Ethmane El Moustaine 
email: ethmane.elmoustaine@telecom-sudparis.eu
  
Maryline Laurent 
email: maryline.laurent@telecom-sudparis.eu
  
A lattice based authentication for low-cost RFID

Keywords: Lightweight Cryptography, RFID, Security, Privacy, Scalability, NTRU public key cryptosystem, Mutual authentication

Security and privacy are major threats for the RFID technology today. First, the RFID passive tags prevailing in most of the RFID applications are very limited in processing power, so they cannot perform complex computations. Second, there are no RFID authentication protocols that can support both scalability and privacy at low complexity cost. In this paper, we present an adaptation of NTRU public cryptosystem for low-cost RFID tags and new efficient asymmetrical challenge/response RFID mutual authentication protocol for low-cost RFID systems based on this NTRU's adaptation. Thanks to properties of the polynomial ring in which NTRU operates we have ensured that the tag encrypts challenges using only addition and right circular shifts. The proposed authentication protocol guarantees privacy, high scalability level and low implementation complexity. It takes advantages of NTRU and HMAC features, and is resistant to all the classical security attacks including replays, tracking, man in the middle attacks, etc.

I. Introduction

As Mark Weiser already predicted in 1991, one of the main problems against adoption of ubiquitous computing is privacy [START_REF] Weiser | ŞThe computer for the 21st century[END_REF]. The simultaneous provision of privacy, scalability, and security in low-cost RFID systems does not give other alternatives than designing a lightweight approach based on public keys cryptography. Public key cryptography can achieve a higher security level compared to symmetric key cryptography, while it requires a higher computational overhead [START_REF] Vaudenay | ŞOn privacy models for rĄd[END_REF]. In this paper, we propose a new efficient asymmetrical mutual authentication protocol especially designed for lowcost RFID systems and based on adaptation that we have introduced on NTRU public key cryptosystem on the tag side. It is demonstrated to be robust against the classical security and privacy attacks performed over the wireless channel. To the best of our knowledge, our protocol is the first solution based on adaptation of NTRU for low-cost RFID tags. This paper is organized as follows. Section II introduces works related to RFID security issues. Section III gives a brief description of lattice and NTRU cryptosystem. Section IV then describes our asymmetrical mutual authentication protocol and section V discusses its robustness to security and privacy threats. Performance issues aspects are also given in section VI before our conclusions in section VII.

II. Related Works

The reduction of tag's cost is a key factor if a large number of tags are needed like in the supply chain area. As such, a special care is needed when designing security solutions for consuming as fewer resources as possible, especially within the tag. A variety of protocols based on hash functions, or lightweight cryptography (e.g. XOR) have been proposed to support the authentication service and solve some of the security and privacy issues of the RFID low-cost systems. To counteract clandestine tracking, some of them are doing key update after each successful authentication session so some randomness is introduced into the message content from one session to another. For privacy reasons, the tag must be untraceable between two legitimate authentication sessions. It is this condition that will complicate the design of RFID authentication protocols. In [START_REF] Ohkubo | ŞCryptographic Approach to ŞPrivacy-FriendlyŤ Tags[END_REF], Ohkubo et al. propose a hash chain approach based on two different hash functions. This protocol does not provide mutual authentication -namely, the reader authenticates the tag while the tag does not authenticate the readerand it is vulnerable to impersonation attacks and replay attacks. In addition, there are two additional shortcomings in this protocol. One of them is unscalability as the backend executes an exhaustive search. The other one is the cost of the tag where two different hash functions need to be implemented. All the above protocols are symmetrical, and as such, they cannot support both privacy and scalability at a moderate operational overhead. Indeed, the back-end, when authenticating a tag, has to do: an exhaustive search (in the keys and identifiers of tags) or to use a pseudo-index sent by the tag (unchangeable between two legitimate authentications) that makes the tag becomes traceable between two key updates. The asymmetric authentication approaches have not been much addressed by researchers. Only few asymmetrical protocols have been proposed in the literature. Kaya et al. propose in [START_REF] Kaya | ŞPublic key cryptography based privacy preserving multi-context rĄd infrastructure[END_REF] an approach for multi-context RFID based on public key cryptography with a case study of NTRU, but without adapting these cryptosystems to RFID tags. Batina et al. [START_REF] Batina | ŞHierarchical ECC-Based RFID Authentication Protocol[END_REF], Kaya et al. [START_REF] Kaya | ŞPublic key cryptography based privacy preserving multi-context rĄd infrastructure[END_REF], Lee et al. [START_REF] Lee | ŞLow-Cost Untraceable Authentication Protocols for RFID[END_REF] propose RFID authentication protocols based on elliptic curve cryptography, but they require the tag to implement scalar point multiplications in the tag. In [START_REF] Sekino | ŞPrivacy enhanced rĄd using quasi-dyadic Ąx domain shrinking[END_REF], Sekino et al. propose an authentication protocol based on the Niederreiter public key cryptosystem [START_REF] Niederreiter | ŞKnapsack-type cryptosystems and algebraic coding theory[END_REF]. It is not adapted to low-cost tags, as the tag is required to support hash function, to store large matrix, and to excute matrix operations. In [START_REF] Girault | ŞLow-size coupons for low-cost ic cards[END_REF], Girault proposes a storage-computation trade-off approach of the famous GPS scheme [START_REF] Girault | ŞOn the Ćy authentication and signature schemes based on groups of unknown order[END_REF]. This approach consists in storing t coupons of pairs of numbers , (or in storing only if is regenerated on demand locally) for 0 ⊘ ⊘ ⊗ 1 on the tag with the tag-specific secret key , the computation by the tag is limited to = + × where is a challenge generated by the reader. This approach has been widely studied in the literature and different implementations have been proposed [START_REF] Girault | ŞThe Feasibility of On-the-Tag Public Key Cryptography[END_REF], [START_REF] Poschmann | ŞLightweight cryptography and rĄd: Tackling the hidden overhead[END_REF], [START_REF] Mcloone | ŞNew architectures for lowcost public key cryptography on rĄd tags[END_REF]. However, this approach does not support a moderate security level. Indeed, an attacker can make a denial of service attack by interrogating the tag more than times because the number of coupons stored on the tag is limited for cost reasons( storage capacity is the most expensive part of the hardware).

III. Lattice and NTRU cryptosystem

A. Lattice theory

If 1 , 2 ,..., are linearly independent vectors of R , then a lattice generated by 1 , 2 ,..., is the set:

= ¶ ︁ =1 ♣ ∀ ∈ ¶1, ..., ♢, ∈ Z♢
The Shortest Vector Problem (SVP): Given a base B (set of vectors linearly independent) of a lattice , find the smallest possible nonzero vector of , i.e. find ̸ = 0 such that ♣♣♣♣ is minimal. Where ♣♣.♣♣ is the euclidean norm, if x=( 1 ,..., ), then

♣♣♣♣ = √ < , > = ︀ ︁ =1 2
. The Closest Vector Problem (CVP): Given a base B of a lattice and a vector / ∈ , find a vector ∈ that is the closest to , i.e. ♣♣ ⊗ ♣♣ is minimal. The SVP and CVP problems are known as NP-hard.

B. NTRU cryptosystem

NTRU is a probabilistic public key cryptosystem proposed by Hoffstein et al. [START_REF] Hofstein | ŞNtru: A ring-based public key cryptosystem[END_REF], it is considered as secure by the standards IEEE 1363.1 [START_REF]ŞIeee standard speciĄcation for public key cryptographic techniques based on hard problems over lattices[END_REF] and X9 [START_REF]ŞLattice-based polynomial public key establishment algorithm for the Ąnancial services industry[END_REF]. NTRU is one of the fastest public key cryptosystems, it is suitable for systems which can not be easily updated as designed for long-term data protection. NTRU operations are performed in the ring ℜ = Z[]/( ⊗ 1), where N is a positive prime, defining the degree of the polynomial, i.e. the base ring ℜ. NTRU depends on three integer parameters (N, p, q) and four sets , , , of polynomials of degree at most ⊗ 1. In the latest version of NTRU, = 2 and (, ) = 1, is the space of plaintext with coefficients taken .

1) Key generation: Several steps are necessary: first choose randomly two polynomials and in and , respectively; then inverse ( ) to obtain and inverse ( ) to obtain ; finally, calculate the public key ℎ = ** ( ), the corresponding private key is (, ). The selection of parameters is determining the security level of NTRU. Along the paper, we consider = 2, like in the latest version of NTRU.

2) Encryption: Fast encryption of a message with NTRU includes three operations: Transform the message to a polynomial of , randomly choose a polynomial ∈ and calculate the cipher = *ℎ + ( ).

3) Decryption: Decryption is processed as follows: Use the private key (, ), calculate = * ( ), choose the coefficients of in the interval from -q/2 to q/2, finaly retrieve the message by computing * ( ). The NTRU problems for breaking the private key or the decryption algorithm are known as the NP-hard SVP and CVP problems respectively, in the NTRU's lattice = ¶(,

) ∈ ℜ 2 ♣ *ℎ ⊗ = 0 ( )♢.

IV. The proposed protocol

Our protocol is an asymmetrical probabilistic mutual authentication based on the NTRU public key cryptosystem [START_REF] Hofstein | ŞNtru: A ring-based public key cryptosystem[END_REF]. Atici et al. have designed in [START_REF] Atici | ŞLow-cost implementations of ntru for pervasive security[END_REF] an NTRU's architecture for encryption/decryption that requires only 10.8 for (, , ) = (167, 3, 128), our solution does not dedicate such amount of resources for the classical operations of NTRU on the tag, because all complex operations of NTRU such as modular arithmetic, polynomials multiplication are done at the server while the tag implements only lightweight operations. To the best of our knowledge, our protocol is the first lightweight RFID authentication protocol for low-cost RFID tags that simultaneously supports privacy (tracking resistance), high scalability level, and security protection at a moderate operational overhead, i.e. in terms of tag's capacity, exhaustive search and storage capacity at the back-end.

A. Our adaptation of NTRU to low-cost RFID tags

The public key cryptosystem NTRU handles polynomials in the ring ℜ = Z[]/( ⊗ 1) consequently, all the polynomials are of degree less than N. Any element of ℜ is represented by:

= ( 0 , 1 , ..., ⊗1 ) = ︁ ⊗1 =0
Multiplication in the ring ℜ is a convolution ⊗1. In ℜ, the addition of two polynomials is done term by term. However, a multiplication by is equivalent to rotate the coefficients: the coefficient of becomes the coefficient of +1 (and since multiplications are ⊗ 1, the monomial is equal to 1). Specifically, this convolution works as follows: Let's (, ) ∈ ℜ 2 the convolution product defined by:

(f * g)(X) = ︁ N -1 i=0 hiX i , h k = ︁ k j=0 fjg k-j + ︁ N -1 j=k+1 fjg N +k-j

If

′ is a right circular shift of by i-position, the product ′ * is the right circular shift of * by i-position. Indeed, a right circular shift of by -position is exactly equal to

roti(f ) = X i * f mod (X N -1) where X N * f mod (X N -1) = f . So f ′ * g = X i * f * g mod (X N -1) = X i * (f * g) mod (X N -1) = roti(f * g) , then: ( *) = ( )* (1) 
If we add * to its right-shift rotation by -position (1), we obtain:

* + ( *) = * + * * ( ⊗ 1) = ( + * )* ( ⊗ 1) = ( + ( ))*, then: * + ( *) = ( + ( ))* (2) 
The largest polynomial's coefficient handled along this paper is equal to 2 ⊗ 1, for this we choose to write each polynomial's coefficient in ⌈ 2 (2 ⊗ 1)⌉ bits to facilitate the manipulation of polynomials on the tag side. Then, each rotation of *ℎ by ⊗ , where is a multiple of ⌈ 2 (2 ⊗ 1)⌉, corresponds to the new product ′ *ℎ, where ′ is a right circular shift of by ⊗ (cf. Equation ( 1)), and each *ℎ + (*ℎ) corresponds to another product *ℎ where = + ′ (cf. Equation ( 2)). So, if the tag has in memory *ℎ ( ), it can construct easily an *ℎ and encrypts a challenge by adding it to *ℎ. This point will be later used in this paper. Note that, in specifications, is any small polynomial, its coefficients can be chosen in {-1, 0, 1} or {0, 1} to simplify the implementation or to attain very high security level according to the implementation standard [START_REF]ŞConsortium for eicient embedded security[END_REF], [START_REF] Howgrave-Graham | ŞChoosing parameter sets for ntruencrypt with naep and sves-3,Ť ser. CT-RSAŠ05[END_REF]. In our approach, few coefficients of this polynomial ( ) can be equal to 2 or ⊗2, such modification does not have a significant impact on the security of . Indeed, breaking the private key is an SVP problem in the NTRU's lattice = ¶(, ) ∈ ℜ 2 ♣ *ℎ ⊗ = 0 ()♢ which is independent of the choice of . On the other hand, the decryption problem can be seen as a CVP problem: the cipher of a message is = *ℎ + ( ); this means that the vector (, 0) is close to the vector (*ℎ , ) of the NTRU's lattice. More precisely, the difference between the two vectors is (, ) which is by definition very short. Consequently, if few coefficients of are equal to 2 and/or ⊗2, the difference (, ) between these two vectors remains very short. Then, for an attacker, decrypting a ciphertext with no knowledge of the private key is still a difficult CVP problem in the NTRU's lattice.

B. Initialization

Each tag is initialized with a random long-term secret key and two secret polynomials (binary vector): an identity ∈ that is unique at the back-end, and a polynomial *ℎ calculated modulo q in ℜ where is randomly generated in . The back-end stores only one private key (, ) to 

C. Description

As described in figure 1, based on the notations given in Table I, when the tag is queried, it reads the pre-computed value , it calculates = ( ), = [0,⊗1] and it constructs a -bit binary vector (polynomial) = 2 ( ), where 2 : ¶0, 1♢ ⊃ converts a sequence of bits into a binary polynomial, where = ⌈ 2 (2 ⊗ 1)⌉ . Note that, ∈ as each of its coefficients is in ¶0, 1♢. Then the tag reads the pre-computed value *ℎ and calculates

*ℎ = *ℎ + (*ℎ, ⌈ 2 (2 ⊗ 1)⌉ ′ )
and replaces *ℎ and with (*ℎ, ⌈ 2 (2 ⊗ 1)⌉ ′ ) and ( ) respectively. After that, the tag calculates and sends back to reader 1 = *ℎ+. Note that, if the previous authentication attempt has been successfully achieved, in its polynomial form, 1 can be written as 1 = *ℎ + = ( () + 1)**ℎ + ( ⊗ 1) (cf. section IV-A). If there is one or more failed previous authentication attempts, in its polynomial form, 1 can be written:

1 = ( + )**ℎ + ( ⊗ 1), (, ) ∈ N 2 (3) 
As such, the tag only does two sum operations of four binary values, few xor operations, some right circular shifts, one HMAC.

Upon receiving the tag's response ( 1 ), the reader/back-end calculates and decrypts 1 ( ) to retrieve . Note that, 1 ( ) is a valid NTRU ciphertext. That is, 1 ( ) is computed by the reader as each coefficient of 1 is at most equal to 2 ⊗ 1: each coefficient of is in ¶0, 1♢ and each coefficient of *ℎ used in the computing of 1 is between 0 and 2 ⊗ 1 (because each coefficient of *ℎ is between 0 and q-1). The reader/back-end decrypts 1 ( ) using the secret key (, ) to retrieve . It then generates randomly a polynomial (⊗bit pseudo-random sequence)

′ ∈ and computes ′ *ℎ ( ) in ℜ, 2 = ( *ℎ, *ℎ)⊕( ′ *ℎ), and 3 = ( ′ *ℎ). Then the reader/back-end sends these values to the tag. Upon receiving 2 the tag retrieves ′ *ℎ as ′ *ℎ = 2 ⊕( *ℎ, *ℎ), it authenticates the backend/reader by checking the correctness of 3 , which authenticates ′ *ℎ, it can be generated only by the legitimate reader thanks to HMAC. If 3 is correct the reader/backend is authenticated. Otherwise the tag aborts the session concluding that the reader failed to decrypt 1 correctly. If reader/back-end is authenticated, the tag sends back 

Reader/back-end Tag ℎ ⊗⊃ find *ℎ, , , compute ⊂ ( ), = 2 ( ), = [0,⊗1] , *ℎ = *ℎ + (*ℎ, ⌈2(2 ⊗ 1)⌉ ′ ) decrypt 1 ( ), get 1 ⊂⊗ 1 = *ℎ+, *ℎ⊂(*ℎ, ⌈2(2 ⊗ 1)⌉ ′ ) pick a random ′ ∈ , compute 2 = (*ℎ, *ℎ)⊕( ′ *ℎ) and 3 = ( ′ *ℎ) 2 , 3 ⊗⊃ get ′ *ℎ = 2⊕(*ℎ, *ℎ), verify 3, compute ′ *ℎ = ′ *ℎ + ( ′ *ℎ, ⌈2(2 ⊗ 1)⌉ ′ ), get = (4 ⊗ ′ *ℎ)⊕ 4 ⊂⊗ 4 = ′ *ℎ + ⊕, *ℎ⊂ ′ *ℎ
′ *ℎ = ′ *ℎ + ( ′ *ℎ, ⌈ 2 (2 ⊗ 1)⌉ ′ )
, and replaces *ℎ with ′ *ℎ. Note that, similarly to Equation (3) and from the description in section IV-A , in its polynomial form, 4 can be written:

4 = ( ( ) + 1)* ′ *ℎ + ⊕ ( ⊗ 1) (4) 
Let the binary polynomial defined by = ⊕, this means that = ⊕ , where 0 ⊘ ⊘ ⊗ 1. The tag's next authentication session is executed with the new value ′ *ℎ. To counteract replay attacks, the reader retrieves the tag's identity by = ( 4 ⊗ ′ *ℎ)⊕ and not by the decryption of 4 using the private key (, ). Note that the reader/back-end can authenticate a tag without knowledge of the tag's identity. This feature is very much interesting in some applications, specially in supply chains. Off-line authentication of a tag (with no exchanges with a central database) is made possible as the same private key (, ) is used for every tag.

D. Roaming support

Inter-domain authentication of tags, especially in the supply chain environment is not well investigated in the literature. In [START_REF] Li | ŞProtecting rĄd communications in supply chains,Ť in computer and communications security[END_REF], Li et al. propose a protocol based on hash function for the supply chain, but it was proven in [START_REF] Deursen | ŞSecurity of an RFID Protocol for Supply Chains[END_REF] to be vulnerable to multiple-attacks. Our proposed protocol can be extended to securely support the inter-domain tag authentication. Just before moving to another domain, the last authentication to the domain leads to the tag being updated with the next domain public key ℎ ′ .

V. Security and privacy analysis

The resistance of our protocol against the classical security attacks is directly derived from the properties of NTRU and HMAC. In the following analysis, we only consider vulnerabilities over the reader-tag channel. The channels between the reader and the back-end are considered as safe as both equipments have computing and battery resources, they are under the same administrative domain and they can implement any security protocols.

A. Resistance to replay attaks

For each authentication session, both the tag and reader/back-end generate new pseudo-random values , *ℎ and ′ *ℎ, thus making messages randomized (personalized) for each session. A replay attack to the reader is unlikely to occur, as the reader/back-end is assumed implementing a good pseudo-random polynomial generator, so they are unlikely to generate the same ′ *ℎ. A replay attack to the tag can only be successful if the attacker prevents the tag from receiving ( 2 , 3 ) (e.g. by transmitting a jamming signal) and the tag generates the same sequences and *ℎ in the next authentication attempt. The probability this attack is successful is negligible thanks to HMAC and the construction method of *ℎ, however, as discussed in the desynchronization attack, in case of success, it does not lead to any desynchronization between tag and reader/back-end.

B. Resistance to man in the middle attacks

We have demonstrated that, the attacker can not break NTRU using the modification that we have introduced on the choice of (cf. section IV-A). For the attacker to authenticate as a legitimate tag or a legitimate reader. If the attacker is passive, the best is experimenting a replay attack. Indeed, suppose that the attacker wants to be authenticated as a legitimate tag, he has to produce a valid message 4 or to retrieve the tag secret identity . It's clear that the attacker cannot produce a valid 4 from the previously exchanged messages between the tag and readers because any modification in a previous tag's response 1 will be detected in the attacker's response 4 thanks to the random value ′ *ℎ generated by the reader itself. On the other hand, the attacker cannot retrieve the identity of the tag because he cannot break NTRU. If the attacker is active, he will try to take advantage of the fact that the number of *ℎ between two legitimate authentication sessions is limited, to retrieve the identity of the tag , he must first find the pseudo random value or *ℎ (initial values assigned to the tag during the previous mutual authentication session). For this, he queries the tag between two legitimate mutual authentication sessions. He has to retrieve the polynomial () ⊗ () for a specific and several in order to find () and *ℎ, where () corresponds to the of the j-th authentication attempt (attacker's query). Indeed, each () is a binary polynomial, so if the attacker finds a specific and some () ⊗ () for several , he can deduce some coefficients of () and he can proceeds by brute force attack to get the rest of coefficients of () , then he gets () *ℎ, (+1) , etc. and proceeds by another attack to deduce *ℎ because from the Equation (3) it's clear that:

*ℎ = 1 () ⊗ + , (, ) ∈ 0, N-1 2
Note that this attack is not be performed as he cannot retrieve for a specific and several , () ⊗ () . Indeed, suppose that the attacker begins his attack as described above, the tag responds to the i-th and to (i+1)-th attacker queries with 1 () = **ℎ + ⊗1 **ℎ + () ( ⊗ 1) and 1 (+1) = +1 **ℎ + **ℎ + (+1) ( ⊗ 1), respectively (cf. Equation ( 3)), where **ℎ ( ⊗ 1) = *ℎ, and ( ⊗1 , , +1 ) ∈ N 3 . So,

1 (+1) ⊗ 1 () = ( +1 ⊗ ⊗1 )**ℎ + (+1) ⊗ () ( ⊗ 1) (5)
Suppose that the attacker wants to obtain the value of () from (⊗1) , () , and (+1) . Thanks to calculation with ( ⊗ 1) and to simplify the reasoning we can write = ︁ =1 ( () ), then +1 ⊗ ⊗1 = ( ( (+1) ) + ( () )). To retrieve (+1) ⊗ () the attacker should eliminate the ( +1 ⊗ ⊗1 )**ℎ in the Equation [START_REF] Batina | ŞHierarchical ECC-Based RFID Authentication Protocol[END_REF], this is possible only if +1 equal to ⊗1 or if each of +1 and ⊗1 is a multiple of . However, this is unlikely to occur as +1 = ⊗1 means that the tag has generated successively two null values of but this scenario is unlikely to occur because HMAC generates good pseudo random sequences. On the other hand, the value of is chosen in such a way that +1 and ⊗1 are never a multiple of in the same time, in other words +1 ⊗ ⊗1 = ( ( (+1) ) + ( () )) is less than , so can be chosen such that its length is less than /2. Then the attacker cannot retrieve (+1) ⊗ () and () ⊗ (⊗1) to try the attack described above on () . However, let's the number of all possible values of an *ℎ derived from one *ℎ (initially assigned to the tag by the reader/back-end) between two legitimate authentication sessions, it's clear that = + ⊗1+ ⊗2+...+ ⊗( ⊗ 1). Then, = 2 ⊗ ︁ ⊗1 =1 = 1/2( 2 + ), for = 251, = 31626. Consequently, if the attacker queries the tag more than times, there will certainly be 1 (1) and 1

(1)

using the same *ℎ, so from the Equation (3) we deduce:

1 (1) ⊗ 1 (1) = (1) ⊗ (1) , ( 1 , 1 ) ∈ 1, w 2 (6) 
Note that, the attacker cannot accurately determine 1

(1)

and 1 (1) . If the attacker continues to query the tag (before the next mutual authentication), there will be 1 (2) and 1 (2) such that 1 (2) ⊗ 1 (2) = (2) ⊗ (2) . However, and thanks to HMAC it is likely that each of (1) , (2) , (1) and (2) is different from each other. If we continue this reasoning we note that the attacker is not able to find in reasonable period of time for a specific , several such that 1 () ⊗ 1 () = () ⊗ () ( ⊗ 1). As such the attacker cannot retrieve either or *ℎ. The attacker cannot proceed by the previously described attack (cf. Equation ( 6)) on the message 4 in order to retrieve ⊕ or ′ *ℎ because ′ *ℎ changes for each 4 . However, the tag next authentication session will be executed with ′ *ℎ which has been generated by the reader in the previous session (session ), so once the session is successfully completed and before the next mutual authentication session happens, the attacker can start to query the tag. If he queries the tag more than 1/2( + 2 ) there may be 1 () such that 1 () = ( ( () ) +1)* ′ *ℎ+ () ( ⊗ 1) (cf. Equation ( 4)), then: 1 () ⊗ 4 () = () ⊗ () ⊕, (, ) ∈ N 2 (cf. Equations ( 6)). Even if he finds the right 1 () , it's clear that he cannot retrieve the identity of the tag from this equation (he does not know either () or () ). On the other hand, the identity of the tag is encrypted (cf. Equation ( 4)) in such a way that the multiple transmission attacks on NTRU is avoided. Indeed, if the same message is transmitted many times using the same public key ℎ, but with different random 's, the attacker will be able to retrieve a large part of the message NTRU [START_REF] Hofstein | ŞNtru: A ring-based public key cryptosystem[END_REF]. To counteract this attack, we encrypt in 4 ⊕ instead of the static value, as ⊕ is different from one authentication session to another. As such, our protocol is resistant to man in the middle attacks.

C. Tag anonymity and resistance to tracking

Our protocol supports this challenging property for RFID systems. Two scenarios arise according to whether the attacker is passive or active. If the attacker is passive, i.e. he can not query the tag but he can eavesdrop communications between the tag and legitimate readers. He cannot track the tag as the messages exchanged over the wireless channel between the tag and the reader are randomized in each authentication session thanks to , ′ *ℎ (cf. Equation ( 4)). If the attacker is active, i.e. he can query the tag. The privacy is also guaranteed as the tag respond 1 = *ℎ+ is randomized in each attacker's request thanks to the construction method of *ℎ and HMAC. Indeed, the attacker cannot track the tag between two mutual authentication sessions by trying to distinguish the specific *ℎ used by the tag because in 1 () = ( + ⊗1 )**ℎ + () ( ⊗ 1), (, ) ∈ N 2 (cf. Equation ( 3)) the attacker cannot obtain information about specific coefficients of *ℎ that allows him to track the tag.

D. Resistance to desynchronization attacks

The attacker can try to make the tag and reader/backend out of synchronization by acting as an active man in the middle attacker, modifying 2 in order to provide to the tag an invalid value of ′ *ℎ, this modification will be necessarily detected in the HMAC value 3 = ( ′ *ℎ) that guarantees the authenticity of ′ *ℎ because know only to the tag and the reader which has the private key (, ) that allows decryption of 1 (the cipher value of (or )). Indeed, suppose that, the attacker has modified the bit at index of 2 , with 20 being the least significant bit of 2 . He cannot produce a valid value of 3 because he does not know the values of (or ) and ′ *ℎ that must be used in this HMAC calculation. Then tag-reader/back-end synchronisation is guaranteed.

VI. Performance evaluation

Our proposed protocol is designed for low-cost RFID tags. All the complex operations such as polynomial multiplications, random polynomial generation in , computation of modulo, etc. are done at the server. Let = ⌈ 2 (2 ⊗ 1)⌉ , the tag only requires to store about 2 + + 128 bits and to support lightweight hash function like Photon [START_REF] Guo | ŞThe photon family of lightweight hash functions[END_REF] or Keccak [START_REF] Kavun | ŞA Lightweight Implementation of Keccak Hash Function for Radio-Frequency IdentiĄcation Applications[END_REF]. The computations by the tag are limited to two HMAC values, and an average of about ⌈ 2 (2 ⊗ 1)⌉( + /2) bitewise right circular shift, addition of four polynomials, and + bitwise xor operations. On the other hand, the reader/backend implements right circular shift operator, and two NTRU algorithms to perform one encryption and one decryption each one with a complexity of only ( 2 ). Moreover, the reader/back-end does not require any exhaustive search in keys to authenticate a tag.

VII. Conclusions

In this paper, we propose an adaptation of NTRU for low-cost RFID tag, and a lightweight mutual authentication protocol based on this NTRU's adaptation. This solution satisfies the security and privacy requirements for RFID systems. It benefits from the NTRU features like high security level, and fast encryption and decryption. It provides remarkable properties such as strong scalability and untraceability, and resistance to known classical security attacks. Furthermore, it can be implemented efficiently into low-cost tags, as tags are only required to implement a lightweight hash function, and bit-wise operations in [START_REF] Vaudenay | ŞOn privacy models for rĄd[END_REF].

  This work was partially funded by the German Federal Ministry of Education and Research under the promotional reference 01ISO7009 and by the French Ministry of Research within the RESCUE-IT project.

Fig. 1 :

 1 Fig. 1: The proposed protocol

TABLE I :

 I Notations. authenticate all tags, and an for each tag.