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Introduction

Dans ce travail nous comparons la théorie des fonctions sur l'espace des lacets dérivés d'un schéma de caractéristique nulle X, au sens de la géométrie algébrique dérivée (voir [To,), avec la théorie de de Rham de X. Cette comparaison est annoncée dans [Ben-Nad] ainsi que dans notre récent travail , et semble découler d'une comparaison plus générale, mais encore conjecturale, entre fonctions sur les espaces de lacets dérivés et homologie cyclique. Dans ce travail nous établirons cette comparaison avec la théorie de de Rham de manière directe, sans avoir à passer par l'homologie cyclique. Une conséquence remarquable de cette approche directe est de fournir de nouvelles preuves, et une nouvelle compréhension, des théorèmes Hochschild-Kostant-Rosenberg (HKR) pour les schémas (dans le style de [Bu-Fl, Ye, Sch]), dont on peut preuver des énoncés plus précis et valables dans des hypothèses un peu plus générales.

Soit k un anneau commutatif de caractéristique nulle et A une k-algèbre lisse sur k. Le schéma dérivé des lacets de X = Spec A est par définition LX := RM ap(S 1 , X), où S 1 := BZ est considéré comme un groupe simplicial et RM ap est le hom interne (dérivé) dans la catégorie de modèles de Quillen des champs dérivé sur k (voir To, pour plus de détails). Au niveau des anneaux de fonctions LX est le spectre de la k-algèbre commutative simpliciale S 1 ⊗ A, où l'on utilise ici l'enrichissement simplicial naturel de la catégorie des k-algèbres simpliciales commutatives: en degré n, S 1 ⊗ A est Z n A, où le produit tensoriel des Z n -copies de A est pris sur k. Ainsi, le problème qui consiste à comparer les fonctions sur LX et la théorie de de Rham de X se résume de manière purement algébrique à étudier les relations entre S 1 ⊗ A et l'algèbre de de Rham de A/k. C'est précisément cette comparaison qui va nous interesser dans cette article, plutot que les applications à la géométrie algébrique dérivée pour lesquelles nous renvoyons le lecteur interessé à [Ben-Nad, . Le résultat principal de ce travail affirme que la donnée de S 1 ⊗ A, muni de son action naturelle de S 1 , est équivalente, à homotopie près, à la donnée de l'algèbre de de Rham de A/k, munie de sa différentielle de de Rham.

Afin de donner un énoncé plus précis considérons DR(A) = Sym A (Ω 1 A/k [1]) l'algèbre de de Rham de A/k, pour laquelle Ω n A/k est placé en degré -n; ici Sym A est le foncteur qui à tout complexe de A-modules C associe l'algèbre différentielle graduée commutative libre sur C, i.e. Sym A (C) = ∧ A (C odd ) ⊗ A S A (C even ), où ∧ A est le foncteur algèbre extérieure sur A et S A le foncteur algèbre symétrique sur A, avec les différentielles naturelles. Muni donc de sa différentielle (nulle), DR(A) est une k-dg-algèbre commutative, une cdga pour faire court. De plus, la différentielle de de Rham muni cette cdga d'une structure additionelle, à savoir celle d'une ǫcdga, c'est à dire d'une opération de degré -1, ǫ : DR(A) -→ DR(A) [1], satisfaisant la règle de Liebniz (au sens gradué) par rapport à la multiplication dans DR(A) (voir §1 pour la définition précise de ǫcdga). Cette ǫcdga sera notée ǫ(A). D'autre part, on peut aussi former S 1 ⊗ A, la k-algèbre commutative simpliciale obtenue en tensorisant A par le groupe simplicial S 1 = BZ. L'objet S 1 ⊗ A est naturellement muni d'une action du groupe simplicial S 1 , qui opère sur lui-même par translations, et est donc un objet de S 1 -sk -CAlg, la catégorie des k-algèbres simpliciales commutatives S 1 -équivariantes. Notre théorème principal (voir 4.1) peut alors s'énoncer de la façon suivante.

Théorème 1.1 Soit k un anneau commutatif de caractéristique nulle. Il existe une équivalence, φ, de la théorie homotopique S 1 -sk -CAlg vers la théorie homotopique ǫcdga, qui est telle que pour tout k-algèbre commutative lisse A il existe un isomorphisme fonctoriel

ǫ(A) ≃ φ(S 1 ⊗ A).
La notion d'équivalence de théories homotopiques utilisée dans le théorème précédent sera pour nous une équivalence de dérivateurs au sens de Grothendieck (voir [Gr] ou [START_REF] Cisinski | Images directes cohomologiques dans les catégories de modéles[END_REF]§1], §1], [START_REF] Maltsiniotis | La K-théorie d'un dérivateur triangulé (suivi d'un appendice par B. Keller) dans[END_REF]§2]). Ainsi, le théorème 1.1 nous dit que, pour toute petite catégorie I, il existe une équivalence de catégories homotopiques de diagrammes Le deuxième résultat principal de ce travail est un corollaire important, et immédiat, du théorème 1.1. Il est une version generale et multiplicative du théorème HKR.

Corollaire 1.2 Soit k un anneau commutatif de caractéristique nulle et X un k-schéma semiséparé 1 . Alors, il existe un isomorphisme naturel dans la catégorie homotopique des faisceaux de O X -dg-algèbres commutatives [Il]. En particulier, si X est lisse sur k on a un isomorphisme naturel

Sym O X (L X/k [1]) ≃ O X ⊗ L O X ⊗ L k O X O X , où L X/k est le complexe cotangent de
Sym O X (Ω 1 X/k [1]) ≃ O X ⊗ L O X ⊗ L k O X O X .
1 Rappelons que un schéma est dit semi-séparé s'il possède une base pour sa topologie qui soit fermé par intersection finie et formé des ouverts affines.

Il faut noter ici que ce corollaire redonne les résultats de [Ye] et [Sch]. Il les améliore aussi car nos isomorphismes sont multiplicatifs. Dans le cas des espaces complexes, le resultats du Corollaire 1.2 ont eté obtenus dans [Bu-Fl] où les auteurs affirment que leurs techniques permettons aussi de prouver les analogues pour les schémas, i.e. l'enoncé du Cor. 1.2. Il n'est d'ailleurs pas tout à fait clair que les isomorphismes de 1.2 soient les mêmes que ceux de [Sch, Ye, Bu-Fl].

Pour finir cette introduction, quelques mots concernant la stratégie de la preuve du théorème 1.1 et les difficultés que nous avons rencontrées. Il faut en fait remarquer que le point crucial est la construction de l'équivalence φ. En effet, par définition, S 1 ⊗A est la k-algèbre simpliciale S 1équivariante libre sur A. De même, nous montrons (voir proposition 2.4) que ǫ(A) est la ǫcdga libre sur A. Ainsi, une fois l'équivalence φ construite on déduit l'existence d'un isomorphisme naturel ǫ(A) ≃ φ(S 1 ⊗ A) formellement, par propriété universelle de ces deux objets: il suffit en effet que φ soit compatible avec certains foncteurs qui oublient d'une part l'action de S 1 et d'autre part la ǫ-structure. La construction d'une telle équivalence φ est donnée dans notre §2 et se révèle plus compliquée que nous le croyions d'abord. En effet, il se trouve que nous n'avons pas trouvé d'approches directes reliant les théories homotopiques S 1 -sk -CAlg et ǫcdga, et notre construction de φ passe par une chaine relativement longue d'équivalences de Quillen entre plusieurs catégories de modèles auxiliaires. C'est pour cette raison que nous avons choisi de formuler cette construction dans le contexte des dérivateurs de Grothendieck, qui est relativement efficace afin de ne pas avoir à trainer d'interminables chaines d'équivalences fonctorielles. Il est possible cependant, qu'un approche plus directe existe. A ce sujet, nous faisons pourtant remarquer qu'il existe d'une part une équivalence de Quillen N : sk -CAlg -→ cdga, entre k-algèbres simpliciales commutatives et cdga (en degrés non positifs), induite par le foncteur de normalisation de la correspondance de Dold-Kan (voir [Sc-Sh]). D'autre part, il existe aussi une équivalence de Quillen N :

S 1 -sk -M od -→ k[ǫ] -dg -mod, entre les k-modules simplici- aux S 1 -équivariants et les k[ǫ]-dg-modules (ici k[ǫ] = H * (S 1 , k))
, qui elle aussi est induite par normalisation. Cependant, ces deux équivalences de Quillen ne semblent pas se promouvoir en une équivalence de Quillen N : S 1 -sk -CAlg -→ ǫcdga, induite par le simple foncteur de normalisation. L'obstruction à l'existence d'un tel foncteur de normalisation provient du fait que N : S 1 -sk -M od -→ k[ǫ]-dg -mod n'est pas compatible avec les structures monoïdales de ces deux catégories (qui sont induites par les produits tensoriels sur k et utilisent donc des structures de type co-algèbre pour être définies), même pas en un sens lax de [Sc-Sh]. Le mophisme shuffle N (E) ⊗ N (F ) -→ N (E ⊗ F ) n'est simplement pas un morphisme de k[ǫ]-dg-modules. Ainsi, pour A ∈ S 1 -sk -CAlg, N (A) possède bien une structure de cdga d'une part, et une structure de k[ǫ]-dg-module d'autre part, mais ces deux structures ne vérifient pas les conditions de compatibilité pour faire de N (A) une ǫcdga. Le fait que l'équivalence de dérivateurs φ qui nous construisons ne peut pas être une conséquence trop directe de faits "bien connus" est assuré, d'une certaine façon, par ses corollaires, quant a leurs presque immediates, à savoir la version fonctorielle et multiplicative des isomorphismes HKR (voir 4.2). Ces isomorphismes, même dans leurs versions non multiplicatives, sont certes bien connus (voir par exemple [Lo, Sch, Ye]), mais n'ont pas du tout la réputation de faits triviaux, particulièrement pour les versions globales valables sur des schémas suffisamment généraux. La nouveauté dans notre approche est de ne pas oublier que le complexe de Hochschild (d'une k-algèbre commutative ou d'un k-schéma) est muni de deux structures additionnelles, une multiplication et une action de S 1 (l'utilisation de la structure multiplicative sur le complexe de Hochschild est clairement présente dans [Bu-Fl, Sch] mais pas l'action de S 1 ). C'est l'existence de ces deux structures qui permet le lien naturel avec le théorie de de Rham, et cela de manière essentiellement unique car ce lien est déduit de propriétés universelles.

Remerciements. Nous remercions M. Hoyois qui a attiré notre attention sur le fait que la comparaison, annoncée dans [Ben-Nad, To-Ve3, To-Ve4], entre fonctions sur les espaces de lacets dérivés et homologie cyclique était probablement plus subtile que nous le prétendions dans ces papiers. Ce travail montre que l'on peut obtenir une comparaison avec la théorie de de Rham sans passer par l'homologie cyclique, ce qui suffit pour les besoins de (et aussi visiblement de [Ben-Nad]).

Notations. Tout au long de cet article k désigne un anneau commutatif de caractéristique nulle. Les complexes de k-modules seront cohomologiquement indicés et tous concentrés en degrés non positifs par convention, i.e de la forme

C • = (• • • → C -1 → C 0 → 0).
Le décalage sera C[k] n := C k+n . La catégorie des complexes de k-modules, concentrés en degrés négatifs, sera notée C(k). Pour une k-dg-algèbre B (concentrée en degrés négatifs d'après nos conventions) on note Bdgmod la catégorie des B-dg-modules à gauche (de même, concentrés en degrés négatifs). Cette catégorie est munie d'une structure de catégorie de modèles pour laquelle les équivalences sont les quasi-isomorphismes et les fibrations sont les morphismes surjectifs en degrés strictement négatifs. Nous noterons aussi cdga la catégorie des k-dg-algèbres commutatives (toujours en degrés négatifs), que nous munirons de sa structure de modèles standard pour la quelle les équivalences sont les quasi-isomorphismes et les fibrations sont les morphismes surjectifs en degrés strictement négatifs (voir [Bo-Gu, Hi]). Nous utiliserons implicitement que le foncteur de normalisation induit une équivalence entre la catégorie homotopique des k-algèbres simpliciales commutatives et la catégorie homotopique de cdga. Les techniques de [Sc-Sh] impliquent que le foncteur de normalisation est alors l'adjoint à gauche d'une équivalence de Quillen.

Nous noterons S 1 := BZ l'ensemble simplicial classifiant du groupe abélien Z, que nous considérerons toujours comme une groupe abélien simplicial. En tant que groupe simplicial, S 1 peut opérer sur tout objet dans une catégorie simplicialement enrichie, et en particulier dans une catégorie de modèles simpliciales M . Les objets S 1 -équivariants dans une telle catégorie de modèles M forment une catégorie notés S 1 -M .

Nous utiliserons le langage, et des notions de bases, de la théorie de dérivateurs de Grothendieck (voir [Gr] ou [START_REF] Cisinski | Images directes cohomologiques dans les catégories de modéles[END_REF]§1], [Ci-Ne, §1], [START_REF] Maltsiniotis | La K-théorie d'un dérivateur triangulé (suivi d'un appendice par B. Keller) dans[END_REF]§2]). Le dérivateur associé à une catégorie de modèles M sera noté D(M ). Pour une sous-catégorie pleine M 0 d'une catégorie de modèles M , stable par équivalences, nous noterons D(M 0 ) le sous-dérivateur plein de D(M ) formé des objets de M 0 . Toute adjonction de Quillen

g : M -→ N M ←-N : f induit une adjonction dans la 2-catégorie des dérivateurs Lg : D(M ) -→ D(N ) D(M ) ←-D(N ) : Rf.
L'expression diagramme 2-commutatif de dérivateurs fera référence à la donné d'un diagramme de 1-morphismes munis de toutes les 2-isomorphismes de cohérences nécessaires. Ainsi, un carré 2-commutatif est la donnée non pas de quatre 1-morphismes, mais bien de quatre 1-morphismes et un 2-isomorphisme entre les deux compositions possibles. Finalement, nous utiliserons aussi la notion de S-catégorie pour laquelle nous renvoyons à [Be] (et à §1] pour des propriétés plus avancées). c'est à dire que ǫ est une dérivation de degré -1 de A, au sens dg.

Nous allons maintenant munir ǫcdga d'une structure de catégorie de modèles. Pour cela, nous considérons le foncteur d'oubli 

ǫ -cdga -→ C(k),
∂(ab) = (-1) deg(a).deg(b) b∂(a) + a∂(b), ∂(a + b) = ∂(a) + ∂(b), ∂(λ) = 0, λ ∈ k.

Remarquons que Ω 1

A est encore concentré en degrés non positifs. On note DR(A) la A-dg-algèbre commutative libre sur Ω

1 A [1] DR(A) := Sym A (Ω 1 A [1]) := ⊕ n (Ω 1 A [1]) ⊗ A n /Σ n où l'action du groupe symétrique Σ n est engendré par m i ⊗ m j → -(-1) i+j m j ⊗ m i (avec deg(m i ) = i et deg(m j ) = j).
On munit enfin cette cdga d'une ǫ-structure en décrétant que en degré zero

ǫ 0 : A ⊂ DR(A) -→ Ω 1 A ⊂ DR(A)[-1] est la dérivation universelle a → ∂(a)
, et en prolongeant par multiplicativité. La k-dg-algèbre commutative, munie de ǫ, est un objet de ǫcdga noté ǫ(A). De plus, la cdga sous-jacente à ǫ(A) est DR(A), et le morphisme naturel A -→ DR(A) induit une bijection

Hom ǫ-cdga (ǫ(A), B) -→ Hom cdga (DR(A), B) -→ Hom cdga (A, B), (1) 
pour toute ǫ-cdga B. En fait, si f ∈ Hom cdga (A, B), on peut regarder B comme A-cdga et donc comme A-dg-module; en vertu des isomorphismes

Hom A-cdga (DR(A), B) ≃ Hom A-M od (Ω 1 A [1], B) ≃ Der k (A, B[-1]), on peut associér à f l'élément F de Hom A-cdga (DR(A), B) qui corresponde à la derivation A → B[-1] : a → ǫ B (f (a)
). Il est facile de verifiér que F est aussi un morphisme dans ǫcdga; cela fournit l'inverse de (1). Ainsi, A → ǫ(A) est un adjoint à gauche du foncteur d'oubli.

Proposition 2.3 Les notions ci-dessus de fibrations et d'équivalences munissent ǫcdga d'une structure de catégorie de modèles. De plus, le foncteur d'oubli ǫcdga -→ cdga est de Quillen à droite.

Preuve -Il s'agit de relever la structure de modèles sur cdga le long du foncteur d'oubli ǫcdga -→ cdga. Notons I 0 et J 0 des ensembles générateurs de cofibrations et cofibrations triviales dans cdga. On définit I := ǫ(I 0 ), l'image de I 0 par le foncteur ǫ. De même, on pose J := ǫ(J 0 ). On applique alors le théorème 2.1.19 de [Ho]. Comme le foncteur d'oubli ǫcdga -→ cdga reflète les limites, les colimites, les fibrations et les équivalences, on voit que pour vérifier les conditions de ce théorème il suffit de montrer que J ⊂ W . D'après la construction explicite du foncteur ǫ que nous avons donné précédemment on voit qu'il suffit de montrer que A → Ω 1 A (en tant que foncteur cdga -→ C(k)) transforme cofibrations triviales en quasi-isomorphismes. Pour cela il suffit de montrer que pour A -→ B une cofibration triviale de cdga, le morphisme induit

Ω 1 A ⊗ A B -→ Ω 1 B
est une cofibration triviale de B-dg-modules. Pour cela, donnons nous un diagramme commutatif de B-dg-modules 

Ω 1 A ⊗ A B / / M Ω 1 B / / N,
DR(A) = Sym A (Ω 1 A [1]) ≃ ⊕ n Ω n A [n]
sa dg-algèbre de de Rham (avec différentielle nulle). La différentielle de de Rham munit DR(A) d'une structure de ǫcdga qui n'est autre que ǫ(A). En d'autres termes, DR(A) muni de sa différentielle de de Rham est la ǫ-dg-algèbre commutative libre engendrée par A. De plus, si A est cofibrante en tant qu'objet de cdga (e.g. A est une k-algèbre de polynômes) alors ǫ(A) est cofibrante dans ǫcdga.

Proposition 2.4 Notons Lǫ : Ho(cdga) -→ Ho(ǫcdga) le foncteur dérivé à gauche de ǫ. Si A est une k-algèbre commutative lisse alors le morphisme naturel Lǫ(A) -→ ǫ(A)

est un isomorphisme dans Ho(ǫcdga).

Preuve -Soit QA -→ A un modèle cofibrant pour A dans cdga. Le morphisme en question est représenté par

Sym QA (Ω 1 QA [1]) -→ Sym A (Ω 1 A [1]
). Ainsi, ce morphisme est un quasi-isomorphisme si et seulement si le morphisme induit

Ω 1 QA -→ Ω 1
A est un quasi-isomorphisme de complexes. Or, Ω 1 QA est un modèle pour le complexe cotangent L A de A, comme cela se voit en utilisant l'équivalence de Quillen entre cdga et k-algèbres simpliciales commutatives, ainsi que la caractérisation du complexe cotangent en termes de dérivations (voir par exemple ). Le morphisme ci-dessus est alors isomorphe, dans Ho(C(k)), au morphisme naturel L A -→ Ω 1 A . Or, comme A est lisse ce morphisme est bien un quasi-isomorphisme. 2

3 Algèbres simpliciales S 1 -équivariantes et ǫ-dg-algèbres

Notons sk -CAlg la catégorie des k-algèbres commutatives simpliciales, et considérons S 1sk -CAlg la catégorie des objets de sk -CAlg avec une action du groupe simplicial S 1 . La catégorie sk -CAlg est munie d'une structure de modèles pour la quelle les fibrations et les équivalences sont définies sur les ensembles simpliciaux sous-jacents. Comme sk -CAlg est une catégorie de modèles simpliciale et engendrée par cofibration la catégorie S 1 -sk -CAlg est elle-même munie d'une structure projective où les fibrations et équivalences sont définis dans sk -CAlg.

Dans cette section nous allons construire une équivalence de dérivateurs

φ : D(S 1 -sk -CAlg) -→ D(ǫ -cdga)
ainsi qu'un 2-isomorphisme h faisant commuter le diagramme suivant (en tant que diagramme dans la 2-catégorie des dérivateurs)

D(S 1 -sk -CAlg) φ / / D(ǫ -cdga) D(sk -CAlg) N / / D(cdga).
Dans ce diagramme les morphismes verticaux sont induits par les foncteurs d'oubli

S 1 -sk -CAlg -→ sk -CAlg ǫ -cdga -→ cdga,
et le foncteur N par le foncteur de normalisation, adjoint à droite d'une équivalence de Quillen (voir [Sc-Sh])

N : sk -CAlg -→ cdga.
Première étape -On considère le groupe simplicial BS 1 comme une S-catégorie avec une unique objet * , dont le monoïde des endomorphismes est S 1 . On choisit alors une catégorie C, et un diagramme de S-catégories [I don't remember now why I understood that such a choice was possible. Can you give a small argument here?]

C i / / T BS 1 , j o o
tel que, d'une part j soit une équivalence de S-catégories, et i fasse de T une localisation de C le long de tous ses morphismes (au sens par exemple de [To-Ve4, §1.2]). On pourra, par exemple, prendre pour C la catégorie cyclique Λ de Connes ([Lo, §6.1]) dont le nerve est un espace K(Z, 2). On sait alors qu'il existe une chaine d'adjonctions de Quillen

sk -CAlg C ←→ sk -CAlg T ←→ sk -CAlg BS 1 = S 1 -sk -CAlg.
Ces adjunctions induisent des équivalences de dérivateurs (voir par exemple §2.3.2] ou encore §1.2])

D(S 1 -sk -CAlg) j * / / D(sk -CAlg T ) D loc (sk -CAlg C ), i * o o
où D loc (sk -CAlg C ) désigne le sous-dérivateur plein de D(sk -CAlg C ) formé des diagrammes C -→ sk -CAlg qui envoie tous les morphismes de C sur des équivalences. Fixons-nous un objet x ∈ C, alors le foncteurs ci-dessus commutent clairement à l'évaluation en x et au point de base de BS 1 , et on dispose ainsi de deux carrés 2-commutatifs

D(S 1 -sk -CAlg) ) ) S S S S S S S S S S S S S S S j * / / D(sk -CAlg T ) ev i(x) D loc (sk -CAlg C ) i * o o evx u u k k k k k k k k k k k k k k D(SEns),
où les morphismes horizontaux sont des équivalences, et le morphisme vertical de gauche est le foncteur d'oubli. On construit ainsi un diagramme 2-commutatif de dérivateurs

D(S 1 -sk -CAlg) φ 1 / / ( ( R R R R R R R R R R R R R D loc (sk -CAlg C ) evx v v m m m m m m m m m m m m m D(SEns).
Comme BS 1 est simplement connexe, il n'est pas difficile de vérifier que ce diagramme ne dépend pas, à équivalence près, du choix du point x ∈ C.

Seconde étape -Considérons le foncteur de normalisation

N : sk -CAlg -→ cdga
que l'on sait être l'adjoint à droite d'une équivalence de Quillen d'aprés [Sc-Sh]. Il induit donc un nouvel adjoint à droite d'une équivalence Quillen

N : sk -CAlg C -→ cdga C ,
qui induit, à sont tour, une équivalence de dérivateurs

D loc (sk -CAlg C ) -→ D loc (cdga C ).
et cette équivalence vient avec un 2-isomorphisme naturel faisant commutater le diagramme suivant

D loc (sk -CAlg C ) φ 2 / / evx ( ( Q Q Q Q Q Q Q Q Q Q Q Q D loc (cdga C ) evx
x x p p p p p p p p p p p

D(cdga).

Troisième étape -Dans cette étape, et la suite, nous aurons besoin de travailler momentanément avec des complexes non bornés. Lorsque cela sera le cas nous l'indiquerons par un indice (-) ∞ . Ainsi, C(k) ∞ , cdga ∞ , etc. désignera la catégorie des complexes non bornés, des k-dg-alèbres commutatives non bornées, etc.

L'inclusion des complexes en degrés négatifs dans les complexes non bornés induit un morphisme de dérivateurs D loc (cdga C ) -→ D loc (cdga C ∞ ). Ce morphisme est pleinement fidèle et identifie le membre de gauche au sous-dérivateur des objets cohomologiquement concentrés en degrés négatifs.

On considère le functor des sections globales

Γ : cdga C ∞ -→ cdga ∞ .
Ce foncteur est de Quillen à droite lorsque l'on munit cdga C ∞ de sa structure injective, pour laquelle les cofibrations et les équivalences sont définies objet par objet. Pour tout A ∈ cdga C ∞ , le morphisme unité k -→ A, où k est le diagramme constant de valeur k, induit un morphisme dans cdga Γ(k) -→ Γ(A).

Ainsi, si R désigne un foncteur de remplacement fibrant dans cdga C ∞ , on dispose d'un morphisme

Γ(R(k)) -→ Γ(R(A)).
Nous noterons

B := Γ(R(k)) ∈ cgda. La construction A → Γ(R(A)) définit ainsi un morphisme de dérivateurs D loc (cdga C ∞ ) -→ D(B -cdga), où B -cdga désigne la catégorie comma B/cdga.
Rappelons que, lors de la seconde étape, nous nous sommes fixés un diagramme de Scatégories

C i / / T BS 1 . j o o
Ce diagramme induit des isomorphismes de k-algèbres graduées commutatives de cohomologie

H * (B) = H * (RΓ(k)) ≃ H * (C, k) ≃ H * (BS 1 , k) ≃ k[u], où deg(u) = 2 et correspond au générateur de H 2 (K(Z, 2), k) donné par l'inclusion standard Z ⊂ k. Le choix d'un 2-cocycle u ′ ∈ Z 2 (B) qui est un représentant de u détermine un quasi- isomorphisme de cdga k[u] -→ B.
Ce quasi-isomorphisme, considéré à homotopie près, ne dépend pas du choix de u ′ . Il induit ainsi une équivalence de Quillen

B -cdga ∞ -→ k[u] -cdga ∞ dont le morphisme correspondant de dérivateurs D(B -cdga ∞ ) -→ D(k[u] -cdga ∞ )
est une équivalence, déterminée à 2-isomorphisme unique près. Nous avons ainsi construit un morphisme de dérivateurs

φ 3 : D loc (cdga C ) ֒→ D(cdga C ∞ ) -→ D(B -cdga ∞ ) -→ D(k[u] -cdga ∞ ).
Ce morphisme entre dans un diagramme

D loc (cdga C ) φ 3 / / q D(k[u] -cdga ∞ ) p D(cdga) i / / D(cdga ∞ ),
qui n'est pas 2-commutatif et demande quelques explications supplémentaires. Le morphisme q est induit par le foncteur d'oubli, et i par l'inclusion naturelle. Cependant, p n'est pas le foncteur d'oubli. Il est induit par le foncteur de Quillen à gauche

k[u] -cdga ∞ -→ cdga ∞ qui envoie A ′ sur k⊗ k[u] A ′ .
Par adjonction, il n'est pas difficile de voir qu'il existe un 2-morphisme

u : p • φ 3 ⇒ i • q,
qui n'est pas un 2-isomorphisme en général. Il le deviendra lorsque les foncteurs seront restreint à certains sous-dérivateurs d'objets bornés, comme nous allons maintenant le voir. Nous noterons

D + loc (cdga C ) (resp. D + (k[u] -cdga ∞ )
) le sous-dérivateur formée des objets dont les complexes sous-jacents sont cohomologiquement bornés à gauche (i.e. H i s'annule pour tout i suffisament petit). Nous remarquerons ici que la restriction de φ 3

φ + 3 : D + loc (cdga C ) -→ D + (k[u] -cdga ∞ )
est pleinement fidèle. De plus, la restriction du 2-morphisme u ci-dessus induit un 2-isomorphisme

u + : p • φ + 3 ⇒ i • q.
Pour voir cela, il nous faut revenir à l'adjonction de Quillen

cdga ∞ ←→ cdga C ∞ . Notons A := R(k) un modèle fibrant de k dans cdga C ∞ , et B = Γ(A). On considère l'adjonction induite f : B -cdga ∞ ←→ A/cdga C ∞ : Γ. Le foncteur f envoie un objet B ′ ∈ B -cdga ∞ sur A ⊗ B B ′ , où A est considérée comme une B-dg-algèbre commutative à travers le morphisme B -→ A, adjoint de l'identité B = Γ(A) (nous identifions ici les objets de B -cdga ∞ avec leur diagrammes constants correspondants). Il nous faut montrer que pour tout objet A ′ ∈ A/cdga C ∞ , cohomologiquement borné à gauche, le morphisme d'adjonction A ⊗ L B RΓ(A ′ ) -→ A ′ est un isomorphisme dans Ho(cdga C ∞ )
. Pour cela on peut oublier la structure d'algèbres et considéré que A ′ est un A-dg-module. Dans ce cas, un argument de type décomposition de Postnikov sur A ′ ramène le problème au cas où A ′ est un diagramme constant associé à un k-modules M . On a alors

H * (RΓ(M )) ≃ H * (C, M ) ≃ H * (K(Z, 2), M ) ≃ k[u] ⊗ k M. On a donc A ⊗ L B RΓ(M ) ≃ A ⊗ L k[u] k[u] ⊗ k M ≃ M.
En revenant aux définitions de nos foncteurs, ceci montre aussi que u + est un 2-isomorphisme (nous laissons la vérification au lecteur). On peut de plus caractériser l'image de φ Quatrième étape -De manière analogue à l'étape précédente, nous construisons un diagramme, qui n'est pas 2-commutatif, de dérivateurs

D(ǫ -cdga) φ 4 / / r D(k[u] -cdga ∞ ) p D(cdga) i / / D(cdga ∞ ),
tel que la restriction de φ 4 à D + (ǫcdga), le sous-dérivateurs des objets cohomologiquement bornés, soit pleinement fidèle. Nous construisons aussi un 2-morphisme v : p • φ 4 ⇒ i • r qui induira un 2-isomorphisme par restriction

v + : p • φ + 4 ⇒ i • r.
La construction de φ 4 et de v est tout à fait analogue à celle de φ 3 et de u, nous nous contenterons donc de l'esquisser. Nous considérerons ǫ-dg-mod, muni de sa structure injective, pour laquelle les cofibrations et les équivalences sont définies dans C(k). Cette structure de modèles reste une structure de modèles monoïdales au sens de [Ho], et elle induit une structure injective sur ǫ-cdga, pour laquelle les cofibrations et les équivalences sont définies dans cdga. On considère alors le foncteur Γ ǫ : ǫcdga -→ cdga ∞ , qui envoie A ∈ ǫcdga sur Hom ǫ-dg-mod∞ (k, A), où Hom ǫ-dg-mod∞ désigne le complexe, non borné, des morphismes de ǫ-dg-modules. Le foncteur Γ ǫ est de Quillen à droite, et la construction

A → Γ ǫ (R(A)), où R est un remplacement fibrant dans ǫ -cdga, fournit un morphisme de dérivateurs D(ǫ -cdga) -→ D(B ′ -cdga ∞ ), avec B ′ := Γ ǫ (R(k)). Or, H * (B ′ ) ≃ Ext * k[ǫ] (k, k) ≃ k[u].
Ainsi, il existe un quasi-isomorphisme de dg-algères commutatives k[u] -→ B ′ , bien déterminé à homotopie près. Ce quasi-isomorphisme fournit une équivalence de dérivateurs D(B ′ -cdga ∞ ) -→ D(k[u] -cdga ∞ ). Le morphisme phi 4 est par définition l'équivalence composée

D(ǫ -cdga) / / D(B ′ -cdga ∞ ) ∼ / / D(k[u] -cdga ∞ ).
Nous laissons le soins au lecteur de vérifier que φ + 4 est bien pleinement fidèle, et que son image essentielle coïncide avec celle de φ + 3 (les arguments sont les mêmes que pour φ 3 ).

Cinquième et dernière étape -D'après les deux dernières étapes nous avons construit un diagramme 2-commutatif de dérivateurs Il n'est pas difficile de remarquer que ce diagramme se complète, de manière unique (à isomorphisme unique près), en un diagramme 2-commutatif Preuve -Tout d'abord, (2) découle de (1) et du fait que pour A lisse sur k les deux morphismes

D + loc (cdga C ) φ + 3 / / D(k[u] -cdga ∞ ) D + (ǫ -cdga) φ + 4 o o D + (cdga) / / D(cdga ∞ ) D + (cdga).
D loc (cdga C ) φ 34 / / D(ǫ -cdga) D + loc (cdga C ) O O φ + 34 / / D + (ǫ -cdga) O O D + (cdga) id / / D + (
Lǫ(A) -→ ǫ(A) S 1 ⊗ L k A -→ S 1 ⊗ k A
sont des équivalences (à cause de la proposition 2.4, et parceque A est plate sur k). Pour (1), on revient au diagramme 2-commutatif

D(S 1 -sk -CAlg) φ / / D(ǫ -cdga) D(sk -CAlg) N / / D(cdga),
et on remarque que les adjoints à gauche des oublis sont respectivement induits par les foncteurs de Quillen à gauche

ǫ : cdga -→ ǫ -cdga S 1 ⊗ k -: sk -CAlg -→ S 1 -sk -CAlg.
Comme les morphismes φ et N sont des équivalences le diagramme induit

D(S 1 -sk -CAlg) φ / / D(ǫ -cdga) D(sk -CAlg) S 1 ⊗ L - O O N / / D(cdga), Lǫ O O est naturellement 2-commutatif. 2 
Pour le corollaire suivant, rappelons que un schéma est dit semi-séparé s'il possède une base pour sa topologie qui soit fermé par intersection finie et formé des ouverts affines. Pour X un k-schéma (semi-séparé), on dispose de son schéma dérivé LX := RM ap(S 1 , X) (voir ainsi que [To,4.3.1]). Il vient avec une projection naturelle LX -→ X, qui fait de LX le spectre relatif du faisceau de k-algèbres simpliciales commutatives S 1 ⊗ L O X sur X. Le groupe simplicial S 1 opère naturellement sur LX en agissant sur lui-même par translations. [--Dire quelques mots sur le fait que le language des derivateurs nous permit l'extension aux faisceaux structurels sur un schéma semi-separé, d'une facon presque directe.

--Est qu'on peut donner aussi l'enoncé relatif ?] Corollaire 4.2 Soit X un k-schéma de type fini et semi-séparé sur Spec k.

1. Il existe un isomorphisme dans la catégorie homotopique des faisceaux de ǫcdga sur X φ(S 1 ⊗ L O X ) ≃ Lǫ(O X ).

Il existe un isomorphisme dans la catégorie homotopique des faisceaux de O

X -cdga sur X O X ⊗ L O X ⊗ L k O X O X ≃ Sym O X (L X/k [1]
), où L X/k est le complexe cotangent de X relativement à k au sens de [Il].

3. Si X est lisse sur k, alors il existe un isomorphisme dans la catégorie homotopique des faisceaux de O X -cdga sur X

O X ⊗ L O X ⊗ L k O X O X ≃ Sym O X (Ω 1 X/k [1]).
4. Si X est lisse sur k, alors il existe un isomorphisme naturel de k-algèbres commutatives π 0 (O(LX) hS 1 ) := π 0 (RΓ(X, S 1 ⊗ O X ) hS 1 ) ≃ H ev DR (X/k), où (-) hS 1 désigne le foncteur des points fixes homotopiques, et H ev DR (X/k) est la cohomologie de de Rham paire de X/k.

Preuve -Le point (1) est une conséquence immédiate du théorème 4.1. Pour le point (2) il suffit de remarquer qu'il existe une équivalence naturelle de faisceaux de k-algèbres commutatives simpliciales (où le produit tensoriel dérivé est calculé dans la sk -CAlg)

S 1 ⊗ L O X ≃ O X ⊗ L O X ⊗ L k O X O X ,
qui par normalisation donne une équivalence de faisceaux de cdga (où le produit tensoriel dérivé est maintenant calculé dans cdga)

N (S 1 ⊗ L O X ) ≃ O X ⊗ L O X ⊗ L k O X O X .
D'autre part la cdga sous-jacente à Lǫ(O X ) est naturellement équivalente à Sym O X (L X/k [1]) comme nous l'avons déjà fait remarqué au §1. Le point (3) se déduit formellement de (2) et du fait que lorsque X est lisse L X/k ≃ Ω 1 X/k . Pour le dernier point, notons O(LX) := RΓ(X, S 1 ⊗ O X ), où Γ est le foncteur de Quillen à droite des sections globales, de la catégorie des faisceaux de sur X à valeurs dans S 1 -sk -CAlg vers la catégorie S 1 -sk-CAlg. Pour B une ǫ-cdga il existe un isomorphisme naturel d'algèbres Hom Ho(ǫ-dg-mod) (k, B) ≃ H 0 (T ot(BB -)), où T ot(BB -) est le complexe total négatif associé au complexe mixte B (voir [START_REF] Loday | Cyclic homology[END_REF]5.1.7] 
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Il est aussi possible de généraliser le point (4) du corollaire précédent au cas non-affine de la façon suivante. La cdga RΓ(X, S 1 ⊗ O X ) hS 1 est naturellement munie d'une structure de k[u] -cdga, et l'on peut donc inverser u. Il existe alors des isomorphismes π * (RΓ(X, S 1 ⊗ O X ) hS 1 )[u -1 ] ≃ H * per (X/k), où H i per (X/k) = H ev DR (X/K) si i est pair et H i per (X/k) = H odd DR (X/K) si i est impair. Nous ne donnerons pas les détails ici.

  φ I : Ho(S 1 -sk -CAlg I ) -→ Ho(ǫcdga I ), fonctorielle en I. De plus, pour tout I-diagramme de k-algèbres commutatives lisses A, il existe un isomorphisme dans Ho(ǫcdga I ) φ(S 1 ⊗ A) ≃ ǫ(A), qui est non seulement fonctoriel en A, mais aussi en I. Le théorème 1.1 sera en réalité une conséquence d'un résultat plus général, valable pour toute k-algèbre commutative simpliciale A, affirmant l'existence d'une équivalence Lǫ(N (A)) ≃ φ(S 1 ⊗ L A), où N (A) est la cdga obtenue par normalisation à partir de A, et Lǫ et S 1 ⊗ Lsont des versions dérivées des constructions ǫ et S 1 ⊗ -.

  et nous définissons les équivalences (resp. les fibrations) dans ǫcdga comme les morphismes induisant des équivalences (resp. des fibrations) dans C(k). Ainsi, une équivalence dans ǫcdga est un morphisme induisant un quasi-isomorphisme sur le complexes sous-jacent. De même, une fibration dans ǫcdga est un morphisme qui est surjectif en tout degré strictement négatif. Ce foncteur d'oubli possède un adjoint à gauche. En effet, il est facile de voir que le foncteur d'oubli commute à tout type de limites ainsi qu'aux colimites filtrantes. Comme les catégories ǫcdga et cdga sont des catégories localement présentables, l'existence d'un adjoint à gauche est assurée par le théorème d'existence de Freyd. Nous noterons ǫ : cdga -→ ǫcdga l'adjoint à gauche du foncteur d'oubli, dont nous allons maintenant à donner une construction plus explicite. Soit A ∈ cdga, et notons Ω 1 A le A-dg-module coreprésentant le foncteur des dérivations (au sens dg). Ce A-dg-module est le quotient du dg-module librement engendré sur A par des symbôles ∂(a), avec a ∈ A, deg(∂(a)) = deg(a), par les relations

  avec M -→ N une fibration. Par propriété universelle des dg-modules Ω 1 , on voit que ce diagramme correspond à un diagramme commutatif dans cdga/⊕ N, où B ⊕ E est l'extension de carré nulle triviale de B par le dg-module E. Comme A -→ B est une cofibration triviale et que B ⊕ M -→ B ⊕ N est une fibration, il existe B -→ B ⊕ M un relèvement dans cdga/B. Par adjonction on voit que cela implique l'existence d'un relèvement Ω 1 B -→ M de B-dg-modules. Ceci montre donc que Ω 1 A ⊗ A B -→ Ω 1 B relève les fibrations et donc est une cofibration triviale. En particulier, le morphisme Ω 1 A -→ Ω 1 B est une équivalence, ce qu'il nous fallait montrer. 2 Le foncteur ǫ, retreint à la sous-catégorie de cdga formée des k-algèbres non-dg, possède l'interprétation plaisante suivante. [Even for fully dg algebras B, I think ǫ(B) is what people call the de Rham ''algebra'' of B, where the external grading is given by the n in the formula we give for DR(B) this page or the previous one. Do you agree? ] Soit A une k-algèbre commutative et

+ 3 .

 3 En effet, l'objet k[u] engendre une t-structure sur le dérivateur D(k[u] -dgmod ∞ ), dont la partie négative est engendrée par k[u] par colimites homotopiques. L'image essentielle de φ + 3 consiste alors en tous les objets de D(k[u] -cdga ∞ ) dont l'objet sous-jacent dans D(k[u] -dgmod ∞ ) est d'amplitude [n, 0] pour un certain entier n.

  (cdga C ), puis en en prenant leurs limites dans le dérivateur D(ǫ -cdga). Nous laissons les détails au lecteur de cette construction formelle.La conclusion de ces cinq étapes est la construction d'un diagramme 2-commutatif de dérivateursD(S 1 -sk -CAlg) φ / / D(ǫ -cdga) D(sk -CAlg) N / / D(cdga), où φ := φ 34 • φ 2 • φ 1 ,le morphisme N est induit par le foncteur de normalisation, et les morphismes verticaux par les foncteurs d'oubli. 4 Le théorème de comparaison et quelques applications Nous sommes maintenant en mesure de d'énoncer et de démontrer notre résultat principal. Théorème 4.1 1. Les deux morphismes de dérivateursD(sk -CAlg) -→ D(ǫ -cdga), qui envoient respectivement A sur φ(S 1 ⊗ L k A) et sur Lǫ(N (A)), sont naturellement isomorphes.2. Soit D(k -CAlg sm ) le sous-dérivateur plein de D(sk -CAlg) formé des k-algèbres commutatives lisses et sur k. Alors les deux morphismes de dérivateursD sm (k -CAlg) -→ D(ǫ -cdga),qui envoient respectivement A sur φ(S 1 ⊗ k A) et sur ǫ(A), sont naturellement isomorphes.

  , ici notre ǫ joue le rôle de l'opérateur B, la différentielle du complexe sous-jacent à B est b). En particulier, on a un isomorphisme naturel entre Hom Ho(ǫ-dg-mod) (k, B) et la cohomologie du complexe de longuer 2⊕ n≥0 B -2n-1 d / / ⊕ n≥0 B -2n d / / ⊕ n≥0 B -2n+1 , où d est la différentielle somme de ǫ et de la différentielle du complexe sous-jacent à B. Ceci, appliqué à φ(O(LX)) donne π 0 (O(LX) hS 1 ) ≃ Hom Ho(S 1 -sk-CAlg) (k, O(LX)) ≃ Hom Ho(ǫ-cdga) (k, φ(O(LX))) ≃ H 0 (T otBφ(O(LX)) -). Par (1) et (3) on a φ(O(LX)) ≃ RΓ(X, ǫ(X))) ≃ ⊕ n RΓ(X, Ω n X [-n]),et où l'action de ǫ est induite par la différentielle de de Rham sur le membre de droite. Ainsi, on a donc clairement H 0 (T otBφ(O(LX)) -) ≃ ⊕ n pair H n DR (X) ≡ H ev DR (X).

  cdga), avec φ 34 une équivalence de dérivateurs. En effet, il suffit pour cela de remarquer que dans D loc (cdga C ) et D(ǫ -cdga), tout objet est limite de sa tour de Postnikov [Pourquoi pour D loc (cdga C ) ?]. Ainsi, φ 34 est défini est prenant l'image par φ + 34 des tours de Postnikov de D loc

Les ǫ-dg-algèbresOn considère la k-dg-algèbre k[ǫ], librement engendrée par un élément ǫ en degré -1 et avec la relation ǫ 2 = 0. La k-algèbre sous-jacente est k[X]/X 2 , avec deg(X) = -1, et est munie de la différentielle nulle.Définition 2.1 La catégorie des ǫ-dg-modules est la catégorie k[ǫ] -dgmod, des k[ǫ]-dgmodules à gauche. Elle sera notée ǫdgmod.On remarque que ǫ-dg-mod n'est autre que la catégorie des complexes mixtes négativement gradués (au sens de[Lo] par exemple).On munit ǫdgmod de sa structure de modèles usuelle où les équivalences sont les quasi-isomorphismes de complexes sous-jacents, et les fibrations sont les morphismes surjectifs en degrés strictement négatifs. La catégorie ǫdgmod est munie d'une structure monoïdale symétrique induite par le produit tensoriel de complexes de k-modules. Plus précisément, pour M et N deux ǫ-dg-modules on définit une structure de ǫ-dg-module sur le complexe M ⊗ k N de la façon suivante. Le complexe M ⊗ k N est naturellement muni d'une structure de k[ǫ] ⊗ k k[ǫ]dg-module à gauche. On considère alors le morphisme de k-dg-algèbresk[ǫ] -→ k[ǫ] ⊗ k k[ǫ]qui envoie ǫ sur ǫ ⊗ 1 + 1 ⊗ ǫ. A travers ce morphisme M ⊗ k N est muni d'une structure de ǫ-dgmodule. On vérifie alors que les contraintes d'associativité, de symétrie et d'unité du produit tensoriel de complexes induisent des contraintes d'associativité, de symétrie et d'unité pour la structure monoïdale ainsi construite sur ǫdgmod. La catégorie ǫdgmod est ainsi munie d'une structure monoïdale symétrique que nous noterons simplement ⊗. Définition 2.2 La catégorie des ǫ-dg-algèbres commutatives est la catégorie des monoïdes associatifs, commutatifs et unitaires dans la catégorie monodïdale (ǫdgmod, ⊗). Elle sera notée ǫcdga. En d'autres termes, un objet de ǫcdga consiste en une k-dg-algèbre commutative A, munie d'un morphisme de complexes de k-modules ǫ : A -→ A[-1], tel que pour tout a, b, éléments de A, de degrés respectifs n et m, on ait ǫ(ab) = ǫ(a)b + (-1) n aǫ(b),