commutatif

Y = RSpec B u / / F ′ X = RSpec A v / / F,
avec B une A-algèbre simpliciale plate et finie (de rang m). Il nous faut montrer que le lieu dans X au-dessus du quel le morphisme u est quasi-lisse est un ouvert U ⊂ X. Comme ceci est une assertion locale pour la topologie étale sur X, et que localement sur X et le morphisme u se factorise par un (n -1, li)-atlas de

F ′ × h F X, on se ramène au cas où F = X (et v = id) et F ′ = RSpec C est affine. On dipose donc d'un diagramme commutatif d'affines Y = RSpec B u / / Z = RSpec C v v m m m m m m m m m m m m X = RSpec A,
avec B plate et finie sur A et C une A-algèbre simpliciale plate et presque de présentation finie. On considère U ⊂ X le sous-objet de X qui pour A ′ ∈ sk -CAlg consiste en tous les morphismes A -→ A ′ tels que le morphisme induit 

C ⊗ L A A ′ -→ B ⊗ L A A ′ soit quasi-
π 0 (B) ≃ B ⊗ L A π 0 A π 0 (C) ≃ C ⊗ L A π 0 A, et donc L u ⊗ L B π 0 (B) ≃ L π0(u)
, où π 0 (u) : π 0 (C) -→ π 0 (B) est le morphisme induit. Comme les topologies de Zariski de A et de π 0 (A) coincident on voit qu'il suffit de montrer que le lieu dans le schéma Spec π 0 (A), au-dessus du quel π 0 (u) est quasi-lisse, est un ouvert Zariksi. En d'autres termes, nous avons ramené le problème au cas où A, B et C sont des k-algèbres commutatives non-simpliciales. En utilisant qu'un morphisme de présentation entre schémas affines est quasi-lisse si et seulement s'il est l.c.i. (voir ??), on voit que l'énoncé devient alors le fait bien connu suivant, dans le cadre des schémas affines (non-dérivés).

2. Chaque morphisme V i,m -→ F est (n + 1, li)-représentable et lisse.

Pour tout corps algébriquement clos L, le morphisme induit

i,m : V i,m (L) -→ F (L)
est surjectif sur les composantes connexes.

Montrer les propriétés (1) -(3) ci-dessus impliquera que F est (n, li)-géométrique: un (n + 1, li)-atlas pour V induisant un (n, li)-atlas pour F .

(1) Il suffit de montrer que les et-champs QSect / / F in str m , où f est la famille universelle des morphismes plats finis de rang m. On a vu que QSect str pi,m était affine, ainsi le et-champ dérivé QSect str pi,m est localement, pour la topologie plate sur F in str m , affine. On sait, d'après [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Prop. 1.3.2.8] que cela implique que QSect str pi,m est affine.

(2) Les morphismes V i,m -→ F sont (n + 1, li)-représentables, d'après (1) et car la diagonale de F est (n, li)représentable (et donc (n + 1, li)-représentable). Par changement de bases sur F on se ramène à montrer le lemme suivant.

Lemme 2.14 Soit f : F -→ X un morphisme (n + 1, li)-représentable plat et presque de présentation finie avec X affine. Le morphisme naturel QSect str,ql f,m -→ X est lisse.

Preuve du lemme: Nous utiliserons le critère [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Cor. 2.2.5.3]. On considère la factorisation naturelle QSect str,ql f,m p / / X × h F in str m q / / X, et les morphismes sur les tronqués associés t 0 (QSect str,ql f,m ) p / / t 0 (X) × t 0 (F in str m ) q / / t 0 (X).

Pour voir que t 0 (QSect str,ql f,m ) est localement de présentation finie sur t 0 (X), il suffit de voir que t 0 (F in str m ) est un schéma affine (non-dérivé) de présentation finie sur Spec k, et que p est localement de présentation finie. Le schéma t 0 (F in str m ) classifie les structures de k-algèbres commutatives sur k m , et est donc de présentation finie. Il reste à voir que p est un morphisme localement de présentation finie de et-champs non-dérivés.

Pour cela, soit Y un schéma affine et Y -→ t 0 (X) × t 0 (F in str m ) un morphisme correspondant à un morphisme Y → t 0 (X) et un morphisme Y ′ → Y libre de rang m. Le produit fibré homotopique 

t 0 (QSect str,ql f,m ) × h t0(X)×t0(F in str m ) t 0 (X) est un ouvert du et-champ (non-dérivé) M ap /Y (Y ′ , F × h t0(X) Y ),
L X× h F in m /X,pv / / L QSect str,ql f,m /X,v / / L QSect str,ql f,m /X× h F in m ,v .
Supponsons que le morphisme v corresponde à un diagramme commutatif

Y ′ u / / F Y / / X, avec Y ′ = RSpec B ′ plat et fini sur Y , et u quasi-lisse. Alors, on a L QSect str,ql f,m /X× h F in m ,v ≃ L M ap /Y (Y ′ ,F × h X Y ),u .
Tout comme pour la proposition 2.5 on voit qu'il existe un isomorphisme naturel

L M ap /Y (Y ′ ,F × h X Y ),u ≃ L F,u ⊗ L B (B ′ ) ∨ ∈ Ho(Sp(sB -M od)).
On a de même, L X× h F in str m /X,pv ≃ L F in m ,w ∈ Ho(Sp(sB -M od)), où w : Y -→ F in m est le morphisme induit, correspondant au morphisme fini et plat Y ′ → Y . Ainsi, d'après la proposition 2.5 L QSect str,ql f,m /X,v est la fibre homotopique, dans Ho(Sp(sB -M od)), du morphisme naturel 

L F,u ⊗ L B ′ (B ′ ) ∨ -→ L B ′ /B ⊗ L B ′ (B ′ ) ∨ , (induit par le morphisme L F,u -→ L B ′ /B induit
L) est non-vide pour un i et un m. Pour cela, soit V i un affine non-vide et V i -→ G i un morphisme lisse (pour un i fixé quelconque). Comme V i est plat sur Spec L, il s'agit d'un schéma affine non-dérivé Soit alors y ∈ V i un point Cohen-MacCauley de V i , et (f 1 , . . . , f r ) une suite régulière en y. La L-algèbre R := O Vi,y /(f 1 , . . . , f r ) est finie sur L, de dimension un entier m, et part définition le morphisme naturel Spec R -→ V i est l.c.i. Ces données fournissent une quasi-section quasi-lisse du morphisme V i -→ Spec L. Comme le morphisme V i -→ G i est lisse, l'image de cette quasi-section dans G i fournit un élément dans π 0 (QSec str,ql qi,m (L)), montrant ainsi que QSec str,ql qi,m (L) n'est pas vide.

Nous venons de voir que les assertions (1) -(3) étaient satisfaites, ce qui finit de démontrer le théorème 2.1.

Application à la comparaison entre cohomologies étales et plates

Pour un f ppf -champ dérivé, nous savons maintenant qu'être (n, pl)-géométrique et (n, li)-géométrique sont deux conditions équivalentes. Nous dirons alors simplement être n-géométrique. Nous dirons aussi être géométrique pour signifier être n-géométrique pour un entier n.

Rappelons que pour une catégorie de modèles M (ou plus généralement pour une sous-catégorie pleine d'une catégorie de modèles, stable par équivalence) on dispose d'une notion d'objet en groupoïdes de Segal X * dans M (voir [START_REF] Toën | Homotopical algebraic geometry I: Topos theory[END_REF]Def. 4.9.1]). Nous dirons qu'un objet en groupoïdes de Segal X * est un objet en groupes dans M si l'objet X 0 ∈ M est équivalent à l'objet final * . Nous appelerons alors τ -champ dérivé en groupes un objet en groupes X * dans la catégorie de modèles dAf f ∼,τ k , tel que chaque X n soit un τ -champ. Nous abuserons souvent du fait de désigner l'objet X * par son objet sous-jacent G := X 1 ∈ dAf f ∼,τ k . Pour un τ -champ dérivé en groupes G on dispose de son τ -champ dérivé classifiant K τ (G, 1) ∈ dSt τ (k) (voir [START_REF] Toën | Homotopical algebraic geometry I: Topos theory[END_REF]Def. 4.9.1]).

Par définition, un τ -champ dérivé en m-groupes est un objet en groupes dans la catégorie de (pseudo, voir [START_REF] Toën | Homotopical algebraic geometry I: Topos theory[END_REF]Def. 4.1.1]) modèles des τ -champs dérivés en (m -1)-groupes. Pour un tel objet G, son τ -champ dérivé classifiant K τ (G, 1) possède une structure induite de τ -champ dérivé en (m -1)-groupes. Par itération on obtient ainsi un τ -champ classifiant K τ (G, m). Définition 3.1 Soit X un τ -champ dérivé et G un τ -champ dérivé en m-groupes. La cohomologie de X à coefficients dans G est définie par

H m-i τ (X, G) := π i (M ap(X, K τ (G, m))).
Tout d'abord, K τ (G, m) ne possèdant aucune structure de groupe induite les H j τ (X, G) sont des groupes abéliens pour j ≤ m -2, H m-1 τ (X, G) est un groupe, et H m τ (X, G) est un ensemble pointé. On remarque que H j τ (X, G) n'est définie que pour j ≤ m, mais peut être non-nul pour j < 0. Enfin, lorsque G est un k-schéma en groupes (resp. en groupes abéliens) et X un k-schéma, les H j τ (X, G) coincident avec la cohomologie de X à coefficients dans G pour la topologie τ au sens usuel de la cohomologie des schémas.

Une conséquence du théorème 2.1 est le corollaire suivant. Il affirme en particulier que la cohomologie f ppf et étale, à coefficients dans un schéma en groupes plats de présentation fini, ne diffèrent essentiellement qu'en degré 1.

Corollaire 3.2 Soit G un f ppf -champ dérivé en m-groupes.

1. Si G est n-géométrique, plat et localement de présentation presque finie sur Spec k, alors K f ppf (G, m) est (n + m)-géométrique plat et de présentation preque finie sur Spec k. Si m > 0, alors K f ppf (G, m) est lisse sur Spec k.

2. Si G est géométrique et plat de présentation presque finie sur Spec k, alors le morphisme G -→ Spec k est quasi-lisse.

3. Si G est géométrique et lisse sur Spec k, alors pour tout k-schéma X, le morphisme naturel

H i et (X, G) -→ H i f ppf (X, G)
est bijectif pour tout i ≤ m.

4. Supposons que G soit un k-schémas en groupes abéliens (ou plus généralement un k-espace algébrique en groupes abéliens), plat et localement de présentation sur Spec k. Alors, pour tout k-schéma X il existe une suite exacte longue fonctorielle en X et en G

H i-2 et (X, H 1 f ppf (-, G)) / / H i et (X, G) / / H i f ppf (X, G) / / H i-1 et (X, H 1 f ppf (-, G)) / / H i+1 et (X, G),
où H 1 f ppf (-, G) est le faisceau, pour la topologie étale, associé au préfaisceau U → H 1 f ppf (U, G). 5. Supposons que G soit un k-schémas en groupes abéliens (ou plus généralement un k-espace algébrique en groupes abéliens), plat et localement de présentation sur Spec k. Alors, pour tout k-schéma X et toute classe

α ∈ H i f ppf (X, G), avec i > 1, il existe un recouvrement étale u : X ′ → X tel que u * (α) = 0. En particulier, si X est hensélien strict alors H i f ppf (X, G) = 0 pour tout i > 1.
Preuve: (1) Le f ppf -champ dérivé K f ppf (G, m) est, par des applications successives de [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Prop. 1.3.4.2], (m + n, pl)-géométrique, et donc (n + m)-géométrique. Pour tout m > 0 le point global naturel Spec k -→ K f ppf (G, m) est plat et localement de présentation presque finie. Ainsi, K f ppf (G, m) est localement pour la topologie f ppf lisse sur Spec k, ce qui d'après la proposition 1.2 implique qu'il est lisse sur Spec k.

(2) D'après le point précédent K f ppf (G, 1) est lisse. Le et-champ dérivé G, qui s'écrit aussi * × h K f ppf (G,1) * , est donc un produit fibré de et-champs dérivés lisses. Il est donc quasi-lisse.

(3) Le et-champ dérivé K et (G, m) est, par une utilisation répétée de [START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF]Prop. 1.3.4.2], (n + m, li)géométrique. Le lemme 2.2 (1) implique que pour et-champ X (et donc, en particulier, pour tout k-schéma X), le morphisme naturel

H i et (X, G) = [X, K et (G, i)] -→ [X, K f ppf (G, i)] = H i f ppf (X, G) est bijectif, pour tout i ≤ m.
(4) On considère K f ppf (G, 1). D'après le point (1) c'est un champ dérivé géométrique en m-groupes (pour tout m car G est abélien), lisse sur Spec k. Soit m un entier assez grand. Le et-champ dérivé K et (K f ppf (G, 1), m -1) est donc géométrique, et se trouve donc être un f ppf -champ (voir le lemme 2.2). On a donc K f ppf (G, m) ≃ K f ppf (K f ppf (G, 1), m -1) ≃ K et (K f ppf (G, 1), m -1).

Ainsi, les faisceaux d'homotopie, pour la topologie étale, du et-champ tronqué t 0 (K f ppf (G, m)) sont donnés par

π m (t 0 (K f ppf (G, m))) ≃ G π m-1 (t 0 (K f ppf (G, m))) ≃ H 1 f ppf (-, G) π m-1 (t 0 (K f ppf (G, m))) = 0 pour i < m-1.
Il existe donc une suite exacte de fibration de et-champs non-dérivés t 0 (K et (G, m)) -→ t 0 (K f ppf (G, m)) -→ t 0 (K et (H 1 f ppf (-, G), m -1)).

Pour tout k-schéma, cette suite excate de fibration induit une suite exacte de fibration d'ensembles simpliciaux M ap(X, K et (G, m)) -→ M ap(X, K f ppf (G, m)) -→ M ap(X, K et (H 1 f ppf (-, G), m -1)), obtenue en remarquant que comme X est tronqué, on a M ap(X, F ) ≃ M ap(X, t 0 (F )) pour tout et-champ dérivé. La suite exacte longue en homotopie, associée à cette suite exacte de fibration, est la suite exacte cherchée.

(5) Se déduit, par exemple, du point (4). 2

Remarque 3.3 1. Comme nous l'avons vu au cours de la preuve, le point (3) du corollaire précédent est vrai pour tout et-champ dérivé X. De même, le point (4) est vrai pour tout et-champ tronqué X. 

H i f ppf (Spec A, G) -→ H i f ppf (Spec k, G 0 )
est surjectif pour i = 1, et un isomorphisme pour tout i > 1. Si le groupe G est de plus lisse sur Spec A, alors ce morphisme est aussi un isomorphisme pour i = 1 et surjectif pour i = 0.

Preuve: On travaille dans St(A), la catégorie des champs (disons f ppf ) sur Spec A. Commençons par montrer que les morphismes en question sont surjectifs. Pour cela, on considère le i-champ K f ppf (G, i), pour un i ≥ 1. On sait, d'après le corollaire précédent que c'est un champ géométrique et lisse sur Spec A. Ainsi, pour montrer que le morphisme induit

H i f ppf (Spec A, G) ≃ [Spec A, K f ppf (G, i)] -→ [Spec k, K f ppf (G, i)] ≃ H i f ppf (Spec k, G)
est surjectif il suffit de montrer le lemme plus général suivant. est aussi surjectif sur les composantes connexes. Soit maintenant x ∈ F (k), et choisissons x ∈ F ( A) un relevé. Comme A est excellent, le morphisme A -→ A est régulier, et il s'écrit donc comme une colimite filtrante de morphismes lisses A -→ B α . Comme A est hensélien, il existe, pour tout α, une rétraction r α : B α -→ A, au-dessus de k. De plus, comme F est localement de présentation finie sur Spec A, il existe un α assez grand tel que x se factorise par un point x α ∈ F (B α ) au-dessus de x. En composant avec la rétraction r α on trouve x ′ ∈ F (A), qui est un relèvement de x. Ceci termine la preuve du lemme. 2

Le lemme implique donc que

H i f ppf (Spec A, G) -→ H i f ppf (Spec k, G 0 )
est surjectif pour i > 0. Supposons maintenant que i > 1. Soit x, y ∈ H i f ppf (Spec A, G) avec une même image dans H i f ppf (Spec k, G 0 ). On représente x et y par deux morphismes

x, y : Spec A -→ K f ppf (G, i), et on considère alors le champ sur Spec A des équivalences entre x et y Eq(x, y) := Spec A × h K f ppf (G,i) Spec A.

Le champ Eq(x, y) est un champ géométrique sur Spec A. Il est de plus localement équivalent, pour la topologie f ppf , à K f ppf (G, i -1). Comme i > 1, le champ K f ppf (G, i -1) est lisse, ce qui montre que Eq(x, y) est un champ géométrique et lisse sur Spec A. De plus, par hypothèse Eq(x, y)(k) est non vide, et le lemme 3.5 implique alors que Eq(x, y)(A) est aussi non vide. En d'autres termes les deux morphismes

x, y : Spec A -→ K f ppf (G, i) sont égaux dans la catégorie homotopique des champs, et donc x = y dans H i f ppf (Spec A, G). Pour terminer, le même argument que précédemment montre que H 1 f ppf (Spec A, G) -→ H 1 f ppf (Spec k, G 0 ) est injectif lorsque G est lisse (car on peut l'appliquer au cas i = 1).

2

  Dans cette section nous définissons des et-champs dérivés F in m et F in str m , classifiant les schémas dérivés affines et de longueur finie fixée m. L'objet F in str m est une version rigidifiée de F in m , de sorte que F in str m soit affine et qu'il existe un morphisme naturel F in str m -→ F in m qui soit un Gl m -torseur. Cela implique en particulier que F in m est un et-champ dérivé (1, li)-géométrique. Pour commencer, nous dirons qu'un morphisme A -→ B dans sk -CAlg est fini et plat si le A-module B est projectif de type fini au sens de [HAGII, §1.2.4]. Rappelons que cela signifie que B est isomorphe, dans Ho(sB -M od) (la catégorie homotopique des B-modules simpliciaux), à un rétracte d'un A-module de la forme A m , pour un certain entier m. En particulier, si K est un corps et A -→ K un morphisme, B K := B ⊗ L A K est isomorphe, dans Ho(sK -M od) à un K-espace vectoriel de dimension finie. Nous dirons alors que A -→ B, plat fini, est de rang m si pour tout corps K et tout morphisme A -→ K on a dim K (B ⊗ L A K) = m. Par définition, F in m est le foncteur qui associe à A ∈ sk -CAlg le nerf de la catégorie des équivalences entre A-algèbres plates, finies et de rang m. La construction précise de ce foncteur utilise, par exemple, la notion générale de préfaisceaux de Quillen (voir [HAGII, App. B], ou aussi la fin du §2.3 de [To1]). Concrètement le foncteur F in m : sk -CAlg -→ SEns se construit de la façon suivante. Pour A ∈ sk -CAlg on considère sA -CAlg f in,m,cof , la catégorie dont les objets sont les cofibrations de k-algèbres simpliciales A -→ B, avec B plat et fini, de rang m. Les morphismes dans sA -CAlg f in,m,cof sont les diagrammes commutatifs B f / / B ′ A, dd d d d d d d O O avec f une équivalence faible. Si l'on a A -→ A ′ , un morphisme dans sk -CAlg, on dispose d'un foncteur de changement de bases

  ) et (4) sont satisfaites pour F in str m . Comme F in str m est la fibre homotopique du morphisme F in m -→ V ect m , et que le champ dérivé V ect m vérifie ces conditions (car il est (1, li)-géométrique), il nous suffit de montrer que F in m vérifie les conditions (2), (3) et (4) du lemme 2.4.(2) Montrer que le diagonale du et-champ dérivé F in m est 0-représentable est équivalent au fait suivant: soient A ∈ sk -CAlg, et B, B ′ deux A-algèbres simpliciales, cofibrantes et libres (à équivalence près) de rang m comme Amodules. Alors le et-champ dérivé Eq(B, B ′ ) sur RSpec A, qui envoie une A-algèbre commutative A ′ sur l'ensemble simplicial Eq(B ⊗ A A ′ , B ′ ⊗ A A ′ ), des équivalences de A ′ -algèbres commutatives, est affine. Pour cela on considère le et-champ dérivé Hom(B, B ′ ), de tous les morphismes entre B et B ′ , et on commence par remarquer qu'il est affine. En écrivant B comme une colimite homotopique de A-algèbres simpliciales libres on se ramène au cas où B est une A-algèbre commutative libre sur un ensemble I (car les schémas dérivés affines sont stables par limites homotopiques). Dans ce cas on aHom(B, B ′ ) ≃ RSpec Sym A (⊕ I (B ′ ) ∨ ), où (B ′ ) ∨ estle A-module simplicial dual de B. On remarque ensuite que Eq(B, B ′ ) est un ouvert Zariski de Hom(B, B ′ ). De plus, cet ouvert entre dans un carré homotopiquement cartésien Eq(B, B ′ ) / / Hom(B, B ′ ) Gl m / / M m , où M m est le schéma affine des matrices m × m, et le morphisme Hom(B, B ′ ) -→ M m est obtenu en choisissant des isomorphismes dans Ho(sA -M od) de B et B ′ avec A m . Ceci termine la preuve que la diagonale de F est 0-représentable. (3) En utilisant le point (2), et le fait qu'un champ dérivé affine vérifie les conditions (3) et (4), on remarque que le morphisme naturel F (A) -→ Holim k F (A ≤k ) est un monomorphisme (i.e. est injectif sur les π 0 et un isomorphisme sur tous les π i pour i > 0). Il reste donc à voir que ce morphisme est surjectif sur les composantes connexes. Il est facile de voir qu'il existe une bijection entre π 0 (Holim k F (A ≤k )), et l'ensemble des classes d'isomorphismes d'objets dans Holim k Ho(sA ≤k -CAlg f in,m,cof ). Ainsi, un élément de π 0 (Holim k F (A ≤k )) se représente par un système d'objets B k ∈ sA ≤k -CAlg f in,m,cof , et des équivalences B k+1 ⊗ A ≤k+1 A ≤k -→ B k , de A ≤k -algèbres simpliciales commutatives. A un tel système on associe B := Holim k B k ∈ Ho(sA -CAlg).

Proposition 2. 5

 5 Soit A ∈ sk -CAlg, et u : RSpec A -→ F in m un morphisme de champs dérivés correspondant à une A-algèbre commutative B projective et de rang m comme A-module. Notons B ∨ := RHom sA-M od (B, A) le A-module dual de B, muni de sa structure de B-module naturelle. Alors, il existe un isomorphisme naturel dans Ho(Sp(sA -M od))

p

  : G = RSpec B -→ H = RSpec A correspond à une A-algèbre commutative B, libre et de rang fini comme A-module. Les catégories dSt et (k/G) et dSt et (k/H) sont alors respectivement équivalentes à dSt et (B) et dSt et (A), des champs pour la topologie étales sur dAf f B := (B -CAlg) op et dAf f A := (A -CAlg) op . Le foncteur p * est alors donné par la formule

  aux limites homotopiques. Comme le foncteur d'oubli B -CAlg -→ sB -M od reflète les limites homotopiques il suffit de voir que le foncteur -⊗ L A B : Ho(sA -M od) -→ Ho(sB -M od) commute aux limites homotopiques. Mais, comme B ≃ A m comme A-module, ce dernier foncteur est isomorphe à M → M m , et commute donc aux limites homotopiques.

  Proposition 2.11 Soit f : F ′ -→ F un morphisme (n, li)-représentable plat et presque de présentation finie. Le morphisme d'inclusion QSect str,ql f,m -→ QSect str f,m est une immerison de Zariski ouverte. Preuve: Un morphisme A -→ B dans sk -CAlg est dit quasi-lisse s'il est homotopiquement de présentation finie et si de plus son complexe cotangent L B/A est homotopiquement de présentation finie dans sB -M od (on dit aussi parfait, tout au moins lorsque l'on considère L B/A comme un B-module stable, voir [HAGII, §1.2.11]), et d'amplitude contenue dans [-1, 0]. Reppelons que cette dernière condition signifie que pour tout B-module connexe et simplement connexe M on a [L B/A , M ] = 0. En utilisant

  lisse. On doit montrer que U est un ouvert Zariski de X. Pour cela, on utilise le lemme suivant. Lemme 2.12 Soit A ∈ sk -CAlg et M ∈ Ho(sA -M od). Alors M est parfait d'amplitude contenue dans [a, 0] si et seulement si M ⊗ L A π 0 (A) est parfait et d'amplitude contenue dans [a, 0] en tant que π 0 (A)-module simplicial. Preuve: Le nécessité se déduit du fait qu'être parfait d'amplitude donnée est une propriété stable par changement de bases. Pour la suffisance on procède par récurence sur l'amplitude. Pour a = 0 c'est l'énoncé [HAGII, Lem. 2.2.2.2]. Dire que M ⊗ L A π 0 (A) est parfait d'amplitude contenue dans [a, 0] équivaut à dire qu'il existe un morphisme p : π 0 (A) n -→ M ⊗ L A π 0 (A) dont la cofibre homotopique est parfaite et d'amplitude contenue dans [a, -1]. Le morphisme p se relève de façon unique en un morphisme p ′ : A n -→ M dont la cofibre est un A-module simplicial N tel que N ⊗ L A π 0 (A) est parfait et d'amplitude contenue dans [a, -1]. Par récurrence N est donc parfait et d'amplitude contenue dans [a, -1]. La suite exacte de cofibrations A n / / M / / N implique donc que M est parfait et d'amplitude contenue dans [a, 0]. 2 Revenons à notre diagramme commutatif Y = RSpec B u / / Z = RSpec C v v m m m m m m m m m m m m X = RSpec A. Le lemme précédent implique que u est quasi-lisse si et seulement si L u ⊗ L B π 0 (B) est parfait d'amplitude dans [-1, 0]. Comme B et C sont plates sur A on a

j

  Y j -→ QSect str pi,m un (n -1, li)-atlas, en supposant que n > 0. Le morphisme composé j Y j -→ QSect str pi,mest alors un (n -1, pl)-atlas, ce qui par l'hypothèse de récurrence implique que QSect str pi,m est (n, li)-géométrique si n > 0. Il faut ici prendre garde au cas n = 0, qui doit se traiter de manière indépendante. Dans ce cas on considère le diagramme homotopiquement cartésien suivant

  des Y -morphismes de Y ′ vers F (correspondant au sous-champ des morphismes quasi-lisses). Au cours de la preuve de la proposition 2.8 nous avons vu qu'un(n, li)-atlas de M ap /Y (Y ′ , F × h t0(X) Y ) était donné par M ap /Y (Y ′ , t 0 (U )), où U est un (n,li)-atlas de F . Ainsi, la locale présentabilité du morphisme p ci-dessus se déduit du fait que pour tout schéma affine U → Y , le schéma affine des morphismes M ap /Y (Y ′ , U ) est localement de présentation finie sur Y . Nous venons donc de voir que t 0 (QSect str,ql f,m ) -→ t 0 (X) est localement de présentation finie. Il reste à montrer que les complexes cotangents du morphisme QSect str,ql f,m -→ X sont parfaits et d'amplitude contenue dans [0, ∞[. Pour cela, on utilise la factorisation QSect str,ql f,m p / / X × h F in m q / / X. Ainsi, pour tout B ∈ sk -CAlg, Y := RSpec B, et tout morphisme v : Y → QSect str,ql f,m , on dispose d'un triangle distingué de B-modules stables

2.

  Le point (4) peut aussi s'exprimer sous la forme R i f * (G) = 0, pour tout i > 1, et tout schéma en groupes plats localement de présentation finie G, et où f :Af f ∼,f ppf k -→ Af f ∼,etk est le morphisme géométrique de passage de la topologie f ppf à la topologie étale. Pour terminer, signalons aussi le corollaire suivant. Corollaire 3.4 Soit A un anneau local hensélien de corps résiduel k. Supposons que A soit un anneau excellent. Soit G un espace algébrique en groupes abéliens, plat et localement de présentation finie sur Spec A, de fibre spéciale G 0 := G ⊗ A k. Alors, le morphisme de restriction

Lemme 3. 5

 5 Soit F un (i-)champ géométrique et lisse sur Spec A. Alors le morphisme naturelF (A) -→ F (k)induit une application surjective sur les ensembles de composantes connexes.Preuve du lemme: Soit A le complété de A le long de A → k, et fixons x ∈ F (k) un k-point. Comme le champ F est géométrique le morphisme naturelF ( A) -→ Holim k (F (A k ))est une équivalence (on note A k = A/m k , où m est l'idéal maximal de A). On commence par remarquer, par récurrence sur k, que le morphismeF (A k ) -→ F (A k-1 )est surjectif sur les composantes connexes. En effet, l'obstruction au fait que la fibre homotopique d'un élément x ∈ F (A k-1 ) soit non-vide vit dans le groupeExt 1 A k-1 (L, m k-1 /m k ), où L est le complexe cotangent du morphisme F -→ Spec A pris au point x : Spec A k-1 -→ F . Or, comme ce morphisme est lisse, L est d'amplitude positive, et donc Ext 1 A k-1 (L, m k-1 /m k ) = 0 (voir par exemple[START_REF] Toën | Homotopical algebraic geometry II: Geometric stacks and applications[END_REF] 1.4.2, 2.2.5]). Ceci montre que toutes les fibres homotopiques deF (A k ) -→ F (A k-1 )sont non vides, et donc que ce morphisme est surjectif sur les composantes connexes. En passant à la limite sur k, on trouve donc que F ( A) -→ F (k)

  1. Un champ dérivé F ∈ dSt τ (k) est (n, P)-géométrique s'il existe une famille {X i } i d'affines, et un épimorphisme de champs

	X i -→ F
	i
	tel que chaque morphisme X i -→ F soit un morphisme (n -1, P)-géométrique et dans P. Une telle donnée
	pour F sera appelée par la suite un (n, P)-atlas pour F .
	2. Un morphisme de champs dérivés f : F -→ G est (n, P)-représentable si pour tout affine X, et tout
	morphisme X -→ G, le champ dérivé F × h G X est (n, P)-géométrique.
	3. Un morphisme de champs dérivés f : F -→ G est (n, P)-représentable et dans P s'il est d'une part (n, P)-
	géométrique, et d'autre part si pour tout X -→ G avec X affine, il existe un (n -1, P)-atlas
	i

  Map /H (G, F ), où Map /H désigne le Hom interne de la catégorie dSt et (k/H) (voir[START_REF] Toën | Homotopical algebraic geometry I: Topos theory[END_REF] §3.6] pour l'existence des Hom internes). Le foncteur p * s'appelle la restriction des scalaires le long du morphisme p.L'adjonction (p * , p * ) peut aussi se réaliser par une adjonction de Quillen de la façon suivante. On représente p, à équivalence près, par une fibration p : G -→ H entre objets fibrants de dAf f ∼,et 'énoncé suivant est un cas particulier d'un critère de représentabilité pour la restriction des scalaires le long de morphismes propres et plats (voir ??) (la restriction aux morphismes finis simplifie sensiblement la preuve). Soit p : G -→ H un morphisme entre et-champs dérivés. On suppose que p est 0-géométrique, plat et fini: pour tout X = RSpec A -→ H, on a G × h H X ≃ RSpec B avec B une A-algèbre commutative projective et finie. Alors le foncteur p

	foncteur de changement de base	-× H G : dAf f ∼,et k	/H -→ dAf f ∼,et k	/G	k	. On remarque alors que le
	est de Quillen à gauche. L'adjonction induite sur les catégories homotopiques correspondantes est l'adjonction
	décrite ci-dessus (p Proposition 2.6					

Ce foncteur possède un adjoint à droite

p * : dSt et (k/G) -→ dSt et (k/H), qui à un objet F → G associe le et-champ dérivé des morphismes au-dessus de H p * (F ) := * , p * ). L* : dSt et (k/G) -→ dSt et (k/H) présèrve les champs dérivés (n, li)-représentables, pour tout n ≥ 0 (c'est à dire p * (F ) -→ H est (n, li)-représentable si F -→ G l'est).

Preuve: Tout d'abord, l'assertion est locale pour la topologie étale sur H et l'on peut donc supposer que G et H sont tous deux affines, et que le morphisme

  1, li)-atlas. Nous allons montrer, par récurrence sur n, que le morphisme induit Nous supposerons donc que p * préserve les (m, li)-atlas pour m ≥ n. Nous avons déjà vu que chacun des p * (U i ) était affine (cas n = 0). Commençons par voir que le morphisme g est un épimorphisme de champs dérivés pour la topologie étale, et plus généralement que le foncteur p * préserve les épimorphismes pour la topologie étale. Pour voir cela, soit G -→ G ′ un épimorphisme dans dSt et

g := p * (f ) : := i p * (U i ) -→ p * (F )

est un (n + 1, li)-atlas.

  str pi,m sont (n + 1, li)-géométriques, car les V i,m sont des ouverts des QSect str pi,m . On sait, d'après la proposition 2.10 que la projection QSect str pi,m -→ F est (n, li)-géométrique. Par construction, il existe un diagramme commutatif de et-champs dérivés QSect str pi,m est un morphisme plat et fini (il s'agit de l'image réciproque de l'objet universel F in str m -→ F in str m ). Comme QSect str pi,m et U i sont (n, li)-représentables au-dessus de F , il s'en suit que le morphisme u est aussi (n, li)-représentable. Ceci implique que QSect str pi,m est un et-champ dérivé (n, li)-géométrique. Soit Y j des affines et

	QSect str pi,m	u / / U i
	QSect str pi,m	/ / F,
	où QSect str pi,m -→	

  par u). Comme u est quasi-lisse cette fibre homotopique est parfaite et d'amplitude contenue dans [0, ∞[, en tant que B ′ -module. Mais comme B ′ est projective et de rang fini sur B le B-module L QSect str,ql

	f,m	/X,v est aussi parfait et d'amplitude contenue dans [0, ∞[.	2

(3) Soit x : Spec L -→ F un point géométrique de F , et notons

i q i : i G i -→ Spec L

le changement de base du (n + 1, pl)-atlas {U i } le long de x. Remarquons que chaque G i est plat sur Spec L, et donc est un et-champ non-dérivé (i.e. équivalent à son tronqué). Il nous suffit de montrer que QSec str,ql qi,m

Par la suite, l'expression champs fera toujours référence à la notion de champs supérieurs. Les champs en groupoïdes seront alors appelés des 1-champs.

Les conventions de ce travail diffèrent de celles de[HAGII], les objets affines dans[HAGII] étant (-1)-géométriques.

Lemme 2.13 Soit Y = Spec B u / / p Z = Spec C q v v n n n n n n n n n n n n X = Spec A, un diagramme commutatif de schémas affines, avec p plat et fini, et q plat et de présentation finie. Soit x ∈ X un point tel que le morphisme induit sur les fibres Y x -→ Z x soit de locale intersection complète. Alors, u est de locale intersection complète au-dessus d'un voisinage Zariski de p(x) ∈ X.

Preuve: Comme tout est de présentation finie au-dessus de A on se ramène, par un argument standard, au cas où tous anneaux en jeu sont noethériens (voir ??). Comme p est fini, et donc propre, il suffit de montrer que si x ∈ X est tel que u x : Y x -→ Z x soit l.c.i., il existe un voisinage ouvert V de Y x dans Y tel que u soit l.c.i. sur V . Le morphisme u x étant l.c.i., on peut trouver, localement sur Y x , une factorisation Soit donc F ∈ dSt n+1,pl f ppf (k). On sait que le morphisme diagonal F -→ F × h F est (n, pl)-représentable, et donc aussi (n, li)-représentable par récurrence. Soit {U i } une famille d'affines et

un (n + 1, pl)-atlas. Pour tout i, et tout entier m, on dispose du et-champ dérivé QSect str pi,m des quasi-sections strictes de de rang m du morphsme p i . On note V i,m ⊂ QSect str pi,m le sous-champ des quasi-sections quasi-lisses. D'après la proposition 1.2, le morphisme V i,m -→ F est (n + 1, li)-représentable, car Zariski ouvert dans un etchamp dérivé (n, li)-représentable au-dessus de F (le seul cas où il est nécessaire de passer de n à n + 1 est lorsque n = 0, l'ouvert V i,m n'étant pas forcément affine). On considère le morphisme de projection

Pour terminer la preuve du théorème 2.1 il nous suffit de montrer les trois assertions suivantes.

1. Chaque et-champ V i,m est (n + 1, li)-géométrique.