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Abstract

A macroscopic system modelling the chemotactic motion of bacteria is considered. This model
has been obtained in a previous work thanks to a hydrodynamical limit of a kinetic system. Ex-
istence and uniqueness of measure solutions for this system using the concept of duality solution
have been proved by the authors in [7]. In this paper, we investigate the numerical discretization
of this system. A scheme based on a finite volume approach is proposed and the convergence of
the numerical solution towards the unique duality solution is stated. Numerical simulations are
provided that shows the behaviour of solutions after blow up.
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1 Introduction

Chemotaxis is the phenomenom in which a population of cells rearranges its structure according to
the behaviour of some chemical present in the environment. In this work, we focus on the following
macroscopic model for chemotaxis:

∂tρ+ ∂x(a(∂xS)ρ) = 0, (1)

a(∂xS) = −c φ(c∂xS), (2)

−∂xxS + S = ρ. (3)

In this system, ρ(t, x) ≥ 0 denotes the density of cells at time t ≥ 0 and position x ∈ R, and S(t, x)
is the concentration of the chemical, which is here produced by the bacteria at a rate proportional to
their density, and diffuses in the system. The positive constant c corresponds to the individual velocity
of cells, whereas a is a macroscopic velocity. The real-valued function φ describes the influence of the
chemoattractant concentration S on the global motion of bacteria. When φ is nonincreasing, hence a
nondecreasing, cells attract themselves, we are in the case of positive chemotaxis, the chemical is then
called the chemoattractant, otherwise, we are in the repulsive case and speak about the chemorepellant.
We complement this system with the boundary conditions

ρ(t = 0, x) = ρini(x), lim
x→±∞

ρ(t, x) = 0, lim
x→±∞

S(t, x) = 0. (4)
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Introducing the elementary interaction kernel K solving −∂xxK +K = δ0, i.e. K = 1
2e

−|x|, the latter
system reduces to the nonlocal scalar conservation law

∂tρ+ ∂x(a(∂xK ∗ ρ)ρ) = 0. (5)

When a is nondecreasing, this equation is known as the aggregation equation. It is now classical that
regular solutions blow up in finite time when K is not smooth (see e.g. [1]). Thus measure solutions
have to be considered, together with a suitable definition of the product a(∂xK ∗ ρ)ρ, when ρ is a
measure.

System (1)–(3) can be obtained thanks to a hydrodynamical limit of the so-called Othmer-Dunbar-
Alt model. This system has been introduced to take care of the run and tumble process: the motion
of cells is due to the alternance of a swim phase in a given direction (run) and of a reorientation phase
during which cells take a new direction for the next run (tumble). Denoting f(t, x, v) the distribution
function at time t, position x ∈ R and velocity v ∈ {−c, c}, the kinetic system of equations writes in
one space dimension (see e.g. [5])

∂tfε + v∂xfε =
1

ε
((1 + φ(−v∂xSε))fε(−v)− (1 + φ(v∂xSε))fε(v)), (6)

−∂xxSε + Sε = ρε = fε(v) + fε(−v). (7)

The real c represents the constant velocity of cells. The left-hand side describes the run phase whereas
the right-hand side models the tumble phase. The operator T [S] := 1

2 (1 + φ(−v∂xS)) is called
the turning rate and corresponds to the rate of reorientation of cells. Obvioulsy we should have
0 ≤ T [S] ≤ 1. The parameter ε is a scaling factor which is assumed here to be very small (ε ≪ 1).
This corresponds to the phenomenon of domminant taxis. Other scalings are possible, that lead
eventually to drift-diffusion equations such as the classical Keller-Segel model.

The hydrodynamic limit consists in letting ε→ 0, and it is easily checked that formally the solution
(ρε, Sε) of the kinetic system converges to some solution (ρ, S) of system (1)–(3). A complete proof of
this result is given in [7], together with a global-in-time existence and uniqueness of duality solutions
for system (1)-(3). The main drawback of this method is that, since duality solutions are presently
defined only in one space dimension, we are limited to x ∈ R. On the other hand, existence of measure-
valued solutions for the aggregation equation (5) has been obtained in [4] in any space dimension. The
authors make use of optimal transport technique: in this geometric approach, the solution appears
as a gradient flow for the interaction energy. However, this latter tool is not so convenient to build
numerical schemes and to obtain numerical simulations.

The aim of this paper is therefore to propose a numerical scheme based on a finite volume approach
to get numerical simulations of solutions to the macroscopic model (1)–(3). The main ingredient is a
proper definition of the flux J = a(∂xS)ρ. The outline is the following. In the next Section we recall
some definitions and the existence result stated in [7]. In Section 3 we present the scheme and state
some of its main properties in the attractive case. Finally Section 4 provides numerical simulations,
both in the attractive and the repulsive case.

2 Existence of duality solutions

Let us denote by Mb(R) the set of bounded Radon measures and by P1(R) the set of nonnegative
measures in Mb(R) with finite first moment, that is

∫
R
|x|dµ(x) < ∞. Duality solutions have been

introduced in [2] to solve scalar conservation laws with discontinuous coefficients. More precisely, it
gives sense to measure valued solutions of the scalar conservation law

∂tρ(t, x) + ∂x(b(t, x)ρ(t, x)) = 0,
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where b ∈ L∞((0, T ) × R) satisfies the so-called one-sided Lipschitz (OSL) condition

∂xb(t, .) ≤ β(t) for β ∈ L1(0, T ), in the distributional sense. (8)

We refer to [2] for the precise definition and general properties of these solutions. In this framework
we define duality solutions of the studied system in the spirit of [3]:

Definition 2.1 We say that (ρ, S) ∈ C([0, T ];Mb(R)) × C([0, T ];W 1,∞(R)) is a duality solution to
(1)–(3) if there exists a ∈ L∞((0, T ) × R) and α ∈ L1

loc(0, T ) satisfying ∂xa ≤ α in D′(R), such that

(i) for all 0 < t1 < t2 < T

∂tρ+ ∂x(aρ) = 0 in the sense of duality on ]t1, t2[,

(ii) equation (2) is satisfied in the weak sense :

∀ψ ∈ C1(R), ∀ t ∈ [0, T ],

∫

R

(∂xS∂xψ + Sψ)(t, x) dx =

∫
ψ(x) ρ(t, dx),

(iii) a = a(∂xS) a.e.

The OSL estimate suggests that the velocity field a has to be compressive, that is to satisfy the
OSL estimate. Therefore we assume to be in the case of positive chemotaxis. Then cells attract
themselves and a is non-decreasing; more precisely we assume

a ∈ C1(R), 0 ≤ a′ ∈ L∞(R), ∀x ∈ R |a(x)| ≤ c. (9)

The latter estimate means that the collective displacement of cells should not be faster than the
velocity of each individual cell; it is a direct consequence of the fact that the turning rate T [S] satisfies
0 ≤ T [S] ≤ 1.

Moreover we have a natural one-sided estimate on the potential S when ρ is nonnegative. In fact,
from (3) ∂xxS ≤ S. This estimate can be considered as an entropy estimate for the scalar conservation
law (1) which is crucial for the proof of uniqueness of solutions (see Theorem 5.1 of [7]). From now
on, we will define by A the antiderivative of a which vanishes at 0. We have from the chain rule that,
when it is defined, the product

a(∂xS)ρ = a(∂xS)(−∂xxS + S) = −∂x(A(∂xS)) + a(∂xS)S.

Then a natural definition of the flux is given by

J = −∂x(A(∂xS)) + a(∂xS)S. (10)

We are now in position to state the existence and uniqueness result of [7].

Theorem 2.2 Let us assume that ρini is given in P1(R) and that (9) is satisfied. Then, for all T > 0
there exists a unique duality solution (ρ, S) with 0 ≤ ρ ∈ P1(R) of (1)–(3) which satisfies in the
distributional sense :

∂tρ+ ∂xJ = 0, (11)

where J is the flux defined in (10). Moreover, there exists a universal representative, denoted â, such
that â = a(∂xS) a.e. and

âρ = J, in the sense of measures.

Then, we have ρ = X#ρ
ini where X is the backward flow corresponding to a(∂xS).

Remark 1 This theorem is proved in [7] with a weaker assumption than (9). However, this stronger
assumption is needed here for the numerical analysis.
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3 Numerical scheme

3.1 Discretization

Let us consider a uniform space discretization with step δx and denote by δt the time step, and set
λ = δt/δx. Then tn = nδt and xi = x0 + iδx. We assume that (ρni )0≤i≤N is an approximation of
(ρ(tn, xi))0≤i≤N . We obtain an approximation ρn+1

i of ρ(tn+1, xi) by using the following Lax-Friedrichs
discretization of equations (11)–(10):

ρn+1
i = ρni (1− λc) +

λ

2
c(ρni−1 + ρni+1) +

λ

2
(Jn

i−1/2 − Jn
i+1/2), (12)

Jn
i+1/2 = −

A(∂xS
n
i+1)−A(∂xS

n
i )

δx
+ ani+1/2

Sn
i+1 + Sn

i

2
. (13)

We recall that c denotes the constant modulus of the velocity of cells, and the velocity a(∂xS) is
discretized as

ani+1/2 =





0 if ∂xS
n
i+1 = ∂xS

n
i ,

A(∂xS
n
i+1)−A(∂xS

n
i )

∂xS
n
i+1 − ∂xS

n
i

otherwise,
(14)

complemented with the standard centered finite difference ∂xS
n
i+1 =

Sn
i+2 − Sn

i

2δx
. We couple this

equation with the following standard discretization of the equation for the chemoattractant (3)

−
Sn
i+1 − 2Sn

i + Sn
i−1

δx2
+ Sn

i = ρni . (15)

In order to avoid the treatment of boundary conditions, we assume that the solutions are compactly
supported in the computational domain. Then from now on, we have that ρn0 = Sn

0 = Sn
1 = Jn

−1/2 = 0
and ρnN = Sn

N = Jn
N+1/2 = 0.

3.2 Numerical analysis

Before stating and proving our convergence result, we start by a Lemma which proves a CFL-like
condition for the scheme :

Lemma 3.1 Let us assume that (9) holds and that the condition

λ :=
δt

δx
≤

2

3c
, (16)

is satisfied. Then the scheme defined in (12)–(15) is nonnegative.

Proof. Let us assume that ρni ≥ 0. From (14)–(15) we deduce that we can rewrite (13) as

Jn
i+1/2 = ani+1/2

ρni+1 + ρni
2

. (17)

Thus we can rewrite (12)

ρn+1
i = ρni

(
1− λc+

λ

4
(ani−1/2 − ani+1/2)

)
+
λ

2

(
c+

ani−1/2

2

)
ρni−1 +

λ

2

(
c−

ani+1/2

2

)
ρni+1. (18)

Moreover, by assumption (9) we have |ani+1/2| ≤ c for all i = 0, . . . , N . Therefore, if λ ≤ 2
3c , all the co-

efficients in front of ρni−1, ρ
n
i and ρni+1 are nonnegative. We conclude that the scheme is nonnegative.
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Let us define

ρδ(t, x) =
∑

n∈N

N∑

i=0

ρni 1[nδt,(n+1)δt)×[xi ,xi+1)(t, x),

and Sδ, ∂xSδ, Jδ and aδ are defined in a similar way thanks to (Sn
i )i, (∂xS

n
i )i, (J

n
i+1/2)i and (ani+1/2)i.

Theorem 3.2 Let us assume that we are given ρini ∈ P1(R) and define ρ0i =
∫ xi+1

xi

ρini(dx) ≥ 0.
Under assumption (9), if (16) is satisfied, then the discretization (ρδ, Sδ) converges towards the solution
(ρ, S) of Theorem 2.2 as δt and δx go to 0.

Proof. We first notice that since the matrix of the linear system (15) is a M−matrix, we have that
if (ρni )i is nonnegative, then S

n
i ≥ 0 for all i = 0, . . . , N .

Let us defineMn
i = δx

∑i
j=0 ρ

n
j and Mn+1

i = δx
∑i

j=0 ρ
n+1
j . Since the scheme (12) is conservative,

we have Mn
N = M0

N . Clearly, ρni = (Mn
i −Mn

i−1)/δx and from (17) we have Jn
i+1/2 = ani+1/2(M

n
i+1 −

Mn
i−1)/(2δx). Then we deduce from (12) that

Mn+1
i = (1− λc)Mn

i +
λ

2

(
c−

ani+1/2

2

)
Mn

i−1 +
λ

2

(
c+

ani+1/2

2

)
Mn

i+1. (19)

If λ satisfies (16), we have λc < 1 moreover, by assumption (9), |ani+1/2| ≤ c. Thus Mn+1
i is a convex

combination of Mn
i−1, M

n
i and Mn

i+1. We deduce that provided condition (16) is satisfied, we have
0 ≤ ρni = (Mn

i −Mn
i−1)/δx and equation (18) implies a BV (R) estimate on (Mn

i )i. Moreover, for all
i = 0, . . . , N , we have Mn

i ≤Mn
N =M0

N which provides a L∞ estimate on (Mn
i )i.

Summing (15), we get

Mn
i = δx

i∑

j=0

Sn
j − 2∂xS

n
i . (20)

We deduce that 0 ≤ δx
∑N

j=0 S
n
j ≤Mn

N . Then we have a L∞ ∩BV (R) estimate on (∂xS
n
i )i.

Let us define

Mδ(t, x) =
∑

n∈N

N∑

i=0

Mn
i 1[nδt,(n+1)δt)×[xi,xi+1)(t, x).

Using standard arguments, we have a L∞∩BV ((0, T )×R) estimate onMδ. It implies the convergence,
up to a subsequence, of Mδ in L

1
loc(R

+×R) towards a functionM ∈ L∞∩BV ((0, T )×R) when δt and
δx go to 0 and satisfy (16). By the same token we have the strong convergence in L1

loc(R
+×R) of ∂xSδ

towards ∂xS and by definition of ∂xSi we have the convergence in L1
loc(R

+,W 1,1
loc (R)) of Sδ towards S.

Let us define, in the weak sense, ρ = ∂xM ∈ Mb(R). Obviously, noting that ρni = (Mn
i −Mn

i−1)/δx,
we deduce that ρ is the limit in the distributional sense of ρδ. Passing to the limit in the equation
(20) we deduce that S is a weak solution of equation (3).

Moreover we have

A(∂xS
n
i+1)−A(∂xS

n
i )

∂xSn
i+1 − ∂xSn

i

= a(θni ), θni ∈ (∂xS
n
i , ∂xS

n
i+1).

Using assumption (9), we deduce that the sequence (aδ)δ is bounded in L∞, thus we can extract a
subsequence converging in L∞ − weak∗ towards ã. From the L1

loc convergence of (∂xSδ)δ, we deduce
that ã = a(∂xS) a.e. Then, from (13), we have the convergence in the sense of distributions of Jδ
towards J = −∂x(A(∂xS))+ a(∂xS)S a.e. Finally, taking the limit in the distributional sense of equa-
tion (12) we deduce that ρ is a distributional solution to (11)–(10). By uniqueness of this solution, we
deduce that (ρ, S) is the unique duality solution of Theorem 2.2.
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4 Numerical simulations

We present in this section some numerical results obtained thanks to an implementation of the scheme
(12)–(15). Even though the scheme was designed to ensure convergence in the attractive case, we
evidence that it gives interesting results in the repulsive case as well.

In all the following, the computational domain is assumed to be [−2.5, 2.5] and the velocity c is
normalized to 1.

4.1 Attractive case

Let us consider the function a(x) = 2/π Arctan(10x), which satisfies clearly (9). In Figure 1, we plot
the dynamics for the smooth initial data:

ρini(x) = e−10(x−1.25)2 + 0.8e−20x2

+ e−10(x+1)2 .

We notice that the blow-up occurs fastly. Then after a small time, solutions are formed by 3 peaks
which can be considered as numerical Dirac masses. Then the Dirac masses move and collapse in
finite time. This behaviour is very similar to the one observed in [7] where a particle method has been
implemented.
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Figure 1: Dynamics of the cell density for an initial data given by a sum of 3 regular bumps. We
notice the fast blow up of solutions, then the obtained aggregates collapse together.

4.2 Repulsive case

It is very interesting to see the numerical results obtained by this scheme in the repulsive case, i.e.
when the function a is non-increasing. In Figure 2, we present the result for a(x) = −2/π Arctan(10x)
(left) and a(x) = −2/π Arctan(50x). The initial data is ρini(x) = e−10x2

. In this case, the velocity
x 7→ a(∂xS) does not satisfy the one-sided Lipschitz estimate (8). Therefore we cannot define measure
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solutions in the sense of duality. However, we can prove, using the arguments in e.g. [8] that if
ρini ∈ L1 ∩W 1,∞(R), we have global in time existence of solutions in L1 ∩W 1,∞(R).
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Figure 2: Dynamics of the cell density in the repulsive case, i.e. for a non-increasing function a(x) =
−2/π Atan(kx). Left : k = 10; Right : k = 50.

We observe in Figure 2 that support of the solution increases in time. It corresponds to the fact
that cells repulse themselves. The particle scheme proposed in [7] does not allow to get satisfying
numerical results in the repulsive case. In fact in this latter scheme, we approximate the solution by a
finite sum of Dirac masses. However, as we noticed above, duality solutions can not be defined in this
case. Therefore we do not know how to solve the system for an initial data given by a sum of Dirac
masses.

Finally, Figure 3 displays the dynamic of cells density in the repulsive case a(x) = −2/π Atan(10x)
and for the initial data ρini(x) = e−10(x−0.7)2 + e−10(x+0.7)2 .
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Figure 3: Dynamics of the cell density for an initial data given by a sum of 2 regular bumps in the
repulsive case for a(x) = −2/π Atan(10x).
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