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Abstract 

It is an important topic to measure the through-thickness permeability of fiber 

reinforcements as the resin flow in the thickness direction is widely employed in many 

composites manufacturing techniques. Continuous techniques for the permeability 

measurement by simultaneous fabric compaction and liquid flow have been recently 

proposed as an alternative way to the tedious and laborious conventional permeability 

measurement techniques. In spite of their efficiencies, these continuous techniques have 

some limits if the fabric compaction speed or flow rate is relatively great. To address 

this issue, a new equation for the permeability estimation is proposed. Parametric 

studies are performed to investigate the influences of the experimental conditions on the 

validity of the continuous technique. A dimensionless number is proposed as a measure 

of the relative error of the continuous technique. 

Key words: A. Fabrics/textiles; A. Polymer-matrix composites (PMCs); E. Resin 

transfer molding (RTM); E. Resin flow; Permeability 

mailto:chung-hae.park@univ-lehavre.fr


P
K

A

Q
uD 



1.  Introduction 

Liquid composite molding (LCM) processes such as the resin transfer molding (RTM) 

process and the structural reaction injection molding (SRIM) process are widely 

adopted to manufacture complex structural parts at a relatively low cost in the 

aeronautic and automotive industries.  The basic principle of these processes is the resin 

impregnation into dry fiber reinforcement and this phenomenon is generally modeled by 

Darcy’s law [1].  The resin impregnation becomes more difficult in the case of large 

part manufacturing, because the resin flow path becomes long and the resin flow 

velocity drops to a small value. Hence, in some LCM processes such as the vacuum 

assisted resin transfer molding (VARTM) process and the Seeman composite resin 

infusion molding process (SCRIMP), high permeability layers (HPL) or distribution 

media (DM) may be integrated into the preform stack to deal with this problem [2-4]. 

The resin is quickly impregnated through the HPL or DM and then the resin flows into 

the fiber reinforcement in the through-thickness direction. Because most composite 

structures have smaller dimensions in the thickness direction than in the longitudinal 

directions, the flow path can be greatly reduced and the resin impregnation can be 

facilitated. This principle is also adopted in the resin film infusion (RFI) process.  

In this context, the permeability of reinforcement is a key parameter to influence the 

resin flow as is defined by Darcy’s law.  

        (1) 

where uD is the volume averaged velocity, Q is the flow rate, A is the cross section, K is 

the permeability, μ is the resin viscosity and P is the resin pressure. Permeability is 

represented by a three-dimensional tensor as it depends on the direction [5-6].  



Two permeability values are used to characterize fiber reinforcements [7]. The first one 

is called unsaturated permeability. It is measured by monitoring the flow front 

advancement as a function of time under a given pressure gradient in the transient resin 

flow [5-7]. The other one is referred as saturated permeability. It is obtained by 

measuring the pressure gradient under a given flow rate during the steady state flow in 

the fully impregnated reinforcement [7]. As permeability is a reinforcement property 

which is independent of resin properties and processing conditions, the unsaturated 

permeability and the saturated permeability for a specific reinforcement should be 

identical. In the literature, however, the ratio of unsaturated permeability to saturated 

permeability has been reported to be ¼ to 4 by experimental measurements [8-9]. The 

main reasons for the difference between the unsaturated permeability and the saturated 

permeability have been assumed to be the void generation and the flow induced 

deformation of fiber reinforcements. In this work, this issue is not addressed and only 

the saturated permeability is discussed. 

In general, the permeability is expressed in terms of fiber volume fraction such as in the 

Kozeny-Carman equation. To obtain a relationship between fiber volume fraction and 

permeability, it is a usual way to obtain a single set of fiber volume fraction and 

permeability, by fixing fiber volume fraction and measuring flow rate and pressure drop 

to evaluate a permeability value. Then, this procedure is repeated for different values of 

fiber volume fraction to obtain a number of data points which will be used to fit a pre-

assumed mathematical equation. In this paper, we call this method “discrete method” 

because we obtain a series of discrete values of fiber volume fraction and permeability 

(Figure 1(a)). Hence, a number of measurements are needed and the accuracy of 

measurement is improved as the number of data points is increased. This method, 



however, is tedious and needs a long time. As an alternative way, some researchers 

proposed to measure the permeability while fiber reinforcement is continuously 

compacted [10-14]. A stack of fiber reinforcement layers is placed between two rigid 

tools and is compressed by a motion of one of the rigid tools (Figure 1(b)). The change 

of the gap between the upper tool and the lower tool induces a change of fiber volume 

fraction. At the same time, the pressure differential or flow rate is measured as a 

function of time while the fabric is compressed. The gap height can be converted into 

the fiber volume fraction and the pressure difference or flow rate is used to obtain the 

permeability by using Darcy’s law, at each instant, during the reinforcement 

compression. In the current paper, this method is called “continuous method” because 

the reinforcement is continuously compressed. In this way, it can also be assumed that 

the data appears to be continuous if the resolution of data acquisition is sufficiently fine. 

The advantage of the continuous methods over the discrete methods is the reduction of 

the number of measurements and of the time to work. A relationship between fiber 

volume fraction and permeability can be obtained by a single measurement in the 

continuous methods, whereas many measurements are needed in the discrete methods. 

Two kinds of continuous methods are found in the literature. In the first method, a 

saturated fabric stack is squeezed by rigid platens without any external liquid flow. In 

this case, the liquid flow is induced only by the platen velocity. In the second method, a 

fabric stack is compacted while it is submitted to an external liquid flow. In this case, 

the liquid flow is induced both by the platen motion and by the external liquid flow 

applied to the fabric stack. 

The continuous methods have been used to identify the in-plane permeabilities [10-11]. 

The resin flow takes place in the longitudinal direction while the fabric is compressed in 



the thickness direction. Not only the permeabilities of isotropic preforms but also the 

permeabilities of anisotropic preforms can be obtained once the ratio of two principal 

in-plane permeabilities is known [11]. Because the anisotropic ratio may depend on 

fiber volume fraction, however, a significant number of extra measurements may be 

required. 

Scholz et al. proposed a continuous method to measure through-thickness permeability 

by applying a flow of liquid or gas in the thickness direction [12]. They found that the 

permeability values obtained by injecting a gas or liquid showed close agreements with 

each other. However, the permeability values obtained by the continuous method were 

not compared with those obtained by the discrete method. Hence, the reliability of the 

continuous method was still questionable. Ouagne and Bréard used a similar 

experimental technique and showed that the permeability values obtained by the 

continuous method were close to those obtained by the discrete method, if the 

compression speed was sufficiently low [13]. Using the same experimental device, they 

found that the difference between the permeability values obtained by the continuous 

method and by the discrete method could be significant depending on the experimental 

condition such as the fabric compaction speed and the flow rate [14]. 

In this work, the reasons for the discrepancy between the continuous method and the 

discrete method are analyzed, and a new equation for the permeability evaluation by the 

continuous method is suggested to address this problem. Then, some experimental 

results of permeability measurements by the discrete method and by the continuous 

method are presented for different experimental conditions and for different 

reinforcements. Finally, the validity of the continuous method is examined by 

parametric studies for different values of fabric compaction speed and flow rate, 



through numerical simulations. A dimensionless number is proposed as a measure of the 

error in the use of the continuous method. 

 

2. Experimental method 

2.1 Experimental device 

The device developed in the previous work was used again in the current work [13]. The 

schematic diagram and the photo view of this device are shown in Figure 2. A brief 

description of the device is presented in this section and the details can be found in the 

reference [13]. This device consists of a stainless steel cylindrical pot within which the 

vertical motion of a piston induces the compaction of the fiber reinforcement which is 

placed between the lower fixed bronze grid and the upper mobile bronze grid. The 

motion of the piston controlled by a universal testing machine (Instron 8802) leads to a 

vertical motion to the upper bronze grid at a pre-assigned constant displacement rate. 

The lower and upper perforated bronze grids are used to obtain a uniform liquid flux 

through the fiber reinforcement to be tested. A silicon joint is applied at the perimeter of 

the test reinforcement to avoid race tracking effects. The actual diameter of the circular 

test reinforcement submitted to the liquid flow is 100 mm. The test liquid which enters 

the lower chamber in the cylindrical pot passes through the test reinforcement and 

leaves the upper chamber through the flow outlet. The liquid flow entering the lower 

chamber is provided from a six liter syringe which is placed on another universal test 

machine (Instron 5867) and the flow rate is controlled by the crosshead speed of the 

universal test machine. A pressure transducer (Entran EPXO-X7) is placed below the 

lower fixed bronze grid to measure the pressure of the liquid entering the test 

reinforcement. It is assumed that the pressure loss by the upper and lower perforated 
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bronze grids is negligible by dint of their highly porous microstructure. It is also 

assumed that the pressure of the liquid leaving the test reinforcement is close to zero 

because the flow resistance in the upper chamber is negligible.  

 

2.2 Test materials and experimental conditions 

Silicon oil (viscosity: 0.1 Pas) was used as a test liquid. As test reinforcements, we used 

three fiber reinforcements. 

 A. E glass 5 harness satin weave (areal weight: 620 g/m
2
, density: 2.56 g/cm

3
) 

 B. Carbon interlock weave (areal weight: 625 g/m
2
, density: 1.74 g/cm

3
) 

 C. Flax random mat (areal weight: 520 g/m
2
, density: 1.56 g/cm

3
)  

The permeabilities of the three reinforcements were measured by the continuous method 

as well as by the discrete method. In the permeability measurement by the discrete 

method (see Figure 1 (a)), a fabric stack composed of twenty layers at the same layer 

angle was placed between the upper and lower bronze grids which were stationary 

during the liquid flow. Fiber volume fraction was computed as follows. 

        (2) 

where Vf is the fiber volume fraction, Ms is the areal weight of reinforcement, Nf is the 

number of fabric layers, H is the distance between the bronze grids or the thickness of 

fabric stack, and f is the fiber density. While the gap between the bronze grids was 

fixed, the test liquid flowed through the reinforcement at a pre-assigned constant flow 

rate (6.710
-7

 m
3
/s for all the cases) and the pressure at the lower chamber was 

measured. This procedure was repeated with the same stack of the reinforcement layers 

for different gap heights between the bronze grids. The measurement of pressure was 

repeated for various gap heights from a large gap height to a small gap height. Hence, 
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the permeability values were identified from a low fiber volume fraction to a high fiber 

volume fraction. Given the type of reinforcement, tests were performed three times and 

the average value was taken. Hence, three stacks of fabrics were used for each type of 

reinforcement. 

In the continuous measurement of permeability (see Figure 1 (b)), a stack of fabrics was 

prepared in the same way as was in the discrete method. In this case, however, the upper 

grid moved downward to compact the fabric stack at a pre-assigned constant speed 

while the test liquid was passing through the fabric stack at a pre-assigned constant flow 

rate. The gap height was computed at each instant from the initial gap height and the 

speed of the upper bronze grid. Once the gap height is known, the fiber volume fraction 

can be calculated at each instant by Equation (2). The pressure at the lower chamber 

was measured as a function of time. Consequently, the gap height and the pressure at 

the lower chamber were obtained as a function of time in the continuous method. For 

each type of reinforcement, tests were performed three times and a new stack of fabrics 

was used for a new test. Hence, three stacks of fabrics were prepared for each type of 

reinforcement.  

 

2.3 Permeability calculation by the discrete method 

If it is assumed that the pressure distribution is linear and the pressure gradient is 

uniform in the reinforcement, the negative pressure gradient can be expressed by the 

ratio of the pressure drop to the total thickness of the fabric stack (Figure 3 (a)). 

         (3)   

where Pin is the liquid pressure at the entrance of the fabric stack in the lower chamber 

and Pout is the liquid pressure at the exit of the fabric stack in the upper chamber. The 
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permeability can be obtained from Darcy’s law in terms of the flow rate and the inlet 

pressure, assuming that the outlet pressure is zero. 

        (4) 

where Kd represents the permeability value obtained by the discrete method.  

 

2.4 Permeability calculation by the continuous method 

In the previously mentioned references [12-14], the same equation as was used in the 

discrete method (Equation (4)) has been applied to evaluate the permeability by the 

continuous method. It was found, however, that the permeability evaluation by the 

continuous method was dependent on the fabric compaction speed which was not 

considered in Equation (4) [14].   

To address this issue, two phenomena induced by the fabric compaction are considered: 

the fiber motion and the non-linear pressure gradient. 

In fact, the permeability evaluation by Darcy’s law is based on the assumption that the 

fiber bed is stationary during the liquid flow. If there is a motion of fiber, Darcy’s law 

should be modified considering the fiber velocity. In this case, the relative velocity 

which is the difference between the liquid velocity and the fiber velocity should be 

associated with the negative pressure gradient. 

       (5) 

where uf is the fiber velocity. In the continuous method where the fabric stack is 

compressed by the downward motion of the upper grid, the fiber velocity cannot be 

ignored. Moreover, the fiber velocity depends on the position of the fiber. For example, 

the fiber velocity just beneath the upper mobile grid equals to the negative value of the 

fabric compaction speed whereas the fiber velocity just above the lower fixed grid is 
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zero (Figure 3 (b)). Hence, we propose to use the half of the negative fabric compaction 

speed as the mean value of the fiber velocity to evaluate the permeability by the 

continuous method. 

       (6) 

where Uc is the fabric compaction speed or the upper mobile grid displacement rate. Kc 

denotes the permeability obtained by the continuous method. In Equation (6), the 

thickness of the fabric stack (H) and the inlet pressure (Pin) are obtained as a function of 

time. Consequently, the fiber volume fraction can be calculated from the thickness of 

the fabric stack by Equation (2) and the permeability (Kc) can be obtained by Equation 

(6), as a function of time (Figure 1 (b)).  

The second problem is the non-linear pressure gradient in the fabric stack under applied 

fabric compaction and liquid flow (Figure 3 (b)). One of the important assumptions in 

Equation (3) is that the pressure gradient is uniform and the pressure profile is linear in 

the reinforcement at each instant. If there is a time dependent change of fiber volume 

fraction, such as in the vacuum infusion process and the resin film infusion process, the 

rate of fiber volume fraction should be taken into account in the mass conservation 

equation. Moreover, the fiber velocity should be considered in Darcy’s law as was 

described in Equation (5). Subsequently, the fiber volume fraction becomes non-

uniform in the fabric stack by the fiber motion during the liquid flow and the fabric 

compaction, and the mass conservation equation in the thickness direction should be 

modified including the terms representing the volumetric change rate and the fiber 

velocity [15]. 

     (7) 



If there is no fiber motion and the fiber volume fraction is uniform, both the terms on 

the right hand side disappear and the pressure distribution becomes linear. If the fiber 

velocity is no more negligible or the fiber volume fraction is non-uniform, however, the 

terms on the right hand side should be considered and the pressure distribution becomes 

non-linear [15]. In general, the fibers are compacted along the liquid flow and the fiber 

volume fraction is higher in the downstream (Figure 3 (b)). Therefore, the local 

permeability becomes lower in the downstream and the global liquid flow is decided by 

the lowest local permeability in the downstream. Consequently, the permeability values 

measured in the fabrics with non-uniform fiber volume fraction (e.g. under compaction) 

appears to be lower than those measured in the fabrics with uniform fiber volume 

fraction.  

In the previous section (1. Introduction), two continuous methods were presented, viz., 

the squeezing of a saturated fabric stack without external liquid flow and the 

compaction of a fabric stack under an applied liquid flow. In the first case, the relative 

velocity due to the fiber motion is an important issue whereas the fiber volume fraction 

is relatively uniform. In the second case, however, both the relative velocity due to the 

fiber motion and the non-uniformity of fiber volume fraction should be taken into 

account to evaluate the permeability. 

 

2.5 Results and discussion 

In Figure 4, the permeability values of three different reinforcements measured by the 

continuous method as well as by the discrete method are presented. In general, 

permeabilities are plotted in the logarithmic scale against fiber volume fraction. In this 

way, a great error at high permeability zone (e.g. 10
-10

 m
2
) appears to be the same as a 



small error at lower permeability zone (e.g. 10
-14

 m
2
), because both of them are 

represented by a single scale with the same length in the vertical axis. Hence, 

permeabilites are plotted in the linear scale for the accurate comparison of discrepancy, 

in this work. It should be also kept in mind that there is a unique value of permeability 

for a given fiber volume fraction and the permeability values obtained by the discrete 

method are considered as the reference values in this work even though the permeability 

values obtained by the continuous method are plotted together in the same graph. The 

objective of this section is to see the relative error of the continuous method compared 

with the discrete method. To evaluate the permeability values by the continuous 

method, two equations were used and the results were compared: Equation (4) without 

fiber velocity and Equation (6) with fiber velocity. Compared with the continuous 

permeability measurements without considering the fiber velocity (Equation (4) and 

hollow dots in Figure 4), the continuous permeability measurements considering the 

fiber velocity (Equation (6) and solid dots in Figure 4) are in closer agreements to the 

discrete permeability measurements. Even though the discrepancy becomes generally 

marginal with considering the fabric compaction speed in Equation (6), there is still 

some difference between the discrete and the continuous methods. From the 

experimental results, some general conclusions can be drawn. 

 A. The permeability values obtained by the continuous method are generally 

 lower than the permeability values by the discrete method. 

B. The difference between the two methods becomes greater as the fiber volume 

fraction becomes lower. 

C. The difference between the two methods increases as the fabric compaction 

speed increases.   
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In the subsequent section, these issues are investigated by parametric studies using 

numerical simulations of liquid flow and fabric compaction. Then, a dimensionless 

number is proposed as a measure of error in the continuous method. 

 

3. Validation of the continuous method 

3.1 Numerical simulation  

In order to investigate the influences of non-uniform fiber volume fraction and fiber 

velocity on the validity of the continuous method, it is indispensable to observe the 

distributions of fiber volume fraction and of liquid pressure in the thickness direction 

during the flow and compression. This experimental observation is difficult to conduct, 

however, because the thickness of fabric stack is very small. Hence, numerical 

simulations of fabric deformation and resin flow in mesoscopic or microscopic scale 

can be attractive approaches [16-18]. Simultaneous simulation of fabric deformation 

and resin flow is a difficult task, however, because there is a mutual influence between 

the flow-induced fabric deformation and the permeability alteration by the change of 

fabric microstructure. Instead, numerical simulations based on the mass conservation 

and the force equilibrium at a mascroscopic scale may be a practical alternative way 

[19]. The computer code developed in the previous work has been improved, by 

considering the fiber velocity, to simulate the liquid flow in the thickness direction and 

the fiber compaction in the fabric stack as represented in Equation (7) [19]. We need 

another governing equation to describe the force balance condition.  

               (8) 

where Pcomp is the total compaction pressure applied to the fabric stack (to be measured 

by Instron 8802 connected to the piston on the upper mobile grid) and f is the elastic 
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stress by fabric deformation. The permeability and the fabric deformation stress can be 

represented as a function of fiber volume fraction.  

         (9) 

                  (10) 

Equation (10) is known as "Toll and Manson" equation which is an empirical relation 

between fabric compaction stress and fiber volume fraction [20, 21]. In a similar way, 

the in-plane or transverse permeability values have also been related to fiber volume 

fraction by using a similar empirical power law model [22].  

As boundary conditions, a flow rate and zero fiber velocity are assigned at the lower 

face of the fabric stack. A fiber velocity which is the negative value of the fabric 

compaction speed and zero liquid pressure are assigned at the upper face of the fabric 

stack.  

The permeability measurement by the continuous technique was simulated by the 

computer code. The objective of the numerical simulations was to investigate if the 

continuous method successfully reproduced the permeability values by the discrete 

method. Hence, the permeability values by the discrete method were used as input data 

for the numerical simulations and the permeability values by the continuous methods 

were the output results of the numerical simulations (Figure 5).  

Given the permeability values obtained by the discrete method which were considered 

as the true permeability values of the reinforcement and the fiber stress values obtained 

by independent measurements, numerical simulations were performed. The 

identification procedure of fiber stress model coefficients has been described in the 

authors’ previous work [21]. The model coefficients used in Equations (9) and (10) are 

listed in Table 1. At each numerical simulation, the inlet pressure was obtained as a 



function of time. The thickness of fabric stack was computed from the fabric 

compaction speed and the initial thickness value. Then, the average fiber volume 

fraction (Vf,ave in Figure 5) was obtained as a function of time by using Equation (2) 

because the fiber volume fraction was varied with the position. Subsequently, the 

permeability was computed as a function of time by Equation (6) from the inlet pressure 

obtained by the numerical simulation and the thickness of the fabric stack. The 

permeability values for each average fiber volume fraction obtained in this way were 

considered as the permeability by the continuous method.  

 

3.2 Parametric study  

Parametric studies were conducted for the three different reinforcements described in 

Section 2.2, to investigate the influences of the flow rate and the fabric compaction 

speed upon the validity of the continuous method.  

In the case of the glass satin weave and the carbon interlock weave, the permeability 

values obtained by the continuous method (i.e. by numerical simulations) were 

compared with the permeability values obtained by the discrete method for three flow 

rate values (510
-7

 m
3
/s, 10

-6
 m

3
/s and 210

-6
 m

3
/s) and for three compaction speed 

values (0.2 mm/min, 1 mm/min and 5 mm/min). In the case of the flax random mat, 

higher flow rates (210
-6

 m
3
/s, 10

-5
 m

3
/s and 510

-5
 m

3
/s) were used because there was 

little discrepancy for lower flow rates between the permeability values obtained by the 

continuous method and those obtained by the discrete method.  

 

3.3 Results and discussion 
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The results of numerical simulations are shown in Figure 6. The relative errors of the 

permeability values by the continuous method to those obtained by the discrete method 

are defined by the following relation.   

           (11) 

The same conclusions as were previously drawn in the section 2.5 can be made. 

Moreover, we can see that there is an influence from the flow rate as well as from the 

fabric compaction speed. The difference between the continuous method and the 

discrete method increases as the flow rate increases. As the flow rate or the fabric 

compaction speed increases, the fabric compaction becomes greater at the downstream. 

This leads to an increase of fiber volume fraction and the corresponding increase of the 

flow resistance at the downstream. As a result, the global flow resistance drops, and a 

lower permeability is obtained in the reinforcement with a non-uniform distribution of 

fiber volume fraction than in the reinforcement with a uniform distribution of fiber 

volume fraction. For the same flow rate (210
-6

 m
3
/s) and the same compaction speed (5 

mm/min), in particular, the difference between the permeabilities obtained by the 

discrete method and by the continuous method was relatively small in the case of the 

flax random mat (see Figure 6 (g)), whereas they were relatively great in the case of the 

glass satin weave (see Figure 6 (c)) and the carbon interlock weave (see Figure 6 (f)). In 

the case of the flax mat, the effect of fabric compaction was relatively small and there 

was little influence from the flow rate and the fabric compaction speed. This implies 

that the validity of the continuous method depends on the fabric type, especially the 

fabric compaction behavior, as well as on the flow rate and the fabric compaction speed. 

Hence, a dimensionless number is proposed for the quantitative validation of the 

continuous method. The basic assumption adopted in the discrete method was the linear 
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pressure profile. For this assumption to be valid, the two terms on the right hand side in 

Equation (7) should vanish. Equation (7) with two variables, viz. pressure and fiber 

volume fraction, can be converted into an equation with a single variable of fiber 

volume fraction, from the force balance condition represented in Equation (8) and the 

relations for the reinforcement permeability and fiber deformation stress represented by 

Equations (9) and (10), respectively.  

             (12) 

Then, the governing equation for fiber volume fraction is non-dimensionalized 

introducing a scaling parameter and dimensionless numbers. 

        (13) 

Subsequently, we obtain a dimensionless form of the governing equation. 

              (14) 

Finally, we can define a dimensionless number to represent a magnitude of the right 

hand side terms as shown below. 

               (15) 

If one plots the numerical relative errors as defined in Equation (11), all the results in 

Figure 6 can be represented by a single master curve, regardless of reinforcement type, 

in terms of the dimensionless number defined in Equation (15) (see Figure 7). The 

numerical relative error increases as the dimensionless number increases. It should be 

noted that the relative error in the case of the flax random mat is smaller than those in 

the case of the glass satin weave and the carbon interlock weave for the same 

compaction speed and the same flow rate because the dimensionless number for the flax 

mat is smaller than those for the other reinforcements (Figure 8). The increase of the 

compaction speed and the flow rate results in the increase of the dimensionless number 



and in the corresponding increase of the relative error as shown in Figure 7. As the fiber 

volume fraction decreases, the dimensionless number increases and the relative error 

increases. It should be noted that the thickness of the fabric stack should be sufficiently 

small, because the dimensionless number is proportional to the fabric stack thickness. 

Besides, low viscosity liquid is favorable to reduce relative errors as the dimensionless 

number is proportional to the liquid viscosity. As a consequence, the experimental 

conditions in the continuous permeability measurement should be adjusted to minimize 

relative errors in terms of the dimensionless number considering not only the test 

conditions such as the flow rate and the fabric compaction speed but also the material 

properties such as the liquid viscosity and the fabric compaction behavior (viz. elastic 

fiber stress model). 

 

4. Conclusions 

The limit of validity of the continuous permeability methods where the fabric stack is 

continuously compressed during the liquid flow was investigated in this work. Through 

the experimental measurements of the permeability in the thickness direction, the 

discrepancies between the discrete method and the continuous method were observed. 

To investigate the influences of the experimental test conditions such as the flow rate 

and the fabric compaction speed, numerical simulations were performed for various 

conditions. A dimensionless number to quantify the relative error of the continuous 

method was proposed. It was found that the relative errors can be plotted by a master 

curve in terms of the proposed dimensionless number regardless of fabric type. From 

the investigation, it can be concluded that low flow rate, low compression speed, small 



thickness of fabric stack and low viscosity liquid are advantageous to reduce relative 

errors.  

In this work, it has been assumed that the permeability values obtained by the discrete 

method are the referential values. From the definition of the dimensionless number in 

Equation (15), however, we can see that the error can be significant if the flow rate is 

great, even though the fabric compaction speed is zero. Therefore, a low flow rate 

should be applied even in the discrete permeability method, in order to avoid a non-

uniform distribution of fiber volume fraction induced by the fiber compaction along the 

liquid flow. 
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Figure captions 

Figure 1. Two permeability measurement methods 

 (a) Discrete method for permeability measurement 

 (b) Continuous method for permeability measurement 

Figure 2. Experimental device for permeability measurement 

 (a) Schematic diagram 

 (b) Photo view 

Figure 3. Distribution of fiber volume fraction and pressure profile 

 (a) Discrete method (without fabric compaction) 

 (b) Continuous method (with fabric compaction) 

Figure 4. Experimental results of permeability by the discrete method and by the 

continuous method 

 (a) Glass satin weave 

 (b) Carbon interlock weave 

 (c) Flax random mat 

Figure 5. Numerical simulation procedure for permeability evaluation in the continuous 

method 

Figure 6. Results of numerical simulations for permeability evaluation by the 

continuous method 
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 (c) Glass satin weave (Q=210
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 (d) Carbon interlock weave (Q=510
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 (e) Carbon interlock weave (Q=10
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 (f) Carbon interlock weave (Q=210
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 (g) Flax random mat (Q=210
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 (h) Flax random mat (Q=10
-5

 m
3
/s) 

 (i) Flax random mat (Q=510
-5

 m
3
/s) 

Figure 7. Relative error against dimensionless number  

Figure 8. Fiber volume fraction against dimensionless number  

 

Table captions 

Table 1. Model coefficients for fabric permeability and elastic deformation stress 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Equation (9) Equation (10) 

 a [m
2
] b c [Pa] d 

Glass satin weave 1.2010
-14 -7.40 1.6010

8 12.54 

Carbon interlock 

weave 

2.1810
-13

 -5.87 5.7710
7
 11.24 

Flax random mat 4.5510
-13

 -2.57 2.7710
7
 3.98 
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