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ABSTRACT

In this paper, we propose a method for estimating the nonlinearities
which hold in post-nonlinear source separation. In particular and
contrary to the state-of-art methods, our proposed approach uses
a weak joint-sparsity sources assumption: we look for tiny tem-
poral zones where only one source is active. This method is well
suited to non-stationary signals such as speech. The main novelty
of our work consists of using nonlinear single-source confidence
measures and curve clustering. Such an approach may be seen as
an extension of linear instantaneous sparse component analysis to
post-nonlinear mixtures. The performance of the approach is illus-
trated with some tests showing that the nonlinear functions are es-
timated accurately, with mean square errors around 4e-5 when the
sources are “strongly” mixed.

1. INTRODUCTION

Blind Source Separation (BSS) consists of estimating a set of N
unknown source signals s j from a set of P observations xi result-
ing from mixtures of these sources through unknown propagation
channels [1]. Among all the proposed approaches, the ones based
on sources joint-sparsity, known under the name of Sparse Com-
ponent Analysis (SCA) methods, have met with great interest from
the community in the last decade (see e.g. Chap. 10 of [1]). In-
deed, they are naturally adapted to stationary, non-stationary and/or
dependent signals and are thus an alternative to classical Indepen-
dent Component Analysis (ICA) approaches which assume source
mutual independence. Moreover, they allow processing of the un-
derdetermined case where N > P.

Most of the SCA approaches have been proposed for linear
mixtures, i.e. linear instantaneous (LI), anechoic or convolutive
mixtures. While many methods assume the sources to be (approx-
imately) W-disjoint orthogonal (WDO) in an analysis domain1 [2],
several other methods highly relax this assumption, by looking for
“single-source zones” (i.e. zones where one source is dominant over
the others) [3–6]. Interestingly, while many SCA methods have
been proposed for linear mixtures, only a few sparsity-based meth-
ods process nonlinear configurations [7–10]. In [7, 8], the authors
consider post-nonlinear (PNL) mixtures (i.e. a special configura-
tion where linear mixes of sources are distorted by a function which
models data acquisition/sensor nonlinearities, such as saturation),
and assume the sources to be approximately WDO2. Unfortunately,
these approaches are not tested with real source signals, mainly be-
cause of the strong sparsity assumption. In [9, 10], the authors ex-
tend the measures for finding single-source zones to other classes
of nonlinear mixtures but restrict their approach to overdetermined
or determined mixtures.

This work is funded by the Marie Curie IAPP “AVID MODE” grant
within the 7th European Community Framework Program.

1The WDO assumption means that in each atom of an analysis domain
(time, time-frequency, time-scale domain), at most one source is non-zero.

2Actually, in [7], the authors assume the sources to be (P− 1)-sparse,
which is equivalent to WDO if P = 2. In [8], the approximate WDO is not
explicitly assumed but is needed by authors and satisfied in their tests.

In this paper, we propose an approach for identifying PNL mix-
tures based on single-source zones, as in [9,10], and which possibly
processes the underdetermined case, as in [7, 8]. We thus avoid the
strong source joint-sparsity assumption of [7, 8] while treating the
same class of mixtures and applying our approach to mixtures of
real speech signals. We only focus on the identification of mixtures
and not on the whole separation. Indeed, it is proved that a good
estimation of the nonlinearities is crucial for a good separation (see
e.g. Chapter 14 of [1]), hence the importance of an accurate ap-
proach. Once the identification of the mixtures is done, the sep-
aration is straightforward, e.g. using methods proposed in [7, 8].
The main novelty of the paper consists of combining single-source
zones and curve clustering and may be seen as a way for extending
linear SCA [3–6] to PNL-SCA.

The remainder of the paper is structured as follows: in Section
2, we describe the considered BSS problem. We then introduce our
proposed method in Section 3. Section 4 provides an experimental
validation of the approach while we conclude and discuss future
directions of the incoming work in Section 5.

2. PROBLEM STATEMENT

In this paper, we assume that N real source signals s(n) =
[s1(n), . . . ,sN(n)]T are mixed by a LI unknown P×N mixing matrix
A, thus providing a set of linearly mixed signals

z(n) = As(n), (1)

to which a nonlinear componentwise vector mapping f =

[ f1, . . . , fP]T , assumed to be invertible, is applied. It can e.g. model
data acquisition/sensor nonlinearities such as saturation. Such a sit-
uation e.g. arises in audio processing with small and cheap micro-
phones in a mobile device. Observed signals x(n) thus read

x(n) = f (z(n)) = f (As(n)) . (2)

We aim to estimate the source signals s(n), up to a scale coeffi-
cient/permutation indeterminacy. This means that we want to sup-
press or reduce as much as possible the distortions introduced by
the nonlinear mappings fi. For that purpose, we use a separating
structure which is the mirror of the mixing one (see e.g. Chap.14
of [1]): we first have to estimate gi, the inverse of the nonlinear
mappings fi, and to apply them to the observations. We then obtain
a linear problem comparable to (1) and we process a linear SCA
approach to estimate the sources. The global mixing and separating
structure is drawn in Fig. 1. The proposed separating structure may
be summarised as follows:
1. We first look for temporal zones where one source is dominant

over the others (See Section 3.3).
2. We then estimate the nonlinear mappings fi (See Sections 3.2

and 3.4)
3. We then invert the nonlinearities and get a LI-BSS problem, that

we solve using a LI-SCA approach (see Section 3.5).
Let us emphasize that we here focus on the first two above items
and that we will not perform the inversion of the nonlinearities.
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Figure 1: PNL Mixing-separating structure.

3. PROPOSED APPROACH

3.1 Definitions and assumptions
We first present the only assumptions that we make in this approach,
and the associated definitions.

Definition 1 ( [7]) Let A = [ai j]i, j be an P×N matrix. Then A is
said to be “mixing” if A has at least 2 nonzero entries in each row.
And A is said to be “absolutely degenerate” if there are two nor-
malised columns aik and ail with k 6= l such that a2

ik = a2
il , i.e. aik

and ail differ only by the sign of the entries.

Assumption 1 (Mixing assumptions) 1. A has nonzero entries
on the first row and at least one nonzero entry in each other
row. We cannot find two collinear vectors a2

ik and a2
il , with k 6= l.

2. In the underdetermined case when N > P, every P × P-
submatrix of A is invertible.

3. We also assume that, for each index i, fi(0) = 0.

Assumption 1.1 is needed for the following reasons [7]: if A is not
“mixing” (according to Definition 1), then this means that there is
an index i such that the i-th row of A contains only one non-zero
element and consequently fi cannot be identified. As an extreme
case, let us imagine that A is diagonal (up to a permutation in its
columns order), then each observed signal reads

xi(n) = fi(aiksk(n)), (3)

i.e. we already get separated signals for which we cannot do nothing
more without extra information. If A is absolutely degenerate, it can
be estimated but the nonlinear mappings cannot [7]. Assumption
1.2 is a classical assumption in underdetermined BSS. This means
that locally, if only P sources are active, we get a determined BSS
problem which needs to be separable. Lastly, Assumption 1.3 is not
limiting for practical applications and is shared by many PNL-BSS
approaches.

Definition 2 A “temporal analysis zone” is a set T of M adjacent
samples T = {n1, . . . ,nM} in the time domain.

Definition 3 A source is said to be “isolated” in a temporal analy-
sis zone T if only this source (among all considered mixed sources)
has a nonzero variance in this zone. We then say that this zone is
“single-source”.

This definition corresponds to the theoretical point of view. From
a practical point of view, this means that the variances of all other
sources are negligible with respect to the variance of the source that
is isolated.

Definition 4 A source is said to be “accessible” in the time domain
if there exist at least one temporal analysis zone where it is isolated.

Assumption 2 (Source assumptions) 1. Source signals are mu-
tually independent.

2. At least P sources are accessible in the time domain.
3. By considering several single-source zones associated with the

same source, the amplitude of the observations spans a “wide”
range allowing the estimation of the nonlinear functions fi.

Figure 2: Scatter plots of observations on a single-source zone and
theoretical curves. Left: LI mixtures. Right: PNL mixtures.

Note that, contrary to linear BSS methods [5] which needed source
linear independence, we here need source mutual independence.
This is due to the more complex mixing model, as we will see in
Section 3.3. We need P isolated sources in order to be able to invert
the P nonlinear functions fi [7]. Assumption 2.3 is needed because
we want to estimate the nonlinear mappings fi on their whole do-
mains. In the case when we should be able to estimate the functions
fi on a subset of their domain, the whole estimation might be coarse,
thus yielding a poor separation quality.

3.2 Geometrical behavior
Before introducing the proposed method, let us focus on the intu-
itive idea behind it. In LI-SCA methods, the common main princi-
ple can be seen from a geometrical point of view. Let us first recall
that in that case, the mapping f in Eq. (2) is set to the identity
function, i.e. the observations x(n) are equal to the signals z(n) de-
fined in Eq. (1). If one source, say sk, is isolated in several adjacent
samples T = {n1, . . . ,nM}, the local scatter plot of observations is
concentrated in a line, whose slope is given by the mixing column
of A associated with this source (see Fig. 2 for an example with
P = 2 observations). Indeed, in that case:

xi(n) = aiksk(n) ∀i ∈ {1, . . . ,P}, ∀n ∈ T (4)

and we get the following relationship between observations x1 and
xi:

aikx1(n)−a1kxi(n) = 0 ∀i ∈ {1, . . . ,P}, ∀n ∈ T. (5)
In [3–6], authors propose to find such single-source zones by means
of a “single-source confidence measure” (resp. based on ratios of
observations [3], correlation [4, 5], and local PCA [6]). In these
zones, they estimate the mixing parameters. However, several zones
may lead to the same mixing column and they thus have to discard
the multiple estimations, e.g. using a threshold distance between
mixing columns [3, 4] or by clustering estimated scale coefficients
[5, 6].

For PNL mixtures, in the same case when only one source, say
sk, is isolated in an analysis zone T , observations (2) read:

xi(n) = fi (aiksk(n)) ∀i ∈ {1, . . . ,P}, ∀n ∈ T (6)

and we obtain, assuming that aik 6= 0,

sk(n) =
f−1
i (xi(n))

aik
∀i ∈ {1, . . . ,P}, ∀n ∈ T. (7)

We thus have the following relationship between observations x1
and xi:

xi(n) = fi

(
aik

a1k
f−1
1 (x1(n))

)
(8)

= φik(x1(n)) ∀i ∈ {1, . . . ,P},∀n ∈ T, (9)



where the functions φik are defined as:

φik(t) = fi

(
aik

a1k
f−1
1 (t)

)
(10)

The main difference with respect to LI mixtures is that we now do
not have to estimate a slope which describes a line, but a function
which describes the nonlinear dependencies between observations.
This can e.g. be done by interpolation or approximation. As dif-
ferent analysis zones might be associated with the same source, we
propose to cluster these estimated functions. Indeed, clustering usu-
ally provides more robustness to noise. Moreover, and contrary to
LI mixtures, the accuracy of the curve fitting also depends on the
range of x1(n) in the local scatter plot. In particular, we need our
observed points (x1(n),xi(n)) to span the whole curve. This may
not be guaranteed in a unique single-source analysis zone associ-
ated with one source, but may happen if we interpolate the function
on several zones associated with the same source. Merging single-
source zones associated with the same source may be done by curve
clustering and we will present such an approach in Section 3.4.

3.3 Nonlinear single-source confidence measures
We now detail how to find single-source zones in PNL mixtures.
Let us first go back to the simpler LI problem. If a source, say sk
is isolated, then Eq. (4) holds and we can see that the observations
are proportional. A way to find such zones consists of estimating
the correlation coefficient of a pair of observations [4, 5]. Indeed,
this coefficient is equal to 1 in absolute value when one source is
isolated and is much lower otherwise.

In the considered PNL mixture, we need to measure the nonlin-
ear correlation between observations. Mutual Information I (x),
defined as:

I (x) =−E

{
log

∏
P
i=1Pxi(xi)

Px(x)

}
, (11)

where E{.} stands for expectation, Px and Pxi (i ∈ {1, . . . ,P}) are
resp. the joint and marginal probability density functions of the ob-
servations, provides such a measure [11]: it takes null values when
variables are independent and much higher values otherwise. How-
ever, if we want this measure to have the same behavior as linear
correlation, we need to normalise it, which is classically done as
follows:

Inorm(x) =
√

1− e−2I (x). (12)

This measure has also been used in [10], for another class of non-
linear mixtures and we use it in the same way as [10]: a source is
isolated in an analysis zone iff Inorm(x) = 1. We thus only con-
sider the analysis zones which maximise Eq. (12).

However, a problem may appear if in a zone T , sources s j(n)
are constant, whose value is denoted s j 6= 0 3: in that case, we still
have Inorm(x) = 1 but Eq. (6) then becomes

xi(n) = fi (aiksk(n)+αi(T )) ∀i ∈ {1, . . . ,P}, (13)

where αi(T ) = ∑ j 6=k ai js j. Eq. (7) and (8) then resp. read

sk(n) =
f−1
i (xi(n)−αi(T ))

aik
∀i ∈ {1, . . . ,P} (14)

and

xi(n) = fi

(
aik

a1k

(
f−1
1 (x1(n))

)
−aikα1(T )+αi(T )

)
. (15)

Let us recall that we are looking for zones where all the constant
coefficients αi(T ) are zero. As we are applying the proposed ap-
proach to speech signals, the situation when one can find an index i

3Such a scenario is not a problem in LI-SCA: observations can be locally
centred in each analysis zone, thus zeroing the constant signals [4].

such that αi(T ) 6= 0 should not occur. Additionally, due to Assump-
tion 1.3, we know the value of each nonlinear function fi is zero
at zero and we can estimate φ̂ik, the nonlinear relationship between
observations defined in Eq. (10) (see Section 3.4) and discard the
zones where φ̂ik(0) 6= 0.

Finally, we look for analysis zones which satisfy:{
Inorm(x) > 1− ε1∣∣∣φ̂ik(0)

∣∣∣ < ε2 ∀i ∈ {2, . . . ,P} , (16)

where ε1 and ε2 are user-defined thresholds.

3.4 Curve clustering
If we consider all the single-source analysis zones, then we get a
subset of the original observations where the approximate WDO
assumption holds. We thus can use the clustering techniques pro-
posed in [7, 8]. However, in [7], the authors propose a geometrical
preprocessing which is not robust to noise in general and in par-
ticular to non-ideal single-source zones4. On the other hand, [8]
proposes the use of a spectral clustering technique in order to sepa-
rate the curves (and so the sources). Spectral clustering techniques
are well suited to nonlinearities in the data and are more robust to
noise than the approach proposed in [7]. However, such techniques
are sensitive to the distance between the curves and do not allow the
clusters to overlap. This last criterion is obviously not satisfied in
the BSS framework and the authors of [8] proposed a solution: they
remove the points of x which are close to zero, and try to find 2N
clusters. By assuming that the nonlinear mappings are almost linear
for the lowest values of x, they link the half-clusters.

In this paper, we propose to take advantage of the single-source
analysis zones to cluster our data. Indeed, in each single-source
zone, as we saw above (see Fig. 2), all the data points belong to
the same curve and give us extra information which is not provided
in [7,8]. We thus can cluster the data according to these zones. The
underlying idea can be seen as an extension of scale-coefficients
clustering in [5, 6] to nonlinear mixtures: while the linear relation-
ships between observations were limited to scale coefficients to be
clustered, we here have to cluster the whole curves, i.e. to estimate
some parameters adequately describing the functions φik defined in
Eq. (10) to realise a cluster. Such techniques are named curve clus-
tering [12] which we summarise as follows in the framework of our
problem.

Given an interval [x1(nb),x1(ne)], we define a subdivision ξ0 =
x1(nb) ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξK ≤ ξK+1 = x1(ne). The points ξl are
named knots. Note that a same knot may be repeated several times,
say p times. We then say that it is a multiple knot of multiplicity
order p. We aim to fit the curve {(x1(n j),xi(n j)} j=1,...,M on such
interval by using splines. A spline is a polynomial of degree d (or
order d + 1) on any interval [ξl−1,ξl) which has d + 1 continuous
derivatives on the open interval [x1(nb),x1(ne)). For a fixed se-
quence of knots, the set of such splines is a linear space of functions
with K+d+1 free parameters. A useful basis (B1,d , . . . ,BK+d+1,d)
for this linear space is given by B-splines, recursively defined as Bl,0(t) =

{
1 if ξl ≤ t < ξl+1
0 otherwise ,

Bl,u(t) = t−ξl
ξl+u−ξl

Bl,u−1(t)+
ξl+u+1−t

ξl+u+1−ξl+1
Bl+1,u−1(t).

.

(17)
A spline, denoted ζ (x1,β ) hereafter, can now be written with re-
spect to the above basis:

ζ (x1,β ) =
K+d+1

∑
l=1

βlBl,d(x1), (18)

4An ideal single-source zone is an analysis zone where all the sources
except one are exactly zero.



where β = [β1, . . . ,βK+d+1]
T are the spline coefficients. For a set

of fixed knots, coefficients β may be estimated as a linear problem.
Let {(x1(n j),xi(n j))} j=1,...,M be a regression type data set of M
measurements of the curve φik defined in Eq. (10), ranging over
[x1(ne),x1(nb)]×R. The spline coefficients are estimated as:

β̂l = argmin
βl

1
M

M

∑
j=1

(
xi(n j)−ζ (x1(n j),β )

)2
(19)

The main interest of B-splines is due to the fact that the B-spline ba-
sis is only knot-dependent. Once the knots are fixed, the estimated
coefficients β̂l describe the curve shape. If we use the same knots
for all the single-source analysis zones selected in Section 3.3, then
all the K + d + 1 B-spline coefficients have the same meaning and
may be compared. If two curves have close estimated B-splines
coefficients, then they should be associated with the same source.
Otherwise, they should be associated with different sources. Clus-
tering techniques can be applied to such coefficients [12]: while
the authors of [12] used K-means to this end, we propose to use
the median-based version of K-means, named K-medians which has
been used in [5]. Other approaches, such as DEMIX [6], may also
be employed.

Once the classification is performed, we group all the curves
associated with the same source sk and we estimate each function
φik as a spline with optimised knot locations and multiplicity order.

3.5 Nonlinear inversion and linear identification
Once the nonlinear functions are estimated, we have to invert them
and apply them to the observations x(n), in order to get the lin-
early mixed signals e(n) = [e1(n), . . . ,eP(n)]T (see Fig. 1). This is
straightforward by e.g. applying one of the neural-network-based
methods, proposed in [7, 8], which are based on the same property
but are differently implemented. The underlying common property
was first defined for PNL-ICA methods and is adapted to PNL-SCA
as follows: we estimate a nonlinear mapping g = [g1, . . . ,gP]

T such
that for all indices i,k, gi ◦ φik is linear. To this end, [7] proposes
finding a linear relationship between the same components of differ-
ent clusters while [8] suggests finding a linear relationship between
different components in the same cluster.

Once the nonlinearities are inverted, we thus obtain a classical
LI-SCA problem. The estimation of the linear mixing parameters is
then straightforward if we estimated the N nonlinear curves: once
we have linearised the clusters obtained in Section 3.4, each cluster
fits a line whose parameters, defined in Eq. (5), may be estimated
using a criterion proposed in [3–6].

If we estimated more than P curves but less than N, we are
still able to invert the nonlinearities. However, we now do not have
all the linearised curves and we will thus have to estimate the lin-
ear mixing parameters thanks to a whole linear SCA approach, and
probably by first applying a linear sparsifying transform to e(n), in
order to find a zone associated with each source.

Let us remind the reader that the main novelty of our proposed
approach consists of the first stages of the whole approach, and that
we only test these first stages in Section 4.

4. TESTS

In this section, we test the performance of our proposed approach on
PNL mixtures of speech. Indeed, and contrary to [7, 8], we test our
approach on simulations made using real speech signals which can
be locally sparse in the time domain, due to silence of speakers [4].

We first employ a configuration involving N = 3 sources and
P = 2 sensors, i.e. an underdetermined mixture. The source signals
were three speech signals, sampled at 20 kHz, which last 5 s and
contain silent parts. These sources are presented in Fig. 3.

We then mixed them with the following mixing matrix:

A =

[
1 1 0.9
−0.9 0.5 1

]
(20)

Figure 3: Normalised mutual information measures between two
PNL mixtures (below) of three speech sources (plotted above).

Figure 4: Scatter plots between observations. Top: on the full sig-
nals. Bottom: on the single-source analysis zones.

and then applied the following nonlinear mappings to the resulting
signals z(t): {

f1(t) = tanh(t)+ t
f2(t) = tanh(10 t) . (21)

Please note that the mixing matrix A is close to being an absolutely
degenerate matrix, and thus the configuration under consideration
is challenging. Moreover, the nonlinear functions have been chosen
so that they can model audio effects like soft-clipping.

We set the size of our temporal analysis zones to 100 samples,
which is long enough to guarantee the independence of the source
signals [13]. Mutual information was estimated using the approach
in [14]. Fig. 3 shows the plot of speech sources and the obtained
normalised mutual information measures. We can see that In(x)
is close to 1 when one source is isolated. We then considered all
the zones where ε1 and ε2, defined in Eq. (16), are resp. set to
0.01 and 0.1. Fig. 4 shows two scatter plots: on the top, we pro-
vided the scatter plot of the original observations. It is clear that the
sparsity assumptions needed in [7, 8] are not satisfied at all. In the
bottom, we only plotted the scatter plots obtained from zones sat-
isfying Eq. (16). Now, we can clearly see three curves associated
with nonlinearities. This thus shows the relevance of the single-
source confidence measures and an easy way to improve [7, 8]. We
then estimated the different curves on the local scatter plots using
B-spline approximations. Because the choice of the knots is data-
dependent, we decided to perform a “coarse” fitting, i.e. an approx-
imation whose knot locations and B-spline order are not necessarily
optimised but that allow us to separate the curves of the functions
φik defined in Eq. (10). In the example provided here, we used the



Figure 5: Scatter plots of the separated curves after the clustering
procedure (in black) and estimated nonlinear functions (in gray).

λ 0.1 0.5 0.9
Mean MSE 6.7e-2 4.5e-5 4.6e-5
Std. 2.3e-1 5.9e-5 1.0e-4

Table 1: MSE and standard deviation, vs. the value of λ

following knots ξi = −1.5+ 0.3i for i ∈ {0, . . . ,10}, without mul-
tiplicity order. We set the degree of the B-spline to 4, in order to
obtain smooth estimates of the curves. We then obtain the B-spline
coefficients β̂ that we then cluster using K-medians. Fig. 5 shows
the separated curves obtained after classification, i.e. the superpo-
sition of the local scatter plots on the zones belonging to the same
cluster. Such separated curves then allow us to estimate the inverse
nonlinear mappings.

We do this using B-splines functions of order 4, with 20 knots.
The obtained curves, drawn in Fig. 5, fit very well the scatter plots
and are really close to the theoretical ones, as the mean square errors
(MSEs) on the sampled curves are resp. set to 2.5e-4, 5.3e-5, and
2.1e-5.

Lastly, we generated a series of determined mixture simulations
with P = N = 2 sources and sensors: the mixing matrix was set to

A =

[
1 λ

−λ 1

]
, with λ = 0.9, 0.5, and 0.1, and the nonlinear

functions were set as in Eq. (21). We chose 49 pairs of sources
among 8 real male and female speech sources, sampled at 20 kHz,
lasting 5 s and containing silent parts. We fixed the values of all
the parameters as in the previous underdetermined exampled. We
aimed to measure the influence of the mixing parameters on the
global quality of estimation of the nonlinear mappings. Our pro-
posed approach succeeded in estimating the nonlinear functions in
all the tests. The average MSEs and their associated standard de-
viations are given in Tab. 1. The obtained performance shows a
really good accuracy of estimation of the nonlinear mappings, ex-
cept when the sources are “weakly” mixed, which is consistent with
the performance of other PNL-ICA methods (see Chap. 14 of [1])
and the one obtained in [4] for an LI-SCA method.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduced a PNL mixture identification method
which uses weak sparsity assumptions in order to estimate the mix-
ing parameters. The main novelty of the proposed method is that
we combine single-source confidence measures with curve cluster-
ing using B-splines and classical clustering techniques. The pro-
posed approach thus improves on the previously proposed PNL-
SCA methods which assume strong joint-sparsity assumptions and
cannot be applied to real signals. We presented some tests showing
the performance and the interest of our approach. In future work,

we will also test the influence of the knots in the clustering proce-
dure. We will propose an approach for inverting the nonlinearities.
Indeed, we focused on the estimation of the nonlinear functions,
whose accuracy has a direct consequence on the final separation.
We could use the inversion approaches presented in [7, 8] but both
use neural networks, whose drawbacks are the speed of convergence
and the possibility to reach a local optimum. Another future direc-
tion will consist of investigating sparsifying transforms well-suited
to nonlinear mixtures. Indeed, while the proposed approach may
be applied to speech signals, the required sparsity assumption is not
met with music signals. Lastly, we will extend our approach to other
nonlinear mixtures like PNL convolutive mixtures.
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