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Abstract—In this paper we propose several methods, using
the same structure but with different criteria, for estimating
the nonlinearities in nonlinear source separation. In particular
and contrary to the state-of-art methods, our proposed approach
uses a weak joint-sparsity sources assumption: we look for tiny
temporal zones where only one source is active. This method
is well suited to non-stationary signals such as speech. We
extend our previous work to a more general class of nonlinear
mixtures, proposing several nonlinear single-source confidence
measures and several functional clustering techniques. Such
approaches may be seen as extensions of linear instantaneous
sparse component analysis to nonlinear mixtures. Experiments
demonstrate the effectiveness and relevancy of this approach.

I. INTRODUCTION

Blind Source Separation (BSS) consists of estimating a set
of N unknown source signals sj from a set of P observations
xi resulting from mixtures of these sources through unknown
propagation channels [1]. Among all the proposed approaches,
the ones based on source sparsity, known under the name of
Sparse Component Analysis (SCA) methods, have met with
great interest from the community in the last decade (see
e.g. [1, Ch. 10]). Indeed, they are naturally adapted to sta-
tionary, non-stationary and/or dependent signals and are thus
an alternative to classical Independent Component Analysis
(ICA) approaches which assume source mutual independence.
Moreover, they allow processing of the underdetermined case
where N > P .

Most of the SCA approaches have been proposed for
linear mixtures, i.e. linear instantaneous (LI) or convolutive
mixtures. While many methods assume the sources to be
(approximately) W-disjoint orthogonal (WDO) in an analysis
domain1 [2], several other ones highly relax this assumption,
by looking for “single-source zones” (i.e. zones where one
source is dominant over the others) [3], [4]. Interestingly, while
many SCA methods have been proposed for linear mixtures,
only a few sparsity-based approaches process nonlinear (NL)
configurations [5]–[9]. The work in [5] and [6] required
the sources to be approximately WDO2 and processed post-
nonlinear (PNL) mixtures (i.e. a special configuration where
linear mixes of sources are distorted by a componentwise

1The WDO assumption means that in each atom of an analysis domain (e.g.
time, time-frequency, time-scale domain), at most one source is non-zero.

2Actually, in [5], the authors assume the sources to be (P − 1)-sparse,
which is equivalent to WDO if P = 2. In [6], the approximate WDO is not
explicitly assumed but is needed by authors and satisfied in their tests.

function which models data acquisition/sensor nonlinearities,
such as saturation). [7]–[9] extended the measures for finding
single-source zones to particular NL mixtures (respectively
bilinear, following the Nicolsky-Eseinman model, and PNL).

In this paper we propose a general approach, using single-
source zones as in [7]–[9], which estimates the nonlinear
functions in mixtures and which possibly processes the under-
determined case. It may be seen as a generalization of [9] to a
wider class of NL mixtures. Our proposed method keeps the
same structure as [9], but we additionally introduce several
single-source confidence measures and different functional
data clustering approaches, thus yielding a way to extend linear
SCA [3], [4] to NL-SCA.

II. PROBLEM STATEMENT

In this paper, we assume that N real source signals s(t) =
[s1(t), . . . , sN (t)]T are mixed by an unknown instantaneous
nonlinear mapping A from RN → RP . Observed signals then
read:

x(t) = A (s(t)) . (1)

This mixing model is extremely general and it is well known
[1, Ch. 14, Sect. 14.2.3] that it cannot be solved by only assum-
ing source mutual independence3, and additional definitions
and assumptions are needed.

Definition 1: A “temporal analysis zone” is a subset T of
the time domain4.
From a theoretical point of view, each temporal analysis zone
may be set to any kind of subset of the full time domain.
However, in practice, we set these zones to intervals.

Definition 2: A source is said to be “isolated” in a temporal
analysis zone T if only this source (among all considered
mixed sources) has a nonzero variance in this zone. We then
say that this zone is “single-source”.
This definition corresponds to the theoretical point of view.
From a practical point of view, this means that the variances
of all other sources are negligible with respect to the variance
of the source that is isolated.

3 [1, Ch. 14, Sect. 14.2.3] even provides a way to design an invertible NL
operator B which preserves the mutual independence of the output signals
y(t) = B (x(t)) = B ◦ A (s(t)) while still being mixing.

4Actually, our approach is not limited to audio signals, but we refer to
time as many LI-SCA approaches usually sparsify the observations with a
time-frequency transform.



Definition 3: A source is said to be “accessible” in the time
domain if there exist at least one temporal analysis zone where
it is isolated.

Assumption 1: (i) The nonlinear mapping A is smooth, (ii)
we assume we know the value of A for one value u0 ∈ RN ,
and in particular, without loss of generality, we assume that
u0 = 0 and that

A(0) = 0. (2)

Lastly, (iii) A may be completely estimated by its values in
single-source zones T :

xi(t) = Ai (s(t)) , Aik(sk(t)), ∀i ∈ {1, . . . , P}, (3)

where Aik is an invertible nonlinear function from R → R.
Assumptions 1.(i) and 1.(iii) are needed in order to interpolate
A from Aik. Assumption 1.(ii) is needed to suppress the
ambiguities that may appear in the selection of single-source
zones, as we will see in Section III-A. Note that Assumption
1.(iii) allows us to tackle many NL configurations, as we
will now see. The PNL mixture model e.g. satisfies this
assumption: the nonlinear mapping A may be rewritten as the
composition

A = f ◦A, (4)

where f and A model each part of the PNL mixture, i.e. f is a
NL mapping from RP → RP and A is a N×P mixing matrix,
and where ◦ is the composition sign. Observations then read

x(t) = f (As(t)) , (5)

and the values of x(t) at times t when sources are isolated
allow the estimation of both f and A [5], [6], [9]. Assumption
1.(iii) also allows us to process the situation when each
NL function Ai defined in Eq. (3) is written as a linear
combination of NL functions Aij defined from R → R:

Ai(s(t)) =

N∑
j=1

Aij(sj(t)). (6)

In a general way, Assumption 1.(iii) allows us to estimate
mappings Ai that can be inferred from the functions Aik

defined in Eq. (3).
Assumption 2: (i) Source signals are mutually independent

and (ii) by considering several single-source analysis zones
associated with the same source, the amplitude of the obser-
vations spans a “wide” range allowing the estimation of the
NL functions Aik.
Note that, contrary to linear SCA methods which can process
correlated sources [1, ch. 10], here we need source mutual
independence. This is due to the more complex mixing model,
as we will see in Section III-A. Assumption 2.(ii) is needed
because we want to estimate the nonlinear mappings Ai on
their whole domains. In the case where we should be able
to estimate the functions Ai on a subset of their domain,
the whole estimation might be coarse, thus yielding a poor
separation quality.

In this paper, our main contribution is dedicated to the
estimation of the NL mapping. Recovering the sources is not

straightforward in general and needs extra-assumptions on the
mixture model or on the sources (e.g. the sources take a finite
set of possible values) [1, Ch. 14]. The only case for which the
separation is quite easy is that of the PNL mixture, for which
a solution consists of linearizing the observations [5], [6] and
of then applying LI-SCA to the newly obtained observations.

The proposed mixture identification structure may be sum-
marized as follows:

1) We first look for single-source analysis zones (See
Section III-A).

2) We then estimate the nonlinear mappings Ai (See Sec-
tion III-B).

III. PROPOSED APPROACH

A. Nonlinear single-source confidence measures

We now detail how to find single-source zones in NL
mixtures. If a source, say sk is isolated, then Eq. (3) holds
and we then obtain, assuming that Aik is invertible,

sk(t) = A−1
ik (xi(t)) ∀i ∈ {1, . . . , P}, ∀t ∈ T . (7)

We thus have the following relationship between observations
x1 and xi, for all t ∈ T :

xi(n) = Aik

(
A−1

1k (x1(t))
)
= ϕik(x1(t)), (8)

where the functions ϕik are defined as:

ϕik(u) = Aik

(
A−1

1k (u)
)
. (9)

In an LI problem, the relationships (8) between observations
are much simpler. Let us first recall that in that case, the
mappings Aik in Eq. (3) are set to scale coefficients aik. In
the case when a source, say sk is isolated, then observations
read:

xi(t) = aiksk(t) ∀i ∈ {1, . . . , P}, ∀t ∈ T (10)

and we get the following relationship between observations x1

and xi:

aikx1(t)− a1kxi(t) = 0 ∀i ∈ {1, . . . , P}, ∀t ∈ T . (11)

In [3], [4], authors proposed finding these single-source zones
by means of a “single-source confidence measure” (resp. based
on correlation between pairs of observations [3], and local
PCA [4]). In this paper, we introduce several methods to
extend the confidence measures proposed in [3], [4] to NL
mixtures.

The work of [3] proposed estimating the correlation between
pairs of observations to find single-source zones. Indeed, this
coefficient is equal to ±1 when one source is isolated and is
much lower otherwise. In the considered NL mixture (1), we
need to measure a nonlinear correlation between observations.
This is e.g. provided by the normalized mutual information
Inorm(x), defined as [8], [9]:

Inorm(x) =
√
1− e−2 I(x), (12)

where I(x) stands for the mutual information between ob-
servations. When normalized, its behavior is similar to that



of a correlation and we consider the analysis zones T which
maximize Eq. (12) as single-source.

Alternatively, as we assume the NL mappings Aik to be
smooth, the resulting functions ϕik are also smooth and one
may locally consider them as linear. Such an idea is quite
classical in manifold learning [10] and allows us to extend
linear single-source approaches to NL configurations. Several
approaches, like LTSA [10, Sect. 3.2.4], learn the manifold
by constructing the local tangent space of each observed data
point. We propose using such an idea to extend linear single-
source confidence measures to NL mixtures. Our approach
consists of successively considering each sample x(ti) of the
analysis zone T , of defining its neighborhood (estimated by
means of a K nearest neighbor (K-NN) technique), and of ap-
plying in this neighborhood a linear single-source confidence
measure. As in [4], we e.g. realize an eigendecomposition of
the correlation matrix of the data. If one source is isolated,
then the rank of the observations is set to 1 and the highest
eigenvalue λ1(ti) is non-negligible while the K−1 other ones
λj(ti) are close to zero. Authors of [4] proposed computing the
ratio between the highest eigenvalue and the sum of the others
to find single-source zones. In this paper, in order to keep
an analogy with the behavior of the correlation, we propose
computing the ratio:

R(ti) =
λ1(ti)∑K
j=1 λj(ti)

, (13)

which is close to 1 in single-source zones and much lower
otherwise. Once we compute the ratios R(ti) for all the
data points in T , we derive the actual global single-source
confidence measure, denoted R(x) hereafter, as the geometric
mean of all these ratios. Note that applying other single-
source measures like [7] is straightforward and we will denote
by C(x) the global correlation coefficient computed as the
geometrical mean of local correlation coefficients estimated
in tangent subspaces of the data points x(t).

Lastly, there is an issue with both of the above NL con-
fidence measures if in a zone T , unactive sources sj(t) are
constant but non-null5. Such a scenario is not a problem in
LI-SCA: observations can be locally centered in each analysis
zone, thus zeroing the constant signals [3]. The same solution
is possible for some special forms of A, as e.g. in Eq. (6). But
without additional a priori information about the mappings,
we need to provide a general solution to this problem: due to
Assumption 1.(ii), the value of each nonlinear function Ai is
zero at zero and we can estimate ϕ̂ik, the nonlinear relationship
between observations defined in Eq. (9) (see Section III-B) and
discard the zones where ϕ̂ik(0) ̸= 0.

Finally, we look for analysis zones which (i) maximize
the chosen single-source confidence measure and (ii) which
satisfy6 ϕ̂ik(0) = 0.

5Note that contrary to our proposed method, the authors of [8] are looking
for zones where all the unactive sources are strictly positive constant.

6In practice, we look for zones where the considered single-source confi-
dence measure is above a value 1− ϵ1 and we only keep the zones such that∣∣∣ϕ̂ik(0)

∣∣∣ < ϵ2, where ϵ1 and ϵ2 are user-defined thresholds.

B. Functional data clustering

Once we have estimated all the single-source analysis zones,
we get a subset of the original observations for which, in each
zone, a scattered representation of a function ϕik is provided.
As several zones may lead to the same source, it then makes
sense to cluster these data in order to obtain quite dense
representations of the functions ϕik to be inferred.

Many approaches for clustering functional data belong to
one of the two following families. (i) The regularization
approaches consist of successively interpolating each observed
scattered function, of discretizing all of them on the same
time grid and lastly clustering them while considered as a
high dimensional vectors. However, they are often highly
correlated and may lead to unstable solutions, because of the
curse of dimensionality. (ii) The filtering methods consist of
approximating each curve with respect to a common finite
dimensional basis (B1, . . . , BK), e.g. a B-spline basis, and
then of clustering the resulting basis coefficients with e.g.
classical clustering techniques such as K-means [11] or its
median-based extension K-medians [9]. The main difficulty
then consists of choosing the “good” basis, with good param-
eters (e.g. in the case of a B-spline basis, choosing the degree
of the spline and the knot locations) [9], [11].

Alternatively, we propose a clustering approach based on the
locally linear data approximation. In particular, we estimate
this approximation around 0. Indeed, the first order of the
Taylor expansion of the functions ϕik reads

ϕik(t) = ϕik(0) + ϕ′
ik(0) · t+O(t2). (14)

Eq. (14) thus reveals that the scattered curve is approximated
by the slope of its tangent at zero and we can use this slope
as a way to cluster the estimated functions. Estimating ϕ′

ik(0)
may be done by LI-SCA, as Eq. (14) is equivalent to Eq.
(11). As in Section III-A, we propose using the formalism of
manifold learning, and estimating the neighborhood of 0 with
the K-NN method, before applying one of the methods in [4],
[7] to estimate the slope of ϕ′

ik(0). We lastly cluster the curves
by applying K-medians on these slopes.

IV. PERFORMANCE OF THE PROPOSED APPROACH

In this section, we test the performance of our proposed
approaches. As they share the same stages but with different
criteria, we propose illustrating separately the influence of each
of these criteria. We first investigate the accuracy of the single-
source confidence measure in one toy example. We generate
two source signals of 20000 samples: one is a white noise
realization while the other is another white noise realization
multiplied by a gain coefficient ranging from 0 to 1 along the
signal length. We then mix them in two observations according
to Eq. (6) with A11(t) = A22(t) = tanh(t), A12(t) = 0.5t,
and A21(t) = 3t. We thus have one unique isolated source
in the first zones and the measures should quickly decrease
with the zone index. As the locally-linear approaches use a
K-NN method for estimating the linear subspace, we vary K
to {5, 10, 15, 20}. Figure 1 shows the belief of the proposed
single-source confidence measures, i.e. Inorm(x), estimated



Fig. 1. Values of the different single-source confidence measures for a
pair of observations. Black: Normalized mutual information. Red: Ratio of
eigenvalues in tangent spaces. Green: Correlation coefficient in tangent spaces.

as in [9] (black line), the mean and the envelope (obtained
from the experiments with different values of K) of R(x)
(red curves) and C(x) (green curves). All the proposed single-
source confidence measure seem to be well suited to the
considered problem. In the single-source zones, they are all
extremely close to 1 and both R(x) and C(x) do not seem
sensitive to the value of K. However, in non single-source
zones, we notice different behaviours: both Inorm(x) and
R(x) provide quite high values, i.e. not too far from 1, while
C(x) provide highly decreasing values, thus indicating that it
seems the most discriminant measure.

We now test the different functional clustering approaches
we discussed in Section III-B. We perform the same series
of tests as in [9] for PNL mixtures of audio sources. The
nonlinearities of the model simulate the saturation in audio
recordings due to small size of microphones e.g. contained in
mobile devices. We consider 28 pairs of N = 2 speech sources
that we mix with the 2× 2 matrix A = [aij ] =

[
(−1)jγ|i−j|]

and to which the following NL mappings f1(t) = tanh(t)+ t
and f2(t) = tanh(10t) are applied. In all the tests, we detect
the single-source zones by using the normalized mutual infor-
mation Inorm(x) as was performed in [9]. We then apply one
of the above functional clustering approaches and we provide
the mean square error (MSE) between the interpolations of
the clustered curves and the theoretical ones in Table I. For
the same reasons as in the previous experiment, we defined
the K-neighborhood around 0 with several values of K:
{5, 10, 15, 20}. The values inside brackets in Table I give the
performance when K = 5 while the experiments with the other
tested values of K yielded the same MSEs and are shown
outside the brackets. All the methods provide very accurate
and similar results (when K ≥ 10), hence showing their
relevance. However, the filtering clustering method contains
heuristics difficult to set in practice: we must define some
common knot locations for all the scattered curves, with some
constraints on the number of data points x(t) between knots,
and a spline degree. Choosing a “good” number of neighbors
with the tangent space-based approaches is much simpler.
Moreover, the K-NN method was not sensitive to the choice

TABLE I
PERFORMANCE OF THE FUNCTIONAL CLUSTERING METHODS

Method γ
0.1 0.5 0.9

Filtering (MSE) 6.7e-2 4.5e-5 4.6e-5
clust. [9] (Std.) 2.3e-1 5.9e-5 1.0e-4
linear approx. (MSE) 4.8e-2 (6.9e-2) 4.1e-5 (9.0e-3) 4.6e-5 (1.6e-2)
using [4] (Std.) 2.4e-1 (2.8e-1) 5.6e-5 (3.1e-2) 1.0e-4 (3.6e-2)
linear approx. (MSE) 4.8e-2 (4.6e-2) 4.1e-5 (8.2e-3) 4.6e-5 (1.6e-2)
using [7] (Std.) 2.4e-1 (2.3e-1) 5.6e-5 (2.9e-2) 1.0e-4 (3.6e-2)

of K, provided it was “big enough”.

V. CONCLUSION

In this paper we proposed a new method to estimate
mappings which hold in non-linear source separation using
a weak sparsity assumption (finding zones where only one
source is active) and functional clustering. The inversion of the
estimated mappings is usually not straightforward, except in
some special configurations that we discussed. We investigated
several single-source confidence measures, and specifically
some measures inspired by manifold learning. We also studied
several functional clustering methods and validated their per-
formance with simulations. In the future, we will give a more
detailed analysis of the performance of each of the presented
criteria. We will also investigate the NL inversion and the
estimation of NL mappings with memory effect.
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