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Abstract—Security and privacy are major threats for
the RFID technology today. First, the RFID passive
tags prevailing in most of the RFID applications are
very limited in processing power, so they cannot
perform complex computations. Second, there are no
RFID authentication protocols that can support both
scalability and privacy at low complexity cost.
In this paper, we present an adaptation of NTRU
public cryptosystem for low-cost RFID tags and new
efficient asymmetrical challenge/response RFID mutual
authentication protocol for low-cost RFID systems
based on this NTRU’s adaptation. Thanks to properties
of the polynomial ring in which NTRU operates we
have ensured that the tag encrypts challenges using
only addition and right circular shifts. The proposed
authentication protocol guarantees privacy, high
scalability level and low implementation complexity. It
takes advantages of NTRU and HMAC features, and is
resistant to all the classical security attacks including
replays, tracking, man in the middle attacks, etc.

Keywords: Lightweight Cryptography, RFID, Secu-
rity, Privacy, Scalability, NTRU public key cryptosys-
tem, Mutual authentication

I. Introduction

As Mark Weiser already predicted in 1991, one of the
main problems against adoption of ubiquitous computing is
privacy [1]. The simultaneous provision of privacy, scalabil-
ity, and security in low-cost RFID systems does not give
other alternatives than designing a lightweight approach
based on public keys cryptography.
Public key cryptography can achieve a higher security level
compared to symmetric key cryptography, while it requires
a higher computational overhead [2].
In this paper, we propose a new efficient asymmetrical
mutual authentication protocol especially designed for low-
cost RFID systems and based on adaptation that we have
introduced on NTRU public key cryptosystem on the tag
side. It is demonstrated to be robust against the classical
security and privacy attacks performed over the wireless
channel. To the best of our knowledge, our protocol is the
first solution based on adaptation of NTRU for low-cost
RFID tags.
This paper is organized as follows. Section II introduces
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works related to RFID security issues. Section III gives a
brief description of lattice and NTRU cryptosystem. Section
IV then describes our asymmetrical mutual authentication
protocol and section V discusses its robustness to security
and privacy threats. Performance issues aspects are also
given in section VI before our conclusions in section VII.

II. Related Works

The reduction of tag’s cost is a key factor if a large
number of tags are needed like in the supply chain area.
As such, a special care is needed when designing security
solutions for consuming as fewer resources as possible,
especially within the tag.
A variety of protocols based on hash functions, or
lightweight cryptography (e.g. XOR) have been proposed
to support the authentication service and solve some of the
security and privacy issues of the RFID low-cost systems.
To counteract clandestine tracking, some of them are doing
key update after each successful authentication session so
some randomness is introduced into the message content
from one session to another.
For privacy reasons, the tag must be untraceable between
two legitimate authentication sessions. It is this condition
that will complicate the design of RFID authentication
protocols.
In [3], Ohkubo et al. propose a hash chain approach based on
two different hash functions. This protocol does not provide
mutual authentication - namely, the reader authenticates
the tag while the tag does not authenticate the reader -
and it is vulnerable to impersonation attacks and replay
attacks. In addition, there are two additional shortcomings
in this protocol. One of them is unscalability as the back-
end executes an exhaustive search. The other one is the
cost of the tag where two different hash functions need to
be implemented.
All the above protocols are symmetrical, and as such, they
cannot support both privacy and scalability at a moderate
operational overhead. Indeed, the back-end, when authenti-
cating a tag, has to do: an exhaustive search (in the keys and
identifiers of tags) or to use a pseudo-index sent by the tag
(unchangeable between two legitimate authentications) that
makes the tag becomes traceable between two key updates.
The asymmetric authentication approaches have not been
much addressed by researchers. Only few asymmetrical
protocols have been proposed in the literature. Kaya et al.
propose in [4] an approach for multi-context RFID based on



public key cryptography with a case study of NTRU, but
without adapting these cryptosystems to RFID tags.
Batina et al. [5], Kaya et al. [4], Lee et al. [6] propose RFID
authentication protocols based on elliptic curve cryptogra-
phy, but they require the tag to implement scalar point
multiplications in the tag.
In [7], Sekino et al. propose an authentication protocol
based on the Niederreiter public key cryptosystem [8]. It
is not adapted to low-cost tags, as the tag is required to
support hash function, to store large matrix, and to excute
matrix operations.
In [9], Girault proposes a storage-computation trade-off
approach of the famous GPS scheme [10]. This approach
consists in storing t coupons of pairs of numbers ��, �� (or
in storing only �� if �� is regenerated on demand locally) for
0 ⊘ � ⊘ � ⊗ 1 on the tag with the tag-specific secret key �,
the computation by the tag is limited to � = �� +�×� where
� is a challenge generated by the reader. This approach
has been widely studied in the literature and different
implementations have been proposed [11], [12], [13].
However, this approach does not support a moderate secu-
rity level. Indeed, an attacker can make a denial of service
attack by interrogating the tag more than � times because
the number of coupons stored on the tag is limited for cost
reasons( storage capacity is the most expensive part of the
hardware).

III. Lattice and NTRU cryptosystem

A. Lattice theory

If �1, �2,..., �� are linearly independent vectors of R
�,

then a lattice � generated by �1, �2,..., �� is the set:

� = ¶︁�

�=1���� ♣ ∀� ∈ ¶1, ..., �♢, �� ∈ Z♢

The Shortest Vector Problem (SVP): Given a base B
(set of vectors linearly independent) of a lattice �, find the
smallest possible nonzero vector of �, i.e. find � ̸= 0 such
that ♣♣�♣♣ is minimal. Where ♣♣.♣♣ is the euclidean norm, if
x=(�1,...,��), then ♣♣�♣♣ =

√
< �, � > =

︀

︁�

�=1�2
� .

The Closest Vector Problem (CVP): Given a base B of a
lattice � and a vector � /∈ �, find a vector � ∈ � that is
the closest to �, i.e. ♣♣� ⊗ �♣♣ is minimal.
The SVP and CVP problems are known as NP-hard.

B. NTRU cryptosystem

NTRU is a probabilistic public key cryptosystem pro-
posed by Hoffstein et al. [14], it is considered as secure by
the standards IEEE 1363.1 [15] and X9 [16]. NTRU is one
of the fastest public key cryptosystems, it is suitable for
systems which can not be easily updated as designed for
long-term data protection. NTRU operations are performed
in the ring ℜ = Z[�]/(�� ⊗ 1), where N is a positive
prime, defining the degree of the polynomial, i.e. the base
ring ℜ. NTRU depends on three integer parameters (N, p,
q) and four sets �� , ��, ��, �� of polynomials of degree
at most � ⊗ 1. In the latest version of NTRU, � = 2 and

���(�, �) = 1, �� is the space of plaintext with coefficients
taken ��� �.

1) Key generation: Several steps are necessary: first
choose randomly two polynomials � and � in �� and ��,
respectively; then inverse � (��� �) to obtain �� and inverse
� (��� �) to obtain ��; finally, calculate the public key
ℎ = �*�*�� (��� �), the corresponding private key is (�, �).
The selection of parameters is determining the security level
of NTRU. Along the paper, we consider � = 2, like in the
latest version of NTRU.

2) Encryption: Fast encryption of a message with NTRU
includes three operations: Transform the message � to a
polynomial of ��, randomly choose a polynomial � ∈ ��

and calculate the cipher � = �*ℎ + � (��� �).
3) Decryption: Decryption is processed as follows: Use

the private key (�, �), calculate � = �*� (��� �), choose
the coefficients of � in the interval from -q/2 to q/2, finaly
retrieve the message by computing ��*� (��� �).
The NTRU problems for breaking the private key or the
decryption algorithm are known as the NP-hard SVP
and CVP problems respectively, in the NTRU’s lattice
��� �� = ¶(�, �) ∈ ℜ2 ♣ �*ℎ ⊗ � = 0 (��� �)♢.

IV. The proposed protocol

Our protocol is an asymmetrical probabilistic mutual
authentication based on the NTRU public key cryptosystem
[14]. Atici et al. have designed in [17] an NTRU’s architec-
ture for encryption/decryption that requires only 10.8 �����
for (�, �, �) = (167, 3, 128), our solution does not dedicate
such amount of resources for the classical operations of
NTRU on the tag, because all complex operations of NTRU
such as modular arithmetic, polynomials multiplication are
done at the server while the tag implements only lightweight
operations. To the best of our knowledge, our protocol is the
first lightweight RFID authentication protocol for low-cost
RFID tags that simultaneously supports privacy (tracking
resistance), high scalability level, and security protection
at a moderate operational overhead, i.e. in terms of tag’s
capacity, exhaustive search and storage capacity at the
back-end.

A. Our adaptation of NTRU to low-cost RFID tags

The public key cryptosystem NTRU handles polynomials
in the ring ℜ = Z[�]/(�� ⊗ 1) consequently, all the
polynomials are of degree less than N.
Any element � of ℜ is represented by:

� = (�0, �1, ..., ��⊗1) =
︁�⊗1

�=0 ���
�

Multiplication in the ring ℜ is a convolution ��� �� ⊗1.
In ℜ, the addition of two polynomials is done term by term.
However, a multiplication by � is equivalent to rotate the
coefficients: the coefficient of �� becomes the coefficient
of ��+1 (and since multiplications are ��� �� ⊗ 1, the
monomial �� is equal to 1). Specifically, this convolution
works as follows:
Let’s (�, �) ∈ ℜ2 the convolution product defined by:



(f∗g)(X) =
︁N−1

i=0
hiX

i, hk =
︁k

j=0
fjgk−j +

︁N−1

j=k+1
fjgN+k−j

If �
′

is a right circular shift of � by i-position, the product
�

′*� is the right circular shift of �*� by i-position. Indeed,
a right circular shift of � by �-position is exactly equal to
roti(f) = Xi

∗f mod (XN
− 1) where XN

∗f mod (XN
− 1) = f .

So f
′

∗g = Xi
∗f∗g mod (XN

− 1) = Xi
∗(f∗g) mod (XN

− 1) =

roti(f∗g) , then:

����(�*�) = ����(�)*� (1)

If we add �*� to its right-shift rotation by �-position (1), we
obtain: �*� + ����(�*�) = �*� + ��*�*� ��� (�� ⊗ 1) =
(� + ��*�)*� ��� (�� ⊗ 1) = (� + ����(�))*�, then:

�*� + ����(�*�) = (� + ����(�))*� (2)

The largest polynomial’s coefficient handled along this pa-
per is equal to 2� ⊗ 1, for this we choose to write each
polynomial’s coefficient in ⌈���2(2� ⊗ 1)⌉ bits to facilitate
the manipulation of polynomials on the tag side. Then,
each rotation of �*ℎ by � ⊗ ���, where � is a multiple of
⌈���2(2� ⊗ 1)⌉, corresponds to the new product �

′*ℎ, where
�

′

is a right circular shift of � by � ⊗ ��� (cf. Equation (1)),
and each �*ℎ + ����(�*ℎ) corresponds to another product
��*ℎ where �� = � + �

′

(cf. Equation (2)). So, if the tag has
in memory �*ℎ (��� �), it can construct easily an ��*ℎ and
encrypts a challenge � by adding it to ��*ℎ. This point will
be later used in this paper.
Note that, in ���� specifications, � is any small polyno-
mial, its coefficients can be chosen in {-1, 0, 1} or {0, 1} to
simplify the implementation or to attain very high security
level according to the implementation standard [18], [19].
In our approach, few coefficients of this polynomial (��)
can be equal to 2 or ⊗2, such modification does not have
a significant impact on the security of ���� . Indeed,
breaking the private key is an SVP problem in the NTRU’s
lattice ��� �� = ¶(�, �) ∈ ℜ2 ♣ �*ℎ ⊗ � = 0 (����)♢
which is independent of the choice of �. On the other hand,
the decryption problem can be seen as a CVP problem:
the cipher of a message � is � = �*ℎ + � (��� �);
this means that the vector (�, 0) is close to the vector
(��*ℎ ��� �, ��) of the NTRU’s lattice. More precisely, the
difference between the two vectors is (�, ��) which is by
definition very short. Consequently, if few coefficients of �
are equal to 2 and/or ⊗2, the difference (�, ��) between
these two vectors remains very short. Then, for an attacker,
decrypting a ciphertext with no knowledge of the private
key is still a difficult CVP problem in the NTRU’s lattice.

B. Initialization

Each tag is initialized with a random long-term secret key
�� and two secret polynomials (binary vector): an identity
�� ∈ �� that is unique at the back-end, and a polynomial
�*ℎ calculated modulo q in ℜ where � is randomly generated
in ��. The back-end stores only one private key (�, �) to

�*ℎ (��� �) Designed by �*ℎ

�
′

*ℎ (��� �) Designed by �
′

*ℎ
⊕ Exclusive-or operator
�� (�) Hamming weight of �

���(�, �) Right circular shift over � by �� (�)

���⊗1(�, �) Left circular shift over � by �� (�)
���(�, �′�) Right circular shift over � by � times the �� (�)
⌈�⌉ Smallest integer not less than �

���
() Hash-based Message Authentication Code (HMAC)

�� long-term secret key
�[0,�⊗1] the �-least significant bits of �

TABLE I: Notations.

authenticate all tags, and an �� for each tag.

C. Description

As described in figure 1, based on the notations given in
Table I, when the tag is queried, it reads the pre-computed
value � , it calculates � = ���

(�), �� = �[0,�⊗1] and
it constructs a �-bit binary vector (polynomial) � =
�2� (�), where �2� : ¶0, 1♢�⊃�� converts a sequence of
bits into a binary polynomial, where � = ⌈���2(2� ⊗ 1)⌉� .
Note that, � ∈ �� as each of its coefficients is in
¶0, 1♢. Then the tag reads the pre-computed value �*ℎ
and calculates ��*ℎ = �*ℎ + ���(�*ℎ, ⌈���2(2� ⊗ 1)⌉′��)
and replaces �*ℎ and � with ���(�*ℎ, ⌈���2(2� ⊗ 1)⌉′��)
and ���

(�) respectively. After that, the tag calculates
and sends back to reader �1 = ��*ℎ+�. Note that, if
the previous authentication attempt has been successfully
achieved, in its polynomial form, �1 can be written as
�1 = ��*ℎ + � = (��� (��) + 1)*�*ℎ + � ���(�� ⊗ 1)
(cf. section IV-A). If there is one or more failed previous
authentication attempts, in its polynomial form, �1 can be
written:

�1 = (�� + ��)*�*ℎ + � ���(�� ⊗ 1), (�, �) ∈ N
2 (3)

As such, the tag only does two sum operations of four binary
values, few xor operations, some right circular shifts, one
HMAC.

Upon receiving the tag’s response (�1), the reader/back-end
calculates and decrypts �1 (��� �) to retrieve �. Note that,
�1 (��� �) is a valid NTRU ciphertext. That is, �1 (��� �)
is computed by the reader as each coefficient of �1 is at most
equal to 2� ⊗ 1: each coefficient of � is in ¶0, 1♢ and each
coefficient of ��*ℎ used in the computing of �1 is between 0
and 2� ⊗1 (because each coefficient of �*ℎ is between 0 and
q-1). The reader/back-end decrypts �1 (��� �) using the
secret key (�, �) to retrieve �. It then generates randomly
a polynomial (�⊗bit pseudo-random sequence) �

′ ∈ �� and
computes �

′*ℎ (��� �) in ℜ, �2 = ���(��*ℎ, ��*ℎ)⊕(�
′*ℎ),

and �3 = �� (�
′*ℎ). Then the reader/back-end sends these

values to the tag. Upon receiving �2 the tag retrieves �
′*ℎ

as �
′*ℎ = �2⊕���(��*ℎ, ��*ℎ), it authenticates the back-

end/reader by checking the correctness of �3, which au-
thenticates �

′*ℎ, it can be generated only by the legitimate
reader thanks to HMAC. If �3 is correct the reader/back-
end is authenticated. Otherwise the tag aborts the session
concluding that the reader failed to decrypt �1 correctly.
If reader/back-end is authenticated, the tag sends back



Reader/back-end Tag

ℎ����
⊗⊃ find �*ℎ, ��, � , compute

�⊂���
(�), � = �2� (�), �� = �[0,�⊗1],

��*ℎ = �*ℎ + ���(�*ℎ, ⌈���2(2� ⊗ 1)⌉′��)

decrypt �1 (��� �), get �
�1
⊂⊗ �1 = ��*ℎ+�, �*ℎ⊂���(�*ℎ, ⌈���2(2� ⊗ 1)⌉′��)

pick a random �
′

∈ ��, compute

�2 = ���(��*ℎ, ��*ℎ)⊕(�
′

*ℎ)

and �3 = �� (�
′

*ℎ)
�2,�3
⊗⊃ get �

′

*ℎ = �2⊕���(��*ℎ, ��*ℎ), verify �3, compute

�
′

�*ℎ = �
′

*ℎ + ���(�
′

*ℎ, ⌈���2(2� ⊗ 1)⌉′�),

get �� = (�4 ⊗ �
′

�*ℎ)⊕�
�4
⊂⊗ �4 = �

′

�*ℎ + ��⊕�, �*ℎ⊂�
′

*ℎ

Fig. 1: The proposed protocol

to reader �4 = �
′

�*ℎ + ��⊕�, where �
′

�*ℎ = �
′*ℎ +

���(�
′*ℎ, ⌈���2(2� ⊗ 1)⌉′�), and replaces �*ℎ with �

′*ℎ.
Note that, similarly to Equation (3) and from the descrip-
tion in section IV-A , in its polynomial form, �4 can be
written:

�4 = (��� (�) + 1)*�
′*ℎ + �⊕�� ���(�� ⊗ 1) (4)

Let ������ the binary polynomial defined by ������ =
�⊕��, this means that �������

= ��⊕���, where 0 ⊘ � ⊘
� ⊗ 1. The tag’s next authentication session is executed
with the new value �

′*ℎ.
To counteract replay attacks, the reader retrieves the tag’s
identity by �� = (�4 ⊗ �

′

�*ℎ)⊕� and not by the decryption
of �4 ��� � using the private key (�, �). Note that the
reader/back-end can authenticate a tag without knowledge
of the tag’s identity. This feature is very much interesting
in some applications, specially in supply chains. Off-line
authentication of a tag (with no exchanges with a central
database) is made possible as the same private key (�, �)
is used for every tag.

D. Roaming support

Inter-domain authentication of tags, especially in the
supply chain environment is not well investigated in the
literature. In [20], Li et al. propose a protocol based on hash
function for the supply chain, but it was proven in [21] to
be vulnerable to multiple-attacks. Our proposed protocol
can be extended to securely support the inter-domain tag
authentication. Just before moving to another domain, the
last authentication to the domain leads to the tag being
updated with the next domain public key ℎ

′

.

V. Security and privacy analysis

The resistance of our protocol against the classical secu-
rity attacks is directly derived from the properties of NTRU
and HMAC.
In the following analysis, we only consider vulnerabilities
over the reader-tag channel. The channels between the
reader and the back-end are considered as safe as both
equipments have computing and battery resources, they
are under the same administrative domain and they can
implement any security protocols.

A. Resistance to replay attaks

For each authentication session, both the tag and
reader/back-end generate new pseudo-random values �,
��*ℎ and �

′*ℎ, thus making messages randomized (per-
sonalized) for each session. A replay attack to the reader
is unlikely to occur, as the reader/back-end is assumed
implementing a good pseudo-random polynomial generator,
so they are unlikely to generate the same �

′*ℎ.
A replay attack to the tag can only be successful if the
attacker prevents the tag from receiving (�2, �3) (e.g. by
transmitting a jamming signal) and the tag generates the
same sequences � and ��*ℎ in the next authentication at-
tempt. The probability this attack is successful is negligible
thanks to HMAC and the construction method of ��*ℎ,
however, as discussed in the desynchronization attack, in
case of success, it does not lead to any desynchronization
between tag and reader/back-end.

B. Resistance to man in the middle attacks

We have demonstrated that, the attacker can not break
NTRU using the modification that we have introduced
on the choice of � (cf. section IV-A). For the attacker to
authenticate as a legitimate tag or a legitimate reader.
If the attacker is passive, the best is experimenting a
replay attack. Indeed, suppose that the attacker wants to
be authenticated as a legitimate tag, he has to produce
a valid message �4 or to retrieve the tag secret identity
��. It’s clear that the attacker cannot produce a valid �4

from the previously exchanged messages between the tag
and readers because any modification in a previous tag’s
response �1 will be detected in the attacker’s response �4

thanks to the random value �
′*ℎ generated by the reader

itself. On the other hand, the attacker cannot retrieve the
identity of the tag because he cannot break NTRU.
If the attacker is active, he will try to take advantage of
the fact that the number of ��*ℎ between two legitimate
authentication sessions is limited, to retrieve the identity of
the tag ��, he must first find the pseudo random value � or
�*ℎ (initial values assigned to the tag during the previous
mutual authentication session). For this, he queries the tag
between two legitimate mutual authentication sessions. He
has to retrieve the polynomial �(�) ⊗ �(�) for a specific
� and several � in order to find �(�) and �*ℎ, where
�(�) corresponds to the � of the j-th authentication
attempt (attacker’s query). Indeed, each �(�) is a binary



polynomial, so if the attacker finds a specific � and
some �(�) ⊗ �(�) for several �, he can deduce some
coefficients of �(�) and he can proceeds by brute force
attack to get the rest of coefficients of �(�), then he
gets ��

(�)*ℎ, �(�+1), etc. and proceeds by another attack
to deduce �*ℎ because from the Equation (3) it’s clear that:

�*ℎ = �1
(�)⊗��

��+�� , (�, �) ∈[0, N-1 ]2

Note that this attack is not be performed as he cannot re-
trieve for a specific � and several �, �(�) ⊗�(�). Indeed, sup-
pose that the attacker begins his attack as described above,
the tag responds to the i-th and to (i+1)-th attacker queries
with �1

(�) = ���*�*ℎ+���⊗1*�*ℎ+�(�) ���(�� ⊗1) and
�1

(�+1) = ���+1*�*ℎ + ���*�*ℎ + �(�+1) ���(�� ⊗ 1),
respectively (cf. Equation (3)), where �� *�*ℎ ���(�� ⊗
1) = �*ℎ, and (��⊗1, ��, ��+1) ∈ N

3. So,

�1
(�+1)⊗ �1

(�) = (�
��+1 ⊗�

��⊗1 )*�*ℎ + �(�+1)⊗�(�) ���(�� ⊗1) (5)

Suppose that the attacker wants to obtain the value of �(�)

from �(�⊗1), �(�), and �(�+1). Thanks to calculation with
���(�� ⊗ 1) and to simplify the reasoning we can write
�� =

︁�

�=1�� (��
(�)), then ��+1 ⊗ ��⊗1 = (�� (��

(�+1)) +

�� (��
(�))). To retrieve �(�+1) ⊗ �(�) the attacker should

eliminate the term (���+1 ⊗ ���⊗1)*�*ℎ in the Equation
(5), this is possible only if ��+1 equal to ��⊗1 or if each of
��+1 and ��⊗1 is a multiple of � . However, this is unlikely
to occur as ��+1 = ��⊗1 means that the tag has generated
successively two null values of �� but this scenario is unlikely
to occur because HMAC generates good pseudo random
sequences. On the other hand, the value of � is chosen
in such a way that ��+1 and ��⊗1 are never a multiple
of � in the same time, in other words ��+1 ⊗ ��⊗1 =
(�� (��

(�+1)) + �� (��
(�))) is less than � , so � can be

chosen such that its length is less than �/2. Then the
attacker cannot retrieve �(�+1) ⊗ �(�) and �(�) ⊗ �(�⊗1)

to try the attack described above on �(�).
However, let’s � the number of all possible values of an
��*ℎ derived from one �*ℎ (initially assigned to the tag by
the reader/back-end) between two legitimate authentication
sessions, it’s clear that � = � +� ⊗1+� ⊗2+...+� ⊗(� ⊗
1). Then, � = �2 ⊗ ︁�⊗1

�=1 � = 1/2(�2 + �), for � = 251,
� = 31626. Consequently, if the attacker queries the tag
more than � times, there will certainly be �1

(�1) and �1
(�1)

using the same ��*ℎ, so from the Equation (3) we deduce:

�1
(�1) ⊗ �1

(�1) = �(�1) ⊗ �(�1), (�1, �1) ∈ [1, w ]2 (6)

Note that, the attacker cannot accurately determine �1
(�1)

and �1
(�1). If the attacker continues to query the tag (before

the next mutual authentication), there will be �1
(�2) and

�1
(�2) such that �1

(�2)⊗�1
(�2) = �(�2)⊗�(�2). However, and

thanks to HMAC it is likely that each of �(�1), �(�2), �(�1)

and �(�2) is different from each other. If we continue this
reasoning we note that the attacker is not able to find in
reasonable period of time for a specific �, several � such

that �1
(�) ⊗ �1

(�) = �(�) ⊗ �(�) ���(�� ⊗ 1). As such the
attacker cannot retrieve either � or �*ℎ.
The attacker cannot proceed by the previously described
attack (cf. Equation (6)) on the message �4 in order to
retrieve ��⊕� or �

′*ℎ because �
′*ℎ changes for each �4.

However, the tag next authentication session will be exe-
cuted with �

′*ℎ which has been generated by the reader
in the previous session (session �), so once the session
� is successfully completed and before the next mutual
authentication session happens, the attacker can start to
query the tag. If he queries the tag more than 1/2(� +�2)

there may be �1
(�) such that �1

(�) = (��� (�(�)) +1)*�
′*ℎ+

�(�) ���(�� ⊗ 1) (cf. Equation (4)), then: �1
(�) ⊗ �4

(�) =
�(�) ⊗ �(�)⊕��, (�, �) ∈ N

2 (cf. Equations (6)). Even if he
finds the right �1

(�), it’s clear that he cannot retrieve the
identity of the tag �� from this equation (he does not know
either �(�) or �(�)).
On the other hand, the identity of the tag is encrypted (cf.

Equation (4)) in such a way that the multiple transmission
attacks on NTRU is avoided. Indeed, if the same message
� is transmitted many times using the same public key
ℎ, but with different random �’s, the attacker will be able
to retrieve a large part of the message NTRU [14]. To
counteract this attack, we encrypt in �4 ��⊕� instead of the
static �� value, as ��⊕� is different from one authentication
session to another. As such, our protocol is resistant to man
in the middle attacks.

C. Tag anonymity and resistance to tracking

Our protocol supports this challenging property for RFID
systems. Two scenarios arise according to whether the
attacker is passive or active. If the attacker is passive, i.e. he
can not query the tag but he can eavesdrop communications
between the tag and legitimate readers. He cannot track the
tag as the messages exchanged over the wireless channel
between the tag and the reader are randomized in each
authentication session thanks to �, �

′*ℎ (cf. Equation (4)).
If the attacker is active, i.e. he can query the tag. The
privacy is also guaranteed as the tag respond �1 = ��*ℎ+�
is randomized in each attacker’s request thanks to the con-
struction method of ��*ℎ and HMAC. Indeed, the attacker
cannot track the tag between two mutual authentication
sessions by trying to distinguish the specific �*ℎ used by the
tag because in �1

(�) = (��� +���⊗1)*�*ℎ+�(�) ���(�� ⊗
1), (�, �) ∈ N

2 (cf. Equation (3)) the attacker cannot
obtain information about specific coefficients of �*ℎ that
allows him to track the tag.

D. Resistance to desynchronization attacks

The attacker can try to make the tag and reader/back-
end out of synchronization by acting as an active man in
the middle attacker, modifying �2 in order to provide to
the tag an invalid value of �

′*ℎ, this modification will be
necessarily detected in the HMAC value �3 = �� (�

′*ℎ)
that guarantees the authenticity of �

′*ℎ because � know
only to the tag and the reader which has the private key
(�, �) that allows decryption of �1 (the cipher value of �



(or �)). Indeed, suppose that, the attacker has modified the
bit at index � of �2, with �20 being the least significant bit
of �2. He cannot produce a valid value of �3 because he does
not know the values of � (or �) and �

′*ℎ that must be
used in this HMAC calculation. Then tag-reader/back-end
synchronisation is guaranteed.

VI. Performance evaluation

Our proposed protocol is designed for low-cost RFID
tags. All the complex operations such as polynomial multi-
plications, random polynomial generation in ��, computa-
tion of modulo, etc. are done at the server.
Let � = ⌈���2(2� ⊗ 1)⌉� , the tag only requires to store
about 2� + � + 128 bits and to support lightweight hash
function like Photon [22] or Keccak [23]. The compu-
tations by the tag are limited to two HMAC values, and
an average of about ⌈���2(2� ⊗ 1)⌉(� + �/2) bitewise right
circular shift, addition of four polynomials, and � + �
bitwise xor operations. On the other hand, the reader/back-
end implements right circular shift operator, and two NTRU
algorithms to perform one encryption and one decryption
each one with a complexity of only �(�2). Moreover, the
reader/back-end does not require any exhaustive search in
keys to authenticate a tag.

VII. Conclusions

In this paper, we propose an adaptation of NTRU for
low-cost RFID tag, and a lightweight mutual authentication
protocol based on this NTRU’s adaptation. This solution
satisfies the security and privacy requirements for RFID
systems. It benefits from the NTRU features like high
security level, and fast encryption and decryption. It pro-
vides remarkable properties such as strong scalability and
untraceability, and resistance to known classical security
attacks. Furthermore, it can be implemented efficiently into
low-cost tags, as tags are only required to implement a
lightweight hash function, and bit-wise operations in �� (2).
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